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Analytical solution for laminar entrance flow
in circular pipes
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This study introduces an analytical solution for the laminar entrance flow in circular pipes,
aiming to confirm the occurrence of velocity overshoot. Velocity overshoot is characterised
by the maximum axial velocity appearing near the pipe wall instead of the central axis.
Similar to the previous studies, the analytical solution is derived from the parabolised
Navier—Stokes equation; however, the specific approach used in linearising the momentum
equation has not been attempted before. The accuracy of this analytical solution has
been verified through a comprehensive comparison with various published experimental
data. The existence of velocity overshoot at a short distance from the inlet, which is
evident in numerous numerical calculations based on the full Navier—Stokes equations and
corroborated by recent magnetic resonance (MR) velocimetry experiments, is identified
analytically for the first time. The parabolised Navier—Stokes equation has inherent
self-similarity with respect to the Reynolds number, implying that Re is incorporated
into the dimensionless variables rather than serving as an independent flow parameter.
According to both MR velocimetry measurements and the present analytical solution,
the self-similarity is not valid immediately following the pipe inlet, and this becomes
more evident as Re decreases; hence, the analytical solution derived from the parabolised
Navier—Stokes equation cannot accurately predict the evolution of the velocity profile
within this region near the pipe inlet.

Key words: pipe flow boundary layer, general fluid mechanics, Navier—Stokes equations

1. Introduction

In a circular pipe, the laminar entrance flow, which precedes the fully developed Poiseuille
flow, encapsulates the general features of viscous flow, which makes it one of the standard
problems in fluid dynamics. Despite its limited applicability in practical scenarios,
numerous studies have focused on deriving an analytical solution connecting to the exact
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solution of Poiseuille flow. Typically, the momentum equation governing the entrance flow
is reduced to the parabolised Navier—Stokes equation. Similar to the boundary layer theory,
this equation neglects the axial gradient of linear dilatation and radial variation of pressure
in the full Navier—Stokes equations.

Numerous studies have described and summarised analytical solutions to the
parabolised Navier—Stokes equation for entrance flow (Fargie & Martin 1971; Mohanty
& Asthana 1978; Reci, Sederman & Gladden 2018). These solutions can be divided into
two categories: category (i) involves linearising the inertia term with axial velocity in the
momentum equation, yielding solutions as series functions (Langhaar 1942; Sparrow, Lin
& Lundgren 1964; Wiginton & Wendt 1969; Boussinesq 1981). Category (ii) assumes
the growth of the boundary layer along the pipe wall. Here, the inviscid core flow
outside this boundary layer accelerates to satisfy the continuity equation. As the boundary
layer merges at the central axis, the velocity profile adapts to the fully developed flow
(Schiller 1922; Campbell & Slattery 1963; Schlichting 1969; Fargie & Martin 1971; Gupta
1977; Mohanty & Asthana 1978). Regardless of the theoretical method employed, these
analytical solutions are consistent with experimental measurements of the pressure drop
and central axis velocity (Reshotko 1958; Emery & Chen 1968; Fargie & Martin 1971;
Mohanty & Asthana 1978; Al-Nassri & Unny 1981). In each case, the maximum axial
velocity within the pipe cross-section is consistently located on the central axis and
accelerates to the fully developed value. Furthermore, the velocity distributions measured
using laser Doppler velocimetry (Berman & Santos 1969) and particle tracers (Atkinson,
Kemblowski & Smith 1967) have also demonstrated the existence of the peak velocity on
the central axis.

However, numerical results from the full Navier—Stokes equations often reveal that
the maximum velocity is located near the wall, off the central axis, for a short distance
downstream from the inlet (Friedmann, Gillis & Liron 1968; Atkinson et al. 1969; Wagner
1975; Pagliarini 1989; Dombrowski et al. 1993; Lorenzini & Saro 1999; Durst et al.
2005; dos Santos & Figueiredo 2007). This phenomenon is termed velocity overshoot.
Velocity overshoot is observed in the laminar entrance flow across a wide range of
Reynolds numbers (0 < Re < 2000), as predicted by numerical methods. Recently, Reci
et al. (2018) measured the radial distribution of axial velocities close to the inlet using
magnetic resonance (MR) velocimetry for 120 < Re < 1100. Their experiments confirmed
the existence of velocity overshoot in all the considered cases, with the location and
magnitude of the velocity overshoot aligning with numerical predictions derived from the
full Navier—Stokes equations.

In high Re entrance flows, the full Navier—Stokes equations are often parabolised based
on Prandtl’s boundary layer theory, an approach regarded as valid. Therefore, the velocity
overshoot observed in numerical solutions of the full Navier—Stokes equations for high
Re flows should also be discernible in analytical solutions derived from the parabolised
Navier—Stokes equation. The absence of velocity overshoot in analytical solutions need not
be due to the omitted terms in the full Navier—Stokes equations. The velocity overshoot
was experimentally confirmed for Re = 1100, a considerably high value, suggesting that it
should also be evident in solutions of the parabolised Navier—Stokes equation.

The velocity profiles resulting from inertia term linearisation in the analytical solutions
of category (i) are monotonically decreasing functions from the central axis along the
radius; thus, the maximum velocity is located on the central axis. In the analytical solutions
of category (ii), the maximum velocity consistently occurs in the inviscid core outside the
boundary layer. After the boundary layer merges at the central axis, a monotonic convex
velocity profile is maintained until the flow is fully developed; hence, a velocity overshoot
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Figure 1. Schematic of the velocity development in a circular pipe laminar entrance flow, as predicted by the
present analytical solution. The maximum velocity within the pipe cross-section initially appears near the wall
and subsequently shifts towards the central axis as a uniform velocity is re-established in the central region.
During this transition, the velocity profile in the central region changes from a concave to a convex shape,
eventually settling into a monotonic convex profile that aligns with the fully developed parabolic function.

is impossible. As a result, there is a necessity for a new method to establish an analytical
solution that can account for the velocity overshoot.

This study presents a new approach for analysing the parabolised Navier—Stokes
equation, marking the first instance of identifying the existence of velocity overshoot
through an analytical solution. The momentum equation was analytically integrated by
dividing the pipe cross-section into two distinct flow regions: near the wall and the
remainder. Approximations were introduced considering the physical characteristics of
each region. Figure 1 illustrates the velocity development in the two flow regions. In
the central region, the study assumed that inertia is counterbalanced not only by the
pressure gradient but also by the shear force term, commonly neglected in the inviscid
core introduced in category (ii). In addition, the axial velocity was replaced with the
central axis velocity within this region. This substitution results in a linearised momentum
equation facilitating analytical integration along the radial direction. In this context, the
central flow is not inviscid; the inertia term diminishes and eventually vanishes as the flow
develops. Therefore, this study refers to the central flow region as the inertia-decaying
core. The boundary layer thickness from the wall cannot be assigned due to the radial
gradient of the axial velocity within the inertia-decaying core. Shear stress dominates the
flow immediately adjacent to the wall. Thus, in contrast to category (ii), the momentum
equation for this region was linearised by ignoring the inertia term. Here, the pressure
gradient is counterbalanced only with the shear stress derivative, and the flow region is
termed the wall shear layer. A mathematically continuous axial velocity solution across
the entire pipe cross-section can be obtained by employing a matching condition, thus
ensuring equality of velocity and its gradient at the interface between the inertia-decaying
core and wall shear layer. The flow within the wall shear layer corresponds to the Couette
flow with a forward pressure gradient, where the interface velocity is a boundary traction
velocity. In the Couette flow, the velocity overshoot is possible according to the interplay
between interface velocity and pressure gradient. An extremely high pressure gradient
near the inlet downstream facilitates the emergence of a velocity overshoot. As the flow
progresses, the interface velocity accelerates while the pressure gradient decreases. As a
result, the velocity overshoot disappears, and the maximum velocity eventually shifts to
the central axis. The streamfunction, expressed analytically using the axial velocity as a
continuous function across both regions, enables the derivation of radial velocity upon
differentiation. The accuracy of this analytical solution was verified through comparison
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with published experimental data concerning the central axis velocity and pressure
drop. Specifically, the velocity overshoot was compared with the recent MR velocimetry
measurements to confirm the validity of the analytical solution. Moreover, alterations in
the velocity profile throughout flow development were investigated in detail.

The parabolised Navier—Stokes equation exhibits self-similarity with respect to Re,
implying that Re is not an independent flow parameter and is incorporated into the
dimensionless variables. Although only limited data were available, self-similarity was
investigated using the MR velocimetry measurement data, thereby examining the inherent
limitations of the analytical solution derived from parabolising the momentum equations.
As Re decreases, the influence of the terms neglected from the full Navier—Stokes
equations increases, and according to the MR velocimetry measurements, this effect
becomes more pronounced closer to the inlet. Because the present study relying on the
parabolised Navier—Stokes equation is unsuitable for low Re flows, further studies are
necessary to specify the Re range that ensures the accuracy of the analytical solution.
This can be accomplished through numerical and/or experimental methods.

2. Derivation of the analytical solution
2.1. Governing equations

To non-dimensionalise the governing equations, dimensionless variables are introduced as
follows:

X r u v )4

= —, = —, U:—’ V:—, P = s
5 Y ” 1/ Re pi2)2

(2.1a—e)

where p, D and u,, represent the fluid density, the pipe diameter and the mean velocity,
respectively. The Reynolds number, expressed as Re = (pDup)/u, is defined using
these reference values with the fluid viscosity w. All values follow conventional forms
(Fargie & Martin 1971), and the reference pressure is assigned to the dynamic pressure
consistent with the friction factor definition. The dimensionless continuity equation and
full Navier—Stokes equations are transformed as follows:

U  23(nV
U 23aV) _ 2.2)
& n Iy
oU U 19P 1 3’°U 49 [ U
Uet2V—=——t—S-——+-—(n—) (2.3)
a& an 20§  Re” 0 nan an
1 Uav+2vav B 8P+1 182V+48 v\ 4V 2.4)
Re2 " 3¢ on) = an R |RZog2 " yoan\"an) 2] '

The Reynolds number solely governs the flow. For Re > 1, the axial gradient of linear
dilatation in (2.3) can be ignored, while (2.4) shows the radial pressure variation to be
negligible. Consequently, similar to the boundary layer equation, the axial momentum
equation (2.3) simplifies to the parabolised Navier—Stokes equation as follows:
oU oU 1dP 49 oU
U—+2V— = +-——1\n—)
9§ an 2d§  non \ on

(2.5)

The Reynolds number disappears and is grouped within the dimensionless axial coordinate
and radial velocity, as shown in (2.1a—e), indicating the dimensionless coordinate system’s
self-similarity with respect to Re. In the entrance flow region, flows with different Re
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values will exhibit similar velocity profile shapes at specific & positions. However, as
Re decreases, the omitted terms in the full Navier—Stokes equations gain significance,
undermining the self-similarity.

To integrate the axial momentum equation analytically, the flow field is divided into
two regions, similar to the previous studies in category (ii); however, distinct assumptions
are introduced for each region. Within the inertia-decaying core, the radial variation of
axial velocity is markedly diminished, which is attributed to the restricted wall effect,
rendering it insignificant in comparison with the axial variation; furthermore, the radial
velocity is negligible. Thus, U.(dU./3&) > 2V .(dU,./dn), where subscript ¢ indicates
the inertia-decaying core. Ignoring radial variation, the inertia term can be approximated
by the central axis velocity Uy, which is the usual assumption in the inviscid core (Fargie
& Martin 1971; Gupta 1977; Mohanty & Asthana 1978; Smith & Cui 2004), leading to

oUe U, _ 1dUj

U ~ . 2.6
oFF: +2V, on "2 dE (2.6)
Substituting (2.6) into the momentum equation (2.5), we obtain
1dU} 1dP 49 ([ U
———— =———+—-——\n—]). 2.7)
2 d& 2dé  non an

In contrast to the case of the inviscid core, the shear stress derivative remains, prevailing
even at the symmetric central axis where the shear stress is zero. This is confirmed in the
fully developed flow, where the shear stress derivative is constant across the entire pipe
section. The velocity profile changes from concave to convex depending on the relative
magnitudes of the pressure gradient and the inertia term.

The shear stress prevails in the force balance near the pipe wall owing to the no-slip
condition, and the inertia terms are disregarded different from the previous studies in
category (ii). A sudden change of the uniform velocity profile at the pipe inlet edge may
cause a significant momentum difference. This effect is assumed to be confined locally at
the inlet edge, and it may cause inaccuracies of present analytical solution in this region.
The momentum equation for the wall shear layer is simplified to

1dP 4 9 oU,,
0=—= 4+ -2 (p222), 2.8)
2 d¢ naon an

where subscript w indicates the wall shear layer. An inertia-decaying core, where the flow
progresses with increasing velocity and decreasing pressure gradient, is situated adjacent
to the wall shear layer. Velocities at the interface of the two flow regions overlap, and
the same pressure gradient governs both flows. Under these conditions, the flow in the
wall shear layer can be regarded as a Couette flow with varying boundary velocity and
pressure gradient. The forward pressure gradient results in a convex velocity profile, and
a velocity overshoot arises from the prevailing effect of the pressure gradient over the
interface velocity.

2.2. Velocity solutions
The interface radius between the two flow regions, denoted as 1s(£), is a new unknown
variable, which separates the flow velocity as follows:
Uc§,m), 0=<n=mns
Uég,n)=1,f . 2.9
&.m {Uw@,n), ms<n <1 29
979 A51-5


https://doi.org/10.1017/jfm.2023.1060

https://doi.org/10.1017/jfm.2023.1060 Published online by Cambridge University Press

TY. Kim

As the wall shear layer extends to the central axis, the inertia-decaying core shrinks.
When the inertia term in the inertia-decaying core sufficiently diminishes, the momentum
equations for each flow region are approximately equivalent, and the velocity profiles
overlap significantly. Beyond this point, the interface radius no longer changes, and the
flow becomes fully developed as the inertia term vanishes completely.

The momentum equation (2.5) is approximated for each flow region, and the resultant
equations (2.7) and (2.8) can be integrated analytically. Two boundary conditions are
available — one for the inertia-decaying core at the symmetric central axis and the other
for the wall shear layer at the no-slip wall — expressed as follows:

dU:(§,0)

=0, U,E 1) =0. (2.10a,b)
n

At the interface radius, the velocities and their slopes (shear stresses) must be equal,
ensuring a continuous function of velocity across the two regions

8UC ’ a(]W ’
Uel€, 15) = Un(E. 1), f ms) _ dUw(E,ms) 2.11ab)
n on

Applying the boundary conditions (2.10a,b) and interface-matching conditions
(2.10a,b), four integral coefficients are determined, and the velocities are yielded as

D D Dy
Ue(e, ) = —3—’2’0 —n) + 3—§n2 32 I3 —nd), (2.12)
Dp
U, = =55 (1 =) + 3—2775 Inn?, (2.13)

where Dp(&) and Dy () are introduced to reduce the complexity of the expression and are
defined as follows:

dp Dy (&) = dU(Z) (2.14a,b)
dé 9 U dé . a7
The central axis velocity can be deduced from (2.12) at n = 0, from which the pressure
gradient Dp(&) is expressed as

Dp(§) =

Dp(§) = —32Uy — Dyn3(1 —Inn}). (2.15)

The pressure gradient is removed from (2.12) and (2.13) to obtain

Ue(E,m) = Up(1 —n*) + 5[1 — 151 = Inn3)1n?, (2.16)

Uw(&.n) = Uc(§, 77)+—[775(1—1n775)—77 + 15 Iny’]. (2.17)

The velocity at an axial position & is represented by a function of n, with two axially
varying parameters Uy () and 1s(£). The remaining Dy (§) is calculated from Uy(§). Two
additional equations are needed to determine these unknown parameters.

The continuity and the momentum equations integrated over the pipe cross-section are
referred to as global equations. They are useful in analysing the internal flow, and the
equations necessary to solve Up(§) and ns(§) are derived from them. The continuity
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equation (2.2) is integrated over the pipe cross-section

1 1
i/ U(s,n)ndn+2/ Mdn=0. (2.18)
dé Jo o Jn

Due to the boundary conditions, the second term of the left-hand side of (2.18) becomes
zero. Integrating equation (2.18) over & results in

1
/ U(&, n)ndn = constant. (2.19)
0

Because the left-hand side of (2.19) represents the total mass flow rate at any &, by applying
the uniform inlet velocity condition, the constant on the right-hand side is 1/2. Eventually,
the global continuity equation can be derived by substituting the velocity equations (2.16)
and (2.17) and integrating analytically for each region

s 1
/ Uc(§. mndn +/ Uw(€ mndn = 5. (2.20)
0 ns
Following mathematical modification, the global continuity equation can be expressed as
dus? 32(Up — 2
5® 2= oo
3 n5(1 —n5 + Inng)

In addition, the momentum equation (2.5) is integrated over the pipe cross-section
d [! Lamuv ! V'a [ au
—/ Uzndn+2/ UV gy = L2 ndn+4/ —(n—> dn.  (2.22)
dg Jo o In 2 Jo 0o dn \ dn

Here, the left-hand side of (2.5) is switched to conservative form using the continuity
equation. The second term of the left-hand side is removed owing to the boundary
conditions, and the global momentum equation is obtained

de D aU,
eE _ _Dr +4 (,,_W> ) (2.23)
dé 4 mn /=
where the global momentum ® (§) is defined as
1
OE) = / U?ndn. (2.24)
0

Substituting (2.15), (2.17) and (2.21) into (2.23), the global momentum equation becomes
dOE) _ 8(Uo—2)
dg 1—n+1Inn}

The global momentum in (2.24) is partially integrated by applying (2.16) and (2.17),
resulting in

(2.25)

o) = 2 Wo= 20~ n3)> | (Wo —2)*(2 + 33 — 613 + 115 + 63 In )
3 6(1—n}+1nn?) 12(1 — n? + Inn)? '

(2.26)

There are three unknowns (Ug (), ns(§) and @ (£)) to solve, and we have two first-order
ordinary differential equations (2.21) and (2.25) and one algebraic equation (2.26).
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To create a closed form for the equation set, three inlet conditions are required to integrate
the differential equations. The central axis velocity at the inlet is Uy(0) = 1 due to the
uniform inlet velocity condition, and applying it to (2.24) results in ® (0) = 1/2. Because
the wall shear layer takes place from the pipe wall, the interface radius at the inlet is
ns(0) = 1. The ordinary differential equations (2.21) and (2.25) were integrated using
the fourth-order Runge—Kutta method. At each prediction and correction step of the
Runge—Kutta integration, ns(&) was calculated from (2.26) using the bisection method.

2.3. Supplementary equations

The total pressure drop from the inlet can be calculated by integrating equation (2.23) with
respect to &, which is expressed as follows:

§ .
AP(E) = 4 [@(;) - %] - /0 (32U — Dyn3 Inn?) dé. (2.27)

The term within the square brackets represents the net change in the inertia force, and
the integral is the shear force at the pipe wall. The fourth-order Runge—Kutta method was
adopted for the integration.

The velocity functions are continuous across two flow regions, and the streamlines can
be obtained using the streamfunction defined as

n
W =% /O UG, midi. (2.28)
Substituting (2.16) and (2.17) into (2.28) yields the following streamfunctions:
Uy Dy
We(&, 1) =~ @ =0 + S [ = n)? (1= + Innd)In’, (2.29)
Dy
(&, 1) = Wel&, 1) + ol + 203 (1= Iy — it = 203 (1 = In )], (230)
The radial velocity can be determined by differentiating the streamfunction
10w (&, n)
Ve =———7T—. (2.31)
n 0§

The central differencing method was used for this differentiation.

3. Results and discussion

Initially, the validity of the analytical solution was confirmed by comparing its limiting
values with the theoretical values associated with a fully developed flow. Subsequently,
its accuracy was verified through a comparison with previously published experimental
results. The prediction of the velocity overshoot was examined using the measurements
recently published by Reci et al. (2018). Finally, the transition of the velocity profile,
including the velocity overshoot during flow development, was investigated in detail using
the analytical solution.

3.1. Accuracy of the analytical solutions

The current approach was established without incorporating information on the fully
developed flow. Consequently, the analytical solution’s validity is confirmed by comparing
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Figure 2. Axial variation of representative dependent variables converging to the fully developed condition.
The entrance length is estimated as & = 0.0586, which is within the range of previously reported values. The
validity of the analytical solution can be confirmed, as all limiting values converge to the theoretical values,
even without prior information concerning the fully developed condition.

Uo/Uo,r & Ne Uo €] Dy Dp AP
Theory 0.05 ~ 0.06 N/A 2.00 0.6667 0.00 64.0 N/A
99.00 % 0.05869 0.3034 1.98 0.6648 4.71 64.8 4.31
99.99 % 0.13721 0.3034 2.00 0.6666 0.47 64.0 9.35

Table 1. Limiting values of representative dependent variables in the analytical solution converging to the
fully developed flow. Data extracted at the positions corresponding to the 99 % ratio (ratio of the central axis
velocity to the fully developed value, Uy/ Uy, r), which is the conventional definition of the entrance length, and
the 99.99 % ratio is compared with the theoretical values of the fully developed flow. Minor discrepancies exist
between the values at the end of the entrance length and those corresponding to the theoretical fully developed
condition; however, at the 99.99 % ratio, the differences are negligible.

the data at the conclusion of the entrance flow with the theoretical values of the fully
developed flow. Figure 2 depicts the axial variations of representative dependent variables,
and table 1 lists the analytical solution values converging to predefined fully developed
conditions for comparison with theoretical values.

Typically, the end of the entrance length is defined as the position where the central
axis velocity attains 99 % of the fully developed velocity. By this criterion, the entrance
length is &, = 0.0587, which falls within the range summarised by Durst et al. (2005)
after reviewing numerous studies. Their work, encompassing experimental, analytical
and numerical approaches, aimed to provide quantitative information on the relationship
between entrance length and Reynolds number. Their numerical investigation based on the
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Figure 3. Axial variation of the central axis velocity compared with the experimental data. The prediction by
the analytical solution is consistent with the experimental measurements, and the average error is less than 4 %.
The average errors were calculated using (3.2).

full Navier—Stokes equations yielded the following analytical relationship:

i_e = [0.619"° + (0.0567Re)'€11/1:6. (3.1)
e

Except at very low Re, the first term inside the bracket is negligible. For instance, at Re =
100, it contributes less than 2 %. Hence, the relation can be simplified to &, &~ 0.0567,
which only deviates by 3.4 % from the present analytical solution.

As shown in figure 2, the variables Uy(§), @ (£) and Dp(€) converged to their limiting
values, and no more changes were observed. The inertia term Dy (&), scaled by log in
the figure, decreases sufficiently from infinity to less than 1, and it heads to zero. Marginal
differences from the fully developed flow exist in the values at the 99 % velocity condition;
however, at the 99.99 % condition, the values are consistent with the fully developed ones
(table 1). The pressure drop from the inlet increases linearly except at the section close to
the inlet. These results confirm the validity of the analytical solution.

The variation in the central axis velocity is compared with published experimental
measurement results (Nikuradse 1950; Reshotko 1958; Emery & Chen 1968; Fargie &
Martin 1971), and the analytical solution aligns well with the experimental results, as
shown in figure 3. The maximum average error of the analytical solution relative to the
experimental results for Re = 760 (Fargie & Martin 1971) is 4 %, and the error reduces
with the increasing Re. The pressure drops along the axial coordinate are shown in figure 4,
and the analytical solution is consistent with the experiments. The average errors for each
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Figure 4. Axial variation in the pressure drop compared with the published experimental results. The
analytical solution is consistent with the experiments, and the maximum average error is 8 %. The average
errors were calculated using (3.2).

measurement marked in the figures were calculated as follows:

n
Xexp.i — N2, 3.2
anef ; ( exp,i cal,l) ( )

Eavg =
where X; values are corresponding data points, and X,.r denotes the reference value. For
U, ref, the fully developed value Up r = 2 was applied, and APr = 4.31 (the pressure
drop over total entrance length) is adopted for AP,,r.

Most of the experimental studies have measured pressure drop and central axis
velocity, and only a few have reported radial distribution of the axial velocity. Recently,
Reci et al. (2018) experimentally corroborated the presence of velocity overshoot using
MR velocimetry. Velocity profiles at a short distance from the inlet measured by MR
velocimetry are presented in figure 5 and compared with the present analytical solutions.
The Reynolds numbers in the experiment were Re = 120 (£10), 250 (£10), 500 (£20)
and 1100 (£50), where the values within parentheses represent uncertainties; the velocity
profiles were measured at six axial positions: x/D = 0.25,0.5,1,2,4 and 6. The six
positions are transformed into the dimensionless coordinate & using the four Reynolds
numbers for comparison with the analytical solutions. The average errors for each velocity
profile calculated by (3.2) are listed in table 2, where the reference velocity is Uyer = Uy, F,
the fully developed value of the central axis velocity.

For the relatively low value of Re = 120, velocities in the central zone at £ = 1.67 x
1072 are well aligned with the measurements; however, the velocities are underestimated
for smaller & and overestimated for larger &, as quantified in table 2. At the position
closest to the inlet, & = 2.08 x 1073, the discrepancies diminish. The velocity overshoot
is discernible only for & < 4.17 x 1073, close to the inlet. As shown in figure 5(b),
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Figure 5. Velocity profiles at multiple axial positions compared with measurements using MR velocimetry.
Experimental data were provided for four Reynolds numbers (Re = 120, 250, 500, 1100), and for each Re
value, the velocity profiles were measured at six axial positions close to the inlet (x/D = 0.25, 0.5, 1, 2, 4,
6). To compare the measurements with the analytical solution, the six axial positions were transformed into
the dimensionless coordinate & using the corresponding Re, and the resultant & sets are different for each Re;
(a) Re = 120, (b) Re = 250, (¢) Re = 500 and (d) Re = 1100.

Re =120 Re = 250 Re =500 Re = 1100

& Eavg & Eavg & Eavg & Eavg

208x 1073 21% 1.00x1073 28% 5.00x107* 38% 227x10* 34%
417x 1073 48% 2.00x1073 3.0% 1.00x1073 29% 455x107* 28%
833x 1073 28% 4.00x1073 16% 200x1073 20% 9.09x107* 26%
1.67x 1072 19% 8.00x1073 20% 4.00x103 17% 1.82x1073 17%
333x 1072 34% 1.60x1072 31% 800x103 21% 3.63x1073 19%
500x 1072 32% 240x1072 20% 1.60x1072 15% 545x1073 18%

Table 2. Average errors of the axial velocity profiles calculated by (3.2) and illustrated in figure 5. As Re
increases, the error tends to decrease; that is, the greater the Re, the greater the accuracy of the analytical
solution.
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Figure 6. Four selected velocity profiles for two Re values (Re = 250 and 500) from the measurements using
MR velocimetry are compared with the analytical solution to examine the self-similarity in the entrance flow.
The partially uniform inlet velocity profiles with steep gradients at the wall sourced from the experimental
measurements are also compared with the ideally uniform condition of the analytical solution.

the discrepancies of the analytical solution for Re = 250 are mitigated compared with

Re = 120. The most consistent results are observed at £ = 4.0 x 1073, revealing a trend
similar to that in figure 5(a). For Re = 500 (c¢) and 1100 (d), the deviations are further
reduced, representing the enhanced precision of the analytical solution at higher Re values.
Thus, the present analytical solution derived from the parabolised Navier—Stokes equation
aligns more closely with the experiments at higher Re and effectively identifies the velocity
overshoot, a phenomenon not captured by previous analytical solutions.

The parabolised Navier—Stokes equation possesses inherent self-similarity with respect
to the Reynolds number, and it can be examined using experimental data with the
same & but different Re. Four & positions (§ = 1.0 x 1073, 2.0 x 1073, 4.0 x 1073
and 8.0 x 1073) were available for Re =250 and 500. Selected velocity profiles for
these Re values are illustrated in figure 6 and compared with the analytical solution.
At a very short distance from the inlet, corresponding to & = 1.0 x 1073, a significant
discrepancy emerges between the two velocity profiles for distinct Re values, thus revealing
the absence of self-similarity. As & increases, the velocity data from MR velocimetry
measurements for different Re are closer to each other and the self-similarity becomes
evident. Fundamentally, the parabolised Navier—Stokes equation cannot be applied to
the flow close to the inlet where self-similarity is not satisfied, and the discrepancy
between the analytical solution and the experiment is noticeable at £ = 1.0 x 1073, as
shown in figure 6. However, self-similarity is gradually re-established as & increases, and
the analytical solution increasingly aligns with the MR velocimetry measurements. For
Re = 1100, the analytical solution is consistent with the experimental measurements, as
shown in figure 5(d). This confirms that for high Re flows, the analytical solution based
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Figure 7. Axial variations in the maximum velocity U,, and radial position 7, occupied by the maximum
velocity. The analytical solution is compared with an experiment using MR velocimetry and numerical
calculations based on the full Navier—Stokes (N-S) equation. All measurements and numerical calculations
were performed under the condition of Re = 500.

on the parabolised Navier—Stokes equation with self-similarity is accurate, even close to
the inlet. In figure 6, velocities measured just before the inlet are also depicted. Due to the
non-ideality of the experimental apparatus, uniform inlet velocity conditions could not be
attained over the entire pipe cross-section (Reci et al. 2018), and a steep velocity gradient
occurs at the wall. This could potentially influence the velocity profile’s development,
an effect that intensifies closer to the inlet. A partially uniform inlet velocity affects the
deviation between the experiment and the analytical solution, which considers an ideal
uniform velocity (Friedmann er al. 1968; Wagner 1975). The experimental uncertainties
in Re could also have contributed to the observed discrepancy in the velocity profile. Due
to the limited measurement data available, more detailed analysis could not be performed.
However, the analytical solution is consistent with the observed flow evolution trend from
the experiment, although minor deviations exist.

Figure 7 shows the axial variations in the maximum velocity and the trajectory of
the radius where the maximum velocity exists. The results are consistent with the MR
velocimetry measurements and numerical calculations based on the full Navier—Stokes
equation (Friedmann et al. 1968; Dombrowski et al. 1993). In particular, the analytical
solution aligns well with the results predicted by Friedmann et al. (1968) at very small &
values.

As represented by the MR velocimetry measurements, velocity overshoot exists across
all the Re ranges considered in the experiment (120 < Re < 1100), and self-similarity
is not applicable close to the inlet in the case of low Re. The analytical solution of the
parabolised Navier—Stokes equation accurately predicts the flow evolution, including the
velocity overshoot; however, it cannot deal with the entrance flow without self-similarity.
The formation of such velocity fields can be investigated through numerical calculation
based on the full Navier—Stokes equations.
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3.2. Discussion of the analytical solutions

Within the inertia-decaying core, the uniform inlet velocity undergoes a transformation
to a concave shape, descending into its deepest trough before reverting to a flatter
profile. In contrast, in the wall shear layer, an initial convex shape intensifies to attain
a peak overshoot velocity before transitioning into a monotonically decreasing profile.
Subsequently, the convex velocity distribution across the two regions evolves into the
fully developed parabolic profile. From the velocity gradient at the interface radius,
the specific positions for the velocity shape transition can be perceived. The gradient,
commencing from the zero point of inlet uniform velocity, increases to a maximum value
before decreasing to zero, recovering the uniform velocity in the inertia-decaying core.
The deepest trough of the velocity profile in the inertia-decaying core and the maximum
velocity overshoot in the wall shear layer are formed simultaneously at the maximum
velocity gradient. From the analytical solution, the velocity gradient at the interface radius
is obtained as

(3.3)

1—n3(1 —Inn})
Ss(&) = —2U 1— )
5(8) ons |: 3200/ Dy

With n5(0) = 1 and Dy (0) — oo at the inlet, S5(0) converges to zero, which corresponds
to a uniform velocity profile; Ss(&) increases with flow development and then decreases to
zero, thereby restoring the uniform velocity in the inertia-decaying core.

The velocity overshoot is located where (dU,,/9n) = 0, and the tracking radius is

1

) 3.4)
\/32Uo/(DU77§) + (1 —1Inn})

nm(g) =

The maximum velocity is calculated from U,, (&, 1,,).

The representative variables of the flow development are illustrated in figure 8. Starting
from zero, Ss reaches its maximum at £y = 2.279 x 103 with extreme velocity overshoot
and returns to zero at £y = 1.093 x 10~2. The velocity overshoot appears across a distance
of 18.6 % of the total entrance length. After restoring the uniform velocity, 7, the
radius for the maximum velocity, shifts from 0.3514 to the central axis. Initially, the
magnitude of Dy (€) is greater than that of Dp(&), and this order reverses after the position
corresponding to the restoration of the uniform velocity, Ss(§) = 0. As shown in figure 2,
Dy (&) continuously decreases to a negligible value, and —Dp(&) converges to the fully
developed value of 64. The interface radius grows from the wall at the inlet, eventually
converges to 17, = 0.3034 and then remains unchanged. This is because Dy (§) becomes
smaller and finally vanishes in the inertia-decaying core. As a result, the momentum
equations governing the two regions become identical.

Figure 9 shows the radial distribution of the axial velocities with increasing &. All the
specific positions related to the change in the velocity profile are included. As the flow
enters a pipe, the axial velocity in the vicinity of the wall is retarded owing to the no-slip
condition whereas the radial velocity will be accelerated in adherence to the principle of
mass conservation. However, the radial velocity is suppressed as flow moves away from
the wall due to confined geometry inside the pipe, and the axial velocity is speeded up
again to compensate for reduced mass flow. This effect cannot instantaneously propagate
to the inertia-decaying core far from the wall, and the locally accelerated axial velocity
will induce the velocity overshoot in the wall shear layer. A concave velocity profile
emerges simultaneously within the inertia-decaying core. As & increases, the velocity
overshoot shifts away from the wall and intensifies to reach its peak. Subsequently, the
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Figure 8. Axial variations in the representative variables with which the shape of the velocity profile can be
discerned. The graph shows the upstream part of figure 2, close to the inlet. The shape of the velocity profile
can be identified by S5, the slope of the axial velocity at the interface radius. The value of Ss, starting from zero
at a uniform inlet velocity, reaches a maximum at §p = 2.279 x 1073, where the velocity overshoot is extreme,
and returns to zero at £y = 1.093 x 1072, recovering the uniform velocity in the inertia-decaying core.
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Figure 9. Evolutions of the axial velocity profile in the entrance region. Radial variations in the axial velocity
at various axial positions are illustrated, including all the specific positions related to the change in the velocity
profile.
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Figure 10. Evolutions of the radial velocity profile in the entrance region. Radial variations in the radial
velocity at various axial positions are illustrated with different scales for each graph to clearly reveal the change
in the velocity profile. The radial velocities were calculated from the analytical solution of the axial velocity
which is a mathematically continuous function across the inertia-decaying core and the wall shear layer.

velocity overshoot is weakened and the flat uniform velocity profile is restored in the
inertia-decaying core. After the velocity overshoot disappears, the monotonic convex
shape is maintained across two regions and adjusted to fit the fully developed parabolic
profile. The maximum velocity location shifts to the central axis, and the interface radius
stays near 7,.

Figure 10 shows the evolution of radial velocity profiles as & increases, and different
scales for each graph are adopted to clearly reveal the change in the velocity profile.
Initially, the radial velocity towards the central axis in the vicinity of the wall may increase
significantly to satisfy mass conservation. As flow progresses, viscous effects propagate
the axial velocity retardation inwards, resulting in a balanced velocity profile. The initial
spike in radial velocity diminishes rapidly because of the geometric restriction. According
to the growth of the wall shear layer, the position of the maximum radial velocity moves
towards the central axis, and finally, the radial velocity vanishes.

Streamlines in the upstream part of the entrance length are shown in figure 11. Following
the short inlet flow region with the drastic change, the streamlines align parallelly along
the axial direction. The interface radius predominantly stabilises around 7, subsequent to
&y. Although the streamfunctions are represented by the separate analytic equations (2.29)
and (2.30) for each flow region, the streamlines are continuous across the interface radius.
No perceivable alterations attributable to the transitions in velocity profiles are observable
in the streamline patterns.

Although the numerical values presented herein may have errors resulting from the
approximations considered in deriving the analytical solution, the flow development
features associated with these values appropriately represent the dynamics within the
entrance region.
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Figure 11. Streamlines for the upstream part (symmetric with respect to the central axis).

4. Conclusion

A theoretical approach, distinct from those in previous studies, was employed to solve
the laminar entrance flow in a circular pipe, resulting in a new analytical solution. The
pipe’s cross-section was divided into two regions. Focus was placed on the declining
inertia and enhancing shear stress in the inertia-decaying core, as well as the expansion
of the wall shear layer where shear stress is predominant. Different assumptions for
each flow region were imposed to linearise the momentum equations based on physical
validity. Explicit velocity functions were analytically established through the radial
integration of the momentum equations, with integral coefficients determined by applying
the boundary conditions and the matching conditions at the interface radius. First-order
ordinary differential equations to calculate the axially varying unknown parameters,
such as the central axis velocity and the interface radius, were derived from the global
continuity and momentum equations by applying the velocity functions. An algebraic
equation for global momentum was set up using velocity functions. Because the velocity
solutions are mathematically continuous across the two flow regions, explicit forms of
the streamfunctions were obtained, allowing the determination of the radial velocity.
The accuracy of the analytical solution was verified by comparison with previously
reported experimental results. For the first time, the presence of velocity overshoot
was confirmed analytically, consistent with prior numerical calculations and recent MR
velocimetry measurements. Because the presence of velocity overshoot was identified
through an analytical solution derived from the parabolised Navier—Stokes equation
with self-similarity, it is not attributable to the ignored terms in the full Navier—Stokes
equations. The study suggests that self-similarity is not valid immediately after the
pipe inlet and that this region shrinks with the increasing Re, based on published MR
measurements and the present analytical solution. Thus, a solution derived from the
parabolised Navier—Stokes equation may not accurately predict the evolution of the
velocity profile in this confined region. There exists a lower limit to the Reynolds number
for the applicability of the parabolised Navier—Stokes equation in analysing the laminar
entrance flow. Hence, further investigations into the present analytical solution are required
to explore this dynamic comprehensively.
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