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In this paper, we mainly investigate the well-posedness of the four-order degenerate
differential equation (P4): (Mu)′′′′(t) + α(Lu)′′′(t) + (Lu)′′(t)
= βAu(t) + γBu′(t) + Gu′

t + Fut + f(t), (t ∈ [0, 2π]) in periodic Lebesgue–Bochner
spaces Lp(T; X) and periodic Besov spaces Bs

p,q(T; X), where A, B, L and M are
closed linear operators on a Banach space X such that
D(A) ∩ D(B) ⊂ D(M) ∩ D(L) and α, β, γ ∈ C, G and F are bounded linear
operators from Lp([−2π, 0]; X) (respectively Bs

p,q([−2π, 0]; X)) into X,
ut(·) = u(t + ·) and u′

t(·) = u′(t + ·) are defined on [−2π, 0] for t ∈ [0, 2π]. We
completely characterize the well-posedness of (P4) in the above two function spaces
by using known operator-valued Fourier multiplier theorems.
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1. Introduction

The characterizations of the well-posedness for abstract degenerate differential
equations with periodic initial conditions have been studied extensively in the last
years. See e.g. [5–11], [14–20] and the references therein. For examples, Lizama
and Ponce [16] considered the first-order degenerate equation:

(Mu)′(t) = Au(t) + f(t), (t ∈ T := [0, 2π]), (1.1)

they gave necessary and sufficient conditions to guarantee the well-posedness of (1.1)
in Lebesgue–Bochner spaces Lp(T;X), periodic Besov spaces Bs

p,q(T;X) and peri-
odic Triebel–Lizorkin spaces F s

p,q(T;X) under some appropriate assumptions on the
modified resolvent operator determined by (1.1). Moreover, they also investigated
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the first-order degenerate equation with infinite delay [17]:

(Mu)′(t) = αAu(t) +
∫ t

−∞
a(t − s)Au(s)ds + f(t), (t ∈ T), (1.2)

where A and M are closed linear operators defined on a Banach space X with
D(A) ⊆ D(M), a ∈ L1(R+) is a scalar-valued kernel, α ∈ R\ {0} and f an X-valued
function defined on T.

Bu [9] considered a new second-order degenerate equation and gave necessary or
sufficient conditions for this equation to be Lp-well-posed (respectively Bs

p,q-well-
posed and F s

p,q-well-posed), which recover some known results presented in [5, 6,
10] in the simpler case M = IX . We notice that third-order differential equa-
tions also describe some kinds of models arising from natural phenomena, such as
flexible space structures with internal damping, the well-posedness of third-order
differential equations has been investigated extensively by many authors. See [1–3,
7, 8, 13, 14, 19] for more information and references therein. For example, Poblete
and Pozo [19] studied the well-posedness for the abstract third-order equation:

αu′′′(t) + u′′(t) = βAu(t) + γBu′(t) + f(t), (t ∈ T), (1.3)

where A and B are closed linear operators defined on a Banach space X with D(A) ∩
D(B) �= ∅, the constants α, β, γ ∈ R+ and f belong to either the Lebesgue–Bochner
spaces, or periodic Besov spaces, or periodic Triebel–Lizorkin spaces. They give
necessary and sufficient conditions for (1.3) to be Lp-well-posed (respectively Bs

p,q-
well-posed and F s

p,q-well-posed) by using vector-valued Fourier theorems in the
vector-valued function spaces.

In this paper, we study the following four-order degenerate differential equation:

(Mu)′′′′(t) + α(Lu)′′′(t) + (Lu)′′(t)

= βAu(t) + γBu′(t) + Gu′
t + Fut + f(t), (t ∈ T), (P4)

where A, B, L and M are closed linear operators on a Banach space X such that
D(A) ∩ D(B) ⊂ D(M) ∩ D(L) and α, β, γ ∈ C, G and F are bounded linear oper-
ators from Lp([−2π, 0];X) (respectively Bs

p,q([−2π, 0];X)) into X, ut(·) = u(t + ·)
and u′

t(·) = u′(· + t) are defined on [−2π, 0] for t ∈ [0, 2π].
Let f ∈ Lp(T;X) be given, a function u ∈ W 1,p

per(T;X) ∩ Lp(T;D(A)) is called
a strong Lp-solution of (P4), if Mu ∈ W 4,p

per(T;X), Lu ∈ W 3,p
per(T;X), u′ ∈

Lp(T;D(B)) and (P4) is satisfied a.e. on T, here we consider D(A) and D(B)
as Banach spaces equipped with the graph norms. We say that (P4) is Lp-well-
posed, if for each f ∈ Lp(T;X), there exists a unique strong Lp-solution of (P4).
We introduce similarly the Bs

p,q-well-posedness of (P4).
The main purpose of this paper is to give some characterizations of the well-

posedness of (P4) in Lebesgue–Bochner spaces Lp(T;X) and periodic Besov
spaces Bs

p,q(T;X). The characterizations of the well-posedness of (P4) involve the
Rademacher boundedness (or norm boundedness) of the M -resolvent of A, B and
L defined by (P4). More precisely, we show that when X is a UMD Banach space
and 1 < p < ∞, if {k(Gk+1 − Gk) : k ∈ Z} is Rademacher-bounded, then (P4) is
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Lp-well-posed if and only if ρM (A, B, L) = Z (the M -resolvent set of A, B and L
defined by (P4)) and the sets

{k4MNk : k ∈ Z}, {k3LNk : k ∈ Z}, {kBNk : k ∈ Z}, {kNk : k ∈ Z}

are Rademacher-bounded, where

Nk = [(k4M − (iαk3 + k2)L − βA − iγkB − ikGk − Fk]−1,

Gk, Fk, Hk ∈ L(X) are defined by Gkx = G(ekx), Fkx = F (ekx), x ∈ X. Since this
characterization of the Lp-well-posedness of (P4) does not depend on the space
parameter 1 < p < ∞, we deduce that when X is a UMD Banach space and the
set {k(Gk+1 − Gk) : k ∈ Z} is Rademacher-bounded, then (P4) is Lp-well-posed
for some 1 < p < ∞ if and only if it is Lp-well-posed for all 1 < p < ∞.

We also give a similar characterization for the Bs
p,q-well-posedness of (P4): let

X be a Banach space, 1 � p, q � ∞, s > 0, assume that the sets {k(Fk+2 −
2Fk+1 + Fk) : k ∈ Z}, {k(Gk+1 − Gk) : k ∈ Z} and {k2(Gk+2 − 2Gk+1 + Gk) :
k ∈ Z} are norm-bounded, then the problem (P4) is Bs

p,q-well-posed if and only
if ⊂ ρM (A, B, L) = Z and the sets

{k4MNk : k ∈ Z}, {k3LNk : k ∈ Z}, {kBNk : k ∈ Z}, {kNk : k ∈ Z}

are norm-bounded, where Nk, Fk, Gk and Hk are defined as in the Lp-well-
posedness case. Since this characterization of the Bs

p,q-well-posedness of (P4) does
not depend on the parameters 1 � p, q � ∞, s > 0, we deduce that when the
sets {k(Fk+2 − 2Fk+1 + Fk) : k ∈ Z}, {k(Gk+1 − Gk) : k ∈ Z} and {k2(Gk+2 −
2Gk+1 + Gk) : k ∈ Z} are norm-bounded, then (P4) is Bs

p,q-well-posed for some
1 � p, q � ∞, s > 0 if and only if it is Bs

p,q-well-posed for all 1 � p, q � ∞, s > 0.
Our main tools in the investigation of the well-posedness of (P4) are the operator-

valued Fourier multiplier theorems obtained by Arendt and Bu [5, 6] on Lp(T;X)
and Bs

p,q(T;X). In fact, our main idea is to transform the well-posedness of (P4) to
an operator-valued Fourier multiplier problem in the corresponding vector-valued
function space.

This work is organized as follows: in § 2, we study the well-posedness of (P4)
in vector-valued Lebesgue–Bochner spaces Lp(T;X). In § 3, we consider the well-
posedness of (P4) in periodic Besov spaces Bs

p,q(T;X). In the last section, we give
some examples of degenerate differential equations with finite delay to which our
abstract results may be applied.

2. Well-posedness of (P4) in Lebesgue–Bochner spaces

Let X and Y be complex Banach spaces and let T := [0, 2π]. We denote by L(X, Y )
the space of all bounded linear operators from X to Y . If X = Y , we will simply
denote it by L(X). For 1 � p < ∞, we denote by Lp(T;X) the space of all equivalent
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class of X-valued measurable functions f defined on T satisfying

‖f‖Lp :=

(
1
2π

∫ 2π

0

‖f(t)‖p dt
)1/p

< ∞.

For f ∈ L1(T;X), the k-th Fourier coefficient of f is defined by

f̂(k) :=
1
2π

∫ 2π

0

e−k(t)f(t) dt,

where k ∈ Z and ek(t) = eikt when t ∈ T.

Definition 2.1. Let X and Y be complex Banach spaces and 1 � p < ∞, we say
that (Mk)k∈Z ⊂ L(X, Y ) is an Lp-Fourier multiplier, if for each f ∈ Lp(T;X),
there exists a unique u ∈ Lp(T;Y ) such that û(k) = Mkf̂(k) when k ∈ Z.

From the closed graph theorem, if (Mk)k∈Z ⊂ L(X, Y ) is an Lp-Fourier multi-
plier, then there exists a unique bounded linear operator T ∈ L(Lp(T;X), Lp(T;Y ))
satisfying (Tf)∧(k) = Mkf̂(k) when f ∈ Lp(T;X) and k ∈ Z. The operator-valued
Fourier multiplier theorem on Lp(T;X) obtained in [5] involves the Rademacher
boundedness for sets of bounded linear operators. Let γj be the j-th Rademacher
function on [0, 1] defined by γj(t) = sgn(sin(2j−1t)) when j � 1. For x ∈ X, we
denote by γj ⊗ x the vector-valued function t → rj(t)x on [0, 1].

Definition 2.2. Let X and Y be Banach spaces. A set T ⊂ L(X, Y ) is said to be
Rademacher-bounded (R-bounded, in short), if there exists C > 0 such that∥∥∥∥∥∥

n∑
j=1

γj ⊗ Tjxj

∥∥∥∥∥∥
L1([0,1];Y )

� C

∥∥∥∥∥∥
n∑

j=1

γj ⊗ xj

∥∥∥∥∥∥
L1([0,1];X)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N.

Remark 2.3.

(i) Let S, T ⊂ L(X) be R-bounded sets. Then it can be shown eas-
ily from the definition that ST := {ST : S ∈ S, T ∈ T} and S + T :=
{S + T : S ∈ S, T ∈ T} are still R-bounded.

(ii) Let X be a UMD Banach space and let Mk = mkIX with mk ∈ C, where IX is
the identity operator on X, if supk∈Z |mk| < ∞ and supk∈Z |k(mk+1 − mk)| <
∞, then (Mk)k∈Z is an Lp-Fourier multiplier whenever 1 < p < ∞ [5].

The main tool in our study of Lp-well-posedness of (P4) is the Lp-Fourier multi-
plier theorem established in [5]. The following results will be very important in the
proof of our main result of this section. For the concept of UMD Banach spaces,
we refer the readers to [5] and references therein.
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Theorem 2.4 [5, Theorem 1.3]. Let X, Y be UMD Banach spaces and (Mk)k∈Z ⊂
L(X, Y ). If the sets {Mk : k ∈ Z} and {k(Mk+1 − Mk) : k ∈ Z} are R-bounded,
then (Mk)k∈Z defines an Lp-Fourier multiplier whenever 1 < p < ∞.

Proposition 2.5 [5, Proposition 1.11]. Let X, Y be Banach spaces, 1 � p < ∞,
and let (Mk)k∈Z ⊂ L(X, Y ) be an Lp-Fourier multiplier, then the set {Mk : k ∈ Z}
is R-bounded.

Now we consider the following four-order degenerate differential equations with
finite delays:

(Mu)′′′′(t) + α(Lu)′′′(t) + (Lu)′′(t)

= βAu(t) + γBu′(t) + Gu′
t + Fut + f(t), (t ∈ T) (P4)

where A, B, M and L are closed linear operators on a Banach space
X satisfying D(A) ∩ D(B) ⊂ D(M) ∩ D(L), α, β, γ ∈ C are given and F, G :
Lp([−2π, 0];X) → X are bounded linear operators (F and G are known as the
delay operators). Moreover, for fixed t ∈ T, the functions ut and u′

t are elements
in Lp([−2π, 0];X) defined by ut(s) = u(t + s), u′

t(s) = u′(t + s) for −2π � s � 0,
here we identify a function u on T with its natural 2π-periodic extension on R.

Let F, G ∈ L((Lp[−2π, 0];X), X) and k ∈ Z. We define the linear operators
Fk, Gk ∈ L(X) by

Fkx := F (ekx), Gkx := G(ekx), (2.1)

for x ∈ X, where ek(t) = eikt when t ∈ T. It is clear that ‖Fk‖ � ‖F‖ and ‖Gk‖ �
‖G‖ as ‖ek‖p = 1. It is easy to see that when u ∈ Lp(T;X), then

F̂ u.(k) = Fkû(k), Ĝu.(k) = Gkû(k) (2.2)

for k ∈ Z. This implies that (Fk)k∈Z and (Gk)k∈Z are Lp-Fourier multipliers as

‖Fut‖ � ‖F‖‖u.‖Lp([−2π,0];X) = ‖F‖‖u‖Lp ,

and

‖Gut‖ � ‖G‖‖u.‖Lp([−2π,0];X) = ‖G‖‖u‖Lp ,

for t ∈ T so that Fu·, Gu·, Hu· ∈ Lp(T;X).
Now we define the resolvent set of (P4) by

ρM (A,B,L) :=
{
k ∈ Z : k4M − (αik3 + k2)L

− βA − iγkB − ikGk − Fk is invertible from

D(A) ∩ D(B) onto X and [k4M − (αik3 + k2)L − βA

− iγkB − ikGk − Fk]−1 ∈ L(X)
}
.

For the sake of simplicity, when k ∈ ρM (A, B, L), we will use the following notation:

Nk = [akM − bkL − βA − ckB − ikGk − Fk]−1, (k ∈ Z), (2.3)
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where

ak = k4, bk = αik3 + k2, ck = iγk, (k ∈ Z). (2.4)

If k ∈ ρM (A, B, L), then MNk, LNk, ANk and BNk make sense as D(A) ∩
D(B) ⊂ D(M) ∩ D(L) by assumption, and they belong to L(X) by the closed graph
theorem and the closedness of A, B, M and L.

Let (Lk)k∈Z ⊂ L(X, Y ) be a given sequence of operators. We define

(�0L)k = Lk, (�L)k = Lk+1 − Lk, (k ∈ Z)

and for n = 2, 3, . . . , set

(�nL)k = �(�n−1L)k, (k ∈ Z).

Definition 2.6. A sequence (dk)k∈Z ⊆ C\ {0} is called 1-regular if the sequence
(k�1dk

dk
)k∈Z is bounded; it is called 2-regular if it is 1-regular and the sequence

(k2 �2dk

dk
)k∈Z is bounded; it is called 3-regular if it is 2-regular and the sequence

(k3 �3dk

dk
)k∈Z is bounded.

Remark 2.7. It is easy to see that (ak)k∈N, (bk)k∈N and (ck)k∈N are 3-regular.

Definition 2.8. Let 1 � p < ∞, n � 1 be an integer and let X be a Banach space,
we define the the following vector-valued function spaces:

Wn,p
per (T;X) :=

{
u ∈ Lp(T;X) : there exists v ∈ Lp(T;X), such that v̂(k)

= (ik)nû(k) for all k ∈ Z
}
.

Wn,p
per (T;X) is the n-th X-valued periodic Sobolev space.

Remark 2.9. We have the following two useful properties concerning these
spaces:

(i) Let m, n ∈ N. If n � m, then Wm,p
per (T;X) ⊆ Wn,p

per (T;X).

(ii) If u ∈ Wn,p
per (T;X), then for any 0 � k � n − 1, we have u(k)(0) = u(k)(2π).

Let 1 � p < ∞, we define the solution space of the Lp-well-posedness of (P4) by

Sp(A,B,M,L) :=
{
u ∈ W 1,p

per(T;X) ∩ Lp(T;D(A)) : Mu ∈ W 4,p
per(T;X),

Lu ∈ W 3,p
per(T;X), u′ ∈ Lp(T;D(B))

}
,

here we consider D(A) and D(B) as Banach spaces equipped with their graph
norms. The space Sp(A, B, M, L) is complete equipped with the norm

‖u‖Sp(A,B,M,L) := ‖u‖Lp + ‖Au‖Lp + ‖(Mu)′‖Lp + ‖(Mu)′′‖Lp + ‖(Mu)′′′‖Lp

+ ‖(Mu)′′′′‖Lp + ‖(Lu)′‖Lp + ‖(Lu)′′‖Lp + ‖(Lu)′′′‖Lp + ‖Bu′‖Lp .

If u ∈ Sp(A, B, M, L), then Mu, (Mu)′, (Mu)′′ and (Mu)′′′ are X-valued con-
tinuous functions on T, and Mu(0) = Mu(2π), (Mu)′(0) = (Mu)′(2π), (Mu)′′(0) =
(Mu)′′(2π), (Mu)′′′(0) = (Mu)′′′(2π) by [5, Lemma 2.1].
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Definition 2.10. Let 1 � p < ∞ and f ∈ Lp(T;X), u ∈ Sp(A, B, M, L) is called
a strong Lp-solution of (P4), if (P4) is satisfied a.e. on T. We say that (P4) is
Lp-well-posed, if for each f ∈ Lp(T;X), there exists a unique strong Lp-solution of
(P4).

If (P4) is Lp-well-posed, then there exists a constant C > 0, such that for each
f ∈ Lp(T;X), if u ∈ Sp(A, B, M, L) is the unique strong Lp-solution of (P4), we
have

‖u‖Sp(A,B,M,L) � C ‖f‖Lp . (2.5)

This follows easily from the closed graph theorem.
In order to prove our main result of this section, we need the following

preparations.

Proposition 2.11. Let A, B, M and L be closed linear operators defined on
a UMD Banach space X such that D(A) ∩ D(B) ⊂ D(M) ∩ D(L), 1 < p < ∞
and α, β, γ ∈ C. Let F, G ∈ L(Lp([−2π, 0];X), X). Assume that ρM (A, B, L) =
Z and the sets {akMNk : k ∈ Z}, {bkLNk : k ∈ Z}, {ckBNk : k ∈ Z}, {k�Gk :
k ∈ Z} and {kNk : k ∈ Z} are R-bounded, then (akMNk)k∈Z

, (bkLNk)k∈Z
,

(ckBNk)k∈Z
and (kNk)k∈Z

are Lp-Fourier multipliers.

Proof. We only need to show that the set {k(N−1
k − N−1

k+1)Nk : k ∈ Z} is R-
bounded by [11, Theorem 1.1] and theorem 2.4, here we have used the facts that
(ak)k∈N, (bk)k∈N and (ck)k∈N are 1-regular sequences. It follows from the definition
of Nk that

(N−1
k − N−1

k+1)Nk

= [akM − bkL − βA − ckB − ikGk − Fk − ak+1M + bk+1L + βA + ck+1B

+ i(k + 1)Gk+1 + Fk+1]Nk

= [−�akM + �bkL + �ckB + ik�Gk + iGk+1 + �Fk]Nk, (2.6)

which implies

k(N−1
k − N−1

k+1)Nk

= −k�ak

ak
(akMNk) +

k�bk

bk
(bkLNk) +

k�ck

ck
(ckBNk)

+ i(k�Gk)(kNk) + iGk+1(kNk) + �Fk(kNk), (2.7)

when k �= 0. It follows from remark 2.3 that the products and sums of R-bounded
sets are still R-bounded. Thus, the set {k(N−1

k − N−1
k+1)Nk : k ∈ Z} is R-bounded.

This completes the proof. �

The following statement is the main result of this section which gives a necessary
and sufficient condition for the Lp-well-posedness of (P4).

Theorem 2.12. Let X be a UMD Banach space, 1 < p < ∞ and let A, B, L
and M be closed linear operators on X satisfying D(A) ∩ D(B) ⊂ D(M) ∩
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D(L) and α, β, γ ∈ C. Let F, G ∈ L(Lp([−2π, 0];X), X) be such that the set
{kΔGk : k ∈ Z} is R-bounded. Then the following assertions are equivalent:

(i) (P4) is Lp-well-posed;

(ii) ρM (A, B, L) = Z, the sets {k4MNk : k ∈ Z}, {k3LNk : k ∈ Z}, {kBNk : k ∈
Z} and {kNk : k ∈ Z} are R-bounded, where Nk is defined by (2.3), the
operators Fk and Gk are defined by (2.1).

Proof. First we show that the implication (i) ⇒ (ii) holds true. We assume that
(P4) is Lp-well-posed and let k ∈ Z and y ∈ X be fixed, we consider the function
f defined by f(t) = eikty when t ∈ T. Then it is clear that f ∈ Lp(T;X), f̂(k) = y

and f̂(n) = 0 when n �= k. Since (P4) is Lp-well-posed, there exists a unique u ∈
Sp(A, B, L, M) satisfying

(Mu)′′′′(t) + α(Lu)′′′(t) + (Lu)′′(t) = βAu(t) + γBu′(t) + Gu′
t + Fut + f(t)

(2.8)

a.e. on T. We have û(n) ∈ D(A) ∩ D(B) when n ∈ Z by [5, Lemma 3.1] as u ∈
Lp(T;D(A)) ∩ Lp(T;D(B)). Taking Fourier transforms on both sides of (2.8), we
obtain

[k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]û(k) = y (2.9)

and [n4M − (αin3 + n2)L − βA − iγnB − inGn − Fn]û(n) = 0 when n �= k. This
implies that the operator k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk defined
on D(A) ∩ D(B) with values in X is surjective. To show that it is also injective, we
let x ∈ D(A) ∩ D(B) be such that

[k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]x = 0.

Let u be the function given by u(t) = eiktx when t ∈ T, then it is clear that u ∈
Sp(A, B, M, L) and (P4) is satisfied a.e. on T when f = 0. Thus, u is a strong Lp-
solution of (P4) when taking f = 0. We obtain x = 0 by the uniqueness assumption.
We have shown that the operator k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk

from D(A) ∩ D(B) into X is injective. Therefore, k4M − (αik3 + k2)L − βA −
iγkB − ikGk − Fk is bijective from D(A) ∩ D(B) onto X.

Next we show that [k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]−1 ∈ L(X).
For f(t) = eikty, we let u ∈ Sp(A, B, M, L) be the unique strong Lp-solution of
(P4). Then

û(n) =

{
0 n �= k,

[k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]−1y n = k,

by (2.9). This implies that u is given by

u(t) = eikt[k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]−1y

when t ∈ T. By (2.5), there exists a constant C > 0 independent from y and k, such
that ‖u‖Lp � C ‖f‖Lp . This implies that∥∥[k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]−1y

∥∥ � C ‖y‖
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when y ∈ X, or equivalently∥∥[k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]−1
∥∥ � C.

We have shown that k ∈ ρM (A, B, L) for all k ∈ Z. Thus, ρM (A, B, L) = Z.
Finally, we show that (k4MNk)k∈Z, (k3LNk)k∈Z, (kNk)k∈Z and (kBNk)k∈Z

define Lp-Fourier multipliers. Let f ∈ Lp(T;X), then there exists u ∈
Sp(A, B, M, L), a strong Lp-solution of (P4) by assumption. Taking Fourier trans-
forms on both sides of (P4), we get that û(k) ∈ D(A) ∩ D(B) by [5, Lemma 3.1]
and

[k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]û(k) = f̂(k)

for k ∈ Z. Since k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk is invertible, we
have

û(k) = [k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]−1f̂(k) = Nkf̂(k)

when k ∈ Z. It follows from u ∈ Sp(A, B, M, L) that u ∈ Lp(T;D(A)) ∩
W 1,p

per(T;X), Mu ∈ W 4,p
per(T;X), Lu ∈ W 3,p

per(T;X) and u′ ∈ Lp(T;D(B)). We have

̂(Mu)′′′′(k) = k4Mû(k), (̂Lu)′′′(k) = −ik3Lû(k), B̂u′(k)

= ikBû(k), û′(k) = ikû(k)

when k ∈ Z. We conclude that (k4MNk)k∈Z, (k3LNk)k∈Z, (kBNk)k∈Z and
(kNk)k∈Z define Lp-Fourier multipliers as (Mu)′′′′, (Lu)′′′, Bu′, u′ ∈ Lp(T;X).
It follows from proposition 2.5 that the sets {k4MNk : k ∈ Z}, {k3LNk : k ∈ Z},
{kBNk : k ∈ Z} and {kNk : k ∈ Z} are R-bounded. We have shown that the
implication (i) ⇒ (ii) is true.

Next we show that the implication (ii) ⇒ (i) is valid. Assume that
ρM (A, B, L) = Z and the sets {k4MNk : k ∈ Z}, {k3LNk : k ∈ Z}, {kNk : k ∈
Z} and {kBNk : k ∈ Z} are R-bounded. It follows from proposition 2.11 that
(k4MNk)k∈Z, (k3LNk)k∈Z, (kBNk)k∈Z and (kNk)k∈Z are Lp-Fourier multipliers.
This implies that the sequences (Nk)k∈Z, (BNk)k∈Z, (k2LNk)k∈Z, (MNk)k∈Z,
(LNk)k∈Z are Lp-Fourier multiplier. Here we have used the easy fact that (dk)k∈Z is
an Lp-Fourier multiplier and the fact that the product of two Lp-Fourier multipliers
is still an Lp-Fourier multiplier, where dk is defined by dk = 1/k when k �= 0 and
d0 = 0. In particular, considering Nk ∈ L(X, D(B)), the sequence (Nk)k∈Z is an Lp-
Fourier multiplier. Then for all f ∈ Lp(T;X), there exist ui ∈ Lp(T;X) (1 � i � 7)
and u ∈ Lp(T;D(B)) satisfying

û1(k) = k4MNkf̂(k), û2(k) = ikNkf̂(k),

û3(k) = MNkf̂(k), û4(k) = LNkf̂(k) (2.10)

û5(k) = ikBNkf̂(k), û6(k) = −ik3LNkf̂(k),

û7(k) = −k2LNkf̂(k), û(k) = Nkf̂(k) (2.11)

for k ∈ Z. Hence, û2(k) = ikû(k) for k ∈ Z by (2.10). This implies that u ∈
W 1,p

per(T;X). It follows from (2.11) that û′(k) = ikû(k) = ikNkf̂(k) when k ∈ Z.
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This together with û5(k) = ikBNkf̂(k) when k ∈ Z implies that u′ ∈ Lp(T;D(B))
[5, Lemma 3.1]. By (2.10) and (2.11), we have û3(k) = Mû(k) when k ∈ Z. Hence,
u ∈ Lp(T;D(M)) and Mu = u3. Similarly, by using (2.10) and (2.11), we have
û4(k) = Lû(k) when k ∈ Z. Thus, u ∈ Lp(T;D(L)) and Lu = u4 [5, Lemma 3.1].
By (2.10) and the fact that Mu = u3, we deduce û1(k) = (ik)4M̂u(k) = (ik)4û3(k)
when k ∈ Z. Thus, Mu ∈ W 4,p

per(T;X). Similarly, using (2.11) and the fact hat
Lu = u4, we deduce that Lu ∈ W 3,p

per(T;X).
We note that (Gk)k∈Z and (Fk)k∈Z are Lp-Fourier multipliers by (2.2), where

Gk, Fk and Hk are defined by (2.1). Thus, (ikGkNk)k∈Z and (FkDk)k∈Z are Lp-
Fourier multipliers as the product of two Lp-Fourier multipliers is still an Lp-Fourier
multiplier. We have

βANk = k4MNk − (αik3 + k2)LNk − iγkBNk − ikGkNk − FkNk − IX

for k ∈ Z. It follows that (ANk)k∈Z
is also an Lp-Fourier multiplier as the sum of

Lp-Fourier multipliers is an Lp-Fourier multiplier. We deduce from (2.11) and [5,
Lemma 3.1] that u ∈ Lp(T;D(A)). We have shown that u ∈ Sp(A, B, M, L). This
shows the existence of strong Lp-solution.

To show uniqueness of strong Lp-solution, we let u ∈ Sp(A, B, M, L) be such
that

(Mu)′′′(t) + α(Lu)′′′(t) + (Nu)′′(t) = βAu(t) + γBu′(t) + Gu′
t + Fut

a.e. on T. Taking the Fourier transforms on both sides, we deduce that

[k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]û(k) = 0

when k ∈ Z. Since ρM (A, B, L) = Z, this implies that û(k) = 0 when k ∈ Z and
thus u = 0. This shows that the solution is unique. This completes the proof. �

We notice that the assumption that the underlying Banach space X is a UMD
space in theorem 2.12 was only used in the implication (ii) ⇒ (i). Since the second
statement of theorem 2.12 does not depend on the space parameter 1 < p < ∞,
theorem 2.12 has the following immediate consequence.

Corollary 2.13. Let X be a UMD Banach space, let A, B, L and M be closed
linear operators on X satisfying D(A) ∩ D(B) ⊂ D(M) ∩ D(L), and α, β, γ ∈ C.
Then if (P4) is Lp-well-posed for some 1 < p < ∞, then it is Lp-well-posed for all
1 < p < ∞.

3. Well-posedness of (P4) in Besov spaces

In this section, we consider the well-posedness of (P4) in periodic Besov spaces
Bs

p,q(T;X). Firstly, we briefly recall the definition of periodic Besov spaces in
the vector-valued case introduced in [6]. Let S(R) be the Schwartz space of
all rapidly decreasing smooth functions on R. Let D(T) be the space of all
infinitely differentiable functions on T equipped with the locally convex topol-
ogy given by the seminorms ‖f‖α = supx∈T

∣∣f (α)(x)
∣∣ for α ∈ N0 := N ∪ {0}. Let

https://doi.org/10.1017/prm.2023.90 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.90


Periodic solutions of four-order degenerate differential equations 11

D′(T;X) := L(D(T), X) be the space of all continuous linear operator from D(T)
to X. We consider the dyadic-like subsets of R:

I0 = {t ∈ R : |t| � 2} , Ik =
{
t ∈ R : 2k−1 < |t| � 2k+1

}
for k ∈ N. Let φ(R) be the set of all systems φ = (φk)k∈N0 ⊂ S(R) satisfying
supp(φk) ⊂ Īk for each k ∈ N0,

∑
k∈N0

φk(x) = 1 for x ∈ R, and for each α ∈
N0, supx∈R, k∈N0

2kα|φ(α)
k (x)| < ∞. Let φ = (φk)k∈N0 ⊂ φ(R) be fixed. For 1 � p,

q � ∞, s ∈ R, the X-valued periodic Besov space is defined by

Bs
p,q(T;X) =

{
f ∈ D′(T;X) : ‖f‖Bs

p,q

:=

(∑
j�0

2sjq
∥∥∥∑

k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥q

p

)1/q

< ∞
}

with the usual modification if q = ∞. The space Bs
p,q(T;X) is independent from

the choice of φ and different choices of φ lead to equivalent norms on Bs
p,q(T;X).

Bs
p,q(T;X) equipped with the norm ‖·‖Bs

p,q
is a Banach space. See [6, Section 2] for

more information about the space Bs
p,q(T;X). It is well known that if s1 � s2, then

Bs1
p,q(T;X) ⊂ Bs2

p,q(T;X) and the embedding is continuous [6, Theorem 2.3]. When
s > 0, it is shown in [6, Theorem 2.3] that Bs

p,q(T;X) ⊂ Lp(T;X), f ∈ Bs+1
p,q (T;X)

if and only if f is differentiable a.e. on T and f ′ ∈ Bs
p,q(T;X). This implies that

if u ∈ Bs
p,q(T;X) is such that there exists v ∈ Bs

p,q(T;X) satisfying v̂(k) = ikû(k)
when k ∈ Z, then u ∈ Bs+1

p,q (T;X) and u′ = v.
Let 1 � p, q � ∞, s > 0 be fixed. We consider the following four-order degenerate

differential equations with finite delay:

(Mu)′′′′(t) + α(Lu)′′′(t) + (Lu)′′(t)

= βAu(t) + γBu′(t) + Gu′
t + Fut + f(t), (t ∈ T) (P4)

where A, B, M and L are closed linear operators on a Banach space X satis-
fying D(A) ∩ D(B) ⊂ D(M) ∩ D(L) and α, β, γ ∈ C, f ∈ Bs

p,q(T;X) is given,
and F, G : Bs

p,q([−2π, 0];X) → X are bounded linear operators. Moreover, for fixed
t ∈ T, ut ∈ Bs

p,q([−2π, 0];X) is defined by ut(s) = u(t + s) for −2π � s � 0, here
we identify a function u on T with its natural 2π-periodic extension on R.

Let F, G ∈ L(Bs
p,q[−2π, 0];X), X) and k ∈ Z. We define the linear operators

Fk, Gk by

Fkx := F (ek ∗ ⊗x), Gkx := G(ek ⊗ x) (3.1)

when x ∈ X. It is clear that there exists a constant C > 0 such that
‖ek ⊗ x‖Bs

p,q(T;X) � C ‖x‖ when k ∈ Z. Thus,

‖Fk‖ � C ‖F‖ , ‖Gk‖ � C ‖G‖ (3.2)

whenever k ∈ Z. It can be seen easily that when u ∈ Bs
p,q(T;X), then

F̂ u.(k) = Fkû(k), Ĝu.(k) = Gkû(k)
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for k ∈ Z. The resolvent set of (P4) in the Bs
p,q-well-posedness setting is defined by

ρM (A,B,L) :=
{
k ∈ Z : k4M − (αik3 + k2)L − βA

− iγkB − ikGk − Fk is invertible from

D(A) ∩ D(B) onto X and [k4M − (αik3 + k2)L

− βA − iγkB − ikGk − Fk]−1 ∈ L(X)
}
.

For the sake of simplicity, when k ∈ ρM (A, B, L), we will use the following notation:

Nk = [k4M − (αik3 + k2)L − βA − iγkB − ikGk − Fk]−1. (3.3)

If k ∈ ρM (A, B, L), then MNk, LNk, ANk and BNk make sense as D(A) ∩
D(B) ⊂ D(M) ∩ D(L) by assumption, and they belong to L(X) by the closed graph
theorem and the closedness of A, B, M and L.

Let 1 � p, q � ∞, s > 0. It is noted that that the functions Gu. and Fu′
. are

uniformly bounded on T, but they are not necessarily in Bs
p,q(T;X). We define the

solution space of Bs
p,q-well-posedness for (P4) by

Sp,q,s(A,B,M,L) :=
{
u ∈ Bs

p,q(T;D(A)) ∩ B1+s
p,q (T;X)

: Mu ∈ B4+s
p,q (T;X), Lu ∈ B2+s

p,q (T;X),

u′ ∈ Bs
p,q(T;D(B)) and Fu., Gu′

. ∈ Bs
p,q(T;X)

}
.

Here again we consider D(A) and D(B) as Banach spaces equipped with their graph
norms. Sp,q,s(A, B, M, L) is a Banach space with the norm

‖u‖Sp,q,s(A,B,M,L) := ‖u‖B1+s
p,q (T;X) + ‖u‖Bs

p,q(T;D(A))

+ ‖Mu‖B4+s
p,q (T;X) + ‖Lu‖B3+s

p,q (T;X)

+ ‖u′‖Bs
p,q(T;D(B)) + ‖Fu.‖Bs

p,q(T;X) + ‖Gu′
.‖Bs

p,q(T;X) .

If u ∈ Sp,q,s(A, B, M, L), then Mu, (Mu)′, (Mu)′′ and (Mu)′′′ are X-valued con-
tinuous function on T, and Mu(0) = Mu(2π),(Mu)′(0) = (Mu)′(2π), (Mu)′′(0) =
(Mu)′′(2π) and (Mu)′′′(0) = (Mu)′′′(2π) by [5, Lemma 2.1].

Now we give the definition of the Bs
p,q-well-posedness of (P4).

Definition 3.1. Let 1 � p, q � ∞, s > 0 and f ∈ Bs
p,q(T;X), u ∈ Sp,q,s(A, B,

M, L) is called a strong Bs
p,q-solution of (P4), if (P4) is satisfied a.e. on T. We

say that (P4) is Bs
p,q-well-posed, if for each f ∈ Bs

p,q(T;X), there exists a unique
strong Bs

p,q-solution of (P4).

If (P4) is Bs
p,q-well-posed and u ∈ Sp,q,s(A, B, M, L) is the unique strong Bs

p,q-
solution of (P4), there exists a constant C > 0 such that for each f ∈ Bs

p,q(T;X),
we have

‖u‖Sp,q,s(A,B,M,L) � C ‖f‖Bs
p,q

. (3.4)

This is an easy result that can be obtained by the closedness of the operators A,
B, M and L and the closed graph theorem.
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Next we give the definition of operator-valued Fourier multipliers in the context
of periodic Besov spaces, which is important in the proof of our main result of this
section.

Definition 3.2. Let X, Y be Banach spaces, 1 � p, q � ∞, s ∈ R and let
(Mk)k∈Z

⊂ L(X, Y ). We say that (Mk)k∈Z
is a Bs

p,q-Fourier multiplier, if for each
f ∈ Bs

p,q(T;X), there exists u ∈ Bs
p,q(T;Y ), such that û(k) = Mkf̂(k) for all k ∈ Z.

The following result has been obtained in [6, Theorem 4.5] which gives a suffi-
cient condition for an operator-valued sequence to be a Bs

p,q-Fourier multiplier. For
the notions of B-convex Banach spaces, we refer the readers to [6] and references
therein.

Theorem 3.3. Let X, Y be Banach spaces and let (Mk)k∈Z
⊂ L(X, Y ). We assume

that

sup
k∈Z

( ‖Mk‖ +
∥∥∥k �

Mk

∥∥∥ ) = sup
k∈Z

( ‖Mk‖ + ‖k(Mk+1 − Mk)‖ ) < ∞, (3.5)

sup
k∈Z

∥∥∥∥∥k2
2�

Mk

∥∥∥∥∥ = sup
k∈Z

∥∥k2
(
Mk+2 − 2Mk+1 + Mk

)∥∥ < ∞. (3.6)

Then for 1 � p, q � ∞, s ∈ R, (Mk)k∈Z
is an Bs

p,q-multiplier. If X is B-convex,
then the first-order condition (3.5) is already sufficient for (Mk)k∈Z

to be a Bs
p,q-

multiplier.

Remark 3.4.

(i) If (Mk)k∈Z
is a Bs

p,q-Fourier multiplier, then there exists a bounded linear
operator T from Bs

p,q(T;X) to Bs
p,q(T;Y ) satisfying T̂ f(k) = Mkf̂(k) when

k ∈ Z. This implies in particular that (Mk)k∈Z
must be bounded.

(ii) If (Mk)k∈Z
and (Nk)k∈Z

are Bs
p,q-Fourier multipliers, it can be seen easily that

the product sequence (MkNk)k∈Z
and the sum sequence (Mk + Nk)k∈Z

are
still Bs

p,q-Fourier multipliers.

(iii) Let ck = 1
k when k �= 0 and c0 = 1, then it is easy to see that the sequence

(ckIX)k∈Z
satisfies the conditions (3.2) and (3.3). Thus, the sequence (ckIX)k∈Z

is a Bs
p,q-Fourier multiplier by theorem 3.3.

In order to prove our main result, we need the following facts.

Proposition 3.5. Let A, B, M and L be closed linear operators defined on a
Banach space X satisfying D(A) ∩ D(B) ⊂ D(M) ∩ D(L), α, β, γ ∈ C and
let F, G ∈ L(Bs

p,q([−2π, 0];X), X), where 1 � p, q � ∞ and s > 0. Assume that
ρM (A, B, L) = Z and the sets {kΔ2Fk : k ∈ Z}, {kΔGk : k ∈ Z}, {k2Δ2Gk : k ∈
Z},{k4MNk : k ∈ Z

}
, {k3LNk : k ∈ Z}, {kBNk : k ∈ Z} and {kNk : k ∈ Z}

are norm-bounded, where Nk is defined by (3.3), the operators Fk, Gk, Hk are
defined by (3.1). Then (k4MNk)k∈Z, (k3LNk)k∈Z, (kBNk)k∈Z, (Nk)k∈Z, (kNk)k∈Z,
(FkNk)k∈Z and (kGkNk)k∈Z are Bs

p,q-Fourier multipliers.
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Proof. It follows immediately from the norm boundedness of the set {kNk : k ∈ Z}
that the set {Nk : k ∈ Z} is norm-bounded. Let Lk = (N−1

k − N−1
k+1)Nk when k ∈ Z.

Then the set {kLk : k ∈ Z} is norm-bounded by the proof of proposition 2.11. Since
remark 2.7 and the sequence (kj)k∈Z is 2-regular when 0 � j � 3, to show that
(k4MNk)k∈Z, (k3LNk)k∈Z, (kBNk)k∈Z, (Nk)k∈Z and (kNk)k∈Z are Bs

p,q-Fourier
multipliers, we only need to show that the set {k2ΔLk : k ∈ Z} is norm-bounded
by [11, Theorem 1.1] and theorem 3.3. We have

Lk = L
(1)
k + L

(2)
k ,

where

L
(1)
k := −ΔakMNk + ΔbkLNk + ΔckBNk,

L
(2)
k := ikΔGkNk + iGk+1Nk + ΔFkNk,

when k ∈ Z by (2.6). We observe that

ΔL
(1)
k = −Δak+1MNk+1 + Δbk+1LNk+1

+ Δck+1BNk+1 + ΔakMNk − ΔbkLNk − ΔckBNk

= −Δ2akMNk+1 − ΔakMΔNk + Δ2bkLNk+1

+ ΔbkLΔNk + Δ2ckBNk+1 + ΔckBΔNk

= −Δ2akMNk+1 − ΔakMNk+1Lk + Δ2bkLNk+1

+ ΔbkLNk+1Lk + Δ2ckBNk+1 + ΔckBNk+1Lk, (3.7)

and

ΔL
(2)
k = i(k + 1)ΔGk+1Nk+1 + iGk+2Nk+1

+ ΔFk+1Nk+1 − ikΔGkNk − iGk+1Nk − ΔFkNk

= ikΔ2GkNk+1 + ikΔGkΔNk + iΔGk+1Nk+1 + iΔGk+1Nk+1

+ iGk+1ΔNk + Δ2FkNk+1 + ΔFkΔNk

= ikΔ2GkNk+1 + ikΔGkΔNk + 2iΔGk+1Nk+1 + iGk+1ΔNk

+ Δ2FkNk+1 + ΔFkΔNk

= ikΔ2GkNk+1 + ikΔGkNk+1Lk + 2iΔGk+1Nk+1

+ iGk+1Nk+1Lk + Δ2FkNk+1 + ΔFkΔNk, (3.8)

when k ∈ Z. It follows from (3.7) and (3.8) that the sets{k2ΔL
(1)
k : k ∈ Z}

and {k2ΔL
(2)
k : k ∈ Z} are norm-bounded by the norm boundedness of the sets

{kLk : k ∈ Z} and the assumptions that the sets {kΔ2Fk : k ∈ Z}, {kΔGk :
k ∈ Z}, {k2Δ2Gk : k ∈ Z}, {k4MNk : k ∈ Z

}
, {k3LNk : k ∈ Z}, {kBNk : k ∈ Z}

and {kNk : k ∈ Z} are norm-bounded.
It remains to show that the sequences (FkNk)k∈Z and (kGkNk)k∈Z satisfy (3.5)

and (3.6). This follows easily from the norm boundedness of the sets {kΔ2Fk :
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k ∈ Z}, {kΔGk : k ∈ Z} and {k2Δ2Gk : k ∈ Z}. We omit the details. The proof is
completed. �

Next we give a necessary and sufficient condition for Bs
p,q-well-posedness of

(P4). Its proof is just an easy adaptation of the proof of theorem 2.12 by using
proposition 3.5. We omit the detail.

Theorem 3.6. Let X be a Banach space, 1 � p, q � ∞, s > 0, let A, B, M
and L be closed linear operators on X satisfying D(A) ∩ D(B) ⊂ D(M) ∩ D(L)
and α, β, γ ∈ C. Let F, G ∈ L(Bs

p,q([−2π, 0];X), X). We assume that the sets
{kΔ2Fk : k ∈ Z}, {kΔGk : k ∈ Z} and {k2Δ2Gk : k ∈ Z} are norm-bounded. Then
the following assertions are equivalent:

(i) (P4) is Bs
p,q-well-posed.

(ii) ρM (A, B, L) = Z and the sets
{
k4MNk : k ∈ Z

}
, {k3LNk : k ∈ Z}, {kBNk :

k ∈ Z} and {kNk : k ∈ Z} are norm-bounded, where Nk is defined by (3.3).

When the underlying Banach space X is B-convex, the first-order Marcinkiewicz-
type condition (3.5) is already sufficient for an operator-valued sequence to be a
Bs

p,q-Fourier multiplier. This remark together with the proof of theorem 2.12 gives
immediately the following result which gives an characterization of the Bs

p,q-well-
posedness of (P4) under a weaker condition on the sequence (Gk)k∈Z when the
underlying Banach space is B-convex.

Theorem 3.7. Let X be a B-convex Banach space, 1 � p, q � ∞, s > 0, let
A, B, M and L be closed linear operators on X satisfying D(A) ∩ D(B) ⊂ D(M) ∩
D(L) and α, β, γ ∈ C. Let F, G ∈ L(Bs

p,q([−2π, 0];X), X). We assume that
{kΔGk : k ∈ Z} is norm-bounded. Then the following assertions are equivalent:

(i) (P4) is Bs
p,q-well-posed.

(ii) ρM (A, B, L) = Z and the sets
{
k4MNk : k ∈ Z

}
, {k3LNk : k ∈ Z}, {kBNk :

k ∈ Z} and {kNk : k ∈ Z} are norm-bounded, where Nk is defined by (3.3).

Since the second statement of theorem 3.6 does not depend on the parameters
1 � p, q � ∞, s > 0, theorem 3.6 has the following immediate consequence.

Corollary 3.8. Let X be a Banach space, 1 � p, q � ∞, s > 0, let A, B, M
and L be closed linear operators on X satisfying D(A) ∩ D(B) ⊂ D(M) ∩ D(L)
and α, β, γ ∈ C. Let F, G ∈ L(Bs

p,q([−2π, 0];X), X). We assume that the sets
{kΔ2Fk : k ∈ Z}, {kΔGk : k ∈ Z} and {k2Δ2Gk : k ∈ Z} are norm-bounded. Then
if (P4) is Bs

p,q-well-posed for some 1 � p, q � ∞, s > 0, then it is Bs
p,q-well-posed

for all 1 � p, q � ∞, s > 0.

4. Applications

Example 4.1. Let Ω be a bounded domain in Rk with smooth boundary, m be a
given non-negative-bounded measurable function on Ω and let α, γ ∈ C, β > 0 be
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given. We let X be the Hilbert space H−1(Ω), and let F, G ∈ L(Lp([−2π, 0];X), X)
for some 1 < p < ∞. We consider the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂4

∂t4
(m(x)u(t, x)) + α

∂3

∂t3
(m(x)u(t, x)) +

∂2

∂t2
(m(x)u(t, x))

= βΔu(t, x) + γΔ
∂

∂t
u(t, x) + Gu′

t(·, x) + Fut(·, x) + f(t, x), (t, x) ∈ T × Ω,

u(t, x) = 0, (t, x) ∈ T × ∂Ω.

where f is defined on T × Ω and the Laplacian Δ only acts on the space variable
x ∈ Ω, u′

t and ut are defined by u′
t(s, x) = u′(t + s, x) and u′

t(s, x) = u(t + s, x)
when t ∈ T, s ∈ [−2π, 0] and x ∈ Ω.

Let M be the multiplication operator on X by m, then there exist constants
C > 0, β > 0, such that ∥∥M(zM + Δ)−1

∥∥ � C

1 + |z| (4.1)

whenever Re(z) � β(1 + |Im(z)|) by [12, Section 3.7], where Δ is the Laplacian
on H−1(Ω) with Dirichlet boundary condition. Let A = Δ and we assume that
D(A) ⊂ D(M). Then the above equation may be rewritten in the form

(Mu)′′′′(t) + α(Mu)′′′(t) + (Mu)′′(t)

= βAu(t) + γAu′(t) + Gu′
t + Fut + f(t), (t ∈ T) (P1)

a differential equation on T with values in X, where f ∈ Lp(T;X) and the solution
u ∈ W 1,p

per(T;D(A)) satisfies Mu ∈ W 4,p
per(T;X).

We assume that ρM (A, A, M) = Z and the set {kΔGk : k ∈ Z} is norm-bounded.
Furthermore, we assume that m > 0 a.e. on Ω and m is regular enough so that the
multiplication operator by m−1 is bounded on H−1(Ω), then∥∥(zM + Δ)−1

∥∥ � C

1 + |z| (4.2)

whenever Rez � β(1 + |Imz|) by (4.1). We claim that (P1) is Lp-well-posed. Indeed,
the operator (k4 − αik3 − k2)M − (β + ik)A − ikGk − Fk : D(A) → X is bijective
and [(k4 − αik3 − k2)M − (β + ik)A − ikGk − Fk]−1 ∈ L(X) whenever k ∈ Z by
the assumption ρM (A, A, M) = Z. It follows that the sets

{k2MNk : k ∈ Z}, {ΔNk : k ∈ Z}, {kNk : k ∈ Z}
are norm-bounded by (4.1) and (4.2), where Nk = [(k4 − αik3 − k2)M − (β +
ik)A − ikGk − Fk]−1. Here we have used the uniform boundedness of the sequences
(Fk)k∈Z and (Gk)k∈Z. Thus, the problem (P1) is Lp-well-posed by theorem 2.12.
Here we have used the fact that H−1(Ω) is a Hilbert space and the fact that every
norm-bounded subset of L(X) is R-bounded when X is isomorphic to a Hilbert
space [5].

Under the same assumptions, we obtain the Bs
p,q-well-posedness of (P1) when

1 � p, q � ∞ by corollary 3.8.
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Example 4.2. Let H be a Hilbert space, P be a densely defined positive self-adjoint
operator on H with P � δ > 0. Let M = P − ε with ε < δ, and let A =

∑k
i=0 aiP

i

with ai � 0, ak > 0, where k is an integer � 2. Then there exists C > 0 and β > 0
such that ∥∥M(zM + A)−1

∥∥ � C

1 + |z| (4.3)

whenever Rez � −β(1 + |Imz|) by [12, page 73]. If M is regular enough so that
0 ∈ ρ(M), then ∥∥(zM + A)−1

∥∥ � C

1 + |z| (4.4)

whenever Rez � −β(1 + |Imz|) by (4.3).
Let Ω = (0, 1) and let H = L2(Ω). It is clear that the operator d2

dx2 with domain
H2(Ω) ∩ H1

0 (Ω) generates a contraction semigroup on H and P = − d2

dx2 is positive
and self-adjoint in H [4, Example 3.4.7]. Hence, 1 ∈ ρ( d2

dx2 ), or equivalently M =
IX + P has a bounded inverse. Let α, γ ∈ C and β < 0 be fixed and let F, G ∈
L(Lp([−2π, 0];X), X) for some 1 < p < ∞, we consider the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂4

∂t4
(1 − ∂2

∂x2
)u(t, x) + α

∂3

∂t3
(1 − ∂2

∂x2
)u(t, x) +

∂2

∂t2
(1 − ∂2

∂x2
)u(t, x)

= β
∂4

∂x4
u(t, x) + γ

∂4

∂x4

∂

∂t
u(t, x)

+Gu′
t(·, x) + Fut(·, x) + f(t, x), (t, x) ∈ T × Ω,

u(t, 0) = u(t, 1) =
∂2

∂x2
u(t, 0) =

∂2

∂x2
u(t, 1) = 0, t ∈ T.

This equation can be rewritten in the compact form:

(Mu)′′′′(t) + α(Mu)′′′(t) + (Mu)′′(t)

= βAu(t) + γAu′(t) + Gu′
t + Fut + f(t), (t ∈ T) (P2)

a differential equation on T with values in H, where f ∈ Lp(T;H) and the solu-
tion u is in u ∈ W 1,p

per(T;D(A)), satisfies Mu ∈ W 4,p
per(T;H), where M = 1 − ∂2

∂x2 and
A = Δ2, here we consider Δ as the Laplacian on L2(Ω) with Dirichlet boundary
condition. If ρM (A, A, M) = Z, one can obtain the Lp-well-posedness of (P2) by
using (4.3), (4.4) and theorem 2.12 under suitable assumption on the delay oper-
ator G. Here again we have used the fact that L2(Ω) is a Hilbert space and the
fact that every norm-bounded subset of L(X) is R-bounded when X is isomorphic
to a Hilbert space [5]. One can also obtain the Bs

p,q-well-posedness pf (P2) when
1 � p, q � ∞ by using theorem 3.6 or corollary 3.8.
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