
J. Fluid Mech. (2024), vol. 986, A6, doi:10.1017/jfm.2024.341

Axial friction coefficient of turbulent spiral
Poiseuille flows

M. Manna1, A. Vacca2 and R. Verzicco3,4,5,†
1Dipartimento di Ingegneria Meccanica per l’Energetica, Università di Napoli ‘Federico II’,
via Claudio 21, 80125 Naples, Italy
2Dipartimento di Ingegneria Civile, Edile e Ambientale, Università di Napoli ‘Federico II’,
via Claudio 21, 80125 Naples, Italy
3Dipartimento di Ingegneria Industriale, Università di Roma ‘Tor Vergata’, via del Politecnico 1,
00133 Roma, Italy
4Gran Sasso Science Institute, Viale Francesco Crispi, 7, 67100 L’Aquila, Italy
5PoF, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands

(Received 18 September 2023; revised 16 February 2024; accepted 1 April 2024)

Direct numerical simulations of spiral Poiseuille flows in a narrow gap geometry are
performed with the aim of identifying the mechanisms governing the dynamics of the
axial friction coefficient. The investigation has explored a small portion of the Reynolds
number–Taylor number phase space (600 ≤ Re ≤ 5766 and 1500 ≤ Ta ≤ 5000), for which
reference experimental results are available. The study is focused on the mechanism
leading to the enhancement of the axial friction coefficient with the Taylor number when
the Reynolds number is kept constant. The analysis of the spatial distribution of the
Reynolds stress tensor and of the turbulent energy budget has evidenced the key role
of the pressure–strain correlation in the energy transfer from the azimuthal to the axial
component. The latter eventually determines the increase of the axial friction coefficient
through the enhanced radial mixing of axial momentum. Data have also shown that the
flow dynamics is heavily dependent on the Ta/Re ratio, and different regimes develop
(ranging from laminar to turbulent), each with peculiar behaviours.

Key words: Taylor–Couette flow, shear layer turbulence

1. Introduction

Spiral Poiseuille (SP) flow is the fluid motion developing within an annular geometry
under the combined action of an axial pressure gradient and the relative cylinder rotation.
A schematic representation of the resulting flow is shown in figure 1(a), which gives an
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Figure 1. (a) Sketch of the problem with the main geometrical parameters. (b) Schematic diagram in the
Re–λ plane for different Taylor numbers.

idea of the spatial evolution of the rolls in the gap region at moderate rotation rates and
pressure gradients. This set-up is relevant to several industrial applications, such as bearing
lubrication or sealing and cooling of rotating machineries, all devices characterized
by a narrow gap geometry (D � (Ri + Ro)/2; see figure 1(a) for the meanings of the
parameters). The problem is also worthy of theoretical interest since it belongs to the class
of ‘canonical flows’ that benefit from a neat definition and can be used as benchmarks for
the validation of numerical methods or the calibration of laboratory set-ups.

Since Pfleiderer & Petermann (1952), the problem is parametrized by the bulk axial
velocity Ub and the inner cylinder tangential velocity Wi = ΩRi, which are used to
compute the Reynolds number (Re = UbD/ν) and Taylor number (Ta = WiD/ν), where
ν is the kinematic viscosity of the fluid. One of the most relevant output quantities is the
axial friction coefficient λ (defined later) whose dependence on Re and Ta is sketched in
the Re–λ plane with the help of figure 1(b).

For sufficiently small values of Re and Ta, the resulting flow is viscosity dominated
with the azimuthal and axial velocity components depending only on the radial direction
and the friction coefficient λ ∼ Reα , with α = −1 (Walker, Whan & Rothfus 1955); in the
following, such a regime will be referred to as laminar SP flow.

As the Taylor number increases, and Re/Ta < 1, the flow gradually transitions to
turbulence (turbulent SP flow) with the λ versus Re curve that shifts upwards with
essentially the same slope as for the laminar flow. This is an anomalous feature of the
SP flow that does not show the typical increase of the α value from −1 to, say, −1/4,
occurring during the laminar to turbulent transition. The increase of λ depends on the
Taylor number as well as on the radii ratio η = Ri/Ro. In contrast, for increasing Re, λ
tends to the turbulent Poiseuille flow curve λ ∼ Re−1/4, although the matching Reynolds
number depends on Ta.

This problem has received considerable attention in the past, and many research groups
have analysed different regions of the rich parameter space. Starting from the findings
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of Kataoka, Doi & Komai (1977) (η = 0.617) and Bühler & Polifke (1990) (η = 0.8),
Lueptow, Docter & Min (1992) investigated in a narrow gap geometry (η = 0.848) the
occurrence of some of the above regimes, for Ta ≤ 3000 and Re ≤ 40. The study was
oriented to a topological analysis of these regimes, visually and optically inspecting the
flow field at the transparent (acrylic made) outer cylinder. Although the above studies give
a clear flavour of the complexity of the transition mechanism, they cover a limited portion
of the space and unfortunately do not offer any insight into the flow features taking place
in the gap region.

Using laser Doppler velocimetry, Nouri & Whitelaw (1994) (η = 0.5) and Escudier &
Gouldson (1995) (η = 0.506) provided detailed measurements of the radial distribution
of both mean velocities and Reynolds stresses. Friction coefficient data are also available.
Both Newtonian and non-Newtonian fluids were considered, and several (Ta, Re) pairs
were investigated. Beside confirming the friction coefficient dependence upon the (Ta, Re)
pair, it has been shown that the intensities of the turbulence quantities are enhanced by the
inner wall rotation. The effects of the rotation rate were put forward for both Newtonian
and non-Newtonian fluids.

Turbulent SP flow with η = 0.5 has been studied numerically by Chung & Sung (2005)
and Jung & Sung (2006). Chung & Sung (2005) carried out large eddy simulations (LES)
with an inner rotating cylinder. The axial Reynolds number was Re = 4450, and three
rotation rates (Wi/Ub = 0.2145, 0.429, 0.858) were considered. It has been confirmed that
λ increases with the Wi/Ub ratio. An alteration of the turbulent structures has been found,
along with an increase of sweep and ejection events. The case at Wi/Ub = 0.429 has been
analysed thoroughly also by Jung & Sung (2006) by direct numerical simulations (DNS),
which stressed the key role of the centrifugal forces in modifying the turbulent structures.

Turbulent SP flow in narrow gap geometries has been investigated numerically by
Manna & Vacca (2009), Poncet, Viazzo & Oguic (2014) and Ohsawa, Murata & Iwamoto
(2016). Manna & Vacca (2009) carried out several DNS (η = 0.98) for a small envelope
of the Taylor number–Reynolds number space in the transitional region. Two moderate
Taylor numbers were considered, namely Ta = 1000 and 1500, and the highest value of
the Reynolds number was Re = 400. It has been shown that for both Taylor numbers, the
wall rotation does not substantially affect the axial friction, which agrees closely with
the Poiseuille value for all Re. Conversely, the axial pressure gradient is seen to induce a
progressive decrease and flattening of the turbulent kinetic energy radial profiles leading
to a complete laminarization of the flow. Poncet et al. (2014) carried out several LES
considering two values of the Reynolds number (3745 and 5617) and varying Ta. The
maximum Wi/Ub ratio was 4.47, and the radius ratio was fixed at η = 0.89. For both
Reynolds numbers, it has been confirmed that the Ta increase leads to larger values of the
friction coefficient. Moreover, it has been shown that the rotor and stator boundary layers
exhibit the main characteristics of two-dimensional boundary layers. Thin negative (resp.
positive) spiral rolls are present along the rotor (resp. stator) side. Moreover, the inclination
angle of these coherent structures depends strongly on the Wi/Ub ratio.

The axial flow effects on the friction factor and the torque coefficient were investigated
by Ohsawa et al. (2016), who performed LES in a geometry with η = 0.87; the Reynolds
number was varied from 250 up to 4000, and only a single value of the Taylor number
(Ta = 4000) was considered. In agreement with the experimental evidence, the friction
factor was found to be enhanced by the wall rotation. Conversely, the torque coefficient
decreased with Re.

Finally, Manna, Vacca & Verzicco (2022) and Matsukawa & Tsukahara (2022), using
DNS, studied the subcritical transition process with the rotation of the inner or both
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cylinders, respectively. In the above studies, the authors attempted to explain the impact
of the cylinder rotation onto the occurrence of the reverse (turbulent to laminar) transition
process. In particular, Manna et al. (2022) focused on the discrepancies concerning the
shape of critical and transitional boundaries in the Re–Ta plane, for a single low Taylor
number (Ta = 1500) and sufficiently large Reynolds number (Re ∼ 700–6000).

In summary, while there is overwhelming experimental and numerical evidence
supporting the increase of the axial friction (at constant Re) as a consequence of the
angular momentum input, a valid description of the underlying physical mechanism is
still missing. In other words, the route through which this enhancement is produced has not
been detailed, and this is the subject of the present study. In fact, unravelling the connection
between the angular momentum transport and the axial wall shear stress increase may
pave the way to the design of active or passive flow control devices aimed at reducing the
near-wall turbulence production or enhancing the turbulent mixing.

The structure of the paper is as follows. The problem formulation with the governing
equations and run parameters are reported in § 2. In the same section, a short description
of the numerical method is given. The discussion of the results, in terms of both global
and local quantities, is provided in § 3, and the closing remarks are given in § 4. Details
concerning the adequacy of the computational domain and spatial resolution are given in
the Appendix.

2. Problem formulation and numerical set-up

We consider the flow in an annulus of axial length L, with the inner cylinder, of radius
Ri, rotating at angular velocity Ω , and the outer cylinder, of radius Ro, at rest (figure 1a).
Here, η = Ri/Ro is the radii ratio, and Ub is the bulk axial velocity.

The geometry is fully defined in dimensionless terms by the (η, �z) pair, with
�z = L/D the axial length, and D = Ro − Ri. Unless otherwise specified, the velocity
field is normalized with the inner cylinder velocity Wi. As already mentioned, the two
relevant dynamic parameters are the Taylor and Reynolds numbers, which account for the
azimuthal and axial forcings, respectively.

The governing relations are the incompressible Navier–Stokes equations, which in
primitive variables and dimensionless form read

∂u
∂t

= −∇p − Nu + 1
Ta

Lu + F , ∇ · u = 0, (2.1)

where p is the pressure, and u = (u, v, w) gives the axial (z), radial (r) and azimuthal (θ )
velocity components, respectively.

In (2.1), Lu and Nu denote the diffusive and convective terms, respectively. The source
term F = (Fz, 0, 0) is the homogeneous and stationary (negative) pressure gradient
driving the axial flow in the positive z direction. Dirichlet boundary conditions are imposed
at the cylinder surfaces, namely u = (0, 0, 1) and u = (0, 0, 0) at the inner and outer
surfaces, respectively.

The study focuses on a portion of the Re–Ta plane that embodies the three relevant flow
states termed laminar SP, transitional SP and turbulent SP. The transitional SP flow drew
our attention, and most of data concern transitional flow states with very peculiar features
in terms of both global and local parameters.

All simulations have been carried out in the narrow gap geometry with η = 0.98. Both
Reynolds and Taylor numbers have been varied in a given range, for which experimental
evidence exists (Yamada 1962). Table 1 summarizes the (Re, Ta) pairs considered in the
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Ta = 1500 Ta = 3000 Ta = 5000

Re = 600 R1T1 R1T2 R1T3
Re = 1825 R2T1 R2T2 R2T3
Re = 5765 R3T1 R3T2 R3T3

Table 1. Run matrix of the simulations (η = 0.98).

Run �∗
z �∗

θ,i �∗
θ,o �z �θ,i �θ,o Nsub (Nr × Nz × Nθ ) 	z∗ (r 	θ)∗max y∗

w,i

R1T1 278 785 802 4.44 12.57 12.82 8 (10 × 220 × 350) 1.3 2.2 0.09
R1T2 539 1524 1555 4.44 12.57 12.82 8 (10 × 220 × 350) 2.5 4.4 0.18
R1T3 779 2202 2247 4.44 12.57 12.82 8 (10 × 220 × 350) 3.5 6.3 0.26
R2T1 1176 895 914 8.25 6.28 6.41 8 (15 × 144 × 144) 8.2 6.2 0.09
R2T2 1006 1047 1069 6.03 6.28 6.41 8 (15 × 144 × 144) 7.0 7.3 0.10
R2T3 1252 1304 1330 6.03 6.28 6.41 8 (15 × 144 × 144) 8.7 9.1 0.13
R3T1 2225 579 591 6.03 1.57 1.60 8 (15 × 192 × 144) 11.6 4.0 0.23
R3T2 2257 588 600 6.03 1.57 1.60 8 (15 × 192 × 144) 11.8 4.1 0.23
R3T3 2340 609 622 6.03 1.57 1.60 8 (15 × 192 × 144) 12.2 4.2 0.24

Table 2. Dimensions of the computational domains in inner and outer coordinates, and discretization
parameters. Inner scaling is obtained using the viscous length δ∗

tot.

present study. Data from Yamada (1962) evidence that in all cases, turbulence is sustained,
except in the R1T1 case (Ta = 1500, Re = 600), in which the flow laminarizes.

Assuming periodicity in both axial z and azimuthal θ directions, the spectral
multi-domain-Chebyshev (in the r direction) and Fourier (in the z and θ directions)
algorithm developed by Manna & Vacca (1999) has been used to solve (2.1). The algorithm
is of the pressure correction type (van Kan 1986), and it is second-order accurate in time.
The viscous terms are time integrated implicitly by the Crank–Nicolson scheme, and the
explicit Adams–Bashforth scheme is employed for the remaining terms. The solver has
been validated extensively by both statistically steady (Manna & Vacca 2001, 2009) and
unsteady (Manna, Vacca & Verzicco 2012, 2015, 2020) turbulent flows.

To save on computational time, only a portion of the annulus is solved, limiting
the axial and azimuthal lengths. Thus the computational domains have different sizes
(�z, �θ ), selected in order to ensure the statistical independence of the computed fields
in both the axial and azimuthal directions (see the Appendix). Accordingly, details of
the runs are given in table 2, in which yw,i is the distance of the first computational
point from the inner wall, and �θ,i and �θ,o denote the azimuthal length at the inner
and outer cylinder, respectively. In table 2, data are reported in both outer and inner
scalings. The latter is obtained using the total wall shear stress computed with the inner

and outer wall data τ̄tot,w = (riτ̄wi + roτ̄wo)/(ri + ro), where τ̄wi =
√

τ̄ 2
rz,wi + τ̄ 2

rθ,wi and

τ̄wo =
√

τ̄ 2
rz,wo + τ̄ 2

rθ,wo, with obvious meanings for τrz,w and τrθ,w and having denoted
with an overbar time- and surface-averaged quantities. Therefore, in the present section,
inner scaling is achieved using the viscous length δ∗

tot = ν/uτ,tot, with uτ,tot = √
τ̄tot,w/ρ,

and ρ the fluid density.
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Figure 2. Instantaneous velocity vector plot (v′, u′) superposed on the w′ colour map in outer coordinates

(y = r − ri), with Re = 1825.

To give a preliminary idea of the complexity of the flow field under investigation, we
present in figure 2 the instantaneous velocity vectors (v′, u′) superposed on the w′ scalar
field, in the y–z plane (in outer coordinates, y = r − ri), for the R2∗ cases.

The discretization of the computational domain in the radial direction relies on eight
subdomains (Nsub = 8), whose sizes, as percentages of the gap size, are 5 %, 8 %, 17 %,
20 %, 20 %, 17 %, 8 %, 5 %. The number of Chebyshev modes in each domain is Nr = 15.
In the lowest Reynolds number case, i.e. Re = 600, it has been reduced to 10. The number
of modes in the homogeneous directions has been selected in order to ensure the resolution
of all relevant turbulent scales. Velocity spectra at y∗ = 5 do not exhibit any pile-up at the
highest wavenumbers (see the Appendix). Further validation of the present results will be
given in the next section, when comparisons of some integral quantities with dynamically
similar experiments will be shown and discussed.

Numerical results have been obtained collecting about 1500 statistically independent
fields separated in time by ≈ 0.2D/uτ,tot dimensionless units. Data collection started only
once the time- and space-averaged wall shear stresses and total kinetic energy attained
statistically constant values. In what follows, we will denote with a prime the deviations
from space- and time-averaged quantities.

3. Results

3.1. Global parameters and mean velocity profiles
Table 3 lists some of the flow global parameters for the cases reported in table 1. First, we
note that for a given Reynolds number, increasing Ta always causes a growth of the axial
friction coefficient defined as

λ ≡ 8
Ta2

Re2
τ̄rz,wo − τ̄rz,wiη

1 + η
= 8

1 + η

Ta
Re2

[(
dū
dr

)
ri

η −
(

dū
dr

)
ro

]
. (3.1)
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R1T1 R1T2 R1T3 R2T1 R2T2 R2T3 R3T1 R3T2 R3T3

Reτ,z = uτ,zD/(2ν) 30 43 48 71 79 88 184 186 190
Um/Ub 1.50 1.17 1.16 1.24 1.18 1.13 1.16 1.16 1.15
λ 0.080 0.165 0.207 0.048 0.059 0.075 0.033 0.033 0.035
λ/λB 1.43 2.95 3.69 1.11 1.39 1.74 1.00 1.02 1.07
Cτ × 10−3 0.687 1.44 1.19 1.92 1.43 1.21 4.71 2.47 1.64

Table 3. Global parameters.

Re
102 103 104

10–2

10–1

100

λ

R3T3
R3T2
R3T1

Eq. (3.2)

R1T3
R1T2
R1T1

R2T3
R2T2
R2T1

Eq. (3.3)

10–3

6 × 10–3

6 × 10–4
R2T1
R2T2
R2T3

R1T1
R1T2
R1T3

103

R3T1
R3T2
R3T3

(b)(a)

Eq. (3.5)

Cτ

102

Re
Figure 3. (a) Friction coefficient λ versus Re. (b) Torque coefficient Cτ versus Re. Open symbols (Yamada
1962): green for Ta = 1500, red for Ta = 3000, black for Ta = 5000. Solid bullets for the present results. The
solid lines in (b) are linear extrapolations from the data of Yamada (1962) in order to provide a comparison for
the present highest Re results.

As shown in figure 3(a), this quantity is always equal to or larger than the reference
values given by the laminar curve (Manna & Vacca 2009),

λP = 32
Re

(1 − η)2

1 + η2 + 1 − η2

log η

, (3.2)

and the turbulent curve (Yamada 1962),

λB = 0.26 Re−0.25. (3.3)

Furthermore, the increase of the friction coefficient is amplified when the Reynolds
number is reduced; for example, raising the Taylor number from 1500 up to 5000 yields in
the R3∗ cases 	λ ≈ 7 %, while at the lowest Reynolds number (Re = 600, R1∗ cases), it
becomes 	λ ≈ 158 %. At the highest Re and lowest Ta case (R3T1), the friction coefficient
differs only slightly from the Blasius correlation value, while at the lowest Re and Ta
(R1T1), λ drops to the theoretical diffusive value (λP = 0.080). In this condition, the flow
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Figure 4. Mean profiles of (a–c) axial and (d–f ) azimuthal velocity in outer coordinates: green dashed line
indicates Ta = 1500; red solid line indicates Ta = 3000; black solid line indicates Ta = 5000; black circles
indicate laminar SP. Plots for (a,d) Re = 5765, (b,e) Re = 1825, (c, f ) Re = 600. The outer coordinate of the
abscissa is defined as y = r − ri; ū is normalized with the dimensionless bulk velocity ub (ub = Ub/Wi).

has reverted to the laminar state. Simultaneously, the torque coefficient

Cτ ≡ τ̄rθ,wi = − ri

Ta
d
dr

(
w̄
r

)
ri

(3.4)

attains the laminar (Couette) value (Manna & Vacca 2009)

Cτ,C = 2
Ta

1
η (1 + η)

(3.5)

(see figure 3b). Incidentally, let us observe that at Ta = 1500 laminar flow conditions occur
in the range 400 ≤ Re ≤ 850 (Yamada 1962). In these conditions, the decoupled velocity
field can be computed analytically from the Navier–Stokes equations:

uLSP (r) = 2
Re
Ta

[1 − r2(1 − η)2] log η − log [r(1 − η)](1 − η2)

(1 + η2) log η + (1 − η2)
, (3.6)

wLSP (r) = η

1 − η2

[
1

r(1 − η)
− r(1 − η)

]
. (3.7)

Figure 4 shows the velocity profiles for all cases, and the results confirm that indeed the
R1T1 case overlaps with the theoretical solution.
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Figure 5. Mean profiles of axial velocity in inner coordinates close to inner cylinder: black solid line indicates
Ta = 5000; red solid line indicates Ta = 3000; green dashed line indicates Ta = 1500. Plots for (a) Re = 5765,
(b) Re = 1825, (c) Re = 600.

Further diagnostic quantities are given by the ratio of maximum (Um) to bulk (Ub) axial
velocity and Reτ,z, computed using the axial friction velocity

uτ,z =
√

1
ρ

riτ̄rz,wi + roτ̄rz,wo

ri + ro
. (3.8)

These indicators, reported in table 3 for all cases, confirm the theoretical values for the
R1T1 flow, and provide relevant information for the transitional and turbulent cases. In
fact, depending on the values of Re and Ta, a rich variety of behaviours is found that are
evidenced by both the integral parameters of figure 3 and table 3 as well as the radial
profiles of figure 4.

In agreement with the analysis of the integral parameters, figures 4(a–c) show that the
growth of Ta produces always steeper wall velocity gradients, which yield larger friction
coefficients. A symmetric effect is produced by the Reynolds number on the azimuthal
velocity profiles for a given Ta; also in this case, the boundary layers become thinner and
the torque coefficient increases, as observed also by Nouri & Whitelaw (1994).

Figure 5 reports the radial profiles of the mean axial velocity component in inner
coordinates, with the scaling performed using the axial friction velocity uτ,z. In the present
section, uτ,z is used as velocity scale.

For the highest Reynolds numbers (R3∗ cases), a region with a logarithm layer forms,
consistent with the Reτ,z values of table 3 always above the threshold ≈180, commonly
used to deem turbulence sustained. The Ta increase induces a modest downward shift of
the log region caused by the increase of the friction coefficient. In the remaining cases
(R2∗ and R1∗), the flow is at most transitional, and the turbulence level is too low for the
logarithmic layer to develop, as shown by figures 5(b,c).

3.2. Reynolds stress tensor
In order to further investigate the interaction between axial and azimuthal forcings, we
analyse the terms of the Reynolds stress tensor in the region next to the rotating inner
cylinder. The diagonal terms Rii = u′

iu
′
i are shown in figure 6, where it is evident that

for increasing Ta, a general growth of the stresses is produced at all Re, even if the
increase is more significant for low Reynolds numbers. The only anomalous trend is
observed for R+

zz at intermediate Reynolds number, showing a reverse Ta dependence in the

986 A6-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.341


M. Manna, A. Vacca and R. Verzicco

10 20 30 40 500

2

4

6

8

10 20 30 40 500

2

4

6

8

10 20 30 40 500

2

4

6

8

10 20 30 40 500

0.2

0.4

0.6

0.8

1.0

10 20 30 40 500

0.5

1.0

1.5

10 20 30 40 500

1

2

3

4

5

y+ y+ y+
10 20 30 40 500

1

2

3

R+
θθ

10 20 30 40 500

2

4

6

10 20 30 40 500

10

20

R+
zz

R+
rr

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 6. Radial distributions of (a–c) R+
zz = u′u′+, (d–f ) R+

rr = v′v′+, (g–i) R+
θθ = w′w′+ in inner

coordinates: black solid line indicates Ta = 5000; red solid line indicates Ta = 3000; green dashed line
indicates Ta = 1500. Plots for (a,d,g) Re = 5765, (b,e,h) Re = 1825, (c, f,i) Re = 600.

region 10 < y+ < 30; the consequence of this behaviour will be addressed later in terms
of turbulent production.

Figure 7 reports the radial distribution of the off-diagonal terms R+
rz = u′v′+ and

R+
rθ = v′w′+, which are negative and positive, respectively, in the first half of the gap.

In the remaining part of the gap, R+
rz changes sign owing to symmetry. The signs of both

R+
rz and R+

rθ follow directly from the momentum balance, averaged in time and in the
homogeneous directions, on account of the two velocity gradients driving the flow. From
the above results it follows that, similarly to the diagonal Reynolds stresses, the increase of
Ta induces a growth also of the relevant off-diagonal terms of the Reynolds stress tensor.
However, while the increase of v′w′+ is an expected consequence of the w̄ modifications
with Ta, the growth of −u′v′+ is less obvious; this will be discussed in the next section.
Finally, figure 8 shows the radial distribution of the off-diagonal term R+

zθ = u′w′+, which
is a peculiarity of three-dimensional boundary layer flows. Close to the inner rotating
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Figure 7. Radial distributions of R+
rz = uv+ and R+

rθ = vw+ in inner coordinates: black solid line indicates
Ta = 5000; red solid line indicates Ta = 3000; green dashed line indicates Ta = 1500. Plots for (a) Re = 5765,
(b) Re = 1825, (c) Re = 600.
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Figure 8. Radial distributions of R+
zθ = uw+ in inner coordinates: black solid line indicates Ta = 5000; red

solid line indicates Ta = 3000; green dashed line indicates Ta = 1500. Plots for (a) Re = 5765, (b) Re = 1825,
(c) Re = 600.

wall, R+
zθ is comparable with both R+

rz and R+
rθ . Such a result can be attributed to the

tilting of the near-wall vortical structures that strengthen the correlation between u′ and
w′ (Orlandi & Fatica 1997). However, owing to the homogeneity of the mean flow in the
axial and azimuthal directions, the R+

zθ stress does not directly influence the mean velocity
components and therefore the axial friction coefficient.

3.3. Energy production and redistribution terms
As a premise, let us recall that the power input from the inner cylinder rotation causes
enhancement of the turbulent production which, in turn, induces the growth of turbulent
intensities. However, the generation of the Reynolds stresses is not trivial since it involves
the inter-component energy transfer. Indeed, in the absence of inner cylinder rotation (resp.
axial pressure gradient), only the axial (resp. azimuthal) mean velocity exists. Therefore,
axial (resp. azimuthal) fluctuations are generated mainly by the mean flow shear, while the
radial and azimuthal (resp. axial) counterparts are sustained by the inter-component energy
transfer, through the pressure–strain terms. When the axial pressure gradient and the inner
cylinder rotation drivings coexist, the mechanism through which turbulence is generated
and transferred among the components is far more involved. Data reveal that while the
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Figure 9. Radial distributions of (a–c) P+
zz and (d–f ) P+

θθ : black solid line indicates Ta = 5000; solid line
indicates Ta = 3000; green dashed line indicates Ta = 1500. Plots for (a,d) Re = 5765, (b,e) Re = 1825,
(c, f ) Re = 600.

shear-driven production terms are always positive, the sign of the inter-component energy
transfer is strongly affected by the Re/Ta ratio. This applies equally to axial and azimuthal
turbulence intensities.

Conversely, v′v′ Reynolds stress is not supported by a significant production term

Prr = 2v′w′ w̄
r
, (3.9)

since its magnitude is limited by the annulus geometry through the gap width, and it
quickly drops to zero as η approaches unity. Thus given the actual η = 0.98 value,
radial turbulence intensity is essentially sustained by the energy flux from the other two
directions.

With the aim of clarifying the Ta dependence of the Reynolds stresses, we present in
figures 9 and 10 the radial distribution of the production terms Pzz, Pθθ , Prθ and Prz in
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rz: black solid line indicates Ta = 5000; red solid
line indicates Ta = 3000; green dashed line indicates Ta = 1500. Plots for (a,d) Re = 5765, (b,e) Re = 1825,
(c, f ) Re = 600.

inner coordinates. The definitions are

Pzz = −2u′v′ dū
dr

, Pθθ = −2v′w′ dw̄
dr

(3.10a,b)

and

Prθ = −
(

v′2 dw̄
dr

− w′2 w̄
r

)
, Prz = −

(
v′2 dū

dr
− u′w′ w̄

r

)
. (3.11a,b)

Figure 9(a) shows that at the highest Reynolds number, P+
zz is quite insensitive to Ta, in

agreement with the behaviour of u′u′+ already discussed in figure 6(a). At intermediate
Re, the radial profiles of u′u′+ of figure 6(b) show a fair correlation with P+

zz, while at the
lowest Reynolds number, P+

zz and u′u′+ do not correlate significantly (see figures 6c and
9c). In fact, in this case, the variation of u′u′+ should be attributed to the energy transfer
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from w′w′ via pressure–strain interaction Φzz; it will be shown, in fact, that the magnitude
of Φ+

zz is significantly larger than P+
zz, and this determines the increase of u′u′+ with Ta.

Figures 9(d–f ) and 10(a–c) show that the Ta increase induces a considerable growth
of both P+

θθ and P+
rθ production terms in the wall region, which agrees with the results

reported in figures 6(g–i) and 7. Likewise, the magnitude of the P+
rz term is sensitive to

the angular rotation rate (see figure 10), in agreement with the results shown in figure 7.
Preliminarily, let us observe that the second term appearing in the second equation of
(3.11a,b) is negligibly small compared to the first term because of the mild curvature of
the flow, i.e. the large η value. Moreover, the growth of the P+

rz magnitude with Ta is
essentially attributed to the v′v′+ Reynolds stress (see figures 6d–f ).

As mentioned already, the increase with Ta of v′v′+ may be caused only by the
inter-components energy transfer mechanism, from the axial and azimuthal directions.
With the aim of investigating such a mechanism, in what follows the pressure–strain terms

Φzz = 2 p′ ∂u′

∂z
, Φrr = 2 p′ ∂v′

∂r
, Φθθ = 2

r
p′

(
∂w′

∂θ
+ v′

)
(3.12a–c)

are analysed. As is well known, a positive (negative) value of Φii denotes a gain (loss)
of energy from the ith component (towards the other two). Figure 11 shows in inner
coordinates the radial distributions of Φ+

zz , Φ+
rr and Φ+

θθ .
At the highest Reynolds number, Φ+

zz is negative (except for a small region very close
to the wall), and Φ+

θθ is positive (see figures 11a,g). These trends are common to all
Taylor numbers. Therefore, a major energy transfer from the axial component toward
the azimuthal one is occurring. Figure 11(d) indicates that Φ+

rr is negative for y+ < 10
and positive at larger distances. The former result is usually attributed to the splatting
phenomenon, i.e. a release of radial energy towards the axial and azimuthal directions
(Moin & Kim 1982), while the latter means that the radial component is receiving energy
from the axial one.

At the lowest Reynolds number, a different scenario is found; figures 11(c,i) show that
Φ+

zz is positive while Φ+
θθ (except for a small region very close to the wall) is negative.

Therefore, turbulent energy is released from w′w′ towards u′u′. The Ta increase from 3000
up to 5000 induces a considerable growth of Φ+

zz that at Ta = 5000 overwhelms the P+
zz

distribution (see figure 11c), thus the energy contribution coming through Φ+
zz into the

u′u′+ budget is the main thing responsible for the u′u′+ increase with Ta (figure 6c). Once
more, this result is neither expected nor trivial. In pure shear flow, the production behaves
as a source while the pressure–strain correlation is a sink. Here, the coexistence of two
different mean shears at sufficiently large Ta/Re ratio not only turns Φ+

zz from sink to
source, but also enhances the role of the pressure–strain term compared to the production
one, i.e. Φ+

zz > P+
zz across all the gap.

Figure 11( f ) shows that at the lowest Reynolds number, there is still considerable energy
transfer towards v′v′+, except next to the wall, where splatting occurs. Such an energy
transfer, which increases strongly with the Taylor number, stems from w′w′+.

In summary, the mechanism leading to the enhancement of −u′v′+ with Ta at constant
Reynolds number is as follows. The power input from the inner cylinder rotation is
released into the bulk flow through the work done by the viscous and turbulent stresses
against the deformation tensor. As Ta increases, for sufficiently low Re, P+

θθ starts
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Figure 11. Radial distributions of (a–c) Φ+
zz , (d–f ) Φ+

rr and (g–i) Φ+
θθ : black solid line indicates Ta = 5000;

red solid line indicates Ta = 3000; green dashed line indicates Ta = 1500. Plots for (a,d,g): Re = 5765, (b,e,h)
Re = 1825, (c, f,i) Re = 600.

dominating the w′w′+ budget. Concurrently, the energy transfer from the tangential to
the radial component via pressure–strain correlation becomes relevant. The final result is a
remarkable growth of the radial term v′v′+, which induces a corresponding enhancement
of −P+

rz. From the u′v′+ budget, it can be inferred readily that the increase of the
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Figure 12. Plots of λ̂ = λ/λP, λ̂v = λv/λP ratios versus Taylor number at Re = 600: red circles indicate λ̂;
black squares indicate λ̂v .

production term implies a corresponding increase of the turbulent shear stress −u′v′+,
which ultimately governs the friction coefficient. This is better understood with the help
of the decomposition

λ = 8
Ta2

Re3
1 − η

1 + η

∫ ro

ri

(
dū
dr

)2

r dr︸ ︷︷ ︸
λv

+ 8
(

Ta
Re

)3 1 − η

1 + η

∫ ro

ri

(
−u′v′

) dū
dr

r dr︸ ︷︷ ︸
λt

. (3.13)

This relation follows directly from the mean axial kinetic energy budget integrated across
the gap (Renard & Deck 2016). In (3.13), λv and λt are related to the viscous dissipation
and the turbulent production term in the axial direction, respectively.

Figure 12 shows the ratios λ̂ = λ/λP and λ̂v = λv/λP versus Ta for the cases at the
lowest Reynolds number, with λP given by (3.2). The increase of Taylor number induces
a monotone increase of both turbulent and viscous λ contributions, which is consistent
with the growth of the −u′v′+ radial distributions shown in figure 7(c). Thus figure 12
supports the central role of the u′v′ stress as the key actor determining the upward shift of
the friction coefficient with Ta either directly or indirectly.

Whether the above conclusions obtained in a narrow gap environment apply equally to
wider gaps, remains to be investigated.

4. Conclusions

In the present paper, the mechanisms governing the axial friction coefficient in spiral
Poiseuille flows developing in a narrow gap geometry have been investigated. The study,
performed by highly resolved and accurate direct numerical simulations, has explored a
limited region of the governing parameters (600 ≤ Re ≤ 5766 and 1500 ≤ Ta ≤ 5000),
for which reference experimental data exist.

Through the analysis of the radial profiles of the Reynolds stress tensor, the following
enhancement mechanism of the friction coefficient with Ta, at fixed Reynolds number,
has been identified. The increase of the inner cylinder rotation rate leads to a growth of
azimuthal component turbulence production, causing, through pressure–strain interaction,
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Figure 13. Velocity spatial correlations in (a) z and (b) θ directions at y∗ = 5 (Re = 5765): black solid line
indicates Cu; red solid line indicates Cv ; green dashed line indicates Cw.

a steep rise of v′v′+. The work done by the latter against the mean shear acts as a source in
the u′v′+ budget, thus determining its magnitude growth. The ultimate reason for the axial
friction coefficient increase is therefore attributed to the (direct and indirect) primary role
played by u′v′ in the axial kinetic energy budget.

The present results support the idea that considerable drag reduction could be attained
by active or passive flow control devices capable of altering the wall-normal turbulence
intensity in the buffer layer.
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Appendix. Box size and accuracy check

The computational domain and grid resolution in the homogeneous directions have been
chosen to ensure that the turbulence fluctuations are uncorrelated at a separation of one
half-period, and the smallest relevant turbulent scales are well resolved. In this appendix,
inner scaling is obtained using the viscous length δ∗

tot.
Figures 13, 14 and 15 report the two-point correlations for all the velocity components

in both axial and azimuthal directions at y∗ = 5, for the R3, R2 and R1 cases, respectively.

986 A6-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-2018-7031
https://orcid.org/0000-0002-2018-7031
https://orcid.org/0000-0002-7170-2005
https://orcid.org/0000-0002-7170-2005
https://orcid.org/0000-0002-2690-9998
https://orcid.org/0000-0002-2690-9998
https://doi.org/10.1017/jfm.2024.341


M. Manna, A. Vacca and R. Verzicco

0 100 200 300 400 500
–1

0

1
R2T3

0 100 200 300 400 500
–1

0

1
R2T1

0 100 200 300 400 500
–1

0

1
R2T2

0 100 200 300 400
–1

0

1
R2T3

0 100 200 300 400
–1

0

1
R2T1

0 100 200 300 400
–1

0

1
R2T2

z∗

C
u,

v
,w

C
u,

v
,w

C
u,

v
,w

(rθ)∗

(a) (b)

Figure 14. Velocity spatial correlations in (a) z and (b) θ directions at y∗ = 5 (Re = 1825): black solid line
indicates Cu; red solid line indicates Cv ; green dashed line indicates Cw.

0 100 200 300
–1

0

1
R1T3

0 100 200
–1

0

1
R1T2

0 300 600
–1

0

1
R1T3

0 300 600
–1

0

1
R1T2

(a) (b)

C
u,

v
,w

C
u,

v
,w

z∗ (rθ)∗

Figure 15. Velocity spatial correlations in (a) z and (b) θ directions at y∗ = 5 (Re = 600): black solid line
indicates Cu; red solid line indicates Cv ; green dashed line indicates Cw.

All correlations attain negligibly small values, indicating that the computational domain
used is large enough to contain all the near-wall coherent structures in both directions.

The tilting of the coherent wall structures can be also appreciated in figure 16, showing
the instantaneous contour plot of u′ in the θ–z plane (in inner coordinates at y∗ = 5) for
R2∗ cases. The increase with Ta of the u′w′+ Reynolds stress presented in figure 8(b) is
consistent with the aforementioned streaks tilting phenomenon.

Unlike SP flows at low Reynolds and Taylor numbers, the large-scale coherent structures
filling the gap appear to be suppressed as shown in figure 2.
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Figure 19. Velocity power spectra in (a) z and (b) θ directions at y∗ = 5 (Re = 600): black solid line
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u ; red solid line indicates E∗
v ; green dashed line indicates E∗

w.

One-dimensional energy spectra in the axial and azimuthal directions at y∗ = 5, for
all velocity components and for all Reynolds numbers, are reported in figures 17–19. Data
show that there is no energy pile-up at high wavenumbers, and the magnitude of the energy
density between the smallest and the largest wavenumbers has dropped more than one
order of magnitude. These results confirm that the grid resolution in both directions is
enough to solve all the energy-containing scales.

REFERENCES

BÜHLER, K. & POLIFKE, N. 1990 Dynamical behaviour of Taylor vortices with superimposed axial flow.
In Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems (ed. F.H. Busse
& L. Kramer). Plenum.

CHUNG, S.Y. & SUNG, H.J. 2005 Large-eddy simulation of turbulent flow in a concentric annulus with
rotation of an inner cylinder. Intl J. Heat Fluid Flow 26, 191–203.

ESCUDIER, M.P. & GOULDSON, I.W. 1995 Concentric annular flow with centerbody rotation of a Newtonian
and a shear-thinning liquid. Intl J. Heat Fluid Flow 16, 156–162.

JUNG, S.Y. & SUNG, H.J. 2006 Characterization of the three-dimensional turbulent boundary layer in a
concentric annulus with a rotating inner cylinder. Phys. Fluids 18, 115102.

VAN KAN, J. 1986 A second order accurate pressure correction scheme for viscous incompressible flow. J. Sci.
Stat. Comput. 7, 870–891.

KATAOKA, K., DOI, H. & KOMAI, T. 1977 Heat/mass transfer in Taylor vortex flow with constant axial flow
rates. Intl J. Heat Mass Transfer 20, 57–63.

LUEPTOW, R.M., DOCTER, A. & MIN, K. 1992 Stability of axial flow in an annulus with a rotating inner
cylinder. Phys. Fluids 4 (11), 2446–2455.

MANNA, M. & VACCA, A. 1999 An efficient method for the solution of the incompressible Navier–Stokes
equations in cylindrical geometries. J. Comput. Phys. 151, 563–584.

MANNA, M. & VACCA, A. 2001 Scaling properties of turbulent pipe flow at low Reynolds number. Comput.
Fluids 30, 393–415.

MANNA, M. & VACCA, A. 2009 Torque reduction in Taylor–Couette flows subject to an axial pressure
gradient. J. Fluid Mech. 639, 373–401.

MANNA, M., VACCA, A. & VERZICCO, R. 2012 Pulsating pipe flow with large-amplitude oscillations in the
very high frequency regime. Part 1. Time-averaged analysis. J. Fluid Mech. 700, 246–282.

MANNA, M., VACCA, A. & VERZICCO, R. 2015 Pulsating pipe flow with large-amplitude oscillations in the
very high frequency regime. Part 2. Phase-averaged analysis. J. Fluid Mech. 766, 272–296.

MANNA, M., VACCA, A. & VERZICCO, R. 2020 Pulsating spiral Poiseuille flow. J. Fluid Mech. 890, A21.
MANNA, M., VACCA, A. & VERZICCO, R. 2022 Reverse transition of a turbulent spiral Poiseuille flow at

Ta = 1500. J. Fluid Mech. 941, A6.

986 A6-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.341


Axial friction coefficient of turbulent spiral Poiseuille

MATSUKAWA, Y. & TSUKAHARA, T. 2022 Subcritical transition of Taylor–Couette–Poiseuille flow at high
radius ratio. Phys. Fluids 34, 074109.

MOIN, P. & KIM, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341–377.
NOURI, J.M. & WHITELAW, J.H. 1994 Flow of Newtonian and non-Newtonian fluids in a concentric annulus

with rotation of the inner cylinder. Trans. ASME J. Fluids Engng 116 (4), 821–827.
OHSAWA, A., MURATA, A. & IWAMOTO, K. 2016 Through-flow effects on Nusselt number and torque

coefficient in Taylor–Couette–Poiseuille flow investigated by large eddy simulation. J. Therm. Sci. Technol.
11 (2), Paper No. 16-00356.

ORLANDI, P. & FATICA, M. 1997 Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid
Mech. 343, 43–72.

PFLEIDERER, C. & PETERMANN, H. 1952 Strömungsmaschinen. Springer.
PONCET, S., VIAZZO, S. & OGUIC, R. 2014 Large eddy simulations of Taylor–Couette–Poiseuille flows in a

narrow-gap system. Phys. Fluids 26, 105108.
RENARD, N. & DECK, S. 2016 A theoretical decomposition of mean skin friction generation into physical

phenomena across the boundary layer. J. Fluid Mech. 790, 339–367.
WALKER, J.E., WHAN, G.A. & ROTHFUS, R.R. 1955 Fluid friction in noncircular ducts. AIChE J. 3 (4),

484–488.
YAMADA, Y. 1962 Resistance of a flow through an annulus with an inner rotating cylinder. Bull. JSME 5 (18),

302–310.

986 A6-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.341

	1 Introduction
	2 Problem formulation and numerical set-up
	3 Results
	3.1 Global parameters and mean velocity profiles
	3.2 Reynolds stress tensor
	3.3 Energy production and redistribution terms

	4 Conclusions
	Appendix. Box size and accuracy check
	References

