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1. Introduction

In her book on varieties of groups, Hanna Neumann posed the following
problem [13, p. 166]:

"Can a variety other than O contain an infinite number of non-isomorphic
non-abelian finite simple groups!"

The answer to this question does not seem to be known at present. However, in
[7], Heineken and Neumann described an algorithm for determining whether or
not there are any non-abelian finite simple groups satisfying a given law. They
also outlined a way in which their algorithm could be used to show that
"only finitely many of the known non-abelian finite simple groups can satisfy a
given non-trivial law"; in this paper, we shall follow their suggestions, and prove
the

THEOREM. Let £? be a set of mutually non-isomorphic non-abelian finite
simple groups, each of which is either an alternating group or a group of Lie
type, and let £f generate a proper subvariety of O. Then y is finite.

Apart from the alternating groups and the groups of Lie type, there are (up
to isomorphism) only finitely many non-abelian finite simple groups known at
present, so it follows from the Theorem that any infinite set of non-isomorphic
non-abelian finite simple groups currently known generates £). Moreover, provided
new finite simple groups continue to be discovered in finite families, as has been
happening ever since the discovery of the Ree groups, it will remain possible to
make this generalisation from the alternating groups and the groups of Lie type
to all known non-abelian finite simple groups; it is only when an infinite set of
new finite simple groups is discovered that a reassessment will be needed. There
is some speculation at present that there may indeed be such a set — the groups of
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Ree type, possessing many of the properties of the Ree groups of type 2G2; we will
show later that at most finitely many non-isomorphic groups of Ree type can
satisfy a given non-trivial law.

It would be interesting to know whether there is any integer e for which there
are infinitely many non-isomorphic non-abelian finite simple groups of exponent
e. For certain values of e, there are none: for instance, a theorem of Burnside
[3, p. 343] proves this when e is divisible by at most two primes, and the Feit-
Thompson Theorem [6] proves it when e is odd. If e = 2 mod (4), or if e is co-
prime to 3, then there are at most finitely many non-isomorphic simple groups of
exponent e: in the first case, as pointed out by Kovacs in [11], one uses Walter's
result [18] that a finite simple group with abslian Sylow 2-subgroups is isomorphic
to a known group or a group of Ree type, while in the second case, one uses J. G.
Thompson's recent (and unpublished) result that a non-abalian finite simple
group of order co-prime to 3 is isomorphic to a Suzuki group. Thus if the Burnside
variety 23 e is to contain infinitely many non-isomorphic non-abelian finite simple
groups, then e must be divisible by 12p,where p is a prime greater than 3.

Another interesting problem is to determine which infinite simple groups
satisfy non-trivial laws. In section 4, we shall show that many of the more familiar
infinite simple groups generate O, though we shall also show that for each suf-
ficiently large prime p, there is an infinite simple group of exponent p. In [11],
Kovacs showed that any infinite, simple, locally finite group G involves infinitely
many non-isomorphic non-abelian finite simple groups; hence, if G satisfies non-
trivial laws, then we have a positive answer to Neumann's question. However, no
such group G seems to be known at present.

The results given here were included in a dissertation [9] written at the
University of Oxford under the supervision of Dr. P. M. Neumann; the methods
of proof are substantially those used in [9]—and outlined in [7]—though some
of the proofs have been shortened by quoting recent results of Tits [17] on free
subgroups of linear groups. I am grateful to Dr. Neumann for suggesting this
problem to me, and for giving me so much valuable guidance on how to solve it.
I would also like to thank the Science Research Council of the United Kingdom,
with whose financial support much of this work was done.

2. Preliminaries

The term "variety" will always refer to a variety of groups, except that in the
proof of Lemma 5 we will need to discuss algebraic varieties (in the sense of al-
gebraic geometry). The notation and definitions for varieties of groups are based
on those in [13]; in particular, £> is the variety of all groups, 91 the variety of
abelian groups, and 23 e the variety of groups of exponent dividing e.

By a group of Lie type, we mean any Chevalley group, Steinberg group,
Suzuki group, or Ree group. For the definitions and basic properties of these
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groups, we use Carter's survey article [4]; however, our notation differs from his
in that we shall distinguish families of "twisted" groups from the corresponding
families of Chevalley groups by attaching a symbol denoting the order of the
relevant group of "twisted" automorphisms—thus the Suzuki groups are repre-
sented by the symbol 2B2, since they are derived from the Chevalley groups of
type B2 by means of an automorphism group of order 2.

Sn and An denote the symmetric and alternating groups of degree n, Fn the
Galois field of order n, /„ the n x n identity matrix (with entries in some suitable
ring with an identity element), and Z the ring of rational integers.

Two recent results of Tits will play an important part in our proofs, so for
convenience we state them here.

PROPOSITION 1. Over afield of characteristic 0, a linear group either has a
non-abelian free subgroup or has a soluble subgroup of finite index. [17, Theo-
rem 1]

PROPOSITION 2. Let V be a vector space over a field k of characteristic dif-
ferent from 0, and let G be a subgroup of GL{V). Then the following three pro-
perties are equivalent:
i) G contains no non-abelian free groups;
ii) G has a soluble normal subgroup R such that G/R is locally finite;
Hi) G has a subgroup H of finite index such that if V is any composition factor
of the kH-module V and if k' is the endomorphism ring of V (i.e. the centraliser
ofH in EndkV), then k' is afield and V has a k'-basis with respect to which the
matrices representing the elements of H are scalar multiples (by elements of k')
of matrices whose entries are algebraic over the prime field ofk. [17, Theorem 2]

3. The proof of the theorem

We suppose that ¥ satisfies the conditions of the Theorem and generates a
proper subvariety 93 of O.

LEMMA 1. y contains only finitely many alternating groups.

PROOF. Let G be any finite group of order m. Then by Cayley's Theorem
there is a faithful permutation representation p of G on the elements of G by
right multiplication. Let Q = G U {a, b) where a and b are distinct objects not
contained in G. We define a permutation representation a of G on £1 as follows:
each element g of G induces gp on the elements of G, and either fixes or transposes
a and b according to whether gp is even or odd. It is easily seen that a is a faithful
representation of G by even permutations, so that G is isomorphic to a subgroup
of Am+2, and hence of Anfor alln ^ m + 2. Hence if<£" contains An for unbounded
values of n, then 93 contains all finite groups, so that by the residual finiteness of

https://doi.org/10.1017/S1446788700016748 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016748


166 G. A. Jones [4]

free groups [8], 93 contains non-abelian free groups. Thus 93 = O, against our
assumption, so the result is proved.

LEMMA 2. The groups of Lie type in Sf have bounded rank.

PROOF. The families of simple groups of Lie type for which the rank param-
eter is unbounded are the families A,B,C,D,2A, and 2D. Now for each positive
integer n, the alternating group An is involved in the Weyl groups of these simple
groups (and hence in the simple groups themselves) for all sufficiently high values
of the rank parameter: specifically, An is involved in the Weyl groups of At(q) for
all / ^ n - 1, of Bt(q), Ct(q) and D,(q) for all / ^ n, of 2A,(q) for all / ^
2/i - 1, and of 2D£q) for all / ^ n + 1 [2VI §4, and 4]. Hence, if the groups of Lie
type in y have unbounded rank, then 93 contains alternating groups of unbounded
finite degrees, contradicting Lemma 1, so the result follows.

Having bounded the rank of a group of Lie type in Sf, we now bound the
order of its underlying field. We do this first for the groups A^q), then show that
the corresponding problem for the remaining families of Chevalley groups, Stein-
berg groups, and Ree groups may be reduced to this case, and finally deal with
the family 2B2 of the Suzuki groups by reducing the problem to the corresponding
problem for the family B2.

For convenience, in dealing with the family Alt we will work with the
special linear groups SL2(q), and later with the general linear groups GL2(q),
rather than with the simple groups PSL2{q); we shall show that there is no loss
of generality in doing this.

LEMMA 3. Sf contains PSL2(q)for only finitely many values of q.

PROOF. CASE (i). Suppose Sf contains PSL2(q) = 04,(g)) where the charac-
teristic p of Fa ranges over an infinite set P of primes. Then since 93 is subgroup-
closed, 93 contains PSL2(j>) for all peP. Now let U be the variety [93, S] con-
sisting of those groups G such that the central quotient GIZ(G) lies in 93. Then
U # O since if v is a non-trivial law of 93 involving variables x,, •••,xr, then the
commutator [u,xr+1] is a non-trivial law of U. Clearly, U contains SL2(p) if and
only if 93 contains PSL2(p), so we have SL2(p)ell for all peP.

For each prime p, there is an epimorphism <j)p from SL2(Z) to SL2(p), ob-
tained by reducing the matrix entries modulo (p). Since P is infinite, we have
npei> ker ((f>p) = {/2}, so that SL2(Z) is residually SL2(p) as p ranges over P, and
hence SL2(Z)eU. However, SL2(Z) has non-abelian free subgroups (Sanov
described such a subgroup explicitly in [14]), so that U = O, a contradiction.

Thus the characteristic p of a group PSL2(q) in Sf is bounded, so it is sufficient
to show that for each prime p, Sf contains PSL2(j>

m) for only finitely many values
of m.
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CASE (ii). Suppose £f contains PSL2(p
m) where p is a fixed prime and m

ranges over an infinite set M of positive integers.

Let 2B be the variety It91, where U is the variety [93,6] defined above. Then
2B is a proper subvariety of O, consisting of those groups G such that the com-
mutator subgroup G' lies in II; thus2B contains GL2{pm) for all meM.

Suppose a non-trivial reduced word w = w(x1, •••, xr) is a law of 333. If
SC = {xiJk : 1 ^ i g r, 1 ^ j ^ 2, 1 ^ fc g 2} is a set of 4r independent com-
muting indeterminates over Fp, and if for each i (1 ^ i ^ r), X( is the 2 x 2
matrix with (y,fc)-entry xiJk, then we may replace each variable xt in w by Xt,
giving a 2 x 2 matrix W — w(Xlt •••,Xr) with (J,k)—entry wJk lying in the exten-
sion-field FP(2T).

For each i = 1, •••,!•, let nf be the sum of the negative exponents of xf ap-
pearing in w, and let a be the polynomial in FP\9C~\ defined by a = n ' = t det(Zf)""'.
Then since the entries wjt of W are obtained by performing ring-operations on the
elements of X, and by dividing by det(Xj) whenever x~l appears in w, we have
awJkeFpl3r\ for all j,k.

Now for each meM, w is a law of GL2(p
m), so that if the Kronecker symbol

5Jk denotes the (;,fe)-entry of I2, then wjk— 8Jk vanishes whenever the variables
are chosen from F_m so that the polynomial b = n,r

= t det (X,) is non-zero. Thus
the four functions (wJk — 8Jk)b vanish identically over F_m, and hence so do the
four polynomials w'Jk = (wJk — 5Jk)ab. These polynomials depend only on w, and
hence have fixed degrees, while m may take arbitrarily high values in M, so each
w'Jk must be the zero element of FP\2C~\. Thus w is a law of GL2(k) for every field k
of characteristic p, since whenever b # 0 over k, we have a # 0 and hence wJk

= 5/n. If we take k = Fp(0, where t is transcendental over Fp, then the matrix

I _l\ represents an element of infinite order in PSL2(k), so that GL2(k) is

not soluble-by-locally-finite; hence, by Proposition 2, GL2(k) has a non-
abelian free subgroup, and can satisfy no non-trivial laws. This contradiction
proves the result.

LEMMA 4. Sf contains only finitely many Chevalley groups, Steinberg
groups, or Ree groups.

PROOF. The finite simple groups of Lie type may be divided into fourteen
families, denoted by the symbols A,B,--,G (the Chevalley groups), 2A,2D,
3D, 2E (the Steinberg groups), 2F, 2G (the Ree groups), and 2B (the Suzuki groups).
A typical member of the family denoted by such a symbol X is a group X^q),
where / is the rank parameter and q = pm is the order of the underlying field. By
Lemma 2, the groups in Sf have bounded rank, so it is sufficient to show that for
each family X (except the family of Suzuki groups, which are dealt with in Lemma
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5) and for each rank /, £? contains only finitely many groups X^q). We do this by
showing that Xt{q) involves PSL2{q') where q' tends to infinity with q. Thus if
Sf contains infinitely many groups X (q), 93 must contain infinitely many groups
PSL2(q'), contradicting Lemma 3. (This method fails with the Suzuki groups
since they involve non-abelian simple groups of no other type.)

We now find q' as a function of q for each family X. If A" is a family of Cheval-
ley groups, then as shown in [5], X^q) is generated by elements xr(t), where r
ranges over all roots of the complex Lie algebra of type Xt, and t ranges over Fq.
For each positive root r there is a homomorphism <j>r : SL2(q) -* X,(q) given by

o 0 and (! i°) **- '<*>' s u c h that i k e r ( ^ i = 2 1 5 > pp-35 and

Thus X£q) involves PSL2(q), so we may take q' = q for the Chevalley groups.
The Steinberg groups 2A,(q), 2D£q), 3D4.(q), and 2E6(q) are the subgroups of

the Chevalley groups A,(q), D,(q), DA(q), and E6(q) fixed by an automorphism a
which maps each generator xr(0 to xr.(t'), where r M-r'is a symmetry of the root-
system and 11-> t' is an automorphism of Fo; a has order 2, 2, 3, and 2 respectively.
In each case, inspection of the Dynkin diagram shows that there is a positive root
s fixed by the symmetry: in all cases except 2A^q) where / is even, s may be taken
to be a fundamental root corresponding to a node fixed by the graph-symmetry;
in the remaining case, the Dynkin diagram of type A, (Z even) has two adjacent
nodes transposed by the graph-symmetry, and s may be taken to be the sum of
the corrresponding fundamental roots. In all cases, a fixes the elements xs{t) for
which t = t', so these lie in the Steinberg group. However, by considering Cheval-
ley's homomorphisms </>s, as above, we see that these elements generate a homo-
morphic image of SL2(q'), where Fq. is the subfield of F , fixed by the field-auto-
morphism, and this image involves PSL2(q'). Thus for the four families of Stein-
berg groups, we may take q' = 4i,Qi,(ii and q* respectively.

The automorphisms defining the Ree groups are too "non-algebraic" to allow
us to use Chevalley's homomorphisms; however, it is known that 2F4(2

IFI) and
2G2(3

m) involve PSL2(2
m) and PSL2(3

m) respectively [16,12], so here we may take
q' = q and the result follows.

DIGRESSION. A group G of Ree type, if it exists, has order q3(q3 + \){q — 1),
where q = 3m and m is an odd integer greater than 2. Like the Ree group 2G2(q),
G has an involution i such that Ca(i) involves PSL2(q), so that we may apply the
method of proof of Lemma 4 to show that at most finitely many non-isomorphic
groups of Ree type can satisfy a given non-trivial law.

LEMMA 5. SP contains only finitely many Suzuki groups.

PROOF. If q = 2 2 n + 1 where n is a positive integer, then F,, has an automor-
phism 6 : x H-X2"+1 such that 92 is the Frobenius automorphism x H* X2.

If u(a, a, fi, b), h(y, c), and x are the 4 x 4 matrices
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- 1
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where the entries not explicitly given are all zero, then every element of the Suzuki
group Sz(q) = 2B2(q) has a unique expression as «(a, a", 0, pe)h(y, ye) or
u(a)a^,^)/j(y,yV(<5,<5s,e,ee) with a,p,y,6,eeF, and y # 0 [15].

Suppose i> = t^Xj, '"jX,) is a non-trivial reduced word which is a law of 33.
Then let

<& = {a,,phyi,5i,ei,a,,bi,cl,dl,el : 1 ^ i g r}

be a set of lOr independent commuting indeterminates over F2, and let

for each i = 1, •••, r. Then yf is a 4 x 4 matrix over F2{W), and the entries of both
ytCfY, and y^y,""1 are polynomials of degree at most 2 in the variables in <Sf. Sup-
pose «j is the sum of the moduli of the exponents of x( appearing in v (so that, for
instance, if v = xj"1*^"1 xix2> then «x = n2 = 2); then the matrix

has entries i>yt in F2\%/~\ (1 ^ j , k g 4), each polynomial u7fc having degree at most
2n, in each of the variables al,---,ei.

Two possibilities now arise: either each vjk is the zero polynomial, or else
some vjk is non-zero.

CASE (i). Suppose each of the sixteen polynomials vJk is formally zero. Then if
we take any field K of characteristic 2 and replace the variables at, •••,ej(l ^ i ^ r)
by elements a/, •••,«,' of K with y.'.c/ # 0, the resulting matrices Y[ = y(a,', •••, e[)
must satisfy v{Y\, —, Y'r) = /4 .

From now on, we take K to be an algebraically closed field of characteristic
2, and we put G = Sp4(K). Thus if ^4' denotes the transpose of a matrix A, then
G is the group consisting of those 4 x 4 matrices A with entries in K such that
A'xA = T. This condition is equivalent to the vanishing of sixteen polynomials in
the entries of A (the polynomial coefficients lying in the prime field of K), so G is
an algebraic variety in the affine space K16. Moreover, group multiplication and
inversion in G are K-morphisms, so G is an algebraic group, and if we endow G
with the Zariski topology then G is a topological group. Now G has a Borel sub-
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group (that is, a maximal connected soluble subgroup) B consisting of the lower
triangular matrices in G; if a/, •••, e[ range over K subject only to the conditions
y-, cl =£ 0, then each matrix Y\ ranges over all elements of the double coset
C = BTB of B in G. We may think of v as being a "law" of C in the sense that
v(Y[, • ••, Y'r) = / 4 whenever Y\, •••, Y'r e C; we now show, by means of a density
argument, that v is a law of G.

G is the disjoint union of eight double cosets BaB of B, where the represen-
tatives a may be chosen from the subgroup W consisting of the permutation
matrices in G (W is a dihedral group of order 8). For each a e W, the sixteen entries
of a typical element of BaB are rational functions of a set of 6 + JVff parameters
lying in K, so that the ^-closure BaB of BaB has dimension at most 6 + Na.
Chevalley [5] showed that Na takes the values 0 (for a = / 4 ) , 1,1,2,2,3,3, and 4
(for a = T); for instance, when a = T, we may take the parameters for 7 / to be
a-, •••, e-. Thus C has dimension at most 10, and for a # T, BffB has dimension at
most 9. Since G is 10-dimensional, this implies that C is 10-dimensional.

If if is the cartesian product of r copies of G, then H forms, in the natural way,
an algebraic group denned over K. In any algebraic group, the connected com-
ponent of the identity is a normal subgroup of finite index; since G is an infinite
simple group, this implies that H is connected. Now H has dimension lOr, and
being a connected group, H is irreducible as an algebraic variety, so H has no
proper subvarieties of dimension lOr. However, if D — C x C x ••• x C (to r
terms), then D has dimension lOr, so we have D •= H.

If (Alt--,Ar) is a typical element of H, then the sixteen entries mJk of the
matrixM = viAlt---,Ar) —/4 are polynomial functions of the entries of Au •••,Ar,
since det(^f) = 1 for i = 1, •••,r. We have shown that each mJk(l Sj,k^ 4)
vanishes whenever (At, •••,Ar) is an element (Y[, ••-, Y'r) of D; since D is dense in
H, it follows that each mJk vanishes for all (At, • • •, Ar) e H, so that v is a law of G.

Since K is algebraically closed, G has subgroups isomorphic to 5p4(2
m) for all

positive integers m. Hence v is a law of infinitely many non-isomorphic finite
Chevalley groups, contradicting Lemma 4. Thus case (i) cannot arise.

CASE (ii). Suppose one of the sixteen polynomials vJk is non-zero. Then vJk is
a sum of monomials of the form

where the exponents m(ix,), •••, m(e,) are non-negative integers. If we replace each
variable au •••,£,• by a?"+1, •••,a?n+1 respectively, we obtain a polynomial vJk

M

in the variables {a,-, •••,ei : 1 ^ i ^ r}, each monomial m being replaced by

We now show that for all sufficiently large n, uj^is non-trivial. If ujjj' is
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formally zero, then there are two distinct monomials mt and m2 appearing in vjk

such that m'"1 = m2
n). However, since ml ^ m2, at least one of the integers

mi( a i ) ~ "i2(ai)>"">mi(ei) ~~ m2(ej) is non-zero for some i. Now if m^a,) ^ m2(a^,
or if m^Oj) = m2(af) and m^a,) # m2(a;), then we can ensure that m^ 'and m2

n)

are divisible by distinct powers of af, and aje therefore different, by taking n to be
any integer such that 2 n + 1 ((m^flj) - m2(a,))| > | m^a;) - m2(a;)| or n > 0 res-
pectively. Similarly, we can find suitable lower bounds for n when some other
integer m , ^ ) — w2(j3,)> ••-,m1(ei) — m2(e;) is non-zero, so for all sufficiently
large n we have m[n) ^ m2

n). Since u^ has only finitely many pairs of distinct
monomials, we may ensure that no pair are replaced by equal (and thus cancellable)
monomials in vty by taking n sufficiently large.

Now vJk has degree at most 2nt in each of the variables ah---,eh so v$ has
degree at most 2n((l + 2n + 1) in each of the variables <xt, •••,£;. For all sufficiently
large n, we have q = 2 2 " + 1 > 2n,(l + 2"+1) for all i, so that vff takes non-zero
values on Fq. Since v'J1^ is divisible by yt for each i, this means that there are elements
a;,"-,8j of Fq with yt =£ 0 (i = 1,•••,/•), such that the matrices Yt = Y(Sci,af,
• • -,ef,ef)'m2B2(q) satisfy v(9t,---,Yr) ^ lA. Thus we have shown that for all suf-
ficiently large n, v cannot be a law of 2B2(2

2n+1), so the result is proved.

The main theorem now follows immediately from Lemmas 1, 4 and 5, since
these deal with all finite simple groups of alternating or Lie type.

4. Infinite simple groups

We conclude by considering the laws of some infinite simple groups. No
originality is claimed for the results in this section: most of them are to be found
in Kovacs' survey article [11] or else have become established as mathematical
"folk-lore", and they are included here purely for comparison with the results on
finite simple groups.

We can form an infinite analogue of the finite alternating groups as follows:
let fi be a countable infinite set, and let G be the group consisting of those per-
mutations of Q which move only finitely many elements and which induce an even
permutation on those elements; then G is an infinite simple group, and is locally
a finite alternating group. In fact, for every positive integer n, G has subgroups
isomorphic to An, so that by the Theorem, G generates £>.

If K is any infinite field, then there exist infinite simple Chevalley groups
At(K), •••,G2{K); moreover, if AT has suitable groups of field-automorphisms,
we may form infinite simple Steinberg groups, Ree groups, and Suzuki groups
over K. We now show that each of these groups generates O.

If G is any infinite Chevalley group or Steinberg group over K, then as in the
proof of Lemma 4, G involves PSL2(k) where k is a subfield of K such that | K: k |
is finite. If k has characteristic 0, then G involves PSL2(Z) and hence has non-
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abelian free subgroups, so that G generates £). If k has non-zero characteristic p,
then let ka be the algebraic closure of the prime field in k. If ka is infinite, then ka

has finite subfields of unbounded orders, so G involves infinitely many non-
isomorphic groups PSL2(p

m), and the result follows from the Theorem. If, on the
other hand, ka is finite, then k has an element t which is transcendental over the
prime field; as in case (ii) of the proof of Lemma 3, SL2(k) is not soluble-by -
locally- finite, so Proposition 2 implies that SL2(k) has non-abelian free sub-
groups, and hence G generates O.

If G is an infinite Ree group or Suzuki group over K, then let Ka be the al-
gebraic closure of the prime field in K. If Ka is infinite, then as above, the Theorem
shows that G generates D; if Ku is finite, then in the natural representation of G
over K, condition (iii) of Proposition 2 cannot hold, so G has non-abelian free
subgroups and hence generates £).

Thus each of these infinite simple analogues of the finite alternating and Lie-
type groups generates D. However, there are examples of infinite simple groups
satisfying non-trivial laws. By results of Adjan and Novikov [1], there exists, for
each sufficiently large odd integer p, a finitely generated infinite group H of ex-
ponent p. Now if p is prime, then by a theorem of Kostrikin [10] there is a finite
bound on the indices of the subgroups of finite index in H. Hence H has only
finitely many subgroups of finite index, and their intersection JV also has finite
index in H. Thus JV is finitely generated, so JV has a maximal proper normal sub-
group M. By definition of JV, |JV : M\ is infinite, so N/M is an infinite simple group
of exponent p.
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