
7
The Cauchy problem in General Relativity

In this chapter we shall give an outline of the Cauchy problem in
General Relativity. We shall show that, given certain data on a space-
like three-surface ^ , there is a unique maximal future Cauchy
development D+(£f) and that the metric on a subset °ll of D+(S?)
depends only on the initial data on J~(fll) (] £?. We shall also show
that this dependence is continuous if °U has a compact closure in D+(£f).
This discussion is included here because of its intrinsic interest,
because it uses some of the results of the previous chapter, and because
it demonstrates that the Einstein field equations do indeed satisfy
postulate (a) of § 3.2 that signals can only be sent between points that
can be joined by a non-spacelike curve. However it is not really needed
for the remaining three chapters, and so could be skipped by the
reader more interested in singularities.

In § 7.1, we discuss the various difficulties and give a precise formu-
lation of the problem. In § 7.2 we introduce a global background
metric § to generalize the relation which holds between the Ricci
tensor and the metric in each coordinate patch to a single relation
which holds over the whole manifold. We impose four gauge conditions
on the covariant derivatives of the physical metric g with respect to
the background metric £. These remove the four degrees of freedom
to make diffeomorphisms of a solution of Einstein's equations, and
lead to the second order hyperbolic reduced Einstein equations for g
in the background metric £. Because of the conservation equations,
these gauge conditions hold at all times if they and their first deriva-
tives hold initially.

In § 7.3 we show that the essential part of the initial data for g on
the three-dimensional manifold £P can be expressed as two three-
dimensional tensor fields hab, xab on £?. The three-dimensional mani-
fold £f is then imbedded in a four-dimensional manifold Jt and a
metric g is defined on Sf such that hab and #a6 become respectively the
first and second fundamental forms of Sf in g. This can be done in such
a way that the gauge conditions hold on £f. In § 7.4 we establish some
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7] THE CAUCHY PROBLEM 227

basic inequalities for second order hyperbolic equations. These relate
integrals of squared derivatives of solutions of such equations to their
initial values. These inequalities are used to prove the existence and
uniqueness of solutions of second order hyperbolic equations. In § 7.5
the existence and uniqueness of solutions of the reduced empty space
Einstein equations is proved for small perturbations of an empty space
solution. The local existence and uniqueness of empty space solutions
for arbitrary initial data is then proved by dividing the initial surface
up into small regions which are nearly flat, and then joining the
resulting solutions together. In § 7.6 we show there is a unique maximal
empty space solution for given initial data and that in a certain sense
this solution depends continuously on the initial data. Finally in §7.7 we
indicate how these results may be extended to solutions with matter.

7.1 The nature of the problem

The Cauchy problem for the gravitational field differs in several
important respects from that for other physical fields.

(1) The Einstein equations are non-linear. Actually in this respect
they are not so different from other fields, for while the electromagnetic
field, the scalar field, etc., by themselves obey linear equations in a given
space-time, they form a non-linear system when their mutual inter-
actions are taken into account. The distinctive feature of the gravita-
tional field is that it is self-interacting: it is non-linear even in the
absence of other fields. This is because it defines the space-time over
which it propagates. To obtain a solution of the non-linear equations
one employs an iterative method on approximate linear equations
whose solutions are shown to converge in a certain neighbourhood of
the initial surface.

(2) Two metrics gx and g2on a manifold Jl are physically equivalent
if there is a diffeomorphism (j>\ <Jt'->*Jt which takes gx into g2

(0*&i = g2), and clearly gx satisfies the field equations if and only if g2

does. Thus the solutions of the field equations can be unique only up to
a diffeomorphism. In order to obtain a definite member of the equiva-
lence class of metrics which represents a space-time, one introduces
a fixed 'background' metric and imposes four 'gauge conditions' on
the covariant derivatives of the physical metric with respect to the
background metric. These conditions remove the four degrees of
freedom to make diffeomorphisms and lead to a unique solution for
the metric components. They are analogous to the Lorentz condition
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228 THE CAUCHY PROBLEM [7.1

which is imposed to remove the gauge freedom for the electromagnetic
field.

(3) Since the metric defines the space-time structure, one does not
know in advance what the domain of dependence of the initial surface
is and hence what the region is on which the solution is to be deter-
mined. One is simply given a three-dimensional manifold £f with
certain initial data to on it, and is required to find a four-dimensional
manifold Jt', an imbedding 6.^-^^K and a metric g on ^K which
satisfies the Einstein equations, agrees with the initial values on d(Sf)
and is such that 0{£f) is a Cauchy surface for dt. We shall say that
(JK, 6, g), or simply Jt, is a development of (£f, co). Another develop-
ment {Ji\ d', g') of (Sf, co) will be called an extension of JK if there is
a diffeomorphism a of JK into JK' which leaves the image of £f point-
wise fixed and takes g' into g (i.e. d~xarxd' = id on ^ and a^g' = g).
We shall show that provided the initial data <o satisfies certain
constraint equations on <$̂ , there will exist developments of (5^, co) and
further, there will be a development which is maximal in the sense
that it is an extension of any development of (Sf, co). Note that by
formulating the Cauchy problem in these terms we have included the
freedom to make diffeomorphisms, since any development is an
extension of any difFeomorphism of itself which leaves the image of SP
pointwise fixed.

7*2 The reduced Einstein equations

In chapter 2, the Ricci tensor was obtained in terms of coordinate
partial derivatives of the components of the metric tensor. For the
purposes of this chapter it will be convenient to obtain an expression
that applies to the whole manifold JK and not just to each coordinate
neighbourhood separately. To this end we introduce a background
metric g as well as the physical metric g. With two metrics one has to
be careful to maintain the distinction between covariant and contra-
variant indices. (To avoid confusion, we shall suspend the usual con-
ventions for raising and lowering indices.) The covariant and contra-
variant forms of g and § are related by

9ab9bc = *ac = §ab§bc. (7.1)

It will be convenient to take the contravariant form gab of the metric
to be more fundamental and the covariant form gah as derived from it
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7.2] THE REDUCED EINSTEIN EQUATIONS 229

by (7.1). Using the alternating tensor ^ ^ defined by the background
metric, this relation can be expressed explicitly as

i 9 W(det g) fj^fjw (7.2)

where (det g)-* = i ^ V W ^ W i

is the determinant of the components of gra6 in a basis which is ortho-
normal with respect to the metric §.

The difference between the connection T defined by g and the con-
nection F defined by g is a tensor, and can be expressed in terms of the
covariant derivative of g with respect to T (cf § 3.3):

ai), (7.3)

where we have used a stroke to denote covariant differentiation with
respect to T and the symbol 8 to denote the difference between
quantities defined from g and £. Then from (2.20),

8Rab = sr*abid-sr\dlb+8r«ajr^-sr«ajr%d. (7.4)
Thus

_ igabR) =

+ (terms in 8fd
H and fy«f), (7.5)

^ = g% - \gbc
gdeg\ = (det g)"1 ((det &)gb% = (det g)"V&c,c (7.6)

and <f)bc = (det £)8gbc.

The plan is now as follows. We choose some suitable background
metric g and express the Einstein equations in the form

Rab - \Rgab = 8(Rab - \Rgab) + fiab - $abfi = SnTab. (7.7)

One regards this as a second order non-linear set of differential equa-
tions to determine g in terms of the values of it and its first derivatives
on some initial surface. Of course to complete the system one has to
specify the equations governing the physical fields which make up the
energy-momentum tensor Tab. However even when this is done one
does not have a system of equations which uniquely determines the
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230 THE CAUCHY PROBLEM [7.2

time development in terms of the initial values and first derivatives.
The reason for this is, as was mentioned above, that a solution of the
Einstein equations can be unique only up to a diffeomorphism. In
order to obtain a definite solution one removes this freedom to make
diffeomorphisms by imposing four gauge conditions on the covariant
derivatives of g with respect to the background metric §. We shall use
the so-called 'harmonic' conditions

which are analogous to the Lorentz gauge conditions A{
;i = 0 in

electrodynamics. With this condition one obtains the reduced Einstein
equations

9ij(Pab\ij + (terms in <f>cd
le and <j)ab) = 16nTab - 2&b + §abR. (7.8)

We shall denote the left-hand side of (7.8) by Eab
cd(<f>cd), where Eab

cd is
the Einstein operator. For suitable forms of the energy-momentum
tensor Tab these are second order hyperbolic equations for which we
shall demonstrate the existence and uniqueness of solutions in § 7.5.
We still have to check that the harmonic conditions are consistent
with the Einstein equations. That is to say: we derived (7.8) from the
Einstein equations by assuming that <fibc

lc was zero. We now have to
verify that the solution that (7.8) gives rise to does indeed have this
property. To do this, differentiate (7.8) and contract. This gives an
equation of the form

gijirb
Hj + Bc

b^H + Cc
bi^ = 16nTab.a, (7.9)

where a semi-colon denotes differentiation with respect to g, and the
tensors Bbi and Cb depend on §ab, Ra

bcd, gab and gab
lc. Equations (7.9)

may be regarded as second order linear hyperbolic equations for i/rb.
Since the right-hand side vanishes, one can use the uniqueness
theorem for such equations (proposition 7.4.5) to show that \jrb will
vanish everywhere if it and its first derivatives are zero on the initial
surface. We shall see in the next section that this can be arranged by
a suitable diffeomorphism.

We still have to show that the unique solution obtained by imposing
the harmonic gauge condition is related by a diffeomorphism to any
other solution of the Einstein equations with the same initial data.
This will be done in § 7.4 by making a special choice of the background
metric.
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7.3] THE INITIAL DATA 231

7.3 The initial data
As (7.8) is a second order hyperbolic system it seems that to determine
the solution one should prescribe the values of gab and gab\cu

c on the
initial surface 6(5?), where uc is some vector field which is not tangent
to 6(5?). However not all these twenty components are significant or
independent: some can be given arbitrary initial values without
changing the solution by more than a diffeomorphism, and others have
to obey certain consistency conditions.

Consider a diffeomorphism ii\*Jt->dl which leaves 6(5?) pointwise
fixed. This will induce a map /i% which takes gab at p e 6(5?) into a new
tensor /i*gabatp. If na e T*p is orthogonal to 6(5?) (i.e. na V

a = 0 for
any VaeTp tangent to 6(5?)) and normalized so that na§

abnb = — 1
then, by suitable choice of JLL, na/i*gab can be made equal to any vector
at p which is not tangent to 6(5?). Thus the components nag

ab are not
significant. On the other hand as ju, leaves 6(5?) pointwise fixed, the
induced metric hab = 6*gab on £f will remain unchanged. It is therefore
only this part of g which lies in 6(5?) which need be given to determine
the solution. The other components nag

ab can be prescribed arbitrarily
without changing the solution by more than a diffeomorphism.
Another way of seeing this is to recall that we formulated the Cauchy
problem in terms of certain data on a disembodied three-manifold 5?
and then looked for an imbedding into some four-manifold ^ . Now
on 5? itself one cannot define a four-dimensional tensor field like g but
only a three-dimensional metric h, which we shall take to be positive
definite. The contra variant and co variant forms of h are related by

habhbc = 8a
c, (7.10)

where now Sa
c is a three-dimensional tensor in 5?. The imbedding 6 will

carry hab into a contra variant tensor field 6%hab on d(SP) which has

the property n . * , * * = 0. (7.11)

As nag
ab is arbitrary, one may now define g on d(S?) by

gab = 6*hab-uaub, (7.12)

where ua is any vector field on 6{SP) which is nowhere zero or tangent
to 0(6?). Defining gab by (7.1), one has:

Kb = $*9ab, nag
ab = -nau

aub, gabu
aub = -l. (7.13)

Thus hab is the metric induced on Sf by g and ua is the unit vector
orthogonal to 6(5?) in the metric g.
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232 THE CAUCHY PROBLEM [7.3

The situation with the first derivatives gab
[cu

c is similar: nag
ab

lcu
c

can be given any value by suitable diffeomorphisms. However there is
now an additional complication in that gab

lc depends not only on g but
also on the background metric g on Jt'. In order to give a description
of the significant part of the first derivative of g in terms only of tensor
fields defined on Sf, we proceed as follows. We prescribe a symmetric
contravariant tensor field xab o n &*- Under the imbedding xab is
mapped into a tensor field 0*xab o n #(^)- We require that this is
equal to the second fundamental form (see §2.7) of the submanifold
0(Sf) in the metric g. This gives

0+X* = 0+ha*6*hbd(u*gee);d

= d*h™d*hM((u*gec)ld-8rfcdu%f). (7.14)

Using (7.3), one has

0*Xab = W*h™d*h"(-gHgdJgl'ilku* + gHu*le + g^ (7.15)

This may be inverted to give gab\cu
c in terms of d#xab:

% A \ (7.16)

where Wb is some vector field on d(Sf). It can be given any required
value by a suitable diffeomorphism /i.

The tensor fields hab and xab cannot be prescribed completely
independently on SP. For multiplying the Einstein equations (7.7) by
nai one obtains four equations which do not contain gab\cdu

cud, the
second derivatives of g out of SP. Thus there must be four relations
between gab, gab

lcu
c and naT

ab. Using (2.36) and (2.35), they can be
expressed as equations in the three-manifold^:

*), (7.17)

\{R' + (X
dchdc)

2 - Xab)CdKKd) = Snd*(Tdeu*u*), (7.18)

where a double stroke || denotes covariant differentiation in £P with
respect to the metric h, and R' is the curvature scalar of h.

The data to on Sf that is required to determine the solution therefore
consists of the initial data for the matter fields (in the case of a scalar
field (j) for example, this would consist of two functions on Sf repre-
senting the value of $ and its normal derivative) and two tensor fields
hab and xab on Sf which obey the constraint equations (7.17-18). These
contraint equations are elliptic equations on the surface Sf which
impose four constraints on the twelve independent components of
(hab, xab)- In such situations, one can show one can prescribe eight of
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7.3] THE INITIAL DATA 233

these components independently and then solve the constraint equa-
tions to find the other four, see e.g. Bruhat (1962). We shall call a pair
(Sfy co) satisfying these conditions, an initial data set. We then imbed Sf
in some suitable four-manifold «^ with metric g and define gab on
d(Sf) by (7.12) for some suitable choice of ua. We shall take ua to be
gabnb. Thus it will be the unit vector orthogonal to 0{Sf) in both the
metric g and g. We shall also exploit our freedom of choice of Wa in
the definition of gab

lcu
c by (7.16) to make i\rb zero on 0(Sf). This requires

(7.19)

(Note that all the derivatives in (7.19) are tangent to 0(£f) as is required
by the fact that the fields involved have been defined only on 6(Sf).) To
ensure that \]rb vanishes everywhere one also needs ftb

lcii
c to be zero

on d(£f). However this now follows from the constraint equations
providing the reduced Einstein equations (7.8) hold on d(£f). One
may therefore proceed to solve (7.8) as a second order non-linear
hyperbolic system on the manifold *J( with metric ^.

(Note that there are 10 such equations for the ^'s; in proving the
existence of solutions of these 10 equations we do not split them into
a set of constraint equations and a set of evolution equations, and so
the question as to whether the constraint equations are conserved does
not arise.)

7.4 Second order hyperbolic equations

In this section we shall reproduce some results on second order
hyperbolic equations given in Dionne (1962). They will be generalized
to apply to a whole manifold, not just one coordinate neighbourhood.
These results will be used in the following sections to prove the exist-
ence and uniqueness of developments for an initial data set (^, co).

We first introduce a number of definitions. We use Latin letters to
denote multiple contra variant or co variant indices; thus a tensor of
type (r, s) will be written as KJj, and we denote by | / | = r the number
of indices that the multiple index / represents. We introduce a positive
definite metric eab on J( and define

0 00 p pIJ pabpcd 0PQ
eIJ — eabecd '••epq> e ~ ^ e ••-£"*,

r times r times
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234 THE CAUCHY PROBLEM [7.4

where | / | = |J | = r. We then define the magnitude \Kxj\ (or simply,
|K|) as (KTjKL

MeILeJM)i where repeated multiple indices imply
contraction over all the indices they represent. We define | DmKI

J \
(or simply, |DmK|) to be I ^ J I ^ I where \L\ = m and as before, | indi-
cates covariant differentiation with respect to £.

Let JV* be an imbedded submanifold of *J( with compact closure
in J(. Then {{K1^^^ is defined to be

where dcr is the volume element on JT induced by e. We also define

||K,cyF||m to be the same expression where the derivatives are taken

only in directions tangent to Jf. Clearly, ||K,./r||r]? ^ | |K,^| |m .
The Sobolev spaces Wm(r, s,J^) (or simply TFm(i/T)) are then defined

to be the vector spaces of tensor fields KJj of type (r, s) whose values
and derivatives (in the sense of distributions) are defined almost every-
where on JV (i.e. except, possibly, on a set of measure zero; for the
rest of this section 'almost everywhere' is to be understood almost

everywhere) and for which | |^Jj,^r| |m is finite. With the norms

II t *W\m ̂ e Sobolev spaces are Banach spaces in which the Cm tensor
fields of type (r, s) form dense subsets. If e' is another continuous posi-
tive definite metric on J( then there will be positive constants Cx and
C2 such that

Cx\Kij\<\Kij\ ^Ci\Rij\ on JT,

and Cx\Kij,^\m < \K'j,y\m' ^ Ct\K'Jtjr\m.

Thus || J t / | | m ' will be an equivalent norm. Similarly another Cm

background metric §' will give an equivalent norm. In fact it follows
from two lemmas given below that if {^"eW™^) and 2m is greater
than the dimension of Jf, then the norm obtained using the covariant
derivatives defined by §" is again equivalent.

We now quote three fundamental results on Sobolev spaces. The
proofs can be derived from results given in Sobolev (1963). They
require a mild restriction on the shape of JV. A sufficient condition will
be that for each point p of the boundary djV it should be possible to
imbed an w-dimensional half cone in Jf with vertex at p> where n is
the dimension of JT. In particular this condition will be satisfied if
the boundary S«yT is smooth.
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7.4] SECOND ORDER HYPERBOLIC EQUATIONS 235

Lemma 7.4.1
There is a positive constant Px (depending on Jf, e and §) such that
for any field K*j e Wm(J^) with 2m > n, where n is the dimension of Jf,

I
From this and the fact that the vector space of all continuous fields
KJj on N is a Banach space with norm sup |K|, it follows that if

K*j e Wm{J/^) where 2m > n, then Kzj is continuous on JV*. Similarly
if KJj e Wm+v(Jf), then KJj is C*> on J^.

Lemma 7.4.2
There is a positive constant P2 (depending on JV, e and g) such that
for any fields K*j, LP

Q e Wm(jV) with 4m ^ n,

From this and the previous lemma it follows that if n ^ 4 and 2m > n,
then for any two fields if7^, Lp

Qe Wm(jV), the product KI
JL

P
Q is

also in Wm(Jf).

Lemma 7.4.3
If JV' is an (n — 1)-dimensional submanifold smoothly imbedded inc/T,
there is a positive constant P3 (depending on JV, ./T', e and g) such
that for any field K*j e Wm+1(^T),

We shall prove the existence and uniqueness of developments for
(S?,<a) when habeW^a{^) and #a6 e TF+a(^) where a is any non-
negative integer. (If SP is non-compact, we mean by habe Wm(Sf) that
hab e Wm{Jf) for any open subset JV of Sf with compact closure.)
A sufficient condition for this is that hab be C4+a and xab be C3+a on ̂ ;
by lemma 7.4.1, a necessary condition is that hab be C2+a and xab be
(71+a. The solution obtained for gab will belong to W*+a(Jf) for each
smooth spacelike surface £F and so the (2 + a)th derivatives will be
bounded, i.e. gab will be C<2+a>- on Jt'.

These differentiability conditions can be weakened to cases such as
shock waves where the solution departs from W* behaviour on well-
behaved hypersurfaces; see Choquet-Bruhat (1968), Papapetrou and
Hamoui (1967), Israel (1966), and Penrose (1972a). However no proof
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236 THE CAUCHY PROBLEM [7.4

is known for cases in which such departures occur generally. The W*
condition for the existence and uniqueness of developments is an
improvement on previous work (Choquet-Bruhat (1968)) but it is
somewhat stronger than one would like since the Einstein equations
can be defined in a distributional sense if the metric is continuous and
its generalized derivatives are locally square integrable (i.e. if g is C°
and W1). On the other hand any Wp conditions for p less than 4 would

FIGUBE 48. °U is an open set with compact closure in the manifold *Jt — 3SP x R1.
%+ is the region of °U for which t ^ 0 and tfttf) is the region of <fy between t = 0
and t = t' > 0.

not guarantee the uniqueness of geodesies, or, for p less than 3, their
existence. Our own view is that these differences of differentiability
conditions are not important since as explained in § 3.1, the model for
space-time may as well be taken to be C00.

In order to prove the existence and uniqueness of developments we
now establish some fundamental inequalities (lemmas 7.4.4 and 7.4.6)
for second order hyperbolic equations, in a manner similar to that of
the conservation theorem in § 4.3.

Consider a manifold ^ o f the form 34? xR1 where #f is a three-
dimensional manifold. Let °U be an open set of ̂ w i t h compact closure
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7.4] SECOND ORDER HYPERBOLIC EQUATIONS 237

which has boundary d°il and which intersects Jf (0), where
denotes the surface Jf? x {t}, teR1. Let °ll+ and ̂ (t') denote the parts
of °U for which t ^ 0 and t' > t^ 0 respectively (figure 48). On <%+ let
g be a C2~ background metric and let e be a Cx~ positive definite
metric. We shall consider tensor fields KTj which obey second order
hyperbolic equations of the form

L(K) = A*K*JWb + B>nQJK<ip]a + C*iQJK*P = F*j, (7.20)

where A is a Lorentz metric on tft+ (i.e. a symmetric tensor field of
signature + 2), B, C and F are tensor fields of type indicated by their
indices, and | denotes covariant differentiation with respect to the
metric g.

Lemma 7.4.4

If (1) d°ll{\ tft+ is achronal with respect to A,
(2) there exists some Q± > 0 such that on ̂ +

and AabWaWb ^ Qie
abWaWb

for any form W which satisfies Aabt\aWb = 0,
(3) there exists some Q2 such that on ̂ +

|A| < Q2, |DA| < Q2, |B| < Q2, |C| ^ Q2,

then there exists some positive constant P4 (depending on °ll, e, g,
Q1 and Q2) such that for all solutions Kxj of (7.20),

One forms the 'energy tensor' Sab for the field Kxj in analogy to the
energy-momentum tensor of a scalar field of unit mass (§ 3.2):

Sab = {(AacAbd-iAabAcd)KI
JlcK

p
Qld-^AabKIjKp

Q}eJ^eIP. (7.21)

The tensor Sab obeys the dominant energy condition (§4.3) with
respect to the metric A (i.e. if Wa is timelike with respect to A then
8abWaWb ^ 0 and SabWa is non-spacelike with respect to A). Moreover
by conditions (2) and (3) there will be positive constants Qz and QA

such that
| . (7.22)

We now apply lemma 4.3.1 to Sab. taking ^ + as the compact region IF
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238 THE CAUCHY PROBLEM [7.4

and using the volume element dfi and co variant differentiation defined
by the metric §:

f 8<*tlad&bf _ S«%ad&b < f _ 8<*tla

t' (7.23)

where P is a positive constant independent of Sab. (The sign has been
changed in the first term on the right-hand side since the surface
element dab of the surface 3f (t) is taken to have the same orientation
as tlb, i.e. dab = tlb dcr where dcr is a positive definite measure on Jff(t).)
Since e and f* are continuous there will be positive constants Qb and Q6

such that on °U+ n , , „ n , ,
+ Q5dcr < do* ^ #6do*, (7.24)

where do* is the area element on J^(t) induced by e. Thus by (7.22)
and (7.23) there is some Q7 such that

+ f||K,^(On ^4^dtf+(\sab
]bt{ad(T)dtf\. (7.25)

By (7.20),

Sab
lb = A^K^^FPQ eJQeIP + (terms quadratic in Z ^ and

iTpg(c with coefficients involving Acd, Acd
{e,

frm,B*™QJMidCPI
QJ). (7.26)

Since the coefficients are all bounded on ^r+, there is some Q8 such that

SVia<<28{|F|2+|K|2+|DK|3}. (7.27)

Thus there is some Q9 such that, from (7.25) and (7.27),

f) n •+ | |1«d«' + ||

This is of the form dx/dt ^ Q9{x + y}9 (7.28)

where x{t) = f' ||K, ^ ( ^ ) n ^+ | | i2d^.
Jo

Therefore a; ^ e^ f e-Q*ry(t') dt'. (7.29)
Jo
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Since y is a monotonically increasing function of t and since t is
bounded on %+, there is some Q10 such that

Thus ||K, JT(t) n flrjx ^ P4{||K, JT(O) n «r+||i + ||F, «r(t)||0}, where

A = (69+610)*. n
With this inequality one can immediately prove the uniqueness of
solutions of second order hyperbolic equations which are linear, i.e.
for which A, B, C and F do not depend on K. For suppose KUj and
K^j were solutions of the equation L(K) = F which had the same
initial values and first derivatives on J^(0) f) °ll. Then one can apply
the above result to the equation i(Kx — K2) = 0 and obtain

UK1 —K a ,JT(0n 4T+IU = 0.
Therefore K1 = K2 on # + . One has thus

Proposition 7.4.5
Let A be a C1" Lorentz metric on J( and let B, C, and F be locally
bounded. Let 3tf <= Jf be a three-surface which is spacelike and acausal
with respect to A. Then if i^ is a set in D+(J#P, A), the solution on *V of
the linear equation (7.20) is uniquely determined by its values and
the values of its first derivatives on Jiff] J~(i^, A).

By proposition 6.6.7, D+{Jf?9 A) is of the form JtTxRKIfqe IT, then
by proposition 6.6.6, J~(q) 0 J+(J^) is compact and so may be taken
for # + . D

Thus a physical field obeying a linear equation of the form (7.20) will
satisfy the causality postulate (a) of §3.2 provided the null cone of A
coincides with or lies within the null cone of the space-time metric g.

In order to prove the existence of solutions of the equations (7.20)
we shall need inequalities for higher order derivatives of K. We shall
now take the background metric g to be at least C5+a where a is a non-
negative integer and we shall take °tt to be such that J f (0) n °U has
a smooth boundary and such that there is a difFeomorphism

which has the property that for each t e [0, £J,

We do this so that there shall be upper bounds Pv P2 and P3 to the
constantsPp P2 and P3 in lemmas 7.4.1-7.4.3 for the surface Jf? (t) n ^+.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.008


240 THE CAUCHY PROBLEM [7.4

Lemma 7.4.6
If conditions (1) and (2) of lemma 7.4.4 hold and if

(4) there is some Qz such that

IIA,^+| | 4 + o < Q» I |B,^+| |3 +a < Qz, | C , ^ + | | 3 + « < Qz
(by lemma 7.4.1, this implies condition (3)), then there exist positive
constants P5 a (depending on °U, e, g, a, Q± and Qz) such that

| | | | a } . (7.30)

From lemma 7.4.4 one has an inequality for || K, J f (t) n <%+\\ v To obtain
an inequality for ||K, J^(t) n ^+||2 one forms the 'energy' tensor Sab

for the first derivatives K1^ and proceeds as before. The divergence
Sab

lb can now be evaluated by differentiating equations (7.20):

Sab
lb = AadKI

JlcdF
p
Q]ee

eceJQeIP + (terms quadratic in J ^ ,

^ j ^ and if7j|Cd with coefiicients involving

and CP*QJid). (7.31)

With the possible exceptions of BcPIQJld and CPI
QJld, these coefficients

are all bounded on C2i+ in the case a = 0. When integrated over the
surface «?f (<') n ^+, the term in (7.31) involving BcPI

QJld is

There is some Qi such that for all t', (7.32) is less than or equal to

|DB||DK||D2K|do-

^\Qi\ (|r>2K|2+|DB|2|DK|2)dcr. (7.33)

By lemma 7.4.2,

f |DB|«

where, by condition (4) and lemma 7.4.3, \\B9Jf(t')n <%+\\2 < P3QS.
The term involving CPI

QJld can be bounded similarly. Thus by lemma
4.3.1 there is some constant Q5 such that

f
Jjf(«n#+

f | |K,Jf(nn^+||2
2df '+f |DF|2dcr]. (7.34)

Jo Jvm )
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By lemma 7.4.4,

L
, J f (0) fl %\^+ ||F, ^W||o2}- (7-35)

Adding this to (7.34), one obtains

, jf(O)n ®U

+Jj|K, JT(«')n ^Il^dr + HF,^)!!2), (7.36)

where #6 = Q5 + 2P4. By a similar argument to that in lemma 7.4.4,
there is some constant Q7 such that

|| n *+||, < £7{||K, jr(0) n * | | , + ||F, ^OIIJ . (7.37)
From lemma 7.4.1 it now follows that on <2f+,

| | | (7-38)

Using this one may proceed in a similar way to establish an inequality
for || K, J^(t) n ^+|| 3. The divergence of the 'energy' tensor now gives
a term of the form

Q8 f (|D3K|2+|D2B|2|DK|2)da-. (7.39)

By lemma 7.4.2 the second term above is bounded by

08P2
2 IIB, Jf(t') n ^+||3

21|K, tf(t') n ̂ +||2
2,

where by condition (4), ||B, J^(t)() W+\\3 is defined for almost all
values of t' and is square integrable with respect to t'. Thus one can
obtain an inequality for ||K, J^(t) ft W+\\3 in the same manner as for
|| K, J4?(t)n ^+|| 2- The procedure for higher order derivatives is
similar. D

Corollary

There exist constants P6 a and P7 a such that

®+\\i+a < P6jO{||K,

and | |K,^+| |4 + o<P7 a{ditto},

where ua is some Cs+a vector field on ^f (0) which is nowhere tangent
to JT(0).
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By (7.20), the second and higher derivatives of K out of the surface
«3f (0) may be expressed in tferms of F and its derivatives out of 3^f{0),
KIJiau<1 a n d derivatives of K in the surface Jf (0). By lemma 7.4.3,

(7.40)

Thus there will be some constant Q4 such that

+ \\KiJiau°, jf(0) n

The second result follows immediately, since t is bounded on ^ + . D

We can now proceed to prove the existence of solutions of linear
equations of the form (7.20). We first suppose that the components of
A, B, C, F, u and g are analytic functions of the local coordinates
z1, x2, x3 and #4 (#4 = t)ona> coordinate neighbourhood "T and take the
initial data KJj = QKI

J and K1^^ — -J&j to be analytic functions
of the coordinates z1, x2 and #3 on ^(0) n ^ . Then from (7.20) one can
calculate the partial derivatives d2(KJj)ldt2, d^K^/St* dx\ 0»(JPj)/*8,
etc. of the components of K out of the surface J^(0) in terms of
derivatives of 0K and XK in J^(0). One can then express K*j as a formal
power series in z1, x2, x* and t about the origin of coordinates p. By the
Cauchy-Kowaleski theorem (Courant and Hilbert (1962), p. 39) this
series will converge in some ball i^(r) of coordinate radius r to give a
solution of (7.20) with the given initial conditions. One now selects
an analytic atlas from the O00 atlas of *Jf, covers Jt?(O) n % with co-
ordinate neighbourhoods of the form i^(r) from this atlas, and in each
coordinate neighbourhood constructs a solution as above. One thus
obtains a solution on a region W(t2) for some t2 > 0. One then repeats
the process using 3f (t2). By the Cauchy-Kowaleski theorem, the ratio
of successive intervals of t for which the power series converges is
independent of the initial data and so the solution can be extended to
the whole of %+ in a finite number of steps. This proves the existence
of solutions of linear equations of the form (7.20) when the coefficients,
the source term and the initial data are all analytic. We shall now
remove the requirement of analyticity.
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Proposition 1A.1
If conditions (1), (2) and (4) hold and if

(5) F
(6) 0K G w4+«(^(0) n #) , XK G

then there exists a unique solution K G TF4+a(^+) of the linear equation
(7.20) such that on JT(O), Kxj = 0K

Jj and KJ
Jlau

a = ^ j .

We prove this result by approximating the coefficients and initial data
by analytic fields and showing that the analytic solutions obtained
converge to a field which is a solution of the given equations with the
given initial conditions. Let An (n = 1,2,3,...) be a sequence of
analytic fields on °tt+ which converge strongly to A in W*+a(W+). (An is
said to converge strongly to A in Wm if || An — A||m converges to zero.)
Let Bn, Cn and Fn be analytic fields on tff+ which converge strongly
to B, C and F respectively in Wz+a(<%+), and let 0Kn and xKn be analytic
fields on Jf'(O) ft °U which converge strongly to 0K and XK in
W*+a(JfT(0) n °U) and W*+a(Jf(0) n <%) respectively. For each value
of n there will be an analytic solution Kn to (7.20) with the initial
values Kn

Jj = QKJJ, Kn
I
J\au

a = ^Jj. By the corollary to lemma
7.4.6, || Kn, ^+| |4 + a will be bounded as w->oo. Therefore by a theorem
of Riesz (1955) there will be a field K G W*+a((%+) and a subsequence
Kn, of the Kn such that for each b, 0 ̂  b ̂  4 + a, DbKn, converges
weakly to D6K. (A sequence of fields I^j on JV is said to converge
weakly to IJj if for each C°° field JJ

j9

Since Aw, B n and Cn converge strongly to A, B and C in
sup | A — An|, sup|B —Bn| and sup|C —Cn| will converge to zero.
Thus Ln,(Kn,) will converge weakly to L(K). But Ln,(Kn>) is equal to Fn,
which converges strongly to F. Therefore L(K) = F. On J^(0) n #
Kn/j and Kn/Jlau

a will converge weakly to if^ and K1^^ which
must therefore be equal to 0K

Jj and 1K
I
J respectively. Thus K is a

solution of the given equation with the given initial conditions. By
proposition 7.4.5 it is unique. Since each Kn satisfies the inequality in
lemma 7.4.6, K will satisfy it also. •
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7.5 The existence and uniqueness of developments for the
empty space Einstein equations

We shall now apply the results of the previous section to the Cauchy
problem in General Relativity. We shall first deal with the Einstein
equations for empty space (Tab = 0), and shall discuss the effect of
matter in §7.7.

The reduced Einstein equations

Eab
cd($

cd) = SnTab - (Rab - \flt)ab) (7.42)

are quasi-linear second order hyperbolic equations. That is, they have
the form (7.20) where the coefficients A, B and C are functions of
K and DK (actually, in this case A** = gab is a function of <f>ab and
not of 0a6|C). To prove the existence of solutions of these equations we
proceed as follows. We take some suitable trial field (j)fab and use this
to determine the values of the coefficients A, B and C in the operator E.
Using these values we then solve (7.42) as a linear equation with the
prescribed initial data and obtain a new field (j/^. We thus have a
map a which takes 0 ' into 0", and we show that under suitable condi-
tions this map has a fixed point (i.e. there is some <j> such that
a(0) = 0) . This fixed point will be the desired solution of the quasi-
linear equation.

We shall take the background metric g to be a solution of the empty
space Einstein equations and choose the surfaces J^(t) n *%+ and
d°tt n ^ + to be spacelike in g. Then by lemma 7.4.1 there will be some
positive constants Qa such that if for some value of a ^ 0

| |0 ' ,^+| | 4 +a<<L (7.43)

then the coefficients A', B' and C determined by 0 ' satisfy conditions
(1), (2) and (4) of lemma 7.4.6 for given values of Qx and Q3. From
(7.41) one then has

||0", #+||4+o < ^7,a{||o0> «̂ f (0) H Wli+a+ || 10> «^(0) 0 ^ | 3+o}.

Thus the map a: W*+a(<%+)->W*+a(<%+) will take the closed ball W(r)
of radius r (r < Qa) in W*+a(<%+) into itself provided that

||O0, J?(0) n #f4+a ^ i ^ a " 1

and ||X0, Jf(0) n #j | 3 + a ^ \rPlt a~
x. (7.44)

We shall show that a has a fixed point if (7.44) holds and if r is
sufficiently small.
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Suppose (fii and <f>2' are in W(r). The fields 0 / = ot(<t>i) and
<t>2 = a(02 ') satisfy E^fo') = 0, E2'(<f>2") = 0 where ^ ^ is the
Einstein operator with coefficients A/ , B1

/ and C / determined by 0 / .

ThuS ^ ' ( * * 0 ' ) ( ^ ' B
Since the coefficients A/ , B / and C / depend difFerentiably on <f>± and

x' for (fri in TF(r), there will be some constant Q4 such that on tf£+

Therefore by lemmas 7.4.1 and 7.4.6,

| (^ ' i - t f ' . ) (* ' . ) | < 3f«4i»1P77iPai8

We now apply lemma 7.4.4 to (7.45) to obtain the result

where Q5 is some constant independent of r. Thus for sufficiently
small r, the map a will be contracting in the || ||x norm (i.e.
||a(0i) ~~a(<f}2)\\ i< | |0 i~ 02||i) a n d ^ e sequence oPffii)w^ converge
strongly in W\°ll+) to some field <f>. But by the theorem of Riesz some
subsequence of the OLn{<t>\) will converge weakly to some field
$ G W(r). Thus <f> must equal ̂  and so be in W(r). Therefore oc(<f>) will
be defined. Now

As n->co, the right-hand side tends to zero. This implies that
||a(0) — <f>, ^+||i = 0 and so that a(^) = <J>. Since the map a is con-
tracting the fixed point is unique in W(r). We have therefore proved:

Proposition 7.5.1

If g is a solution of the empty space Einstein equations, the reduced
empty space Einstein equations have a solution <f> e W4+a(tf/+) if
| |o0,^(O)n #f4+a and | | i0,^(O)n #|[3+a are sufficiently small.
| |0, Jf (0) n #+| |4+o will be bounded and so <f> will be at least C(2+«>-. •

This solution will be locally unique even among solutions which are
not in
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Proposition 7.5.2
Let 4> be a Cl~ solution of the reduced empty space Einstein equations
with the same initial data on an open set if c= ̂ f(O) n %> Then $ = <f>
on a neighbourhood of if in <%+.

Since <f> is continuous one can find a neighbourhood °ll' of if in ^ such
that the conditions of lemma 7.4.4 hold for A, B and C. As before one

(7.48)

Similarly there will be some Q6 such that

Applying lemma 7.4.4 to (7.48) one obtains an inequality of the form

dx/dt ^ Q7x,

where x= P||<£-</>, 3^(t')(\ ^'+llid*'-
Jo

Therefore $ = <£ on #'+. D

Proposition 7.5.1 shows that if one makes a sufficiently small
perturbation in the initial data of an empty space solution of the
Einstein equations one obtains a solution in a region °U+. What one
wants however is to prove the existence of developments for any initial
data hab and xab which satisfy the constraint equations on a three-
manifold SP. To do this we proceed as follows. We take J( to be i24,
e to be the Euclidean metric and g to be the flat, Minkowski metric
(this is a solution of the empty space Einstein equations). In the usual
Minkowski coordinates x1, x2, x* and x4 (#4 = t) we take °tt to be such
that d°ll n °tt+ is spacelike and ^f (0) n °U consists of the points for
which (x1)2 + (a:2)2 + (#3)2 ^ 1, #4 = 0. The idea now is that any metric
appears nearly flat if looked at on a fine enough scale. Therefore if one
maps a sufficiently small region of £P onto J f (0) n °U, one can use
proposition 7.5.1 and obtain a solution on <%+. We then repeat this for
other portions of SP and join up the resulting solutions to form a
manifold J( with metric g which is a development of (S?, 10).

Let ifi be a coordinate neighbourhood in SP with coordinates y1, y2

and yz such that at p, the origin of the coordinates, the coordinate
components of hab equal Sab. Let ^ ( / i ) be the open ball of coordinate
radius /x about p. Define an imbedding 6^. ̂ ( / i ) - > ^ by xl =f1~

1yi

(i = 1, 2, 3), x* = 0. By the usual law of transformation of a basis, the

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.008


7.5] EXISTENCE AND UNIQUENESS 247

components o£d*hab and d*xab wu^h respect to the coordinates {x} are
f±~2 times the components of hab and xab with respect to the co-
ordinates {y}. We define new fields h'ab and x'ab on ^ by h'ab = f^hab

and x'ab = fizXab- Then since h is continuous (in fact C2+a) on £? one
can make g'ab-§ab and g'ab\cu

c arbitrarily small on J^(0)n °il by
taking fx sufficiently small, where g'ab and g'ab\cu

c are defined from
h'ab and x'ab *n t n e manner of §7.3. The derivatives of g'ab and g'ab

]cu
c

in the surface J f (0) will also become smaller as fx is made smaller.
Thus ||0<£', J f (0) n # | j 4 + a and fl^', J f (0) n #j[3+a can be made small
enough that proposition 7.5.1 can be applied and a solution for <f>'
obtained on <%+. Then glb =f1~

2g'ab will be a solution of the reduced
Einstein equations with the initial data determined by hab and xab-
Similarly one can obtain a solution on °ll_, the part of °U on which t ^ 0.

One can now cover £f by coordinate neighbourhoods ^ ( / a ) of the
form ^ ( / i ) , map them by imbeddings da to neighbourhoods °tta of the
form °ll and obtain solutions g^ab on ^ a . The problem now is to
identify suitable points in the overlaps to make the collection of the
^ a into a manifold with a metric g. To do this we make use of the
harmonic gauge condition

<f>bcic = gbc\c-kbcgde9dc\c = 0' (7.49)

By the definition (7.3) of 8Fa
bc, this is equivalent to g^8Yb

de = 0.
Therefore for any function z,

z.,ab9ab = Z\ab9
ab-Wc

abzlcg
ab = z{abg

ab. (7.50)

If the background metric is the Minkowski metric and z is one of the
Minkowsld coordinates x1, x2, #3 and #4, the right-hand side of (7.50)
will vanish. Suppose now one has an arbitrary W4+a Lorentz metric g
on a manifold Jt'. In some neighbourhood <& <z ^ one can find four
solutions z1, z2, z3 and z4 of the linear equation

which are such that their gradients are linearly independent at each
point of (2/. We may then define a diffeomorphism JLL: ®j->Jl by
xa = za (a = 1,2,3,4). This diffeomorphism will have the property
that the metric /i*gab on J£ will satisfy the harmonic gauge condition
with respect to the Minkowski metric g on ^ Thus if the metric g is
a solution of the Einstein equations on Jt\ the metric /i% g will be
a solution of the reduced Einstein equations on ̂ w i t h the background
metric g.
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The procedure to identify points in the overlap between two neigh-
bourhoods ^ a and °Up is therefore to solve (7.51) on °tta for the coordi-
nates Xp1, xf, x^ and x^ using the initial values for Xpa and Xpa

lbu
b

determined by the overlap of the coordinate neighbourhoods ^ and
iTp on £f. In fact x^au

a = 0 (i = 1, 2, 3) and x^lau
a = 1 where

ua = d/dxa
a is the unit vector in tf/a orthogonal to Jf(0) in the metric g.

Thus x^ = xa* though x£ will not in general be equal to xj. By proposi-
tion 7.4.7. the coordinates Xpa will be C(2+a)~ functions on <%a. (In
proposition 7.4.7 the background metric with respect to which the
covariant derivatives are taken has to be C<5+°)-. Thus it cannot be
applied directly to (7.51), since the co variant derivatives are taken
with respect to g, which is only TT4+a. However one can introduce
a C5+a background metric g and express (7.51) in the form

where || indicates co variant differentiation with respect to g. Proposi-
tion 7.4.7 can then be applied to this equation.)

Since the gradients of Xpa are linearly independent on^(0) n ^ a ,
they will be linearly independent on some neighbourhood <%"a of
Jf (0) in <%a. The metric [i*gab will be at least C1" on fi(<%"a) in
tflp. Since it will obey the reduced empty space Einstein equations
on °Mp in the background metric g and since it has the same initial data
on dp^a n ^p), it must coincide with g^ on some neighbourhood °llp of
OfiC^a n ^/t)in ^fi- T n i s shows that one may join together <%"a and °U'p
to obtain a development of the region ^ U ^ of £f. Taking the
covering {^} of Sf to be locally finite, one may proceed in a similar
fashion to join together the subsets of the other neighbourhoods {tf/a}
to obtain a development of £?, i.e. a manifold Jt with a metric g and
an imbedding 0: &* ->J( such that g satisfies the empty space Einstein
equations and agrees with the prescribed initial data co on 0(Sf), which
is a Cauchy surface for Jt'. If (JK', g') is another development of (SP, co)
one can by a similar procedure establish a diffeomorphism /i between
some neighbourhood of d'(£ff) in JC and some neighbourhood of d(SP)
in J( such that /i*g'ab = gab. We have therefore proved:

The local Cauchy development theorem

lihab G W4+°(^) and xab e W*+a(5?) satisfy the empty space constraint
equations there exist developments (JK, g) for the empty space
Einstein equations such that g e WA+a(JV) and g e TT4+a(^) for any
smooth spacelike surface 3/IP. These developments are locally unique
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in that if (uT, g') is another W*+a development of (&, to) then (uT, g)
and {JC, g') are both extensions of some common development of

That geW*+a(Jl?) follows from lemma 7.4.6 since the surfaces of
constant t can be chosen arbitrarily. •

7.6 The maximal development and stability

We have shown that if the initial data satisfied the empty space
constraint equations one can find a development, i.e. one can construct
a solution some distance into the future and past of the initial surface.
In general, this development can be extended further into the future
and past to give a larger development of (SP, to). However we shall
show by an argument similar to that of Choquet-Bruhat and Geroch
(1969) that there is a unique (up to a diffeomorphism) development
{J(, g) of {£f, to) which is an extension of any other development
of («$*, to).

Recall that {JKl9 gx) is an extension of {JK2, g2) if there is an imbed-
ding fi: JK2->JK1 such that /^5!eg2 = g1? and such that d^/id^ is the
identity map on £f. Given a point qeS?, and a distance s one can
uniquely determine points p1e^1 and p2eJt2 by going a distance s
along the geodesies orthogonal to d^SP) and 62{£P) through 6x{q) and
62{q) respectively. Since /i(p2) must equal pv the imbedding ju, must be
unique. One can therefore partially order the set of all developments
of (*Ŝ , to), writing (u^2, g2) < (^i , gi) if G^i^gi) is an extension of
(«̂ 2> 62)- If now {{JKa, ga)} is a totally ordered set (a set s/ is said to be
totally ordered if for every pair a, b of distinct elements of s/9 either
a < b or b ^ a) of developments of (£P9 to), one can form the manifold
Jt1 as the union of all the Jt^ where for (JKa, g j < («^, g^) each
paeJKa is identified with fi^p^eJKp, where / £ a / ? : ^ - > ^ is the
imbedding. The manifold Jt' will have an induced metric g' equal to
fia# ga on each fia(*Jfa) where fia: ^ a - > ^ ' is the natural imbedding.
Clearly {JKr, g') will also be a development of (SP, to); therefore every
totally ordered set has an upper bound, and so by Zorn's lemma (see,
for example, Kelley (1965), p. 33) there is a maximal development
{Jt\ g) of (5P, to) whose only extension is itself.

We shall now show that {Jt, g) is an extension of every development
of (S?, to). Suppose (JK'9 g') is another development of (S?9 to). By the
local Cauchy theorem, there exist developments of {SP9 to) of which

?9 g) and (JK'9 g') are both extensions. The set of all such common
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developments is likewise partially ordered and so again by Zorn's
lemma there will be a maximal development {JK", g") with the imbed-
dings jl\ Jt" ->Jt and fi': JI" ->J(', etc. Let J(+ be the union of
Ji, JC and J(", where each p" eJK" is identified with ji(p")eJi and
fi\p") G X . If one can show that the manifold JK+ is Hausdorff, the
pair (~#+, g+) will be a development of (^, CJ). It will be an extension
of both (Ji\ g) and (Jtl', g'). However the only extension of (Jt', g) is
(Ji', g) itself, and so (Jt\ g) must equal (JK+, g+) and be an extension

Suppose that ~#+ were not Hausdorff. Then there exist points
p G (jl(JK")y <= Ji and^)' e (/ir(JK")Y <= Jt1 such that every neighbour-
hood °ti of p has the property that ii'(fi~\^l)) contains p'. Now since
(JI", gr/) is a development, it will be globally hyperbolic as will its
image fL(J(") in Ji. Therefore the boundary of ji(JK") in Ji must be
achronal. Let y be a timelike curve in Ji with future endpoint at p.
Then J9' must be a limit point in J(' of the curve pi'fL~\y). In fact it
must be a future endpoint, since strong causality holds in {JK\^').
Thus the point p' is unique, given p. Further, by continuity vectors
at p can be uniquely associated with vectors at p. Thus one can find
normal coordinate neighbourhoods °ll of p in^/f and °U' oip' in J(' such
that under the map /I'/I'1 points of °tt n jl{JS(") are mapped into points
of ^ r n /i\JK") with the same coordinate values. This shows that the
set J^ of all 'non-Hausdorff' points of (fl(JK")y is open in (fi(<J("))''.
We shall suppose that J^ is non-empty, and so obtain a contradiction.

If A is a past-directed null geodesic in ^ through petF, then since
one can associate directions &tp with directions at^', one can construct
a past-directed null geodesic A' through p' in Jt' in the corresponding
direction. To each point of A n (/Z(~#"))' there will correspond a point
of A' n (fi'{JK"))' and so every point of A n (fi(Jl")Y will be in &. Since
8(6?) is a Cauchy surface for ~#, A must leave (fl(JK")y at some point q.
There will be some point r e fF in a neighbourhood of q such that there
is a spacelike surface &F through r which has the property that
(J^ — r) c= JLi^JC). There will be a corresponding spacelike surface
£?' = (fi*jjL-1^ — f)) l)r' in Jt' through the corresponding point rf.
The surfaces J f and Jtf" may be regarded as images of a three-
dimensional manifold J^ under imbeddings ^ : J f - > ^ and
i/r': 3tf ->Jf such that ijf-1/!/*'-1^' is the identity map on 2tf-$-\p).
The induced metrics ^ ( g ) and ^'*(g') on ^f will agree since 3$—p
and f̂" -p' are isometric. By the local Cauchy theorem, they will be
in W*+a( J(?). Similarly the second fundamental forms will agree and
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be in W3+a(Jf). Neighbourhoods of j f i n ^ and JfTf in uT would be
PF4+a developments of 3tf. By the local Cauchy theorem they must be
extensions of the same common development (~^*, g*). Joining
(c^*, g*) to {JK", g") one would obtain a larger development of (^, to),
of which (^K, g) and {Jt\ g') would be extensions. This is impossible,
since {Ji'', g") was the largest such common development. This shows
that J(+ must be Hausdorff, and so that (ytf, g) must be an extension
of(uf',g')-

We have therefore proved:

The global Cauchy development theorem

Ifhab e W*+a(£f) and xab e Ws+a(^) satisfy the empty space constraint
equations, there exists a maximal development (JK, g) of the empty
space Einstein equations with ge W*+a(J?) and geW*+a(J4?) for any
smooth spacelike surface #F. This development is an extension of any
other such development.

We have so far only proved that this development is maximal among
TF4+a developments. If a is greater than zero, there will also be

+a~1, W*+a~2,..., W* developments which are extensions of the
+a development. However, Choquet-Bruhat (1971) has pointed out

that these developments must all coincide with the W* development.
This is because one can differentiate the reduced Einstein equations
and then regard them as linear equations on the W* development, for
the first derivatives oigab. Then using proposition 7.4.7 one can show
that gab is W5 on the TF4 development, if the initial data is W5. By
continuing in this way, one can show that if the initial data is C00, there
will be a C00 development which will in fact coincide with the TF4

development.
We have proved the existence and uniqueness of maximal develop-

ments only for TF4 or higher metrics. In fact, it is possible to prove the
existence of developments for W* initial data, but we have not been
able to prove the uniqueness in this case. It may be possible to extend
the W* maximal development either so that the metric does not remain
in TF4, or so that d(SP) does not remain a Cauchy surface. In the latter
case, a Cauchy horizon occurs; examples of this were given in
chapter 6. On the other hand it may be that some sort of singularity
occurs, in which case the development cannot be extended with a
metric which is sufficiently differentiate to be interpreted physically.
In fact, theorem 4 of the next chapter will show that if SP is compact
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and Xab^ab *s negative everywhere on Sf, then the development cannot
be extended to be geodesically complete with a C2~ metric, i.e. with
locally bounded curvature.

We have shown there is a map from the space of pairs of tensors
(hab, xab) o n & which satisfy the constraint equations to the space of
equivalence classes of metrics g on a manifold Jl, which, by proposi-
tion 6.6.8, is diffeomorphic to S^xR1. If two pairs {hab,xab) and
(h'ab,x'ab) are equivalent under a diffeomorphism A : ^ - ^ ^ (i.e.
Â  hab = h'ab and X*xab = Xab) they will produce equivalent metrics g.
We thus have a map from equivalence classes of pairs (hab, xab) to
equivalence classes of metrics g. Now hab and xab together have twelve
independent components. The constraint equations impose four rela-
tions between these, and the equivalence under diffeomorphisms may
be regarded as removing a further three arbitrary functions, leaving
five independent functions. One of these functions may be regarded as
specifying the position oid(Sf) within the development {Jt', g). There-
fore maximal developments of the empty space Einstein equations
are specified by four functions of three variables.

One would like to show that the map from equivalence classes of
(hab, xab) to equivalence classes of g is continuous in some sense. The
appropriate topology on the equivalence classes for this is the
Wr compact-open topology (cf. § 6.4). Let g be a Cr Lorentz metric on J(
and °tt be an open set with compact closure. Let V be an open set in
Wr(tfl) and let 0{°U, V) be the set of all Lorentz metrics o n ^ whose
restrictions to °ll lie in V. The open sets of the Wr compact open
topology on the space ^(JK) of all Wr Lorentz metrics on ^ are
defined to be the unions and finite intersections of sets of the form
O(U, V). The topology of the space £(?*(J() of equivalence classes of
Wr metrics on J( is then that induced by the projection

n:

which assigns a metric to its equivalence class (i.e. the open sets of
££*(J() are of the form n(Q) where Q is open in j££(^)). Similarly the
Wr compact open topology on the space Q.r(^) of all pairs (hab, xab)
which satisfy the constraint equations is defined by sets of the form
O(<%, V, V) consisting of the pairs for which hab e V and xab G V' where
V and V are open sets in Wr{S?) and Wr-\^) respectively. The C°°
metrics on Jt form a subspace i£^{Jt) of the space JSf {JK) of all
Lorentz metrics on Jt'. Since a C00 metric is Wr for any r, one has the
Wr topology on ^{JK). One can then define the C00 or W°° topology
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on SgJ^Jl) as that given by all the open sets in the Wr topologies on
&JJt) for every r. The C00 topology on ^^(JK) and on Q J ^ ) are
defined similarly.

One would like to show that the map Ar from the space Q,r*(£f) of
equivalence classes of pairs (A°6, xab) to the space &r*(JK) of equiva-
lence classes of metrics is continuous with the Wr compact open
topology on both spaces. In other words, suppose one has initial data
hab e Wr{5?) and xab e WT-\^) which gives rise to a solution g e Wr{JK)
on Jt'. Then if i^ is a region of Jt with compact closure, and e > 0, one
would like to show there was some region <%/ oi£f with compact closure
and some S > 0 such that || g' - g, IT\\r < e for all initial data (h'ab, x'ab)

such that ||h'-h,^fr < \8 and ||x'-X>^ll-i < i*« T h i s r e s u l t may
be true, but we have been unable to prove it. What we can prove is
that this result holds if the metric is C(r+1)~. This follows immediately
from proposition 7.5.1, taking g to be the background metric and °ii
to be some suitable neighbourhood of J~(i^) 0 J+(6(£f)). In fact if one
examines lemma 7.4.6, one sees that the condition on the background
metric can be weakened from C(r+1)~ to Tr(r+1), but not to Wr, since the
(r— l)th derivatives of the Riemann tensor of the background metric
appear. (By the background metric being Wr+1 we mean that it is
Wr+1 with respect to a further Cr+1 background metric.) Thus the map
Ar: Qr*(e9

J>)->J^.*(«^) from the equivalence classes of initial data to
the equivalence classes of metrics will be continuous in the Wr compact
open topology at every Wr+1 metric. Although the Wr+1 metrics form
a dense set in the Wr metrics, there is a possibility that the map might
not be continuous at a Wr metric which was not also a Wr+1 metric.
However oo+ 1 = oo and so the map A^: Q*:

00(<^)->J27*J^Jt) will be
continuous in the C00 topology on both spaces.

One can express this result as:

Tine Cauchy stability theorem
Let {JK, g) be the W5+a (0 ^ a ^ oo) maximal development of initial
data h e W5+a(S?) and x e F 4 + a (^ ) , and let lT be a region of J+(d(^))
with compact closure. Let Z be a neighbourhood of g in «^5+a(^) and
°ll be an open neighbourhood in d(S?) of J~{y) n 0(S?) with compact
closure. Then there is some neighbourhood Y of (h, x) in £l5+a(^) such
that for all initial data (h', x') e Y satisfying the constraint equations,
there is a diffeomorphism [i\Jl'-^Jl with the properties

(1) O-W is the identity on e
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(2)
where (Jt', g') is the maximal development of (h', x')- D
Roughly speaking what this theorem says is that if the perturbation
of initial data on the Cauchy surface d(Sf) is small on J~(^) n 9(S^),
then one gets a new solution which is near the old solution in ir. In
fact the perturbation of the initial data has to be small on a slightly
larger region of the Cauchy surface than J~(i^) n 0(^)9 since the null
cones will be slightly different in the new solution and so i^ may not
lie in the Cauchy development of J~

7.7 The Einstein equations with matter
For simplicity we have so far considered the Einstein equations only
for empty space. However similar results hold when matter is present
providing that the equations governing the matter fields Y^/j obey
certain physically reasonable conditions. The idea is to solve the
matter equations with the prescribed initial conditions in a given
space-time metric g'. One then solves the reduced Einstein equations
(7.42) as linear equations with the coefficients determined by g' and
with the source term T'ab determined by g' and by the solution for the
matter fields. One thus obtains a new metric g" and repeats the
procedure with g" in place of g'. To show that this converges to a
solution of the combined Einstein and matter equations one has to
impose certain conditions on the matter equations. We shall require:

(a) if {0¥(i)} G W*+a{3e) and {^(i)} e W*+a(JfT) are the initial data on
an achronal spacelike surface £F in a W4+a metric g, there exists a
unique solution of the matter equations in a neighbourhood of J f in
D+(Jf?) with {¥<*)} e W*+a{3t?') for any smooth spacelike surface 3tf\
and ur _ \xr w* i Ola _ \i/\ i n r i ^ .

Mi) — 0 Mi)> Mi) J\au ~ 1 Mi) J o n ^ >

(b) if {¥(,)} is a W5+a solution in the W5+a metric g on the set <&+,
then there exist positive constants Q1 and Q2 such that

(0
| | o ( i ) o ( i ) ( ) L a l l i ^ i ^ )

for any TF4+a solution { '̂(1)} in the metric g' such that

and

U)
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(c) the energy-momentum tensor Tab is polynomial in

V . , , ¥</, .„ and g"».

Condition (a) is the local Cauchy theorem for the matter field in
a given space-time metric. Condition (b) is the Cauchy stability
theorem for the matter field under a variation of the initial conditions
and under a variation of the space-time metric g. If the matter
equations are quasi-linear second order hyperbolic equations, these
conditions may be established in a similar manner to that for the
reduced Einstein equations, providing that the null cones of the
matter equations coincide with or lie within the null cone of the space-
time metric g. In the case of the scalar field or the electromagnetic
potential which obey linear equations, these conditions follow from
proposition 7.4.7. One can also deal with a scalar field coupled to the
electromagnetic potential; one fixes the metric and the electro-
magnetic potential, solves the scalar field as a linear equation in that
metric and potential, and then solves the electromagnetic field in the
given metric with the scalar field as the source. Iterating this procedure
one can show that one converges on a set of the form tf/+ to a solution
of the coupled scalar and electromagnetic equations in the given
metric, providing that the initial data are sufficiently small. One then
shows, by rescaling the metric and the fields, that for ^ + sufficiently
small (as measured by the space-time metric g) one can obtain a solution
for any suitable initial data. The same procedure will work for any finite
number of coupled quasi-linear second order hyperbolic equations,
where the coupling does not involve derivatives higher than the first.

The equations of a perfect fluid are not second order hyperbolic, but
form a quasi-linear first o^der system. (For the definition of a first order
hyperbolic system, see Courant and Hilbert (1962), p. 577.) Similar
results can be obtained for such systems providing that the ray cone
coincides with or lies within the null cone of the space-time with
metric g. The requirement that the matter equations should be second
order hyperbolic equations or first order hyperbolic systems with their
cones coinciding with or lying within that of the space-time metric g,
may be thought of as a more rigorous form of the local causality
postulate of chapter 3.

With the conditions (a), (b) and (c) one can establish propositions
7.5.1 and 7.5.2 for the combined reduced Einstein's equations and the
matter equations; from these, the local and global Cauchy develop-
ment theorems and the Cauchy stability theorem follow.
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