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ABSTRACT 

Differential thermal analysis (DTA) began soon after the de­
velopment of the thermocouple. I t has progressed through the 
systematic development of better equipment and the cataloguing 
of typical DTA curves for a variety of materials until good 
technique now requires control of the composition and pressure 
of the furnace atmosphere as well as consideration of the thermo­
dynamics and kinetics of the reactions involved. Although dif­
ferential thermal analyses have been made for many materials, 
the major applications have been concerned with clay and car­
bonate minerals. 

In DTA curves for clay minerals the low-temperature endo-
thermic loop associated with the loss of water, and the high-
temperature exothermic loop accompanying the formation of new 
compounds, are changed in shape, temperature, and intensity by 
the kind of exchange cations. The midtemperature-range endo-
thermic loop has a temperature dependence on the partial pres­
sure of water in the furnace atmosphere. 

For the anhydrous normal carbonates the dissociation tempera­
ture and its dependence on the partial pressvire of CO2 are in the 
decreasing order Ca, Mg, Mn, Fe, and Zn. The lower temperature 
loop of dolomite, the reaction for which must be preceded by an 
internal rearrangement, is independent of the pressure of ('()•• but 
may be shifted to a lower temperature by prolonged fine grinding 
which accomplishes a similar rearrangement. 

INTRODUCTION 

Differential thermal analysis (DTA), although not a 
very accurate or definitive method, has found an impor­
tant place amon» techniques which allow the characteri­
zation of materials. Limited only by the sensitivity of 
the apparatus, the differential thermal curves record all 
transformations in which heat is taken up or given off. 
This includes the dehydration of clays, the decarbona-
tion of carbonates, the reversible change from a- to 
|3-quartz, the burning of materials, and the recombina­
tion of elements into more stable forms. When employed 
alone, the technique can be used to identify a number of 
reasonably pure compounds and to follow changes in 
mixtures for control purposes. When used in eonjunc-
with X-ray diffraction, microscopy, and chemical analy­
sis, otherwise difficult identifications can be made. The 
technique is not easily standardized, however, and the 
factors which frequently make it difficult to compare 
DTA curves prepared in different laboratories are sum­
marized by Ahrens (1950). 

The development of differential thermal analysis has 
progressed through several stages. As early as 1887 
le Chatelier described the use of his thermocouple as a 
difference thermocouple and published DTA curves of 
kaolinite. Prom that time until Orcel (1935) began the 
systematic differential thermal analyses of clays, about 
twenty miscellaneous DTA papers appeared. Another 
stage began with the design of good furnaces, ssimple 
holders, and photographic recording equipment by 
Norton (1939) and Hendricks (1939). Refinements of 
this design by Grim and Rowland (1942) were followed 
by further developments by Berkelhamer and Spiel 
(1944). Throughout this period many papers appeared 
which repeated the thermal curves of the same clay 
samples and related oxides, and a portable apparatus 
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was developed by Hendricks (1946) ^ for use in stud}'-
ing bauxite deposits in the field. The last development 
in the basic apparatus was the visual recording of the 
DTA curves of a number of samples being heated in the 
same furnace. Simultaneous development of DTA tech­
niques for the elementary study of carbonate minerals 
took place in the U. S. A., Japan, and the IT. S. S. R. 

Reconsideration of the thermodynamics of the sys­
tem gave rise to a very sensitive sample holder (Gruver, 
1948) (Kaufman and Dilling, 1950) made of platinum 
foil. Herold (1948) developed a thin sample holder half 
platinum and half platinum-10 percent rhodium in 
which the thermocouple junction, built into the sample 
holder, was a ring around the middle of the cylindrical 
sample. Development of static atmosphere control within 
the furnace was introduced by Saunders and Giedroyc 
(1950) and Rowland and Lewis (1951). Dynamic at­
mosphere control within the sample was introduced by 
Stone (1952)^ Presently the trend is toward atmosphere 
control at elevated pressures where DTA reactions begin 
to approach equilibrium reactions. From the simple ap­
proximate measurement of the effective temperature dif­
ference obtained by comparing the temperature of the 
reaction of a sample in its own atmosphere with that of 
an inert standard, the technique has now progressed to 
a consideration of the heat exchange under controlled 
conditions of an inert atmosphere or of a participat­
ing gas. 

KINDS OF TRANSFORMATIONS 

The endothermic and exothermic deflections of a DTA 
curve record many kinds of changes of state. The only 

limitation is that o^'^ the rate of change of enthalpy 

(Afl"), be sufficient for the temperature difference to be 
registered before dissipation in the system. First-order 
phase changes, which involve discontinuities in volume, 
entropy, and the first derivatives of the Gibbs function 
(AF) are represented by two kinds: the reversible al-
lotropic inversion of alpha to beta quartz (Faust 1948) 
(Grimshaw, et al. 1948) and the irreversible monotropie 
change of aragonite to calcite (Faust 1950). The change 
from endellite to halloysite probably is a monotropie 
phase change. Definite second-order phase changes, in 
which there is no discontinuous change in volume and 
entropy while the second derivatives of the Gibbs func­
tion change diseontinuously, are rather rare. One which 
is habitually recorded in DTA, employing a nickel block 
as a sample holder, is the change from ferromagnetic to 
paramagnetic nickel (Curie point) at 353°G. 

Murray and White (1949) have discussed the kinetics 
of thermal dehydration curves. Most of the chemical 
reactions recorded by DTA are first-order reactions in 
which the rate of reaction is directly proportional to the 
concentration of the reacting substance. The dehydration 
of clav minerals such as kaolinite and the dissociation of 
1 This apparatus is available commercially from the Eberbach Cor­

poration, Ann Arbor, Michigan. 
^ Variable pressure DTA apparatus is available from Dr. Robert L. 

Stone, Austin, Texas. 
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carbonates are chemical reactions of this type. The very 
poor curves obtained for museovite—because the rate of 
dehydration for the usual heating rates is very slow— 
also represent a first-order reaction. Second-order reac­
tions in which the rate depends on the concentration of 
two molecules, and third-order reactions where the con­
centration of three molecules controls the rate, are not 
common in the interpretable DTA reactions. Combina­
tions of first- and second-order reactions, and perhaps 
some third-order reactions, probably take place after the 
final breakdown of the clay mineral lattice when new 
higli-temperature products are formed. 

The kinetics and thermodynamics of the DTA method 
are actually too complex to permit the application, in 
any sense other than approximate similarity, of these 
physical-chemical terms for better-known reactions. This 
rather incomplete discussion of phase changes and order 
of chemical reactions is included because it has become 
increasingly popular to refer to DTA curve deflections as 
representing a specific kind of chemical reaction or phase 
change. 
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THERMAL THEORY 

Spiel (1945) and Kerr and Kulp (1948), by opposing 
the thermal effects—the heat of the thermal reaction and 
the differential heat flow between the block and the 
sample—arrived at an expression to show that the area 
enclosed by the loop and the base line is an approximate 
measure of the total heat effect and, under certain condi­
tions, is proportional to the amount of thermally active 
material in the sample. By making a set of calibration 
curves with prepared mixtures of dolomite and calcite, 
Rowland and Beck (1952) were able to show that this 
relationship can bo used to determine dolomite in lime­
stone when as little as 0.3 percent is present (fig. 13). 

Wittels (1951) varied both the heating rate and the 
mass'of the sample to obtain an expression and calibra­
tion so that precise calorimetric measurements can be 
obtained from DTA curves. 

M. Void (1949) has derived equations for the calcula­
tion of heats of transformation from differential heating 
curves, which are independent of external calibration, by 
using the rate of restoration of a thermal steady state to 
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FIGURE 2 

establish a relation between the differential temperature 
and the heat adsorption producing it. Valid results were 
obtained for such widely differing processes as the melt­
ing of stearic acid and the vaporization of water. 

A highly significant contribution to the understanding 
of differential thermal analysis was made by Murray and 
White (1949). They point out that a Clausius-Clapeyron 

DOLOMITE OTA CURVES AT I MM TO 760MM.C02 PRESSURE 

(AFTER HAUL ft HEYSTEK. AMER. MIN. 37, 19521 

FIGURE 3 
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DTA OF ORGANIC-CLAY IN NITROGEN 

FIGURE 4 

type equation can be reduced to a plot of In PH2O VS 
1/T to obtain a straight line of slope—AH/2B. By select­
ing a number of partial pressures of H2O and observing 
from the DTA curve the value of ^ C . at which the loss 
of hydroxyl water begins, Stone (1952) assembled data 
for a van't Hoff line from the slope of which the heat of 
reaction can be calculated (fig. 1). Comparison of 
these heats of reaction with values obtained from specific 
heat data shows that, for minerals of the kaolin group, 
the temperature at the beginning of the deflection of the 
DTA curve is considerably higher than equilibrium tem­
perature up to a partial pressure of In p = 6.50 (665 
mm). Above In p = 6.50 better agreement is obtained. 
For calcite, good agreement is obtained at In p =: 3.8 
(447 mm). Stone concludes from these experiments that 
at temperatures close to equilibrium in dry air the 
kaolinite decomposition reaction must be very slow in­
deed. These experiments show that, even though the clay 
minerals have very similar structural arrangements, 
their DTA hydroxyl-loss loops can be shifted selectively 
by control of the partial pressure of water vapor. Hence, 
clay mineral DTA curves so obtained should resolve the 
midrange endothermic loops which interfere when the 
furnace atmosphere is uncontrolled. 

ATMOSPHERE CONTROL 

Atmosphere control in differential thermal analysis has 
taken several different forms. When a sample is heated 
in air, it builds up its own atmosphere, but not in excess 
of one atmosphere pressure. A typical example is the 
dissociation of siderite (Rowland and Jonas 1949) 
(fig. 2), in which the DTA curve is a compromise be­
tween the endothermic effect of CO2 liberation and the 
exothermic effect of iron oxidation, until the COo evolu­
tion is violent enough to exclude oxygen and the endo­
thermic effect predominates. Oxidation resumes when 
CO2 evolution slows down, and the endothermic loop is 
interrupted by an exothermic loop. A similar effect is 
shown by the DTA curve when dolomite is heated in air. 
The curve in air resembles the curve at about 360 mm of 
CO2 (Haul 1951) (fig. 3). When a cover is used on the 
sample holder, the main oxidation loop of siderite is dis­

placed to a higher temperature. Except when the sample 
well is covered, the pressure of the evolved gas probably 
never attains one atmosphere pressure and is quickly re­
duced by diffusion to a mlieh lower concentration. These 
atmospheric effects are not controlled but are a function 
of the sample dissociation. 

The atmosphere of a furnace may be maintained at 
about one atmosphere partial pressure by allowing a gas 
to flow through the furnace (Rowland and Lewis, 1951). 
This technique is sufficient for many applications where 
approximately one atmosphere of an inert gas, or a par­
ticipating gas, is required. A better technique, using a 
sintered block for a sample holder, has been described by 
Saunders and Giedroyc (1950). This method insures that 
the gas surrounds the individual grain of the sample 
from the beginning of the analysis. Neither of these 
methods permits control of the partial pressure of the 
gas, and the composition is maintained only so long as 
no air is swept in with the gas. 

Actual control of the pressure within the furnace has 
been used as a vacuum technique by Whitehead and 
Breger (1950). A dynamic system for control of the 
pressure and composition of the atmosphere surrounding 
the particles of the sample was described by Stone 
(1952) who included the sample holder in the gas-
handling system. With this arrangement it is possible to 
maintain a continuous supply of fresh gas moving 
through the specimen at a predetermined pressure. 

Atmosphere control can be used to eliminate unwanted 
exothermic reactions resulting from the burning of or­
ganic matter in clays (fig. 4). DTA curves of some car­
bonates, particularly calcite and dolomite, are greatly 
improved by an atmosphere of CO2. From DTA curves 
made in a dynamic steam atmosphere van't Hoff lines 
can be constructed. While van't Hoff lines constructed 
from DTA curves only approximate equilibrium at ele­
vated pressures, they are a summary of the DTA curves 
at several pressures and as such may be more charac­
teristic of the material than the original DTA curve. 

DTA CURVES OF CLAYS 

Aside from a number of papers describing systematic 
studies of the collections of clays and carbonate minerals 
to learn what differences could be observed by this tech­
nique, there have been a number of studies involving 
the factors controlling the individual parts of the differ­
ential thermal analysis curves. The geometry of a differen­
tial thermal curve of a clay is usually made up of three 
distinct parts. The first is a low-temperature endothermic 
loop which is registered when atmospheric water departs 
from the material. A second or midrange endothermic 
loop accompanies the loss of bound water or the dissoci­
ation of hydroxyls from the lattice. The third is a high-
temperature combination of loops accompanying the 
final breakdown of the lattice and the formation of one 
or more new materials. 

Low-temperature Loop. The low-temperature loop, 
which may cover the interval from 50°C. to about 240°C., 
is dependent on the kind of clay mineral for its pres­
ence; on the type (bivalent-univalent) and amount of 
exchange cations for its shape; and on the moisture 
content, or the relative humidity surrounding the clay 
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DTA CURVES OF MISSISSIPPI MONTMORILLONITE WITH 
SEVERAL COMMON CATIONS AT DIFFERENT WATER 
CONTENT (AFTER HENDRICKS, NELSON a ALEXANDER. J AC S 62,1940) 
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prior to analysis, for its size. In general, members of the 
kaolinite group do not show a low-temperature peak. The 
exception is hydrated halloysite; its peak can be irre­
versibly destroyed by storage over a period of time in an 
atmosphere of low relative humidity at room tempera­
ture, or by heating to slightly more than 100°C. 

The three-layer lattice clay minerals invariably have 
a low-temperature endothermic loop. Of these, the mont-
morillonite loops are the largest and most sensitive to 
moisture content, humidity, and type and amount of 
exchange cations. Although the illites also exhibit a low-
temperature loop, the true micas, such as muscovite and 
biotite, do not. Chlorite in clay-mineral particle size has 
a low-temperature endothermic loop, but chlorite from 
metamorphic rocks does not. The effect of exchange 
cations on montmorillonites and illites is frequently 
rather marked. Hendricks (1940) pointed out the effect 

WYOMING BENTONITE 

of a number of different exchange cations on different 
bentonites (fig. 5). In general, clays with monovalent 
cations exhibit one endothermic loop at about 150°C; 
most clays with bivalent cations have a second loop or 
a shoulder on a loop similar to the monovalent loop at 
a higher temperature (220°C.). Various organic com­
pounds, particularly those which blanket the space be­
tween the layers of the lattice, also have their particular 
effect on the hydration loop, but this is frequentlj' ob­
scured by the immediate volatilization or burning of the 
organic material. 

As yet, no one has succeeded in making use of the 
area of the low-temperature endothermic loop to deter­
mine either the total moisture content or to make a 
quantitative estimate of the type and amount of exchange 
cations on the clav. 
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DTA CURVES OF DiCKITE (OURAY, COLORADO) AT DIFFERENT 
PRESSURES OF WATER VAPOR 

(AFTER STONE,J A CER 5 J 6 , I9S2) 
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High-temperature Loops. At the high-temperature 
end of the dift'erential thermogram most of the recorded 
loops are the combined heat effect of several reactions, 
both endothermic and exothermic in nature. Grim (1948) 
and Stone (1952) have pointed out that, even in kao­
linite, a very small endothermic loop occurs and is inter­
rupted by the large exothermic loop usually associated 
with the formation of mullite. The high-temperature 
zone for members of the montmorillonite and illite 
groups is largely controlled by the chemical composition 
of the material. This involves the amount and kind of 
isomorphic substitution within the lattice and the nature 
of the exchange cations. Most of the three-layer lattice 
clay minerals undergo an endothermic reaction associ­
ated with the final breakdown of the clay mineral lattice 
(Grim, 1948) and with the loss of a small amount of 
water which supposedly results from the loss of the last 
hydroxyls. Different persons have different ideas as to 
just what happens during this endothermic reaction. 
MeConnell (1950) theorizes that tetrahedral hydroxyls 
give rise to the small water loss, and occur in groups of 
four, substituted for silicon in the tetrahedral layer. 
It is also possible that the hydroxyls are supplied from 
local substitution of magnesium in the octahedral layer. 
While there appears to be no reason for one part of the 
octahedral layer to retain its character at temperatures 
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TaWe 1. Firing products of several clays. 
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High alumina 

Kaoljnite 

Endellite 

Diaspore -.^ 
Gibbsite 
Bauxite 

(Kaolinito and gibbsite) 
Montmorillonito group 

Beidell, Colo._, 

Cheto 

Fairview, Utah. . _ 

Harris Co., Tex 

Otay, Calif 

Palmer, Ark. 

Pontotoc Co., Miss 

Sierra de Guadalupe 

Tatatila, Vera Cruz 

Upton, Wyo 

Wagon Wheel Gap, Colo.. 

Woody nontronite 

900° C. 

x-\UO, (a) 
r-AhO, (a) 

spinel (a) 

spinel (b) 

1000° C. 

mullite (a) 

muUite (a) 

a-AhOs (a) 

3-quartz (a) 
anorthite (?) (c) 

spinel (b) 
cristobalite (c) 

3-quartz (a) 
enstatite (c) 

spinel (a) 

spinel (a) 
a-quartz (b) 
spinel (a) 

0-quartz (b) 

spinel (a) 
a-quartz (b) 
cristobalite (a) 
mullite (b) 
spinel (c) 

1100° C. 

3-quartz (a) 
cristobalite (c) 
anorthite (?) (c) 

cristobalite (a) 
spinel (a) 

cristobalite (a) 
3-quartz (a) 
enstatite (b) 
spinel (a) 
quartz (c) 

cristobalite (a) 
spinel (a) 
cristobalite (a) 
spinel (a) 

spinel (a) 
cristobalite (b) 

1200° C. 

mullite (a) 
cristobalite (b) 
mullite (a) 
cristobalite (b) 

mullite (a) 
cristobalite (a) 
cristobalite (a) 
spinel 
mullite (b) 
cristobalite (a) 
cordierite (a) 

cristobalite (a) 
spinel (a) 
mullite (a) 

cristobalite (a) 
spinel (a) 
cordierite (b) 

1300° C. 

mullite 
cristobalite 
cristobalite (a) 
cordierite (a) 

mullite (a) 

cristobalite (a) 
mullite (b) 

cristobalite (c) 
cordierite (a) 
periclase (c) 

cristobalite (b) 
cordierite (b) 
cristobalite (a) 
cordierite (a) 

cristobalite (a) 
mullite (b) 
cordierite (b) 
mullite (b) 

cristobalite 

mullite 
cristobalite 
spinel 

Parenthetic letters signify: (a) important, (b) moderate, and (c) minor. (After Bradley & Grim, 1951.) 

higher than that attained by other parts of the same 
layer, it is still possible to draw the parallel between 
the temperature at which gibbsite loses its hydroxyls 
versus the temperature at which brucite loses its hy­
droxyls. Other magnesium-bearing minerals, such as talc 
and chlorite, seem also to lose their hydroxyls at tem­

peratures somewhat higher than encountered in mate­
rials consisting primarily of aluminum in the octahedral 
layer. 

Bradley and Grim (1951) have described many of 
the factors controlling the nature of the immediate high-
temperature products (table 1). They point out that the 
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HEATING TO INDICATED TEMP. FQR \ HOUR AND 

STANDING FOR DIFFERENT PERIODS 
(AFTER GRIM 9 BRADLEY, AMER MIN 33,1948) 
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STEAM INJECTION 
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DTA SHOWING EFFECT OF STEAM INJECTION 
ON DRIED CLAY MINERALS 

|4FTEf l STONE, J A.CCB-S 3 5 , 1952) 
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exchange cations can give rise to a variety of spinels 
and cordierite. When the exchange ion between the layer 
positions is blanketed with an organic compound so that 
at elevated temperatures the only exchange cation 
present is hydrogen, the formation of mullite occurs 
even with a three-laj-er lattice clay mineral. In figure 6 
the exothermic loop at 930°C. accompanies the formation 
of a spinel in the untreated sample, mullite and spinel 
in the NH4 sample, and mullite in the remaining sam­
ples. In some cases where there is a return to the base­
line between the endothermie and exothermic reactions 
and where lithium is present in the elay mineral, the 
accompanying excess silica appears in the form of beta 
quartz instead of cristobalite. 

Midrange Loop. The endothermie loop occurring at 
midtemperature range and associated with the major 
loss of hydroxyls from the octahedral layer varies con­
siderably from clay to claj^ In the kaolinite group this 
is an intense reaction which probably starts at a much 
lower temperature but is sufficiently strong to cause 
deflection at about 450°C. and to peak at about 600°C. 
Dickite, the most highly organized member of the kaolin­
ite group, has a slightly different differential thermal 
curve through the range of loss of hydroxyls. The low-
temperature side of this loop is quite steep, while the 
high-temperature side is at a somewhat lesser slope. The 
result is a loop skewed toward the low-temperature end. 
The starting and peak temperatures of the midrange 
loop of both dickite and kaolinite can be shifted by 
PH20 of the furnace atmosphere (fig. 7). Wyoming 
bentonite and other bentonitie materials in which the 
order of stacking and the organization of the crystals 
are very good, have a loop beginning at about 575°C. 
and peaking at about 700°C. When the organization is 
poor, as is the case with most sediments containing mont-
morillonite, this loop is approximately 100°C. lower. The 
loop for nontronite, the iron analog of montmorillonite, 
also occurs at a somewhat lower temperature. 

Members of the illite group lose their hydroxyls over 
the same approximate range as do some of the less well-

PERCENT CAUCITE 100 3 0 0 500 700 900 'C 

r 

SMITHSONITE 

• - v ^ 

DTi CURVES FOB SOME RHOMBOHEDRAL CARBONATES 
(AFTER KERR 8 KULP, AMEft. MIN. 33, 1948) 

FlOURF. 10 

EFFECT OF DILUTION — DTA CURVES OF CALCITE 
ALUNDUM MIXTURES 

[AFTER KULP, KENT KERR, AMER. MIN. 36,1951) 
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organized montmorillonites. In sediments which may 
contain both illite and montmorillonite, it is seldom pos­
sible to distinguish betAveen montmorillonite and illite 
with differential thermal curves. In fact, the shales and 
clays of the Gulf Coast, at least to the base of the Terti-
arjT, appear to contain both an illite and a very poorly 
organized montmorillonite which may be in effect a de­
graded illite in which a large portion of the potassium 
has been lost. 

Previously this loss of hydroxyls was considered to be 
an irreversible reaction. However, Grim and Bradley 
(1948) (fig. 8) demonstrated that clays heated to a 
temperature just below the end of their differential 
thermogram dehydration loop will reabsorb a consider­
able amount of moisture as hydroxyls when exposed to 
an average relative humidity over a period of time. From 
his experiments using steam atmospheres, Stone suggests 
(fig. 9) that more rehydration may be obtained at ele­
vated steam pressures. 

DIFFERENTIAL THERMAL ANALYSIS OF THE 
CARBONATE MINERALS 

The carbonate minerals are especially amenable to dif­
ferential thermal analysis. Normal anhydrous carbonates 
undergo dissociation in an atmosphere of CO2 at progres­
sively lower temperatures in the order Ca, Mg, Mn, Fe, 
and Zn (fig. 10). The temperature of the dissociation of 
calcite is very sensitive to the partial pressure of CO2. 
In the absence of CO2 in the surrounding atmosphere the 
dissociation starts at about 500°C. When one atmosphere 
of CO2 surrounds the sample, the dissociation starts at 
about 900°C. The other normal carbonates are much less 
sensitive to change in pco2- Rowland and Lewis (1951) 
have shown that the order of decreasing sensitivity to 
change in pco2 is also Ca, Mg, Mn, Fe, and Zn. DTA 
curves of the anhydrous normal carbonates, with expla­
nations of the reactions represented, have been published 
bv Cuthbert and Rowland (1947), Kerr and Kulp 
(1948), Gruver (1950), and Beck (1950). In addition to 
the normal anhydrous carbonates, Beck included DTA 
curves of samples representative of most of the other 
carbonate minerals. 
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DTA CURVES OF CALClTE ARAGONITE MIXTURES 
"{AFTER FAUST, AMER. MIN 35, 19501 
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A review of the interpretations of 
necessity for : (1) determining by other 
nature of the product formed by each 
whether each thermal loop represents 
compromise heat effect resulting from 
vestigating the effect of varying the gas 
to establish the temperature dependence 
phase. The data from (3) when plotted 
uniquely describe the thermal character 

DTA curves indicates the 
methods, usually X-ray, the 
reaction; (2) establishiufi 
a single change or is a 

several reactions; (3) in-
pressure within the sample 
of the reaction on the gas 
as van't Hoff lines almost 

istics of the materials. 

Calcite. The dissociation of calcium carbonate is used 
in physical chemistry as a classic example of the effect of 
the partial pressure of a participating gas on heterogene­
ous equilibria. Perhaps it is for this reason that very 
little attention has been given to the DTA curves of cal­
cite. Faust (1950) and Kulp, Kent, and Kerr (1951) 
have shown that the peak temperature and the initial 
decomposition temperature of pure caleite decrease when 
the sample is ground to an extremely fine particle size. 
Kulp et al. (1951) (fig. 11), also show a drop in both 
temperatures when the sample is highly diluted with 
alundum. These results were obtained in an ambient fur­
nace atmosphere without control of the CO2 and are 
therefore not definitive. Dilution reduces the opportunity 
for the buildup of a back pressure of CO2 and conse­
quently lowers the dissociation temperature. This effect 
is frequently observed in unwashed Ca-clay samples 
which have been allowed to stand in water open to the 
atmosphere. The DTA curves exhibit a small endothermic 
peak at about 750°C., resulting from the calcium car­
bonate formed from calcium in the solution and CO2 
dissolved from the air. 

DTA curves of the aragonite -^ calcite transformation 
have been examined by Faust (1950) (fig. 12), who has 
pointed out that this monotropic transformation does not 
take place at a constant temperature, and is subject to 
further variations resulting from the presence of barium, 
strontium, lead, and perhaps zinc. The transformation 
temperatures range from 387°C to 488°C at a heating 
rate of 12°C per minute. 

Magnesite. DTA curves of magnesite have been pub­
lished by Cuthbert and Rowland (1947), Faust (1949), 
Gruver (1950), Beck (1950), and Kulp, Kent, and Kerr 
(1951). Pure coarsely crystalline magnesite heated in 
air yields a simple endothermic peak at 680 to 700° C. 
The temperature of the peak varies somewhat in the 
presence of impurities. The magnesite from Stevens 
County, "Washington, shows an exothermic peak at the 

end of the endothermic peak. Kulp attributes this peak 
to the presence of small amounts of iron substituted 
in the lattice. It may also be the heat effect accompany­
ing the organization of magnesium oxide as periclase. 

Siderite. Cuthbert and Rowland (1947), Kerr and 
Kulp (1947), Frederickson (1948), and Rowland and 
Jonas (1949) have discussed the DTA curve of siderite. 
Diluted and lieated in air, this carbonate yields a small 
exothermic loop (fig. 2). In an atmosphere of CO2 the 
loop is large, endothermic, and at the proper tempera­
ture for the Ca, Mg, Fe, Mn, and Zn series. Undiluted 
and heated in air, the curve first swings in the exother­
mic direction until enough CO2 has been liberated to 
prevent oxidation of the iron. The dissociation of CO2 
is tlien registered by an endothermic loop which is in­
terrupted by an cxothermie loop representing the oxida­
tion of the FeO when the back pressure of CO2 begins 
to subside. At a higher temperature the partially oxi­
dized iron is completely oxidized to hematite. 

DTA Calibration Curves of SmaiI Percentages of 
Bureau of Standards Doiomite and iceiand Spar Calcite 

FICIKK l." 
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228 HOURS 

EFFECT OF PROLONGED GRINDING 
ON DTA OF DOLOMITE IN COa 
ATMOSPHERE 

FIGURE 14 U 

Dolomite. Of all of the carbonate minerals of the 
Ca-Mg-Fe group (Kulp, Kent, and Kerr, 1951) dolo­
mite has received the most attention. Berg (1945) at­
tempted to use the areas under the loops as a quantita­
tive expression of the amount of dolomite in the sample. 
Rowland and Beck (1952) (fig. 13) succeeded in doing 
this for samples heated in an atmosphere of CO2. Haul 
and Heystek (1952) (fig. 3) have shown that DTA 
curves for dolomite have only one loop at 1 mm pcoz, 
two loops, resembling the curve made in air, at 300 
mm pco2, and two distinctly separated loops at one 
atmosphere of CO2. This is accomplished entirely by 
shifting of the second or CaCOs peak. The apparent 
immobility of the first peak leads them to suggest that 
this peak is formed only after a certain amount of 
diffusion of lattice constituents has taken place. The 
requirement for this activation energy explains the 
formation of this peak at a higher temperature than 
the peak for magnesite dissociation. 

Actually, the first dissociation peak of dolomite is 
not immobile. Bradley, Burst, and Graf (1952) (fig. 14) 
have shown that during prolonged grinding (250 hours) 
there first appears another peak about 100°C. lower, 
which grows in size until the usual first peak is ex­
hausted. At any stage the ratio of the sum of the areas 
of these two peaks to the area of the ealcite is constant. 
These authors demonstrate by X-ray diffraction studies 
that, by a process of twin gliding and translation glid­
ing, the Ca and Mg of the dolomite lattice which at 
first occupied alternate positions around any CO3 group 
have now been rearranged so that most of the Mg has 
magnesium for its nearest neighbors and vice versa. 
Hence, the temperature delay required to activate these 
atoms to sufficient mobility so that dissociation can occur 
is no longer required. The first loop of a dolomite DTA 
curve is the algebraic sum of the AH required to dis­
sociate both MgCOs and CaCOs (endothermic), to re­
form most of the CaCOs (exothermic), and perhaps to 
form perielase and some calcium oxide (exothermic). 

Dolomite furnishes an excellent example of the effect 
of small crystallites (not fine grain size) on DTA curves. 
In figure 13 the endothermic loop beginning at 925°C is 
preceded by a small shoulder. This shoulder accompanies 
the dissociation of the extremely fine crystallites of 
CaCOa formed from the products of the first loop which 

dissociate before the more coarse-grained ealcite frag­
ments. 

Berg (1943) and Graf (1952) have shown that the 
presence of soluble salts such as encountered in brines 
will materially affect the shape and size of the first loop 
of the dolomite curve. In addition, the presence of a 
sericite-like mica will completely eliminate the second 
or calcium carbonate peak in a CO2 atmosphere. 

MISCELLANEOUS APPLICATIONS OF DTA 

Soaps. Void and Void (1941) established that, in­
stead of melting directly from crystal to liquid, sodium 
salts of long-chain fatty acids pass through a series of 
forms, each constituting a definite stable phase existing 
over a definite range of temperature. They calculated 
heats of transition from the DTA curves of these soaps 
and have since (Void, Grandine, and Void, 1948) de­
lineated the polymorphic transformations of calcium 
stearate and calcium stearate monohydrate by their 
technique. 

Greases. By the same technique Void, Hattiangdi, 
and Void (1949) have delineated the phase state and 
thermal transitions of numerous samples of aluminum, 
barium, calcium, lithium, sodium, and mixed base com­
mercial greases, and of the corresponding oil-free soaps. 

CONCLUSION 

Differential thermal analysis is well established as a 
technique for the characterization and control of ma­
terials which undergo characteristic changes on heating. 
It is less well established as a method for investigating 
the products obtained when such a material is heated, 
since equilibrium is an inherent impossibility of the 
method. However, the latter is not an obstacle when 
thermodynamic considerations control the design of the 
apparatus and when good recording equipment is em­
ployed. With the addition of dynamic atmosphere con­
trol much useful information about the products of heat­
ing can be assembled in a short time. 

Because differential thermal analysis is most useful 
when the apparatus is designed so that several different 
techniques can be employed, there should be no 
standardization of materials, heating rates, etc. Instead, 
a flexibility should be maintained so that due considera­
tion can be given to the details of the kind of change 
being analyzed, and these considerations must be pre­
sented as a part of the data. 

DISCUSSION 
J. A. Pask: 

In the DTA curves of montmorillonite Rowland mentioned that 
the exothermic loop at 930°C. is accompanied by the formation 
of a spinel in the untreated material, mullite and spinel in the 
NHi^-saturated samples, and mullite in the methylamine-saturated 
samples. Could this be discussed? 

R. A. Rowland: 
I believe the explanation lies in the nature of the exchangeable 

cation. When the exchangeable cations are Ca++ and Mg++, spinel 
is formed, but when these are completely absent, as in the case of 
the methylamine-saturated samples, mullite is formed. The forma­
tion of both spinel and mullite in the NH4+-saturated .sample would 
indicate that the sample was not completely saturated with XH4+; 
some of the original exchangeable cations must have remained on 
the clay. 
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J. A. Pask: 
Is the spinel formed by a combination of the exchangeable 

cation and the aluminum of the lattice? 

R. A. Rowland: 
This appears to he so from the series of curves which I sliowed 

and from other curves run in similar fashion. 

G. W. Brindley: 
1 feel that progress can lie made in the use of the various 

methods of clay identification and estimation by a cooperative 
effort whereby type mineral specimens would l)e examined liy the 
various methods by those persons who have had a great ch'al of 
experience with a given method. 

J. A. Pask: 
I think that any one of the methods for clay identification is as 

good and as useful as any other, provided the operator is thoroughly 
familiar with the method which he uses. 

Isaac Barshad: 
Each method yields data which another method does not. That 

is i)recisoly why the various methods of analysis were developed. 
Thus, while X-ray analysis is indispensable for crystal structure 
analysis, DTA is undispensable for recording changes which occur 
in a mineral during the course of heating. I t woidd be practically 
impossible to identify and estimate amounts of the various clay 
minerals in a clay sample derived from a soil unless various 
methods of analysis are used. 

T. F. Bates: 
This discussion has further indicated the need for additional 

fundamental research and for the exchange of clay samples be­
tween workers on both sides of the Atlantic. 
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