
RESEARCH ARTICLE

Economic Opportunities of Bioelectricity from Cotton
Gin Waste

Syed M. Fuad1 , Michael C. Farmer1 and Abidemi Adisa2

1Agricultural and Applied Economics, Texas Tech University, Lubbock, TX, USA and 2Institute for Business in the Global
Context, Fletcher School, Tufts University, Medford, MA, USA
Corresponding author: Syed Fuad; Email: syed.m.fuad@ttu.edu

Abstract
This work shows that direct combustion of cotton gin waste (CGW) at cotton gins can profitably generate
electricity. Many bioenergy processing centres emphasise very large-scale operations, which require a large
and stable bio-stock supply that is not always available. Similarly, a small biorefinery processing gin trash
at a cotton gin must wrestle with the high volatility of cotton yields and price variation in cotton and
electricity. Fortunately, the smaller scale allows these risks to be somewhat countervailing. Low cotton
yields allow the limited gin trash available to be applied to the highest peak electricity prices in winter.
Similarly, high yields with low cotton prices generate revenue from power generation throughout high
winter electric prices.

To assess the profitability of an onsite power plant requires high-resolution data. We utilise hourly
electricity price data from 2010 to 2021 in West Texas and obtain a small data array of 15 years of gin trash
at a medium-sized gin. Prior analyses have had neither. We leverage limited CGW data to better leverage
generous electricity price data by generating a Bayesian distribution for CGW. We simulate 10,000 annual
CGW outcomes and electricity prices. Using engineering parameters for combustion efficiency, we show
the expected internal rates of return of 19–22% for a 1 MWe and a 2 MWe plant at a small gin. Simulations
then compare economic returns to the variance of those returns, which allows the analyst to present to
investors a frontier of stochastic dominant return outcomes (risk-returns trade-off) for plants of different
sizes at different sized gins.
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1. Introduction
The more than three decades of cultivating dedicated crops for ethanol and biodiesel production
has left a very mixed record. Concerns begin with the observation that corn ethanol and forest
biodiesel show no measurable reductions in carbon releases. More serious, critiques show that
biofuels from dedicated crops often accelerate environmental degradation by the expansion of
corn cultivation onto marginal farmlands and the clearing of forest floors, degrading both prairie
and forest soils. Yet the longer history of bioenergy production in the USA before the recent era
has not centred on dedicated crops. In the late 19th century, biomass boilers began to chemically
process biowaste to generate steam. That steam, in turn, powered an electric turbine used for
power to process cultivated crops or forest residuals (Del Rio et al., 2022).

Over the 20th century, food processing industries began to consolidate, and many rural
processing plants closed (Dimitri et al., 2005). In addition, falling electricity prices after the 1936
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Rural Electric Act created little incentive to invest in small-scale, local bioelectricity (Kitchens,
2014). By the 1990s, however, trends began to turn. Electricity prices began to rise, especially in
rural areas (Sueyoshi and Goto, 2014). Further, the volume of cotton gin waste (CGW) continued
to expand as gins grew larger and as cotton yields rose steadily (Gulati and Rollin, 2015; Reddy
et al., 2017).

Given the challenges that rural industries face, the addition of new revenue streams through
bioenergy production can be an important contribution to the rural economy (see Golden et al.,
2024) for a comprehensive review of the economic value and job creation from the biomass
industry). The processes examined here also provide local environmental benefits. Biowaste
management is cleaner when processed inside a contained system, such as a chemical boiler — a
benefit of special significance given the ambient pollutants from CGW (Safferman et al., 2009; Yue
et al., 2014). Further, rural electric power generation is now overburdened. The rapid acceleration
in peak electric prices in winter, when ginning is most active, means that new production helps to
prevent brownouts (Billimoria et al., 2021; Shoreh et al., 2016). Currently, the impediments to
biopower appear to be policy driven rather than technical or economic (Batidzirai et al., 2012).

Current bioenergy policy emphasises large, concentrated plants (Roni et al., 2017). To the
extent bio-residual waste is used, current processes centre on cofiring forest residuals with coal
(Mirzaee et al., 2023) or processing almond and pecan shells at cogeneration plants (Wiltsee,
2000). England’s Drax plant is a perfect example. The plant has replaced a large coal combustion
chamber entirely with wood pellets. That conversion is telling. This single operation requires a
global biomass feedstock collection system, marked by aggressive clear-cutting and forest floor
gleaning (Rahman et al., 2022) — all of which have been shown to create severe environmental
damages (Blanco-Canqui and Lal, 2009).

The effort to replace fossil fuels with large bioenergy systems has emphasised advances for
more efficient combustion — turning a large percentage of the BTUs in the biomass into
megawatts of electric power. This effort has stimulated research into gasification and pyrolysis to
process biowaste at higher efficiencies (Farmer and Sinquefield, 2007). These technologies clearly
show promise; yet over the last 30–40 years, these technologies have remained stubbornly
expensive and, mostly, beyond full technical implementation (Capareda, 2023). This situation
may improve, and these technologies may become more affordable and feasible. Yet, currently,
gasification generates ‘slagging’ or tars in turbines, a problem that has eluded remedy for half a
century (Farmer and Sinquefield, 2007). In the interim, traditional boilers, due largely to progress
at US papermills, have become far more efficient, often exceeding 30% conversion efficiency of
wood pulp, and they are ready to deploy (Farmer and Sinquefield, 2007). At a time of extreme
electricity price spikes, the system proposed can be implemented immediately.

This work models the economic benefits of a supplemental ‘single cycle’ electric power system,
meaning the system delivers power on short notice during peak use hours. This marks an
important distinction from the much larger, utility-scaled combined cycle bioenergy systems that
supplement ‘base’ load through continuous operation. So, the proposed bioelectric system
examined here is supplementary to core power generation systems. This supplemental power is
easier to operate for food and fibre processing centres whose primary activity is not power
generation, and, critically, that power can be timed to relieve very high use (high price) periods by
selling to utilities through ‘day ahead’ power market sales, which as the name suggests, schedules
power delivery a day ahead at a high contracted price to meet peak demand (Martelli et al., 2021).

Using the example of CGW, this work shows that onsite power production at food and fibre
processing facilities can be very profitable. Establishing a power plant on the same site as the
processing facility renders feedstock transport costs effectively zero because, of course, CGW is
already delivered with cottonseed and fibre. It adds needed revenue to rural processing plants and
to producer cooperatives. Critically, investment choices also allow great flexibility. Rather than
‘one size fits all’, investments of large-scale optimally scaled biotechnology operations, these
investments can be tailored to investor risk preferences and to gin size. The analytic approach

2 Syed M. Fuad et al.

https://doi.org/10.1017/aae.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2024.34


presented herein examines investments at different scales. We isolate stochastically undominated
plant size alternatives for each size gin — a unique contribution to this literature. So, investors
make choices that suit their risk preferences rather than force fit a single optimal investment scale.

This work provides a unique treatment of the risks in bioenergy production. It simultaneously
examines variation in cotton yields, cotton fibre prices and peak, subpeak and base electricity
prices. Investors can elect risk levels for a given level of return based on different investment scales.
We know of no bioenergy analysis that adopts this flexible approach.

The scope of application of this single bioenergy suggestion is significant. Across Texas, over
200 gins operate (Wade and Hudson, 2017). Wilde et al. (2010) report that across the 30 counties
in the Texas High Plains alone, during the years from 2000 to 2006, each county averaged 33,158
tonnes of gin trash — enough to support one medium-sized gin in each county. There is also a
concentration of CGW in the seven largest counties, each producing 60,000 tonnes of CGW
annually, enough to support one large gin in those counties. The added electric power output,
especially when delivered at very expensive peak times in winter, is both a substantive needed
supply for winter power and a substantial economic support for rural cotton gins.

2. Previous work of bioenergy from CGW
Prior explorations into the use of CGW as a bioenergy feedstock goes back half a century. In 1972,
gin trash was labelled a public health threat due to ambient air pollutants (Wilmot et al., 1974).
A decade later, Lacewell et al. (1982) proposed to use CGW for bioenergy to generate electricity
and, simultaneously, to remove the health threat. Lacewell noted that the energy content in 1
tonne of CGW is about 14 million BTU, which Le Pori et al. (1982) noted could meet the entire
energy needs of a gin in stripper harvesting areas. As Texas launched its renewable energy push in
2008, Capareda (2010) calculated that a tonne of CGW also could produce 120 gallons of motor
fuel using an updated version of Lacewell et al.’s (1982) fluidized bed gasifier. Finally, as
environmental challenges from CGW mounted, Multer et al. (2010) noted that conversion of
CGW to biopower could greatly reduce existing dust, small particle and lint fly emissions, all of
which contain at least trace amounts of arsenic, bacteria and pesticides (Multer et al., 2010). Due
to the 2010–11 drought, industry leaders found that CGW can be used as a cattle feed supplement,
reliably valued between $9 and $12/tonne (Mullenix et al., 2021).

Works also have considered bioenergy from CGW directly in the form of bioelectricity. Liu et al.
(2009) completed a proof-of-concept to establish baseline profitability. Tangaoui and Michael (2014)
examined cross-correlations of prices of cottonseed oil to soybean oil, to palm oil and to biodiesel,
which demonstrate enough long-run price stability in cottonseed oil to prevent widespread gin
shutdowns that might strand a bioenergy investment. Farmer et al. (2014) made the first attempt to
consider stochastic processes that would affect a biorefinery from CGW. Yet data limitations,
primarily from mandated non-reporting of hourly electricity prices have prevented full analyses of
complex stochasticity: drought, cotton price risk and changing electricity prices.

This is the first study to examine the joint sources of variability in cotton yields, cotton fibre
prices and daily peak, subpeak and base electricity prices. Analyses generate plausible risk-return
predictions across biopower investments from 1 to 6 MWe each for a small- and medium-sized
gin by repeated draws from the distributions of these multiple risks.

This work then estimates returns and variance of power plants at gins for these various sizes
from 1 to 6 MWe installed capacity. This work also presents a very realistic picture of the risk-
return trade-off options from various onsite power plant investments. We examine multiple
biopower options available both to small and medium-sized gins. Specifically, we generate a
mean return and variance Frontier (or EV Frontier) that reveals the multiple power plant sizes
available to each sized gin. The Frontier defines the set of second-order stochastic undominated
alternatives, which accounts for the uncertainties above.
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This is an important point of departure from works that estimate a single optimal output scale
under average conditions, which dominates engineering and economic literature on this subject.
Though some works do treat uncertainty, it is often relegated to parameter sensitivity analyses.
Even in cases that have applied stochastic dominance (Domínguez et al., 2021; or, much earlier,
Lesser, 1990), the objective is to identify the single choice whereby the central planner can
maximise average power output without accepting undue risk at that maximal output level.

We know of no work in any bioenergy assessment which is conducted at this level of data
resolution and that allows for a more realistic risk presentation. We know of no other work that
presents this level of flexibility in risk-return trade-off information for investors. We expect
subsequent works to improve on the multi-pronged model strategy introduced here.

3. Overview of modelling process1

The modelling process is straightforward but does integrate many moving parts. We simulate the
annual profitability of onsite power plants from one to six megawatts of installed capacity at
cotton gins. We also consider two different sized gins— a small and a medium-sized gin. We add
up all the sources of annual revenue generated from CGW and subtract the annual marginal and
financing costs of operation. We employ 10,000 simulated annual decisions.

Most of the revenue comes from the sale of electric power generated from the combustion of
CGW. The annual decision of how and when to allocate a year’s CGW to electric power is
modelled as nine sequential monthly choices, starting in mid-December. The gin operator makes
this decision in any given month to allocate some portion of on-hand (or remaining) gin trash to
deliver power during peak, subpeak and base electricity price periods during that month. Current
month prices are observed as future monthly electricity prices remain stochastic.

Most electricity sales occur during winter, timed to daily peak prices when possible. If the CGW
supply is moderately large, sales also occur during subpeak and base power hours.

CGW is also expensive to store, especially because environmental hazards from CGW grow
larger the longer CGW is stored on site. Fortunately, gin trash now can be sold as cattle feed.
In our simulations, the choice to sell CGW directly as feed generally occurs at winter’s end (March).
CGW is rarely held over for very high-priced summer power demand unless the CGW supply is
exceptionally large. In most years what CGW is left after winter is sold as cattle feed in March.

The costs of operation are discussed below. Labour is the largest expense. Labour applied directly
to power production and delivery is captured as marginal costs. We also assume higher fixed labour
costs for a professional plant manager dedicated to harmonising gin and power plant operations.
Based on an annual median income of around $90,000 in Texas,2 we impose a $75,000 fixed cost for
9 months out of a year effort to oversee power plant operations. We also model high annual
financing costs. We adopt plant depreciation at 12 years rather than the more common 20–30-year
life of the plant. Finally, we limit the total operating time per year for power generation, and, at
times, this is an occasional binding constraint. Our purpose for these conservative assumptions is to
capture better the inevitable learning curve costs for early adopters as they struggle to meet the
requirements of the procedural plan filed by a licenced power evaluator.

The largest contribution of this work, however, emerges from integrating multiple stochastic
processes. Electricity prices in each price category for each month are stochastic as is annual CGW
volume.

We contrast this strategy to other bioenergy models which lean strongly on the adoption of a
one, singular representative optimal scale operation. Our analyses allow the decision environment
to differ in numerous ways from year to year. What makes this more realistic risk modelling
process possible is due to recent changes in public reporting of hourly electricity prices. We use a

1We thank an anonymous reviewer for suggesting this section.
2Bureau of Labor Statistics.
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record of over 105,000 reported electricity prices — each hour for each calendar day for 12 years,
allowing for a much richer presentation of the multiple sources of uncertainty.

To simulate the annual decision to allocate CGW, we organise observed hourly prices from
mid-December to mid-September into peak, subpeak and base electricity prices for each of the
nine months — 27 variables in all.

For each month, we randomly draw one peak price, one subpeak price and one base price from
the extensive price record available. We repeat this 10,000 times to generate 10,000 simulated
decision years. Simulation results then provide an average annual return and a standard deviation.
This process repeats for each of the six power plant sizes available for each sized gin. This allows us
to organise results into risk-return graphs or the outer envelope of an EV Frontier to visually
compare risk-return outcomes: from a ‘small-low risk’ scaled plant to a ‘large-high risk’ scaled
plant. In this way, investors can make informed risk-return choices from an array of options.

The greatest uncertainty in the simulations is the year-to-year variation in CGW. This deserves
special attention. We have a very short CGW record: only 15 years at a small to medium-sized gin
as gins are reluctant to provide this information. Of benefit to us, that 15-year period includes two
years of very high rainfall and severe 2-year drought (2011–2012). Given more than a century of
rainfall data, this wide range allows for a more realistic simulated CGW distribution.

Of note, CGW volume is modelled as a quadratic response to rainfall, which has limitations. Yet,
we follow several decades of existing literature to estimate cotton yields based on a quadratic rainfall
function and cotton prices. As farmers and cotton co-op investors use our information, we need it to
match the large body of extension and academic work on cotton production (see Mitchell-McCallister
et al., 2021). Presumably, many producers or larger co-ops have experience adjusting their own
conditions to those estimates. What we do add is a Gibbs-sampled estimation of the parameters to
estimate CGW. That lone extension generates a multi-modal CGW distribution rather than a single
peaked estimate, which mimics the distribution in the raw data.

The remaining constraints on the model are right-hand side production constraints on choices
to allocate CGW in a given year; conversion efficiency of 1 tonne of gin trash to megawatts of
electricity; adding up conditions for the several uses of CGW; constraints by the number of peak
hours, subpeak hours and base supply hours available in a given month; and other material
balance constraints. We do conduct sensitivity analyses

We conduct three separate sensitivity analyses: a lower conversion efficiency rate (less
electricity per tonne of CGW), a 40% drop in base period electricity prices (to conform to historic
rates prior to 2010) and following trends, a 10% increase in all electricity prices. Profitability
remains high in all cases.

As a final consideration, we attempt to address the possibility of plant obsolescence in a future
energy economy, in particular the transition to a ‘hydrogen-based’ economy. Much of that
hydrogen would be generated through electrolysis. So, for completeness, we model a bolt-on
anhydrous ammonia technology, which is one existing technology that employs electrolysis.
Adding ammonia production to the array of choices for CGW use is currently less profitable than
a stand-alone power plant, but this is largely due to the very high cost of safety protocols in
ammonia handling. The technical feasibility serves only as a proof-of-concept scenario to suggest
an electric power plant would survive anticipated technology shifts, at least at first, though may
become even more profitable than these scenarios show.

The analytic model is detailed in the Appendix A. The main text includes the mechanics of the
CGW allocation decision process, the method for draws from electricity prices, the Gibbs
sampling process to build distributions for annual CGW and a distribution for ammonia prices
from a regression analysis. The results are presented as financial outcomes, primarily as the return
on invested capital (ROIC) for different levels of investment and borrowing. Finally, two graphs
map a Frontier that plots all second-order stochastic undominated alternatives as a risk-return
graph: one for each size gin. Each graph plots the risk-return outcomes for six different power
plant sizes.
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4. Data for stochastic analyses
Cotton Gin Waste (CGW): We obtain CGW data from the Ropes Farmers Co-Op Gin in
Lubbock County, Texas, between 2004 and 2018. Fortunately, this period includes two of the top
five 2-year records for drought and one of the three highest 2 years rainfall events since 1908.
We also obtain rainfall data for the same years from the ASOS-AWOS-METAR database
(Iowa State University, 2022). Further, cotton fibre price data is obtained from (USDA, 2022).
We use these data to generate an estimated sampling distribution of CGW by regressing CGW in a
Gibbs-sampled Bayesian regression on rainfall and cotton price.

Electricity Prices: Electricity prices are obtained from Electric Reliability Council of Texas
(ERCOT) (ERCOT, 2022). We report ‘Day-Ahead Market’ prices on an hourly and daily basis for
2010–2021 for the ERCOT West Hub and Load Zone, recording more than 105,000 price points.
For convenience, we sort electricity prices by daily intervals of peak, subpeak electricity prices and
base electricity prices. In the analyses below, we estimate sampling distributions of peak, subpeak
and base prices for each month. These monthly price distributions are obtained by regressing
hourly electricity prices on hourly temperature data (from the ASOS-AWOS-METAR database;
Iowa State University, 2022) in each month over 12 years. This allows a Bayesian draw for the
separate distribution estimates of daily peak, subpeak and base electric prices for each of nine
months of analysis.

Anhydrous Ammonia Prices: We use monthly anhydrous ammonia price data from 2014 to
2021, collected from the DTN Progressive Farmer database (Progress Farmer, 2021). Anhydrous
prices movements are tied to seasonal cycles rather than month-to-month fluctuations, so we
follow the modelling approach in the established literature and group prices into intervals:
(i) winter, December to February; (ii) spring, March to May; and (iii) summer, June to September.
Ammonia prices are regressed on the prices and lagged prices of major crops and oil (USDA
National Agricultural Statistics Service, USDA, 2022) to generate an estimated distribution of
seasonal ammonia prices, following Schnitkey (2021).

5. Decision process
Figure 1 below illustrates the decision process across the nine-month decision period from
January through September. The gin allocates CGW in any given year to biopower and to cattle
feed sales (at $10/tonne). At the start of the decision period, the volume of gin trash is known.
Electric prices for the immediate month are also known, so on January 1, the peak, subpeak and
base prices for that January draw are known, while prices in all future months are stochastic.

Using Figure 1, given CGW on hand (Total CGW), the ginner maximises expected profits
across a year and confronts stochastic electricity prices for each future month (μpi + n, in Figure 1).
In panel A, we show that the ginner observes current monthly electricity prices (Obs. Pi; the red ‘E’
in Figure 1, Panel A) as the rest remain uncertain. The manager decides how much CGW to use in
any month by maximising expected profit for the year using current prices and the expected mean
price (μp) in each electricity price category (peak, subpeak and base power) for future months. In
the next month, the process repeats with a draw of electricity prices from the then-drawn peak,
subpeak and base prices.

Once a decision is made, the available gin trash remaining is known and is to be allocated over
the remaining 8 months in the same fashion. The second panel in Figure 1 shows electricity price
information updates be the information in red in period 2. The decision to maximise expected
returns now takes place over the 7 months. An option always open to the gin is to sell a portion or
all the remaining CGW as cattle feed at $10/tonne, a stable price since the 2010–2011 drought.
There is no explicit risk aversion within the annual CGW allocation as investors and day-to-day
managers operate consistent with investor preferences. Yet to carry gin trash forward is expensive.

6 Syed M. Fuad et al.

https://doi.org/10.1017/aae.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2024.34


Holding over gin trash during the low electric prices of April and May (and early June) to sell in
late June, July and August is expensive. So, we assess a $2/tonne per month storage charge to store
the remaining CGW (suggested by site managers at Ropes, a small gin, and by Plains Cotton
Growers, a large co-op gin). In low or medium volume years, gins will sell the remaining CGW at
the end of March. Nonetheless, given very high expected summer electricity prices, plotted in
Figure 1, years where there is an exceptionally large CGW volume, it is profitable to generate
electric power through the summer and to skip power generation in April and May.

Distribution of Expected Annual Total Cotton 
Gin Waste (delivered to gin)

Average Electricity Prices by Month
(nine months, mean and standard deviation)

First Month Electricity Production ( )
(based on Total CGW, Observed Price ( . ), and Expected Monthly Prices ( )) 

Second Month Choice of Electricity Produced
(based on CGW − −1, Observed Price ( . ), and Expected Monthly Prices ( )) 

Total CGW
Price Observed

CGW

Figure 1. Decision process to allocate cotton gin waste.
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We model power sold to local utilities through ‘day ahead’ pricing. So, a sale has a guaranteed
price to produce the next day, often a little higher than the actual price, especially in winter.
Though produced power also may be used to service onsite ginning needs, it is advantageous to
sell at least some electricity to the local utility for some hours most winter days. Utilities routinely
offer a price premium to ensure power delivery during the next day’s peak use, and peaking power
can last 10 hours or more on the highest demand periods of winter.

6. Model parameters
We generate a distribution for each of the 28 distinct sales decisions a power plant operator makes:
peak, subpeak and base electricity generation in each of nine months and sales of CGW as cattle
feed. Operating expenses are dominated by fixed and quasi-fixed costs: fixed costs include a
chemical boiler, steam turbine, loan payments if not fully financed and affixtures to plant
operations; quasi-fixed costs are annual labour expenses dedicated to manage operations. Finally,
marginal costs include per unit costs of electricity generation and storage costs for CGW.

Appendix A details the model as the summed difference between all revenue streams and
annual costs — subject to constraints on plant size, conversion efficiency, limits on hours of
operation and material balance constraints. On the cost side, both fixed and quasi-fixed costs
exceed existing engineering reports on the costs of installation of similar sized plants
(U.S. Department of Energy, 2016). Plant costs also exceed those in engineering reports: our
modelled costs are 15% higher for a 1 MWe plant and 8% for a 5 MWe plant. We include
financing costs with a 25% investment in installation costs with the remaining 75% amortised at
8.5% over a 12-year loan, both of which are higher than typical market rates. The fixed cost of the
ammonia processor is $350,000, though only one has ever been built and includes costs of natural
gas installations, which include costs of a feeding system and gas turbine. The financing structure
of the ammonia processor follows that of the power plant. We also report the internal rate of
return of a fully financed investment. Overall, our costs are higher and returns lower than most
engineering reports.

6.1. Simulation methods: sources of uncertainty

We conduct profitability analyses on 10,000 simulated annual decisions. This requires the use of
existing data to simulate distributions of CGW and of 27 different electricity prices.

Cotton Gin Waste: To simulate the distribution of annual CGW, a regression of CGW against
precipitation and its square is estimated by a Gibbs sampling of the model:

CGW � β0 � β1PPT � β2PPT
2 � ε (10)

where CGW is an annual production of CGW in tonnes, PPT is annual precipitation in cm and β0,
β1 and β2 are the regression coefficients to be estimated.

To estimate a posterior distribution for the coefficients (β) and the error variance (σ2),
we specify the number of model iterations (11,000 herein), of which 1,000 are used to burn in
the sample and then discarded. Each iteration alternates between sample draws for the two
beta coefficients and the error variance. The ‘betas’ are sampled from a multivariate normal
distribution, using the covariance matrix and mean parameters. ‘Sigma’ values are drawn from an
inverse gamma distribution as this allows great flexibility in the shape of the CGW distribution.
Each sampling draw is stored, and the corresponding value of CGW (10,000 in all) is assigned
from these sampled coefficients (Lacombe, 2022). We employ the same Gibbs sampling regression
for each of the three seasons of anhydrous ammonia.

Electricity Prices: Electricity price distributions are based on over 105,000 observations of
hourly electricity prices, which sort into more than 3,600 observations for peak prices for every
month, more than 5,000 subpeak prices for each of 9 months and 2,900 observations of base prices
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for each of 9 months. To simulate distributions, we randomly draw 10,000 times from these data
for each electricity price category (peak, subpeak and base) in each month. This generates
27 electricity price distributions, each with 10,000 draws based on 105,000 direct observations of
hourly electricity prices.

So, simulations are reports from 10,000 random draws of annual cotton gin trash and 10,000
draws of peak, subpeak and base electricity prices for each month (December–September).

When adding ammonia processing, three seasonal anhydrous ammonia price distributions are
added. The ammonia simulation model is derived from Ibendahl (2021) and Schnitkey (2021) in
which demand is determined by the price of corn and a lagged oil price. Our formal regression
model uses the price of major crops including corn, cotton and oats, their squared prices and
9-month lagged oil prices. Table B1 in the Appendix presents the summary statistics of the
observed and simulated values.

6.2. Distributions

Panel A, Figure 2 presents a distribution of draws of annual CGW against cotton prices and
annual rainfall by the Gibbs sampled Bayesian regressors, described above. The flexibility of the
simulation process is represented in the triple peaked distribution of CGW, which closely matches
the variable weather in the study area.

Panels B, C and D show distributions of hourly electricity prices for every hour over 9 months for
12 years, sorted by peak (4–7 hours/day), subpeak (8–14 hours/day) or base (10 hours/day) electricity
prices. The distributions reflect a secular trend of increasing peak prices, frequently exceeding $100/
MWe and higher base prices for off-peak hours, well above the $25–$30 15 years earlier (US Bureau of
Labor Statistics, 2021). For profitability analysis, we extract 10,000 draws of these 27 prices to solve a
revenue maximisation problem that allocates annual CGW according to Figure 1.

7. Risk-returns
Simulations address two sized gins. The CGW represented in Figure 2: Panel A is based on a known
record of CGW from Ropes Gin. The medium-sized gin is premised on Plains Cotton Growers, a
local co-op gin with total revenues close to three times those of Ropes — in the same area. Plains
Cotton Growers co-op in fact reports an overall average gin size of 28,000 tonnes of gin waste, close
to 2.9 times the size of Ropes Gin. The distributions of all are identically scaled to Figure 2: Panel A.

We evaluate investment success through several financial benchmarks. First, simulations
provide 10,000 simulated annual profit or loss outcomes for a power plant of a given size at a given
sized gin. That variation also generates a standard deviation from the expected annual profit.
ROIC tracks two scenarios where an investor makes a 25% down payment and borrows the rest
and a 100% self-financed.

The average returns over 10,000 simulations compared to the cash investment drive the ROIC
percentages. These are converted to annual returns on invested capital rather than the entire
12-year life of the plant. In addition, over the 12-year life of the plant, we report the probability
that the investment shows an overall loss and report the probability of a 100% return or greater on
invested capital (annualized).

7.1. Small gin options

Table 1 summarises results for bioproducts produced at a small gin. Presented are two types of
plants: electric power only or with ammonia processors. Profit is represented as cash flow — all
revenue from electric power minus operating costs, and estimated returns to a small gin are
reported in Table 1. As shown in Table 1, plants where 25% of the installation costs ($321,000 and
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$590,000) are self financed and the remainder borrowed ($0.963 million and $1.770 million).
Financing of course lowers average annual cash flow and elevates annual ROIC.

Both the 1 MWe and 2 MWe plants appear very attractive. In an average year, the 1 MWe plant
is expected to return 58.8% of initial invested capital and a 2 MWe plant to return 51.2% of
invested capital. Yet the very high standard deviation around annual cash flows is worthy of note.

The key source of variability in annual cash returns is the variation in the quantity of gin trash,
but the ratio of standard deviation to average annual returns is due to principal and interest
financing payments and the annual fixed labour costs we added for first-time investors. This is
why we present outcomes as cash flows to highlight this concern.

Panel A: Distribution of Gin Trash

Minimum: 3,342

Median: 9,763

Mean: 10,752

St. Dev.: 3,662

Maximum: 21,093

Panel B: Distribution of Peak Electricity

Minimum: -407.02

Median: 72.49

Mean: 184.91

St. Dev.: 849.82

Maximum: 23,259.35

Panel C: Distribution of Sub-Peak Electricity

Minimum: 4.14

Median: 44.30

Mean: 52.35

St. Dev.: 56.35

Maximum: 3,910.65

Panel D: Distribution of Base Electricity

Minimum -2.04

Median 42.05

Mean 48.41

St. Dev. 53.04

Maximum 3,152.99

Figure 2. Distribution of simulated and observed cotton gin waste and electricity prices.
Note: Top and bottom 5% of the distributions were truncated for better scaling on the axes (except gin trash); grey bars represent
observed values and red density plots represent simulated values).
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Real average profits of the 1 MWe plant have to add back the $80,000 average annual principal
outlays and for the 2 MWe plant add back $130,000 average principal payments. These returns are
very high even with added annual fixed labour costs of $75,000 for new investors. Even with
intermittent cash flow concerns, the chance of negative cash flow over the entire 12-year period is
only 5.6% for a 1 MWe plant and 9.6% for a 2 MWe plant, each with very high expected returns on
invested capital. If we consider self-financed options, the more conventional internal rate of return
is 22.2% annually for the 1 MWe plant and 18.0% annually for the 2 MWe plant.

Figure 3, Panel A graphs the outcomes of Table 1 labelled EV: the set of second-order stochastic
dominant investments for the 1 MWe plant for a small gin. The do-nothing option is always on
the frontier as it presents virtually no risk for the expected revenues of CGW sales as cattle feed.
This Frontier is slightly bowed right given the cash flow risks from fixed expenses that advantage
the 2 MWe plant investment. Nonetheless, all are stochastically dominant. Only the risk
preference of an investor can choose among these options.

7.2. Medium-size gin options

The medium-sized gin is modelled as three times the size of the small gin, processing 29,000
tonnes in an average year.3 Results continue to reflect a 25% investment with a 75% loan. Table 2
shows modestly increasing scale returns. First, greater size reduces the cost per MWe of quasi-
fixed labour of $75,000; yet it is the declining average cost in plant construction that contributes
most to scale economies.4 This is clearly evident when comparing Table 2 to Table 1.

75% financing of a medium gin returns an average annual return of more than 90% of the
invested capital; and this ROIC continues at every scale up to the 5 MWe plant for a medium gin.
Conversely, in a fully financed power plant, the internal rates of return (IRR) of installing a
1 MWe, 2 MWe and 4 MWe are 41, 37 and 36% respectively.

Panel A: Small gin EV Frontier Panel B: Medium gin EV Frontier

Figure 3. EV Frontier. The standard deviation (SD) represents the SD of net profit across 10,000 simulation runs, with each
iteration using different input values generated through Bayesian regressions. The mean profit is plotted on the y-axis, and
the standard deviation of profit is plotted on the x-axis.

3The medium-sized gin is modelled as 3× larger than the small-sized gin: 9,700 tonnes versus 29,000 tonnes on average.
4Installation costs herein commence at $1.285 million/MWe for a 1 MWe plan — well above engineering reports of $1

million. Modelled costs of $1.010 million/MWe for a 4 MWe plant is still 12% higher than reports of $0.9 million/MWe at this
scale. At the 6 MWe scale— the largest plant on the EV frontier, our costs ($0.921/MWe) compares to $0.850–0.900 million/
MWe in engineering reports. Finally, our lowest cost plant of $0.865 million/MWe for a 9 MWe plant finally falls close to
engineering reports (U.S. Department of Energy, 2016; Frontiers, 2021).
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The EV Frontier on Panel B, Figure 3 shows considerable flexibility for an investor. A gin this
size choosing to install a boiler-steam turbine power plant faces a very low probability of loss.
The simulated probability of loss over 12 years is less than one percent up to a 3 MWe installation.
Not until installation reaches a 5 MWe scale is the probability of loss nearly equal to the
probability of loss to the 1 MWe plant at a small gin.

What provides security to a risk-averse manager of a medium gin is volume of CGW.
On average, the gin with a smaller power plant can cover the hours of peaking electricity prices across

Table 2. Analyses for medium gin

Models Avg. ROIC (%) Prob. loss (%) Prob. ROIC >100%
Avg. annual profit
(cash flow, $)

SD profit
(cash flow, $)

C = 0, M = 0 EV, * 0.00 0.00 0.00 322,549 109,878

C = 1, M = 0 EV 108.79 0.01 37.39 349,517 297,249

C = 2, M = 0 EV 98.96 0.02 23.52 569,104 577,942

C = 3, M = 0 EV 95.41 0.54 21.83 771,254 854,539

C = 4, M = 0 EV 96.01 3.09 22.16 986,196 1,140,497

C = 5, M = 0 EV 92.91 4.90 21.21 1,152,070 1,391,770

C = 6, M = 0 EV 80.56 5.81 17.35 1,162,195 1,482,193

C = 7, M = 0 68.44 6.59 13.75 1,122,302 1,592,251

* C = installed power capacity in MWe; M = number of ammonia plants (550 tonnes/plant); when C = 0 and M = 0, all CGW is sold as feed at
$10/tonne; for each incremental increase in C, installed power capacity increases by 1 MWe, and for each incremental increase in M, installed
ammonia capacity increases by 550 tonnes; EV = models on the Efficient Frontier; ROIC is calculated by dividing net profit [revenue –
(marginal cost + fixed cost)] by invested capital [debt + equity]; Prob. loss represents the number of simulations (out of 10,000) where net
profit is less than 0; Prob. ROIC >100% refers to the number of simulations (out of 10,000) where ROIC exceeds 100%; all results are based on
10,000 simulations; full results in Appendix Tables B4 and B5 and output combination in Appendix Table B12.

Table 1. Analyses for small gin

Models Avg. ROIC (%) Prob. loss (%) Prob. ROIC >100%
Avg. annual profit
(cash flow, $)

SD profit
(cash flow, $)

C = 0, M = 0 EV* 0.00 0.00 0.00 107,516 36,626

C = 1, M = 0 EV 58.83 5.60 12.99 189,011 284,846

C = 2, M = 0 EV 51.25 9.50 11.04 294,700 494,065

C = 3, M = 0 29.51 30.39 6.17 238,519 602,822

C = 1, M = 1 40.73 9.06 8.94 166,505 284,887

C = 2, M = 1 41.86 12.05 8.72 277,330 493,492

C = 3, M = 1 24.21 35.52 5.22 216,900 600,695

C = 1, M = 2 25.96 22.46 7.11 128,860 284,887

C = 2, M = 2 32.40 17.38 6.87 242,992 493,718

C = 3, M = 2 18.93 42.23 4.27 186,189 602,075

* C = installed power capacity in MWe; M = number of ammonia plants (550 tonnes/plant); when C = 0 and M = 0, all CGW is sold as feed at
$10/tonne; for each incremental increase in C, installed power capacity increases by 1 MWe, and for each incremental increase in M, installed
ammonia capacity increases by 550 tonnes; EV = models on the Efficient Frontier; ROIC is calculated by dividing net profit [revenue –
(marginal cost + fixed cost)] by invested capital [debt + equity]; Prob. loss represents the number of simulations (out of 10,000) where net
profit is less than 0; Prob. ROIC >100% refers to the number of simulations (out of 10,000) where ROIC exceeds 100%; all results are based on
10,000 simulations; full results in Appendix Tables B2 and B3; output combination in Appendix Table B10.
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the early months during ginning. The smaller plant at a medium-sized gin can offset some loss of a low
harvest year by selling all gin trash at very high peaking prices. A small gin with the same size plant will
have greater exposure to years in which they exhaust CGW before they satisfy winter peaking power.

Investors in the medium-sized plant can secure very high returns coupled — an elevated
ROIC — with very modest risk. Conversely, an investor with a higher risk tolerance and a strong
cash position can support, say, a 5 MWe plant with very high returns over time. The EV Frontiers
in Figure 3 illustrate that investors of different risk preferences and different cash positions can
fashion their investment choice to their own needs, rather than face a take-it-or-leave-it option of
a singular ‘optimal’ scaled system.

7.3. Sensitivity analyses

Though we elevate installation costs by 5–20% across plant options, use somewhat low conversion
efficiency (25% rather than 28%) and increase labour commitments, simulations still show strong
returns and modest risk, especially for larger sized gins. We summarise sensitivity analyses below.
The appendix details even more conservative results. Sensitivity analyses for the small gin are
recorded in Tables 6 and 7; results for the medium gin are presented in Tables 8 and 9; and
combined outputs using an ammonia plant are recorded om Tables 11 and 13.

7.3.1. Lower base electricity price
As a first sensitivity analysis, we lower base electricity prices from the $48/MWe we found in the
12-year record to $25/Mwe, which is more in line with historical base prices. Critically, the EV
Frontier is slightly lower although optimal plant capacity does not change.

Though we have not found the addition of an ammonia plant more profitable than electric power
only, a drop in base prices would encourage the diversion of power from electricity sold to a local
utility to ammonia production via electrolysis during nonpeak hours If a small gin installed C = 1 and
M = 1 (not on the Frontier), electric power sold would decrease from 3,771 MWh to 3,314 MWe as
ammonia production rose from 138 tonnes to 179 tonnes. The medium gin realises a similar pattern.

7.3.2. Lower marginal cost of ammonia plant
The chief reason ammonia production is currently unprofitable is the high price of electricity sold
to power utilities and the very high marginal cost of production of ammonia due to safety
concerns. If we lower the marginal cost of ammonia production by 34.8% — from $130.34/tonne
to $85/tonne — this drop in marginal cost does not alter optimal plant composition; plants with
no complementary ammonia processor remain a little more profitable.

If the policy seeking to reduce the size of ammonia plants for safety concerns subsidised an
ammonia processor by 10%, adding this marginal cost reduction would almost match the EV
Frontiers presented. The effect would decrease the amount of electricity sold, especially in base price
markets, and divert power generation to ammonia output. What this simulation does show is that
electrolysis-based products, such as hydrogen fuel, can be produced in the future as technology
makes these systems more efficient. These are easily ‘located’ onto an existing power plant.

7.3.3. Lower conversion rate
We now reduce the conversion rate efficiency of CGW into electricity. We initially employed a
conversion rate of 25%, which is only slightly below the current 28% efficiencies reported for a
modern boiler. If conversion efficiency falls to 18% from suboptimal operation and maintenance,
the benchmark 2 MWe plant at the small gin is still the plant size with the highest expected profit
for the small gin, but 12-year cumulative cash flow falls by 72%.
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The same conversion efficiency drop for the medium gin reduces the 12-year cumulative profit
of a 5 MWe plant by 53%. The operational adjustment of lower efficiency is to almost eliminate
holding any CGW to summer months, selling CGW as cattle feed in March instead.

7.3.4. Higher electricity prices
As a final sensitivity analysis, we increase all electricity prices by 10%. For each sized gin, this
increase does not change the optimal plant composition, nor the timing of electricity sold over the
seasons. Of course, IRR and ROIC increase with increasing electricity prices.

The next step is a formal operational assessment by a power evaluator. Even with the advice of
engineers, implementation involves multiple licences and process plans that match to rigid design
and operation standards. While many dual biomass processors with biopower operations have
been licenced, each is different. The final plant will differ from this in some fashion. Our
conservative orientation here suggests the evaluation is warranted and shows enough residual
profits to realise a reliable second value stream for independent and co-op gins.

8. Conclusion
This work illustrates profitable pathways to develop bioelectricity plants at rural food and fibre
processing centres using biowaste feedstocks. First, the power plant uses existing technology. The
operation of a chemical boiler to generate heat to power a steam turbine has been used for more
than 130 years, and the technology has improved continuously over that period. As a secondary
benefit, this system can be upgraded as more efficient gasification or pyrolysis technologies
become commercially available. The system can also adapt to new electrolysis-based products if a
hydrogen-based economy evolves. The investment options are also highly profitable under
conservative parameters. Compared to existing engineering studies, these analyses overstate the
costs of plant installation, abbreviate the useful life of a plant to replacement and elevate the
operational costs to manage the plant.

A central benefit of this work is to demonstrate that investment choices are highly flexible. The
scale of investment, forms of financing and level of leveraging exposure support very different
levels of investment. Critical to this work is that we presented a structured method to allow more
flexibility in bioenergy production and investment. By presenting a realistic risk-return (EV)
Frontier, investors make informed risk-return choices on their own without facing a narrow set of
researchers or policymakers who presented optimal investments. This flexibility we assert is
central to elevate the adoption of alternative energy sources.

This flexible presentation emerges from the manner of economic estimation itself. As bioenergy
has often been dominated by technical advances, applied at utility scale to accelerate conversion,
the presentations may not resolve the question of real investors. The presentation of average prices
and average conditions for bio-feedstocks, and often little more, presents investments that may fit
only a few investors and pressure public entities to subsidise investments that, under more flexible
conditions, are profitable for investors in current markets.

Unique to this study, risk and uncertainty are analysed and communicated by the simultaneous
variation of electricity prices (varying peak, subpeak prices and base prices), variations in
feedstock availability due to variations in rainfall, heat and commodity prices themselves. Risk
presentation is supplemented by specific sensitivity analyses, such as the biomass conversion
efficiency. Though policymakers seek continuous provision, the marginal investor also may need
to optimise the timing of power output across a day and across seasons. Communicating risk is
also important.

This return-variance information is also presented graphically in the form of a frontier of these
stochastic dominant outcomes, or an EV Frontier mapped onto expected returns and variance
axes. All of this assists the investor (gin, cooperative, or independent investor) match their risk
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tolerance against each separate investment level. We have not seen this in the extensive bioenergy
literature.

Two final advantages include the direct environmental benefits of managing and processing
CGW to avoid long-term problems. CGW starts to release arsenic and attract beetles that carry
diseases after long periods. With nearly all gin waste processed during winter ginning and only a
small volume held over in exceptional years for summer combustion, these local environmental
risks are virtually eliminated.

Second, this diversification contributes to the economic viability of rural industry while also
easing some of the most dangerous periods of power supply shortage. This process also allows
other products to be made, from ammonia fertiliser to hydrogen fuels from electrolysis. A rural
power plant may be an attractive bolt-on technology contributing to viable rural economies,
especially as electricity demand is projected to increase as more electric vehicles are deployed. The
possibility for a multi-product biorefinery may be more open to smaller operations, outfitted with
more versatile uses than large, complex single-use systems such as a combined cycle power plant.

Finally, bioenergy literature itself may need a more holistic perspective. To assess this resource
use process as a bioenergy project misses the multifaceted benefits to resilient rural economic
development. The energy and climate challenge clearly will require some large single-purpose
operations. Yet such a large complex, comprehensive conversion of an economy will need to be
buttressed by numerous, small retrofitted multi-use systems such as those suggested here.
These programmes require a different analytic approach. Similarly, rural development and
agricultural economic analyses should not ignore energy and climate impacts. When a credible
opportunity for meaningful overlap does appear, we risk obsolescence of single-purpose
investment and policy analysis.
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Appendix A

The optimisation model for the plant operator and processor solves for the operator choices of electricity generation capacity,
the amount of biomass available and expected prices of electricity and ammonia. Expected profit is defined below as:

MAX PpEp � PUBEUB � PLBELB � PMM � 5:5 Ep � EUB � ELB � EM
� �

� 130:34 �M � 37645 �ME � 0:100385 � 640000� 4000000
1:2 � C � 5

� �
� C � FC � 10 � GWf

(1)

• Pp is the peak electricity price; Ep is the MWe of electricity sold each month at peak prices;
• PUB is the subpeak electricity price; EUB is the MWe of electricity sold each month at subpeak prices;
• PLB is the price of base electricity; ELB is the MWe of electricity each month at base prices;
• PM is the price of ammonia, M, per tonne; EM is electricity in MWe required to produce a tonne of M (11 MWe is
needed to produce every tonne of ammonia, M);

• ME is the number of ammonia processors, which ranges from 0 to 2;
• C is installed power capacity, which ranges from 1 to 5 MWe for the small gin and 1 to 9 MWe for medium gins;
• FC is the annual labour cost, fixed at $75,000;
• GWf is gin waste, in tonnes, sold as cattle feed.

Equation (1) can be rewritten as:

MAX PpEp � PUBEUB � PLBELB � PM
EM
11

� 10 � GWf � 5:5 Ep � EUB � ELB � EM
� �

� 130:34 � EM
11

� 0:100385 � 640000� 4000000
1:2 � C � 5

� �
� C � FC � 37645 �ME

(2)
5

Subject to:

�Ep � EUB � ELB � EM � GWf � ≤ CGW (3)

�Ep � EUB � ELB � EM� ≤ 5403 � C (4)

0 � EP � 1072 (5)

0 � EUB � 2426 (6)

0 � ELB � 1905 (7)

0 � ME � 550 (8)

0 � EM � 6050 (9)

5Revenue [PpEp � PUBEUB � PLBELB � PM
EM
11 � 10 � GWf ] – Marginal Costs [5:5 Ep � EUB � ELB � EM

� ��
130:34 � EM

11 ] – Fixed Costs [0:100385 � 640000� 4000000
1:2�C�5

h i
� C � FC� 37645 �ME].
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In equation (2), 0:100385� 640000� 4000000
1:2�C�5

h i
�C is the fixed cost function of the gasifier/generator and gives an average

(amortized) fixed cost as a function of capacity C (see Multer et al., 2010); 37645*ME is the (amortized) fixed cost for ammonia
processor and gives an average fixed cost as a function of number of processors (ME) each with fixed capacity of 550 tonnes/
year. Ammonia production in particular is given very high marginal production costs ($130.34/tonne) because of the potential
risks involved. Limited information from boilers at paper mills suggests low marginal costs to generate electric power ($5.5/
MWe) as paper mills, in time, integrated power generation more seamlessly into operations (see Farmer et al., 2014). Finally,
FC is the annual labour cost fixed at $75,000 for both small and medium gin, though the operator is not committed all year.6

While profits change as marginal costs change, in general for an asset composition mix, the volume of products sold to
ammonia, peak power, subpeak power and base power change very little over the ranges of marginal costs simulated.

Installed capacity is fixed. Equation (3) is the efficiency constraint, stating that 1 tonne of CGW produces approximately
1 MWe of electricity at 25% efficiency (see Farmer et al., 2014). Total electricity power output is constrained by total CGW in
tonnes less gin waste sold as feed. GWf; equation (4) restricts the maximum hours of operations to 5,403 hours over 9 months,
reflecting the possible hours of operation. Equations (5) to (7) account for electricity sold at peak prices, subpeak and base
prices respectively for specific hours of the day for each. (The breakdown of the total annual hours of operation is provided in
Appendix Table B14.) Equation (8) constrains ammonia production to 550 tonnes in 9 months, which is equivalent to 6,050
MWe dedicated to its production (equation (9)), since 11 MWe is required for every tonne of ammonia.

The sum of the RHS of equations (5) to (7) equals total electricity production in (4) allocated to peak, subpeak, base
electricity and ammonia production.

Appendix B

Table B1. Summary statistics

Obs. Median Mean Min Max St. dev.

Peak price (observed) 10,757 78.39 197.24 15.59 23,224.67 776.05

Peak price (simulated) 80,000 72.48 184.91 −407.02 23,259.35 849.82

Subpeak price (observed) 25,099 46.85 56.68 6.60 3,884.34 61.44

Subpeak price (simulated) 100,000 44.29 52.35 4.14 3,910.65 56.35

Base price (observed) 19,039 41.04 47.71 −0.86 3,119.24 51.47

Base price (simulated) 100,000 42.05 48.41 −2.04 3,152.99 53.04

Ammonia price (observed) 75 537.0 562.1 413.0 750.0 95.39

Ammonia price (simulated) 30,000 507.4 536.1 358.7 808.8 88.92

Small CGW (observed) 15 8,740 9,704 3,442 14,988 3,312.44

Small CGW (simulated) 10,000 9,763 10,752 3,342 21,093 3,662.59

Medium CGW (observed) 15 26,221 29,113 10,326 44,964 9,937.32

Medium CGW (simulated) 10,000 29,290 32,255 10,025 63,278 10,987.79

*Peak price data shows cumulative data from 8 months, subpeak and base from 10 months and ammonia price from three seasons (winter,
spring, summer).

6For the labour cost assumptions, such as the $75,000 figure used for the professional staff, we based these on our
knowledge of typical compensation levels for this type of work. As mentioned, we know that professionals in this field (power
plant operators) in Texas earn a median income of around $90,000 per year. Given this is a new application of the technology,
we took a conservative approach and assumed the need for a dedicated manager to oversee operations for at least the first 12
years. This full-time or near-full-time staffing requirement contributed to the $75,000 per year estimate for labour costs. Our
intent with these assumptions was to err on the side of caution, as this would be the first time implementing this technology.
We wanted to account for the additional management and oversight that may be required during the initial deployment phase,
even if these labour costs could potentially be lower in the long run as the operations become more established.
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Table B2. Baseline analyses for small gin

Models Avg. ROIC (%) Prob. loss (%) Prob. ROIC >100%
Avg. annual profit
(cash flow, $)

SD profit
(cash flow, $)

C = 0, M = 0 EV* 0.00 0.00 0.00 107,516 36,626

C = 1, M = 0 EV 58.83 5.60 12.99 189,011 284,846

C = 2, M = 0 EV 51.25 9.50 11.04 294,700 494,065

C = 3, M = 0 29.51 30.39 6.17 238,519 602,822

C = 4, M = 0 9.28 50.01 2.09 95,302 523,131

C = 5, M = 0 0.59 62.83 1.40 7,289 594,257

C = 1, M = 1 40.73 9.06 8.94 166,505 284,887

C = 2, M = 1 41.86 12.05 8.72 277,330 493,492

C = 3, M = 1 24.21 35.52 5.22 216,900 600,695

C = 4, M = 1 6.44 53.75 1.69 71,800 524,745

C = 5, M = 1 −1.41 65.35 1.21 −18,692 595,214

C = 1, M = 2 25.96 22.46 7.11 128,860 284,887

C = 2, M = 2 32.40 17.38 6.87 242,992 493,718

C = 3, M = 2 18.93 42.23 4.27 186,189 602,075

C = 4, M = 2 3.40 57.57 1.46 40,922 525,505

C = 5, M = 2 −3.49 68.79 1.10 −49,316 595,749

*C = 0, M = 0 where all gin trash sold at $10/tonne; a = 10,000 simulations for each combination; EV = models on EV frontier.

Table B3. Extended analyses for small gin

Models

Disc. avg.
profit
12 yrs.

SD disc.
profit
12 yrs.

Disc.
avg.
ROIC
12 yrs.

Prob.
ROIC <0

Prob. ROIC
between 0 and

250

Prob. ROIC
between 250 and

500

Prob.
ROIC
>500

C = 0, M = 0 EV* 484,920 44,933 0.00 0.00 0.00 0.00 0.00

C = 1, M = 0 EV 852,478 366,294 265.33 0.00 52.58 43.46 3.96

C = 2, M = 0 EV 1,329,158 632,613 231.13 0.00 65.19 32.17 2.64

C = 3, M = 0 1,075,770 765,202 133.08 0.12 88.36 10.92 0.60

C = 4, M = 0 429,830 652,641 41.85 21.61 76.71 1.68 0.00

C = 5, M = 0 32,875 742,402 2.65 62.30 36.37 1.32 0.00

C = 1, M = 1 750,972 366,107 183.71 0.00 78.99 20.53 0.48

C = 2, M = 1 1,250,814 630,693 188.78 0.00 76.95 22.09 0.96

C = 3, M = 1 978,265 762,912 109.20 1.44 91.72 6.48 0.36

C = 4, M = 1 323,831 654,115 29.05 30.73 67.95 1.32 0.00

C = 5, M = 1 −84,305 743,722 −6.35 71.07 27.85 1.08 0.00

C = 1, M = 2 581,185 366,107 117.11 0.00 94.12 5.88 0.00

C = 2, M = 2 1,095,942 630,828 146.11 0.00 88.12 11.76 0.12

C = 3, M = 2 839,751 764,295 85.39 6.12 89.44 4.44 0.00

C = 4, M = 2 184,566 654,875 15.35 45.74 53.18 1.08 0.00

C = 5, M = 2 −222,425 744,538 −15.72 79.71 19.33 0.96 0.00

*C = 0, M = 0; all gin trash sold at $10/tonne; EV = models on EV frontier.

Journal of Agricultural and Applied Economics 19

https://doi.org/10.1017/aae.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2024.34


Table B4. Baseline analyses for medium gin

Models Avg. ROIC (%) Prob. loss (%) Prob. ROIC >100%
Avg. annual profit
(cash flow, $)

SD profit
(cash flow, $)

C = 0, M = 0 EV, * 0.00 0.00 0.00 322,549 109,878

C = 1, M = 0 EV 108.79 0.02 37.39 349,517 297,249

C = 2, M = 0 EV 98.96 0.01 23.52 569,104 577,942

C = 3, M = 0 EV 95.41 0.54 21.83 771,254 854,539

C = 4, M = 0 EV 96.01 3.09 22.16 986,196 1,140,497

C = 5, M = 0 EV 92.91 4.90 21.21 1,152,070 1,391,770

C = 6, M = 0 EV 80.56 5.81 17.35 1,162,195 1,482,193

C = 7, M = 0 68.44 6.59 13.75 1,122,302 1,592,251

C = 8, M = 0 60.41 7.51 12.16 1,108,041 1,731,743

C = 9, M = 0 52.17 9.14 10.25 1,057,049 1,808,466

C = 1, M = 1 80.12 0.10 17.57 327,514 296,984

C = 2, M = 1 84.27 0.01 18.11 558,336 577,545

C = 3, M = 1 85.37 0.83 18.37 764,793 854,580

C = 4, M = 1 88.00 3.70 19.39 980,860 1,139,546

C = 5, M = 1 86.31 5.32 18.98 1,145,799 1,392,416

C = 6, M = 1 75.27 5.99 15.79 1,151,806 1,479,441

C = 7, M = 1 64.27 6.72 12.74 1,110,122 1,592,734

C = 8, M = 1 56.86 7.80 11.24 1,092,579 1,733,801

C = 9, M = 1 49.04 9.78 9.44 1,036,498 1,800,740

C = 1, M = 2 58.41 1.42 10.77 289,869 296,984

C = 2, M = 2 69.99 0.09 14.23 524,940 577,435

C = 3, M = 2 75.23 1.62 15.78 739,788 854,714

C = 4, M = 2 79.93 4.46 17.17 960,895 1,139,982

C = 5, M = 2 79.78 5.58 17.03 1,128,895 1,393,265

C = 6, M = 2 70.16 6.14 14.3 1,134,904 1,479,485

C = 7, M = 2 60.23 6.89 11.65 1,092,982 1,593,145

C = 8, M = 2 53.56 8.2 10.32 1,076,046 1,737,079

C = 9, M = 2 46.20 10.61 8.84 1,017,042 1,799,914

*C = 0, M = 0; all gin trash sold at $10/tonne; EV = Models on EV frontier.
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Table B5. Extended analyses for medium gin

Models

Disc. avg.
profit 12

yrs.

SD disc.
profit 12

yrs.

Disc. avg.
ROIC 12
yrs.

Prob.
ROIC
<0

Prob. ROIC
between 0 and

250

Prob. ROIC
between 250

and 500

Prob.
ROIC
>500

C = 0, M = 0 EV, * 1,454,760 134,800 0.00 0.00 0.00 0.00 0.00

C = 1, M = 0 EV 1,576,391 377,960 490.64 0.00 0.00 59.30 40.70

C = 2, M = 0 EV 2,566,774 741,181 446.35 0.00 0.24 70.11 29.65

C = 3, M = 0 EV 3,478,513 1,098,908 430.31 0.00 2.28 70.83 26.89

C = 4, M = 0 EV 4,447,943 1,473,180 433.03 0.00 3.84 68.31 27.85

C = 5, M = 0 EV 5,196,070 1,813,341 419.03 0.00 7.20 67.23 25.57

C = 6, M = 0 EV 5,241,735 1,898,068 363.33 0.00 18.25 65.79 15.97

C = 7, M = 0 5,061,813 2,040,941 308.69 0.00 39.26 52.22 8.52

C = 8, M = 0 4,997,490 2,229,814 272.48 0.00 54.98 39.02 6.00

C = 9, M = 0 4,767,505 2,295,739 235.29 0.00 65.91 30.49 3.60

C = 1, M = 1 1,477,155 377,352 361.35 0.00 7.68 83.55 8.76

C = 2, M = 1 2,518,207 740,212 380.07 0.00 6.60 79.11 14.29

C = 3, M = 1 3,449,370 1,098,474 385.03 0.00 9.84 72.99 17.17

C = 4, M = 1 4,423,879 1,474,828 396.88 0.00 9.24 70.35 20.41

C = 5, M = 1 5,167,785 1,814,727 389.28 0.00 12.61 67.71 19.69

C = 6, M = 1 5,194,881 1,891,555 339.50 0.00 25.45 63.15 11.40

C = 7, M = 1 5,006,879 2,040,355 289.87 0.00 47.30 46.34 6.36

C = 8, M = 1 4,927,753 2,229,297 256.44 0.00 59.78 35.65 4.56

C = 9, M = 1 4,674,819 2,284,637 221.17 0.00 71.31 26.17 2.52

C = 1, M = 2 1,307,368 377,343 263.43 0.00 50.30 49.10 0.60

C = 2, M = 2 2,367,584 740,046 315.65 0.00 31.09 63.39 5.52

C = 3, M = 2 3,336,594 1,098,318 339.30 0.00 23.17 67.23 9.60

C = 4, M = 2 4,333,833 1,474,939 360.51 0.00 19.33 67.35 13.33

C = 5, M = 2 5,091,545 1,814,649 359.82 0.00 20.77 64.59 14.65

C = 6, M = 2 5,118,650 1,891,890 316.42 0.00 35.05 57.02 7.92

C = 7, M = 2 4,929,570 2,040,801 271.63 0.00 53.42 42.26 4.32

C = 8, M = 2 4,853,186 2,231,881 241.56 0.00 64.59 32.05 3.36

C = 9, M = 2 4,587,068 2,286,605 208.39 0.00 75.27 22.57 2.16

*C = 0, M = 0; all gin trash sold at $10/tonne; EV = models on EV frontier.
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Table B6. Sensitivity analyses for small gin

Models Avg. ROIC (%) Prob. loss (%) Prob. ROIC >100%
Avg. annual profit
(cash flow, $)

SD profit
(cash flow, $)

Panel A: Lower base electricity price

C = 1, M = 0 52.44 7.70 11.67 168,487 283,346

C = 2, M = 0 45.12 12.29 9.8 259,497 488,653

C = 3, M = 0 24.45 37.49 5.45 197,617 593,311

Panel B: Lower marginal cost of ammonia plant

C = 1, M = 1 42.49 7.62 9.12 173,695 284,943

C = 2, M = 1 43.37 10.85 8.87 287,383 494,158

C = 3, M = 1 25.20 33.88 5.28 225,761 601,975

Panel C: Lower conversion rate

C = 1, M = 0 19.34 43.13 6.93 62,126 191,089

C = 2, M = 0 14.27 48.19 5.3 82,035 328,990

C = 3, M = 0 1.22 66.82 2.92 9,847 398,163

Panel D: Higher electricity prices

C = 1, M = 0 71.57 4.12 15.58 229,938 313,080

C = 2, M = 0 63.21 7.31 13.18 363,520 543,967

C = 3, M = 0 38.71 19.85 7.81 312,919 665,178

Table B7. Extended sensitivity analyses for small gin

Models

Disc. avg.
profit 12

yrs.

SD disc.
profit 12

yrs.

Disc. avg.
ROIC 12
yrs.

Prob.
ROIC
<0

Prob. ROIC
between 0 and

250

Prob. ROIC
between 250 and

500

Prob.
ROIC
>500

Panel A: Lower base electricity price

C = 1, M = 0 759,909 364,915 236.52 0.00 60.74 36.61 2.64

C = 2, M = 0 1,170,384 628,194 203.52 0.00 71.07 27.01 1.92

C = 3, M = 0 891,294 756,695 110.26 2.88 89.08 7.44 0.60

Panel B: Lower marginal cost of ammonia plant

C = 1, M = 1 783,401 366,202 191.64 0.00 76.95 22.57 0.48

C = 2, M = 1 1,296,155 631,325 195.63 0.00 75.27 23.53 1.20

C = 3, M = 1 1,018,227 764,227 113.66 0.96 91.60 7.08 0.36

Panel C: Lower conversion rate

C = 1, M = 0 280,200 245,015 87.21 8.76 87.64 3.60 0.00

C = 2, M = 0 369,993 421,096 64.34 17.77 79.95 2.28 0.00

C = 3, M = 0 44,412 505,977 5.49 58.58 40.70 0.72 0.00

Panel D: Higher electricity prices

C = 1, M = 0 1,037,069 402,813 322.78 0.00 34.45 55.94 9.60

C = 2, M = 0 1,639,549 696,492 285.11 0.00 47.66 46.46 5.88

C = 3, M = 0 1,411,327 844,000 174.59 0.12 81.03 17.41 1.44
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Table B8. Sensitivity analyses for medium gin

Models Avg. ROIC (%) Prob. loss (%) Prob. ROIC >100%
Avg. annual profit
(cash flow, $)

SD profit
(cash flow, $)

Panel A: Lower base electricity price

C = 1, M = 0 102.21 0.12 32.08 328,395 296,175

C = 2, M = 0 91.62 0.05 20.4 526,885 575,876

C = 3, M = 0 87.79 1.11 18.9 709,681 850,037

C = 4, M = 0 88.09 4.01 19.26 904,845 1,133,853

C = 5, M = 0 85.07 5.33 18.4 1,054,829 1,381,562

C = 6, M = 0 73.24 6.07 15.03 1,056,585 1,465,958

C = 7, M = 0 61.67 7.09 11.92 1,011,202 1,569,375

Panel B: Lower marginal cost of ammonia plant

C = 1, M = 1 81.92 0.08 18.22 334,898 296,907

C = 2, M = 1 86.08 0.01 18.53 570,363 577,425

C = 3, M = 1 86.86 0.66 18.78 778,165 854,677

C = 4, M = 1 89.27 3.52 19.88 995,100 1,139,793

C = 5, M = 1 87.37 5.22 19.33 1,159,837 1,392,870

C = 6, M = 1 76.11 5.98 16.00 1,164,649 1,480,222

C = 7, M = 1 64.95 6.62 12.89 1,121,919 1,593,849

Panel C: Lower conversion rate

C = 1, M = 0 68.06 2.99 14.39 218,682 206,708

C = 2, M = 0 53.48 2.60 10.57 307,538 389,924

C = 3, M = 0 48.32 5.95 9.78 390,599 573,267

C = 4, M = 0 47.21 7.06 10.04 484,905 762,191

C = 5, M = 0 44.49 8.83 9.5 551,732 928,249

C = 6, M = 0 36.34 13.68 7.48 524,198 986,970

C = 7, M = 0 28.52 21.99 5.68 467,588 1,057,092

Panel D: Higher electricity prices

C = 1, M = 0 121.91 0.00 46.72 391,695 324,945

C = 2, M = 0 113.63 0.00 30.95 653,424 634,654

C = 3, M = 0 110.60 0.11 28.37 894,037 939,239

C = 4, M = 0 111.75 1.59 28.95 1,147,867 1,254,446

C = 5, M = 0 108.53 3.97 27.99 1,345,784 1,531,516

C = 6, M = 0 94.87 5.24 23.16 1,368,654 1,631,901

C = 7, M = 0 81.33 6.08 18.82 1,333,689 1,750,837

Journal of Agricultural and Applied Economics 23

https://doi.org/10.1017/aae.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2024.34


Table B9. Extended sensitivity analyses for medium gin

Models

Disc. avg.
profit 12

yrs.

SD disc.
profit 12

yrs.

Disc. avg.
ROIC 12
yrs.

Prob.
ROIC
<0

Prob. ROIC
between 0 and

250

Prob. ROIC
between 250 and

500

Prob.
ROIC
>500

Panel A: Lower base electricity price

C = 1, M = 0 1,481,129 377,212 460.99 0.00 0.24 66.51 33.25

C = 2, M = 0 2,376,358 740,010 413.23 0.00 3.96 73.71 22.33

C = 3, M = 0 3,200,807 1,094,780 395.95 0.00 10.56 69.39 20.05

C = 4, M = 0 4,081,035 1,467,255 397.31 0.00 13.45 64.71 21.85

C = 5, M = 0 4,757,494 1,806,227 383.67 0.00 17.77 61.94 20.29

C = 6, M = 0 4,765,414 1,884,815 330.32 0.00 33.49 55.34 11.16

C = 7, M = 0 4,560,729 2,025,123 278.13 0.00 52.82 41.06 6.12

Panel B: Lower marginal cost of ammonia plant

C = 1, M = 1 1,510,457 377,319 369.49 0.00 4.44 85.83 9.72

C = 2, M = 1 2,572,453 740,088 388.26 0.00 4.80 79.71 15.49

C = 3, M = 1 3,509,683 1,098,521 391.76 0.00 7.44 74.55 18.01

C = 4, M = 1 4,488,102 1,475,010 402.64 0.00 7.80 70.95 21.25

C = 5, M = 1 5,231,103 1,815,142 394.05 0.00 10.44 69.03 20.53

C = 6, M = 1 5,252,804 1,892,178 343.28 0.00 24.49 63.75 11.76

C = 7, M = 1 5,060,085 2,041,324 292.95 0.00 45.50 47.90 6.60

Panel C: Lower conversion rate

C = 1, M = 0 986,300 260,520 306.98 0.00 27.13 70.35 2.52

C = 2, M = 0 1,387,058 497,920 241.20 0.00 60.86 38.42 0.72

C = 3, M = 0 1,761,680 735,048 217.93 0.00 68.67 30.61 0.72

C = 4, M = 0 2,187,021 982,521 212.92 0.00 69.75 29.41 0.84

C = 5, M = 0 2,488,426 1,207,993 200.68 0.00 72.99 26.05 0.96

C = 6, M = 0 2,364,240 1,263,469 163.88 0.00 83.31 16.45 0.24

C = 7, M = 0 2,108,919 1,355,612 128.61 0.12 90.76 9.00 0.12

Panel D: Higher electricity prices

C = 1, M = 0 1,766,623 413,849 549.85 0.00 0.00 41.30 58.70

C = 2, M = 0 2,947,078 814,534 512.48 0.00 0.00 54.14 45.86

C = 3, M = 0 4,032,288 1,208,472 498.81 0.00 0.00 57.50 42.50

C = 4, M = 0 5,177,116 1,620,984 504.02 0.00 0.00 56.54 43.46

C = 5, M = 0 6,069,759 1,995,721 489.49 0.00 0.96 59.42 39.62

C = 6, M = 0 6,172,909 2,089,713 427.88 0.00 4.44 68.91 26.65

C = 7, M = 0 6,015,209 2,246,261 366.83 0.00 16.93 66.99 16.09
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Table B10. Output combination for small gin

Capacity Electricity (MWh) Ammonia (tons) Total electricity (MWh)

C = 1, M = 0 5,225 – 5,225

C = 2, M = 0 9,192 – 9,192

C = 3, M = 0 10,677 – 10,677

C = 4, M = 0 10,752 – 10,752

C = 5, M = 0 10,752 – 10,752

C = 1, M = 1 3,771 138 5,288

C = 2, M = 1 7,102 195 9,245

C = 3, M = 1 8,792 173 10,696

C = 4, M = 1 9,157 145 10,752

C = 5, M = 1 9,400 123 10,752

C = 1, M = 2 3,771 138 5,288

C = 2, M = 2 6,666 234 9,245

C = 3, M = 2 7,910 253 10,696

C = 4, M = 2 8,259 227 10,752

C = 5, M = 2 8,495 205 10,752

Table B11. Output combination with sensitivity analysis for small gin

Capacity Electricity (MWh) Ammonia (tons) Total electricity (MWh)

Panel A: Lower base electricity price

C = 1, M = 0 5,226 – 5,226

C = 2, M = 0 9,192 – 9,192

C = 3, M = 0 10,677 – 10,677

Panel B: Lower marginal cost of ammonia plant

C = 1, M = 1 3,314 179 5,288

C = 2, M = 1 6,515 248 9,245

C = 3, M = 1 8,310 217 10,696

Panel C: Lower conversion rate

C = 1, M = 0 3,484 – 3,484

C = 2, M = 0 6,128 – 6,128

C = 3, M = 0 7,118 – 7,118

Panel D: Higher electricity prices

C = 1, M = 0 5,226 – 5,226

C = 2, M = 0 9,193 – 9,193

C = 3, M = 0 10,678 – 10,678
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Table B12. Output combination for medium gin

Capacity Electricity (MWh) Ammonia (tons) Total electricity (MWh)

C = 1, M = 0 5,346 – 5,346

C = 2, M = 0 10,683 – 10,683

C = 3, M = 0 15,676 – 15,676

C = 4, M = 0 20,614 – 20,614

C = 5, M = 0 24,890 – 24,890

C = 6, M = 0 27,575 – 27,575

C = 7, M = 0 29,490 – 29,490

C = 8, M = 0 31,090 – 31,090

C = 9, M = 0 32,031 – 32,031

C = 1, M = 1 3,854 142 5,413

C = 2, M = 1 8,234 234 10,811

C = 3, M = 1 12,968 263 15,863

C = 4, M = 1 17,744 281 20,841

C = 5, M = 1 22,020 278 25,074

C = 6, M = 1 24,906 253 27,693

C = 7, M = 1 27,030 233 29,590

C = 8, M = 1 28,804 215 31,165

C = 9, M = 1 29,907 196 32,063

C = 1, M = 2 3,854 142 5,413

C = 2, M = 2 7,700 283 10,811

C = 3, M = 2 11,544 393 15,863

C = 4, M = 2 15,887 451 20,847

C = 5, M = 2 19,945 469 25,105

C = 6, M = 2 22,769 451 27,735

C = 7, M = 2 24,897 432 29,644

C = 8, M = 2 26,676 413 31,215

C = 9, M = 2 27,829 387 32,084
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Table B13. Output combination with sensitivity analysis for medium gin

Capacity Electricity (MWh) Ammonia (tons) Total electricity (MWh)

Panel A: Lower base electricity price

C = 1, M = 0 5,347 – 5,347

C = 2, M = 0 10,684 – 10,684

C = 3, M = 0 15,677 – 15,677

C = 4, M = 0 20,615 – 20,615

C = 5, M = 0 24,891 – 24,891

C = 6, M = 0 27,577 – 27,577

C = 7, M = 0 29,491 – 29,491

Panel B: Lower marginal cost of ammonia plant

C = 1, M = 1 3,387 184 5,413

C = 2, M = 1 7,557 296 10,811

C = 3, M = 1 12,281 326 15,863

C = 4, M = 1 17,044 345 20,841

C = 5, M = 1 21,331 340 25,074

C = 6, M = 1 24,262 312 27,693

C = 7, M = 1 26,441 286 29,590

Panel C: Lower conversion rate

C = 1, M = 0 3,564 – 3,564

C = 2, M = 0 7,122 – 7,122

C = 3, M = 0 10,451 – 10,451

C = 4, M = 0 13,743 – 13,743

C = 5, M = 0 16,593 – 16,593

C = 6, M = 0 18,384 – 18,384

Panel D: Higher electricity prices

C = 1, M = 0 5,347 – 5,347

C = 2, M = 0 10,685 – 10,685

C = 3, M = 0 15,679 – 15,679

C = 4, M = 0 20,617 – 20,617

C = 5, M = 0 24,893 – 24,893

C = 6, M = 0 27,578 – 27,578
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Table B14. Breakdown of operation hours

Date Hours of operation Total hours

Peak electricity Dec 16–Dec 31 5am–9am (4 hr) 16 × 4

Jan 01–Feb 28 5am–9am and 5 pm–8 pm (7 hr) 59 × 7

Mar 01–Mar 15 5am–9am (4 hr) 15 × 4

Jun 01–Sept 15 1 pm–6 pm (5 hr) 107 × 5

Total peak 1,072 MWe

Subpeak electricity Dec 16–Dec 31 9am–8 pm (11 hr) 16 × 11

Jan 01–Feb 28 9am–5 pm (8 hr) 59 × 8

Mar 01–Mar 15 9am–8 pm (11 hr) 15 × 11

Mar 16–May 31 6am–8 pm (14 hr) 77 × 14

Jun 01–Sept 15 8am–1 pm (5 hr) 107 × 5

Total subpeak 2,426 MWe

Base electricity Dec 15–May 31 8 pm–12am and 4am (5 hr) 167 × 5

Jun 01–Sept 15 6 pm–12am and 4am–8am (10 hr) 107 × 10

Total base 1,905 MWe

Total 5403 MWe
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