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Abstract

For any positive integer n, let σ(n) be the sum of all positive divisors of n. We prove that for every integer
k with 1 ≤ k ≤ 29 and (k, 30) = 1, ∑

n≤K

σ(30n) >
∑
n≤K

σ(30n + k)

for all K ∈ N, which gives a positive answer to a problem posed by Pongsriiam [‘Sums of divisors on
arithmetic progressions’, Period. Math. Hungar. 88 (2024), 443–460].
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1. Introduction

For any positive integer n, let σ(n) be the sum of all positive divisors of n. We always
assume that x is a real number, m and n are positive integers, p is a prime, pn is the
nth prime and φ(n) denotes the Euler totient function. Jarden [4, page 65] observed
that φ(30n + 1) > φ(30n) for all n ≤ 105 and later the inequality was calculated to be
true up to 109. However, Newman [8] proved that there are infinitely many n such that
φ(30n + 1) < φ(30n) and the smallest one is

p385 p388
∏383

j=4 pj − 1

30
,

which was given by Martin [7]. For related work, see [3, 5, 6, 9, 11]. It is certainly
natural to consider the analogous problem for the sum of divisors function. Recently,
Pongsriiam [10, Theorem 2.4] proved that σ(30n) − σ(30n + 1) also has infinitely
many sign changes. He found that σ(30n) > σ(30n + 1) for all n ≤ 107 and posed the
following problem.
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PROBLEM 1.1 [10, Problem 3.8(ii)]. Is it true that∑
n≤K

σ(30n) >
∑
n≤K

σ(30n + 1)

for all K ∈ N?

Recently, Ding et al. [2] solved several problems of Pongsriiam. Inspired by their
ideas, we answer affirmatively the above Problem 1.1. In fact, we prove a slightly
stronger result.

THEOREM 1.2. For every integer k with 1 ≤ k ≤ 29 and (k, 30) = 1,∑
n≤K

σ(30n) >
∑
n≤K

σ(30n + k)

for all K ∈ N.

2. Estimations

Let

β0 =

∞∑
d=1

B0(d)
d2 ,

where B0(d) denotes the number of solutions, not counting multiplicities, of the con-
gruence 30m ≡ 0 (mod d). For every integer k with 1 ≤ k ≤ 29 and (k, 30) = 1, let

βk =

∞∑
d=1

Bk(d)
d2 ,

where Bk(d) denotes the number of solutions, not counting multiplicities, of the
congruence 30m + k ≡ 0 (mod d). By the Chinese remainder theorem, both B0(d) and
Bk(d) are multiplicative. Note that for p � 30, we have B0(pα) = 1 and Bk(pα) = 1 for
any positive integer α. It is obvious that B0(pα) = p and Bk(pα) = 0 for p = 2, 3, 5
and any positive integer α. It follows that B0(d) ≤ 30 and Bk(d) ≤ 1 for any positive
integer d. By [1, Theorem 11.7] and

π2

6
= ζ(2) =

∏
p

1
1 − p−2 ,

we have

β0 =
∏

p

(
1 +

B0(p)
p2 +

B0(p2)
p4 + · · ·

)
=

5
3

11
8

29
24

∏
p�30

1
1 − p−2 =

319π2

1080

and

βk =
∏

p

(
1 +

Bk(p)
p2 +

Bk(p2)
p4 + · · ·

)
=
∏
p�30

1
1 − p−2 =

8π2

75
.
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It can be checked that there are large oscillations of the error terms which influence
the main terms if one tries to calculate the sums in Problem 1.1 directly. Therefore, we
first manipulate the weighted sums and then transform them to the original sums via
summations by parts.

We always assume that x ≥ 1000, 1 ≤ k ≤ 29, (k, 30) = 1 in the following lemmas.

LEMMA 2.1. We have
∑
m≤x

σ(30m)
30m

= β0x + g(x),

where

−30 log 30x − 32 < g(x) < 30 log 30x + 32.

PROOF. By the definition of B0(d),
∑
m≤x

σ(30m)
30m

=
∑
m≤x

∑
d|30m

1
d
=
∑

d≤30x

1
d

∑
m≤x

30m≡0 (mod d)

1

=
∑

d≤30x

B0(d)
d

( x
d
+ α0(x, d)

)

= x
∑

d≤30x

B0(d)
d2 +

∑
d≤30x

B0(d)
d
α0(x, d)

= β0x − x
∑

d>30x

B0(d)
d2 +

∑
d≤30x

B0(d)
d
α0(x, d)

= β0x + g(x),

where −1 ≤ α0(x, d) ≤ 1 and

g(x) = −x
∑

d>30x

B0(d)
d2 +

∑
d≤30x

B0(d)
d
α0(x, d).

By [1, Theorem 3.2],

0 ≤
∑

d>30x

B0(d)
d2 ≤ 30

∑
d>30x

1
d2 ≤ 30

( 1
30x
+

30x − [30x]
(30x)2

)

and

0 ≤
∑

d≤30x

B0(d)
d
≤ 30

∑
d≤30x

1
d
< 30(log 30x + 1).

It follows that

−30 log 30x − 32 < g(x) < 30 log 30x + 32.

This completes the proof of Lemma 2.1. �
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LEMMA 2.2. We have
∑
m≤x

σ(30m + k)
30m + k

= βkx + hk(x),

where

− log(30x + k) − 2 < hk(x) < log(30x + k) + 2.

PROOF. By the definition of Bk(d),
∑
m≤x

σ(30m + k)
30m + k

=
∑
m≤x

∑
d|30m+k

1
d
=
∑

d≤30x+k

1
d

∑
m≤x

30m+k≡0 (mod d)

1

=
∑

d≤30x+k

Bk(d)
d

( x
d
+ αk(x, d)

)

= x
∑

d≤30x+k

Bk(d)
d2 +

∑
d≤30x+k

Bk(d)
d
αk(x, d)

= βkx − x
∑

d>30x+k

Bk(d)
d2 +

∑
d≤30x+k

Bk(d)
d
αk(x, d)

= βkx + hk(x),

where −1 ≤ αk(x, d) ≤ 1 and

hk(x) = −x
∑

d>30x+k

Bk(d)
d2 +

∑
d≤30x+k

Bk(d)
d
αk(x, d).

By [1, Theorem 3.2],

0 ≤
∑

d>30x+k

Bk(d)
d2 ≤

∑
d>30x+k

1
d2 ≤

1
30x + k

+
30x + k − [30x + k]

(30x + k)2

and

0 ≤
∑

d≤30x+k

Bk(d)
d
≤
∑

d≤30x+k

1
d
< log(30x + k) + 1.

It follows that

− log(30x + k) − 2 < hk(x) < log(30x + k) + 2.

This completes the proof of Lemma 2.2. �

LEMMA 2.3. We have ∑
m≤x

σ(30m) > 15β0x2 − 2000x log 30x.
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PROOF. Let

S(x) =
∑
m≤x

σ(30m)
30m

.

By [1, Theorem 3.1],
∑
m≤x

σ(30m) =
∑
m≤x

30m(S(m) − S(m − 1))

= 30[x]S([x]) −
∑

m≤x−1

(30(m + 1) − 30m)S(m) − 30S(0)

> 30(x − 1)(β0x − 30 log 30x − 32) − 30
∑

m≤x−1

(β0m + 30 log 30m + 32)

> 30β0x2 − 900x log 30x − 960x − 15β0x2 − 900x log 30x − 960x
− 30β0x + 900 log 30x + 960

> 15β0x2 − 2000x log 30x.

This completes the proof of Lemma 2.3. �

LEMMA 2.4. We have
∑
m≤x

σ(30m + k) < 15βkx2 + 100x log(30x + k).

PROOF. Let

Tk(x) =
∑
m≤x

σ(30m + k)
30m + k

.

By [1, Theorem 3.1],
∑
m≤x

σ(30m + k) =
∑
m≤x

(30m + k)(Tk(m) − Tk(m − 1))

= (30[x] + k)Tk([x]) −
∑

m≤x−1

(30(m + 1) + k − 30m − k)Tk(m)

< (30x + k)(βkx + log(30x + k) + 2) − 30
∑

m≤x−1

(βkm − log(30m + k) − 2)

< 30βkx2 + 30x log(30x + k) + 60x − 15βk(x − 2)2 + 30x log(30x + k)
+ 60x + kβkx + k log(30x + k) + 2k

< 15βkx2 + 100x log(30x + k).

This completes the proof of Lemma 2.4. �

https://doi.org/10.1017/S0004972724000492 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000492


6 R.-J. Wang [6]

3. Proof of Theorem 1.2

PROOF OF THEOREM 1.2. For every integer k with 1 ≤ k ≤ 29, (k, 30) = 1, by
Lemmas 2.3 and 2.4,∑
m≤x

σ(30m) > 15β0x2 − 2000x log 30x > 15βkx2 + 100x log(30x + k) >
∑
m≤x

σ(30m + k)

provided that x ≥ 1000. It is easy to verify that∑
m≤K

σ(30m) >
∑
m≤K

σ(30m + k)

for every positive integer K < 1000 and for every integer k with 1 ≤ k ≤ 29 and
(k, 30) = 1, by programming. This completes the proof of Theorem 1.2. �
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