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Abstract. The notions of ergodicity, strong mixing and weak mixing are defined and
studied for arbitrary sequences of measure-preserving transformations of a probabil-
ity space. Several results, notably ones connected with mean ergodic theorems, are
generalized from the case of the sequence of all powers of a single transformation
to this case. The conditions for ergodicity, strong mixing and weak mixing of
sequences of affine transformations of compact groups are investigated.

1. Introduction
Ergodic theory is usually concerned with studying the properties of the sequence
of powers of a measure-preserving transformation or, more generally, an arbitrary
semigroup of measure-preserving transformations. The fact that the acting set of
transformations is closed under composition turns out to play a crucial role in
obtaining results of various kinds.

In this paper we introduce notions of ergodicity, strong mixing and weak mixing
for arbitrary sequences (Tn) ™=, of measure-preserving transformations of a probabil-
ity space (X, 58, fi). These notions generalize those of the classical setup - T is
ergodic (strongly mixing, weakly mixing) in the usual sense iff (T")™=0 is such
according to our definition.

In § 2 the definition of ergodicity is presented. Ergodicity is shown to be
equivalent to the mean ergodic theorem (the limit function being constant). A
criterion for verifying the ergodicity of given sequences is given.

Strongly mixing sequences are studied in § 3. A generalization of the Blum-
Hanson theorem [2], by which a transformation T is strongly mixing iff

1 N LP

I rv—
for any increasing sequence (nk)™=l and /e Lp, is established. A particular sequence,
shown by Adler and Rivlin [1] to be strongly mixing in some sense, turns out to be
strongly mixing in our (stronger) sense as well. A uniform sweeping out property,
proved by Friedman [4] for a sequence of powers of a strongly mixing transformation,
is valid for any strongly mixing sequence.

§ 4 deals with weakly mixing sequences. Equivalents of weak mixing in the regular
case have sequential counterparts. Weakly mixing sequences have strongly mixing
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subsequences. If T is weakly mixing then numerous subsequences of (T")^=o, for
example (T" )^=0, form weakly mixing sequences.

In § 5 sequences of affine transformations of compact groups are studied. A
sequence of translations is ergodic iff it corresponds to a uniformly distributed
sequence in the group. Sequences of affine transformations are strongly (or weakly)
mixing iff the sequences of epimorphisms lying below are such. Particular emphasis
is given to sequences of epimorphisms, especially under further restrictions on the
underlying group. As a special case we derive a result of Raikov [12], which states
that a sequence of distinct endomorphisms of the circle group satisfies the mean
ergodic theorem.

We wish to express our gratitude to H. Furstenberg for valuable discussions on
this subject and to the referee for his remarks.

2. Ergodic sequences
In this section we extend the notion of ergodicity from the setup of a dynamical
system, i.e. a quadruple (X, 58, fi, T) consisting of a probability space (X, 38, fi)
and a measure-preserving transformation T, to a more general one.

Definition 2.1. A sequential dynamical system is a quadruple (X, 58, fi, f), where
(X, 38, fi) is a probability space and f = (T,, T2,...) a sequence of measure-
preserving transformations thereof.

Definition 2.2. A sequential dynamical system (X, 53, \x, f) is ergodic if

^ ^ ( ^ A n ^ ' B I ^ M A I M B ) , A, Bem. (2.1)

Alternatively, we say that f is ergodic. Now we show that ergodicity is equivalent
to the mean ergodic theorem. Denoting by p(T) the sequence (T")"=o for a
transformation T, we can easily infer from the following theorem that a dynamical
system (X, 38, /J,, T) is ergodic iff the corresponding sequential system

THEOREM 2.1. Let (X, 38, /A, f) be a sequential dynamical system. The following
conditions are equivalent:

(1) T is ergodic.
(2) (l/N2)l^n = l^(T-m

lAnT-iA)^-^ti(A)2, A e t
(3) For every i < p < o o and feLp

1 N L" f
T; I TJ—+ fdy,. (2.2)
N „ = [ ~-°° Jx

(4) The former property holds for some 1 < p < oo.

Proof. The implications (1)=>(2) and (3)=>(4) are trivial. Now assume (2). For
/ = \A we get (2.2) by

— Z T \A-\
n=\ JX

^ I Tn\A-fi{A)
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The set of all fe If for which (2.2) holds forms a closed subspace of U. Since it
contains the set of characteristic functions, this subspace is V itself. Thus (2)=>(3).

Assuming (4) we have in particular
1 N Lp

for any A e 38. In view of the Jensen inequality the same convergence takes place
in Ll, and hence in L2 as well. Thus

IN f 1 N

- 5 I n{T-m
lAnT~m

lB)= - £
1 IV

Tm\A-— I
x

/̂ oo Jx

which gives (1). This completes the proof. •

Remark 2.1. In view of various equivalents of ergodicity in the usual case (see, for
example, [3, Ch. 5]) another definition of ergodicity might have seemed rather more
natural than ours. Namely, instead of the 'double averaging' of (2.1) consider the
property

J-^- I /i(^'AnB) >/i(/4)/i(B), A,Be@. (2.3)

While (2.1) can be easily shown to imply (2.3), the converse is false (see remark
3.1). We chose (2.1) as our definition of ergodicity so as to retain the equivalence
to the mean ergodic theorem.

Denote by Ho the closed subspace of L2 consisting of those / e L2 with \xfd\s, = 0.
The orthogonal complement of Ho is the subspace Hc of all constant functions.

LEMMA 2.1. Let Fbe a subset ofH0 spanning a dense subspace ofHo. Tis ergodic iff

4r2 I I f(Tmx)f(Tnx)dfi(x)—-0, feF. (2.4)

In fact, the validity of (2.4) for any fe Ho is equivalent to
1 N L2

Inasmuch as the set of all L2 functions for which (2.4) holds is always a closed
subspace of L2 containing Hc, this proves the lemma.

PROPOSITION 2.1. If f is ergodic and Ae 98 with fi(A) > 0 then

https://doi.org/10.1017/S0143385700002509 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002509


356 D. Berend and V. Bergelson

The proof follows easily from theorem 2.1. We remark that in general the converse
fails to be true. Moreover, one can construct sequences possessing the property in
question admitting no ergodic subsequences.

3. Strongly mixing sequences
In this section the notion of strong mixing will be defined and studied for sequences
of transformations.

Definition 3.1. Let A be any set and Be Ax A. B is of bounded fibres if there exists
some c such that for every ax e A the set B contains at most c elements of the form
(«i, a2) with a2e A.

Definition 3.2. A sequential dynamical system (X, 28, fi, f) is strongly mixing if for
any A, B e 58 and e > 0 the set of solutions (m, n) of

| e (3.1)

is of bounded fibres.

Evidently, a dynamical system (X, 28, p, T) is strongly mixing iff the corresponding
sequential dynamical system (X, 58, n,p{T)) is.

THEOREM 3.1. Let (X, 53,/i,, T) be a sequential dynamical system. The following
conditions are equivalent:

(1) T is strongly mixing.
(2) For any A e 58 and e > 0 the set of solutions (m,n) of

is of bounded fibres.
(3) For any 1 </><oo, fe V and e >0 there exists a K such that if N>K and

n, < «2 < • • • <nN are positive integers then

(4) Every subsequence of f is ergodic.

Proof. The implication (1)=>(2) is trivial, and (2)=>(3) is proved as the analogue
in theorem 2.1. (3) clearly implies that every subsequence of f satisfies the mean
ergodic theorem, so that every subsequence is ergodic. Thus (3)=>(4).

It remains to show that (4)=>(1). Suppose (1) is not satisfied. Select A, Be 38
and e > 0 such that the number of solutions n of (3.1) is unbounded as a function
of m. Denote by #(F) the number of elements of a finite set F. Replacing B by
Bcif necessary, we may assume that for any positive integer s there exist an m and
a set S of positive integers with #(S) = s such that

e, neS. (3.2)
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This gives

dp

X I p(TTlBnTjlB) = p(B)2 + -2 \ ( l I ̂  B - sp(B))2 dp

>p(B)2 + \ \ ( l ITT'BIT-U

>p(B)2+e2. (3.3)

Let (mk)™=i be a sequence of integers and (Sk) ™=, a sequence of finite sets of integers
such that (3.2) holds with m = mk and S = Sk for every k. The sets Sk may so be
chosen that max Sfc<min Sk+i. Consider the subsequence of T corresponding to
U*°=i Sk- In view of (3.3) if the sequence ( # (Sk))1°=i is of sufficiently rapid growth
then the resulting subsequence of f is non-ergodic. It follows that (4)=>(1), which
completes the proof. •

COROLLARY I (Renyi [13]). A dynamical system (X, 9&, p, T) is strongly mixing iff
p(An T~"A) * p{A)2 for every Ae8$.

n-*oo

COROLLARY II (Blum-Hanson [2]). (X, 38, p, T) is strongly mixing iff

1 N w f
1 T V — - fdp,

/or every l<p<oo,fsLpand increasing («k)£L,.

LEMMA 3.1. Let Fbe as in lemma 2.1. T is strongly mixing iff for anyfe F and e > 0
tfie ser

is of bounded fibres.

The lemma follows from lemma 2.1 and theorem 3.1.

Example 3.1. In [1] the following sequence of transformations is examined:

Tn(x) = cos (n arccos x), xe[— 1,1], n = 1,2,...

It is proved there that Tn is measure-preserving with respect to the measure given by

and also that

p(T~lAnB) >p(A)p(B), A, Be® (3.4)
n-»oo

which property is there called strong mixing. In fact, employing lemma 3.1 and the
basis of L2[—l, 1] considered in that paper we can show f to be strongly mixing

https://doi.org/10.1017/S0143385700002509 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002509


358 D. Berend and V. Bergelson

in our sense as well. Another way of proving this fact is by noting that f is a factor
of the sequence <? of endomorphisms of the circle group T given by <rn(x) = nx and
using the results to be presented in § 5. In fact, the mapping <p :T-»[— 1,1] defined
by <p(x) = cos (2TTX), X e [0,1), exhibits f as a factor of <r.

Remark 3.1. The reason for taking definition 3.1 as our definition for strong mixing
rather than the seemingly more natural property (3.4) is that this way the Blum-
Hanson theorem remains valid for sequential systems. Property (3.4), on the other
hand, was shown by Friedman [4,4.6] not to imply the mean ergodic theorem even
for sequences of strictly increasing powers of a single transformation.

PROPOSITION 3.1. If T is strongly mixing and A e 38 with fj,(A) > 0 then for every e> 0
there exists a K such that if \ > K and n, < n2< • • • <nN are positive integers then

The proposition follows easily from theorem 3.1. It was proved by Friedman [4] for
subsequences of p(T), where T is strongly mixing.

4. Weakly mixing sequences
In this section we shall study weakly mixing systems. Several definitions are needed
first. The density (upper density, lower density) of a set Af of positive integers is the
limit (limit superior, limit inferior, respectively) of the sequence

( - # (Mn{l ,2 n}) .

An analogous notion applies to subsets of f̂ J2, where now the proportion of the
elements of M in squares {1, 2 , . . . , n}2 is examined. A double sequence (amn)Z,n = i
converges in density to a if

for some zero density set / in N2. In this case we write amn mn^x > a. The following
lemma is proved similarly to one-dimensional analogues.

LEMMA 4.1. Let (amn)m,n = i be a bounded sequence. The following conditions are
equivalent:

(1) a

(2) The set {(m, n): \amn — a\ > e} is of zero density for any e > 0.

Definition 4.1. A sequential dynamical system (X, 38, /A, f) is weakly mixing if

A, Be®.
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The product of two sequential systems (X, 38, fi, f) and (Y, <€, v, S) is the system

where (Tn x Sn)(x, y) = (Tnx, Sj).

THEOREM 4.1. Let (X, SHI, fi, f) be a sequential dynamical system. The following
conditions are equivalent:

(1) f is weakly mixing.
(2) n(T-m

lAnT-lA)-^>n(A)2, Ae®.
(3) For any A, Be® and 8, e > 0 there exists a K such that for any N>K and

m the inequality

has at most SN solutions n with 1 < n < N.
(4) For any 1 < p < o o , / e L" and S,e>0 there exists a K such that ifN>K and

n{<n2< • • • < nN < N/S are positive integers then

(5) Every positive lower density subsequence of f is ergodic.
(6) Txf is ergodic.
(7) fxS is ergodic for any ergodic S.

Proof. The implications (1)=S>(2)=£(4)=S>(5) are proved similarly to their analogues
in theorem 2.1.

(1)=S>(7) is routine, where we note that it suffices to check the ergodicity condition
(2.1) for pairs of measurable rectangles in 38 x <£. Now assume (7). Taking S to be
trivial we see that T is ergodic. Taking now § = T we obtain (6). From (6) it follows,
by just writing down the ergodicity condition for the pair of sets Ax A, Ax A, that

1 "

Hence:

^ I (n(T-m
lAnT-lA)-n(A)2)2

m,n = 1

1 N

= »r2 1.

^ I M^Mn^Af-^M^Z [ lr;Ud/x) +/x(A)4—0.
-* ' m , n = l •*' \"-t JX /

Being non-negative, the left hand side also converges to 0. By lemma 4.1 we get

n{T-m
xAnT-xA)—^ »(A)2, and so (6) =»(2).

m,n-*oo

(3)=»(1) is trivial, and so it only remains to show that (5)=»(3). Suppose (3) is
not valid. Then there exist A, Be 08, S, e > 0 and sequences (mk)t=i and (Nk)™=l
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with Nk+J Nk * oo, such that for each k the inequality
k c o

e (4.1)

has at least SNk solutions Nk_, < n < Nk. Assume that for some fixed k (4.1) holds
for n = nu n2,..., ns. From the proof of theorem 3.1 we see that

-2 I M ( T - | B n T - ' B ) > M ( B ) 2 + e
2 .

S ij = 1

Consider the subsequence of f corresponding to all these solutions n taken for all
positive integers k. This subsequence is obviously non-ergodic, but whereas it is
necessarily of positive upper density it may be of zero lower density. Augment it
therefore by adjoining, say, all the transformations (Tdn)™=, for some positive integer
d. The resulting subsequence is of positive lower density and, if d is chosen large
enough, still non-ergodic. Thus (5)=»(3), which completes the proof. •

A system (X, 38, /x, T) is weakly mixing iff (X, 38, /A, p( T)) is. We conclude therefore

COROLLARY (Jones [9]). (X, 38, /x, T) is weakly mixing iff
1 N LP f

- I TV >
for any 1 < p < oo, / e Lp and positive lower density sequence {nk)t=i-

THEOREM 4.2. A weakly mixing sequence on a separable probability space admits a
strongly mixing subsequence.

Proof. Suppose (X, 38, /J.) is separable and f weakly mixing. Let (An)™=l be dense
in 38. Define a sequence (n^JLi inductively. Choose n, arbitrarily. Suppose
«i, n2,..., nk have been selected. Condition (3) of theorem 4.1 secures the existence
of some nk+i > nk with

The sequence {Tnk)"=, is obviously strongly mixing. This proves the theorem. •

Remark AA.lt may happen that a weakly mixing sequence admits only zero density
strongly mixing subsequences. Such is the case, for example, with the sequence &
of epimorphisms of T given by

crn(x) = [n]/2]x, xel,n = l,2,...

One can construct examples of sequences (nk)k°=\ of zero density with the property
that (T"k)^=i is a weakly mixing sequence for any weakly mixing transformation
T. For example, if p is a non-constant polynomial with rational coefficients such
that p(n) e N for every n e N then (Tp(n))™=, is weakly mixing if T is. The proof of
this fact goes along the lines elaborated in [5, § 3.4].

5. Sequences ofaffine transformations
Throughout this section G denotes a compact Hausdorff group, 38 the o--algebra
generated by the open sets and fi the Haar measure. A transformation of G of the
form Tr(x) = a(x)a, where o- is a continuous endomorphism of G and aeG is
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measure-preserving iff cr is epic. In this case IT is called an affine transformation.
Let 7? = era be a sequence of affine transformations, that is

TTn(x) = o-n(x)an, xeG,n = \,2,... (5.1)

In this section we investigate the conditions for ergodicity and mixing of fr, especially
under further restrictions on TT and G.

°U will denote the set of all continuous irreducible unitary representations of G.
I stands for the trivial representation. Given a representation U e °U we denote by
dy the dimension of the representation space of U and by u^lsij-^dy, the
coordinate functions corresponding to U. If U is the only relevant representation
we put d = dv.

LEMMA 5.1. it is ergodic iff

i [ I «SJ(am)U,,(an) f uis(<rm{x))uit(o-n(x)) dfi(x) * 0, (5.2)
N m,n=|s,,= | Jo " - »

/or J # Ue% 1 <;,./<</.

The lemma follows in a straightforward manner from lemma 2.1 observing that, in
view of the Peter-Weyl theorem [7], the set of coordinate functions corresponding
to all the non-trivial representations in % enjoys the properties of the set F of that
lemma.

THEOREM 5.1. A sequence of translations of G

irn(x) = xam xeG, n = \,2,...

is ergodic iff a is uniformly distributed in G.
Proof. By lemma 5.1 the ergodicity criterion in our case takes the form:

* r-< ^> _2_ / \ / \

•I* m,n = 1 s=\ &

Equivalently:
I d 1 N

Thus TT is ergodic iff

which is precisely the condition for a to be uniformly distributed [10, Ch. 4]. •

Remark 5.1. The 'if part of the theorem can be proved without invoking the
ergodicity criterion. In fact, if a is uniformly distributed then

^ I f(xan) » f fdn, / € C(G), xeG

where C(G) is the space of complex-valued continuous functions on G. The same
convergence holds in L2. It follows that the mean ergodic theorem is satisfied for

https://doi.org/10.1017/S0143385700002509 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002509


362 D. Berend and V. Bergelson

every / e L2(G), so that the sequence is ergodic. The theorem shows that in our case
these types of convergence, namely that of pointwise convergence for continuous
functions and that of mean convergence for L2 functions, are equivalent.

We turn to study the conditions for ergodicity of sequences of epimorphisms.
First we need:

LBMMA 5.2. Let (an)^= 1 be a sequence in some set A. The following conditions are
equivalent:

(1) maxaeA# {n\l<n<N,an = a} = o(N). (5.3)

(2) #{(m,n)\l^m,n^N,am = an} = o(N2). (5.4)

The proof is routine.

Definition 5.1. A sequence (an)^= , in a set A is of reasonable multiplicity if it satisfies
either one of the equivalent conditions (5.3) and (5.4).

Let F denote the dual object of G, i.e. the set of all equivalence classes of representa-
tions in % (see, for example, [7]). An epimorphism cr of G gives rise to a dual
one-to-one transformation of "11, which induces in turn a transformation of F. The
dual of cr is usually also denoted by a, so to avoid confusion we write <r(x) for the
action of a on x e G and Ucr or ycr for its action on representations.

THEOREM 5.2. A sequence a of epimorphisms of G is ergodic iff the sequence yd is
of reasonable multiplicity for any non-trivial y e F.

Proof. The sufficiency is a consequence of lemma (5.1) using the variant (5.4) of
reasonable multiplicity. For the converse direction assume that for some non-trivial
y e F the sequence yd- is not of reasonable multiplicity. Let U e y. Denote by Xu
the character corresponding to U. A direct computation shows thatf=Xu does not
satisfy (2.4), and so d is non-ergodic. This proves the theorem. •

In what follows, TT is always as in (5.1).

PROPOSITION 5.1. If a is ergodic then T? IS ergodic as well.

The proposition follows easily from lemma 5.1 and theorem 5.2.

Definition 5.2. A sequence (an)^= 1 in a set A is of bounded multiplicity if there exists
a K such that no a € A occurs more than K times in the sequence.

THEOREM 5.3. The following conditions are equivalent:
(1) a- is strongly mixing.
(2) TT is strongly mixing.

(3) The sequence y& is of bounded multiplicity for any non-trivial y e F.

The proof is omitted; the required ideas appear in the proof of:

THEOREM 5.4. The following conditions are equivalent:

(1) a- is ergodic.
(2) <T is weakly mixing.
(3) 7? is weakly mixing.
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Proof. If a is ergodic then employing theorem 5.2 we observe that any positive
lower density subsequence is also ergodic. By proposition 5.1 the same applies to
7T From this we conclude that (1)=>(2)=>(3).

It remains to show that (3)=>(1). Suppose fr is weakly mixing while a is not
ergodic. Consequently, there exist S>0, a non-trivial U and a sequence (t4)5°=1

in % a sequence (Nfc)£L, of positive integers and integers nik, keN, 1 < i < sk, such
that:

l<Nk+l/Nkl~2
Nk<nlk<

Uo-nik ~ Uk,

for all k.
Take some

n2k<

e>0.

• o o ;

• • • < nSkk < Nk+];

,2,...,sk;

Given a matrix j4 = (a«)f,-=i put

Write the group of d xd unitary matrices as a finite union U!=i W) such that if wn,
w,2e W; then HwnW^1 - / | | < e. Set aik = an.k. For some l < / < r we have infinitely
many numbers k with at least sk/r of the matrices U(aik), 1 < i < sfo belonging to
W/. Consider the sequence of positive integers consisting of all those nik with
U(aik) e W,. Its upper density is at least 5/ r. Denote by a', <?', and T?' the subsequen-
ces of a, <? and 7r corresponding to this sequence. Select some a o e W,. Consider
the sequence rr" defined by

TT n\X) — 7T n\X }(XQ , A t : U , fl — 1, Z, . . . ,

tk=# {j:\ s j s J b t/(aJk) e W,}, k = 1, 2 , . . . ;

k k— 1

Fix momentarily a fc with tk>sk/r and put T = £.= 1 î , t = £.= 1 <; + l. Then

i m,n = l J G

I [

= i I I Xu(<r'm(x))xu«(x))dn(x)-3ed4-2td2/T

r) * l -3ed 4 >0 ,
fc-»oo

for sufficiently small e > 0. Adjoining to TT" an arithmetic subsequence of T? of
sufficiently small density, also translated by a , ' , we still have a non-ergodicsequence.
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Thus 7? contains a non-ergodic subsequence of positive lower density, which shows
that rt is not weakly mixing. Thus (3)=>(1), and thereby the theorem is proved.

•
For the remainder of this section G is assumed to be abelian. F is the dual group
of G. For a sequence <? of epimorphisms the condition for ergodicity is that every
non-zero character y should have an orbit of reasonable multiplicity in F under the
action of the dual sequence of monomorphisms of F. Our results yield the following
theorem, due to Raikov [12]:

THEOREM. Let (nk)^{ be a sequence of distinct positive integers and f e L2[0,1). Then:

1 N o V
T; I/({«**})—» fiOdt.

More generally, we get

THEOREM 5.5. Let G be a connected compact abelian group, (nk)^=l a sequence of
non-zero integers. The sequence & of epimorphisms of G given by o~k{x) = nkx is:

(1) ergodic - iff it is of reasonable multiplicity;
(2) strongly mixing - iff it is of bounded multiplicity.

Remark 5.2. Unlike the situation in the case of translations, where ergodicity can
be deduced from known results concerning uniform distribution (see remark 5.1),
this is impossible in general for epimorphisms. In fact, already for the circle group
T the ergodicity condition, as given in the last theorem, is slightly weaker than the
conditions known to ensure that a sequence (nk)^=l has the property that (nkx)c^=]

is uniformly distributed in T for almost every x e T (see [10, § 1.4]). The gap between
the two types of convergence (mean convergence for square-integrable functions
and a.e. convergence for continuous functions) is even wider in the case of tori (see
theorem 5.6 and [11, Th. 2]).

Now let G be a finite-dimensional connected compact abelian group. Such a
group is characterized by its dual F being a torsion-free discrete abelian group of
finite rank (see [6, Chs. 23-24]). We may accordingly assume that F is a subgroup
of Qr containing Zr for some r, endowed with discrete topology. Thus G is a quotient
group of Qr.

Let a be an endomorphism of G. Its dual <r, being an endomorphism of F, is
represented by an rxr rational matrix. Evidently, a- can be uniquely extended to
Qr. By duality it follows that o- can be uniquely lifted to an endomorphism of Qr,
to be denoted by a. Note that if a is epic then <x is epic as well. If <x and T commute
then o- and f commute, hence their extensions to Qr commute, which implies that
a- and f also commute.

LEMMA 5.3. Let a be a sequence of epimorphisms of G and a the sequence of their
corresponding liftings to Qr. Then a is ergodic iff a- is.

The proof is straightforward.
Given a sequence & of epimorphisms of G, we put

Ao(<?) = {(m, R) | det (<rm -an) = 0}.
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spec (cr) is the finite sequence kla, A2cr>..., Arcr of eigenvalues of an epimorphism
cr (arbitrarily ordered), spec (<r) is the sequence formed of all the finite sequences
spec (o-n), i.e. spec (c?) = (spec (o-,), spec (o-2),...).

THEOREM 5.6. Let a be a sequence of commuting epimorphisms of G. Then:
(1) The following conditions are equivalent:

(a) cr is ergodic;
(b) A0(cr) is a zero density subset of N2;
(c) spec(cr) is of reasonable multiplicity.

(2) The following conditions are equivalent:
(a) a is strongly mixing;
(b) A0(c?) is of bounded fibres;
(c) spec(cr) is of bounded multiplicity.

Proof: In view of lemma 5.3 we may assume that G = Qr. The implications (c)=»
(b)=>(a) are easy for both parts, while (2a)=>(2c) follows from (la)=»(lc) and
theorem 3.1. It remains therefore to show that (la)=>(lc).

Since c? is commutative there exists a n r x r matrix T over the field A of algebraic
numbers such that for every a in the sequence

r'io-r =

J 0 \

0

*\

0
(see, for example, [8, p. 134]). Suppose (l.c) is not fulfilled. Then there exists some
1 ̂ j s h and e > 0 such that for infinitely many positive integers TV we have XJan = \N

for at least eN numbers 1 < n < TV for appropriately chosen AN e A. The triangulation
of <? implies the existence of a row vector ve/\r with vo-n = \jo.riv for all n. Put
K=Q({AJ<Tii\neN}). The extension K/Q is finite since KcQ({Vj\l < i < r}), where
vh 1 < i < r, are the components of v. We can select v so as to have K =

Let t)(1) = v, vi2),..., u(I) be all the conjugates of v over Q. All these vectors clearly
form common eigenvectors of cr. Set e = Z1 = 1 v('\ We have e e Q r , and for infinitely
many numbers N the equation ecrm = eo-n has at least e27V2 solutions (m, n) with
1 < m, n < TV. To show that 5 is non-ergodic it suffices therefore to prove that e ^ 0.
Pick A E X with AT =Q(A). A is a polynomial in some eigenvalues AJ<7V It follows
that vo- = \v, where cr is the corresponding polynomial in the matrices crn. The
vectors v°\ ..., vU) are eigenvectors of cr, and the corresponding eigenvalues are
all the conjugates of A. Thus v°\ ..., v(l) are linearly independent, whence e ^ 0.
This completes the proof. Q

Example 5.1. The commutativity assumption in the last theorem is essential. In fact,
consider the sequence of epimorphisms of T2 given by

'\ + n n2
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It is easy to verify that ycrm = ycrn for 0 ̂  y e Z2 implies m = n, so that & is strongly
mixing. Yet the only eigenvalue of any an is 1. Note also that the sequence is
strongly mixing even though no crn is even ergodic.
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