

Periodic solutions of four-order degenerate differential equations with finite delay in vector-valued function spaces

Shangquan Bu

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China (sbu@math.tsinghua.edu.cn)

Gang Cai*

School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China (caigang-aaaa@163.com)

(Received 28 October 2022; accepted 10 August 2023)

In this paper, we mainly investigate the well-posedness of the four-order degenerate differential equation (P_4) : $(Mu)^{\prime\prime\prime\prime}(t) + \alpha(Lu)^{\prime\prime\prime}(t) + (Lu)^{\prime\prime}(t) = \beta Au(t) + \gamma Bu^\prime(t) + Gu^\prime_t + Fu_t + f(t), (t \in [0, 2\pi])$ in periodic Lebesgue–Bochner spaces $L^p(\mathbb{T}; X)$ and periodic Besov spaces $B^s_{p,q}(\mathbb{T}; X)$, where A, B, L and M are closed linear operators on a Banach space X such that $D(A) \cap D(B) \subset D(M) \cap D(L)$ and $\alpha, \beta, \gamma \in \mathbb{C}, G$ and F are bounded linear operators from $L^p([-2\pi, 0]; X)$ (respectively $B^s_{p,q}([-2\pi, 0]; X)$) into $X, u_t(\cdot) = u(t + \cdot)$ and $u^\prime_t(\cdot) = u^\prime(t + \cdot)$ are defined on $[-2\pi, 0]$ for $t \in [0, 2\pi]$. We completely characterize the well-posedness of (P_4) in the above two function spaces by using known operator-valued Fourier multiplier theorems.

Keywords: well-posedness; degenerate differential equation; Fourier multiplier; Lebesgue-Bochner spaces; Besov spaces

2020 Mathematics Subject Classification: 47D06; 35K65; 34K13; 47A10; 42A45

1. Introduction

The characterizations of the well-posedness for abstract degenerate differential equations with periodic initial conditions have been studied extensively in the last years. See e.g. [5–11], [14–20] and the references therein. For examples, Lizama and Ponce [16] considered the first-order degenerate equation:

$$(Mu)'(t) = Au(t) + f(t), \quad (t \in \mathbb{T} := [0, 2\pi]),$$
(1.1)

they gave necessary and sufficient conditions to guarantee the well-posedness of (1.1) in Lebesgue–Bochner spaces $L^p(\mathbb{T}; X)$, periodic Besov spaces $B^s_{p,q}(\mathbb{T}; X)$ and periodic Triebel–Lizorkin spaces $F^s_{p,q}(\mathbb{T}; X)$ under some appropriate assumptions on the modified resolvent operator determined by (1.1). Moreover, they also investigated

* Corresponding author.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

the first-order degenerate equation with infinite delay [17]:

$$(Mu)'(t) = \alpha Au(t) + \int_{-\infty}^{t} a(t-s)Au(s)\mathrm{d}s + f(t), \quad (t \in \mathbb{T}),$$
(1.2)

where A and M are closed linear operators defined on a Banach space X with $D(A) \subseteq D(M), a \in L^1(\mathbb{R}_+)$ is a scalar-valued kernel, $\alpha \in \mathbb{R} \setminus \{0\}$ and f an X-valued function defined on \mathbb{T} .

Bu [9] considered a new second-order degenerate equation and gave necessary or sufficient conditions for this equation to be L^{p} -well-posed (respectively $B_{p,q}^{s}$ -wellposed and $F_{p,q}^{s}$ -well-posed), which recover some known results presented in [5, 6, 10] in the simpler case $M = I_X$. We notice that third-order differential equations also describe some kinds of models arising from natural phenomena, such as flexible space structures with internal damping, the well-posedness of third-order differential equations has been investigated extensively by many authors. See [1–3, 7, 8, 13, 14, 19] for more information and references therein. For example, Poblete and Pozo [19] studied the well-posedness for the abstract third-order equation:

$$\alpha u'''(t) + u''(t) = \beta A u(t) + \gamma B u'(t) + f(t), \ (t \in \mathbb{T}),$$
(1.3)

where A and B are closed linear operators defined on a Banach space X with $D(A) \cap D(B) \neq \emptyset$, the constants α , β , $\gamma \in \mathbb{R}^+$ and f belong to either the Lebesgue–Bochner spaces, or periodic Besov spaces, or periodic Triebel–Lizorkin spaces. They give necessary and sufficient conditions for (1.3) to be L^p -well-posed (respectively $B_{p,q}^s$ -well-posed and $F_{p,q}^s$ -well-posed) by using vector-valued Fourier theorems in the vector-valued function spaces.

In this paper, we study the following four-order degenerate differential equation:

$$(Mu)'''(t) + \alpha(Lu)'''(t) + (Lu)''(t) = \beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t), \quad (t \in \mathbb{T}),$$
(P₄)

where A, B, L and M are closed linear operators on a Banach space X such that $D(A) \cap D(B) \subset D(M) \cap D(L)$ and $\alpha, \beta, \gamma \in \mathbb{C}$, G and F are bounded linear operators from $L^p([-2\pi, 0]; X)$ (respectively $B^s_{p,q}([-2\pi, 0]; X)$) into X, $u_t(\cdot) = u(t + \cdot)$ and $u'_t(\cdot) = u'(\cdot + t)$ are defined on $[-2\pi, 0]$ for $t \in [0, 2\pi]$.

Let $f \in L^p(\mathbb{T}; X)$ be given, a function $u \in W^{1,p}_{\text{per}}(\mathbb{T}; X) \cap L^p(\mathbb{T}; D(A))$ is called a strong L^p -solution of (P_4) , if $Mu \in W^{4,p}_{\text{per}}(\mathbb{T}; X)$, $Lu \in W^{3,p}_{\text{per}}(\mathbb{T}; X)$, $u' \in L^p(\mathbb{T}; D(B))$ and (P_4) is satisfied a.e. on \mathbb{T} , here we consider D(A) and D(B)as Banach spaces equipped with the graph norms. We say that (P_4) is L^p -wellposed, if for each $f \in L^p(\mathbb{T}; X)$, there exists a unique strong L^p -solution of (P_4) . We introduce similarly the $B^s_{p,q}$ -well-posedness of (P_4) .

The main purpose of this paper is to give some characterizations of the wellposedness of (P_4) in Lebesgue–Bochner spaces $L^p(\mathbb{T}; X)$ and periodic Besov spaces $B_{p,q}^s(\mathbb{T}; X)$. The characterizations of the well-posedness of (P_4) involve the Rademacher boundedness (or norm boundedness) of the *M*-resolvent of *A*, *B* and *L* defined by (P_4) . More precisely, we show that when *X* is a UMD Banach space and $1 , if <math>\{k(G_{k+1} - G_k) : k \in \mathbb{Z}\}$ is Rademacher-bounded, then (P_4) is L^p -well-posed if and only if $\rho_M(A, B, L) = \mathbb{Z}$ (the *M*-resolvent set of *A*, *B* and *L* defined by (P_4)) and the sets

$$\{k^4 M N_k : k \in \mathbb{Z}\}, \{k^3 L N_k : k \in \mathbb{Z}\}, \{k B N_k : k \in \mathbb{Z}\}, \{k N_k : k \in \mathbb{Z}\}$$

are Rademacher-bounded, where

$$N_k = [(k^4M - (i\alpha k^3 + k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{-1},$$

 $G_k, F_k, H_k \in \mathcal{L}(X)$ are defined by $G_k x = G(e_k x), F_k x = F(e_k x), x \in X$. Since this characterization of the L^p -well-posedness of (P_4) does not depend on the space parameter $1 , we deduce that when X is a UMD Banach space and the set <math>\{k(G_{k+1} - G_k) : k \in \mathbb{Z}\}$ is Rademacher-bounded, then (P_4) is L^p -well-posed for some $1 if and only if it is <math>L^p$ -well-posed for all 1 .

We also give a similar characterization for the $B_{p,q}^s$ -well-posedness of (P_4) : let X be a Banach space, $1 \leq p, q \leq \infty$, s > 0, assume that the sets $\{k(F_{k+2} - 2F_{k+1} + F_k): k \in \mathbb{Z}\}$, $\{k(G_{k+1} - G_k): k \in \mathbb{Z}\}$ and $\{k^2(G_{k+2} - 2G_{k+1} + G_k): k \in \mathbb{Z}\}$ are norm-bounded, then the problem (P_4) is $B_{p,q}^s$ -well-posed if and only if $\subset \rho_M(A, B, L) = \mathbb{Z}$ and the sets

$$\{k^4 M N_k : k \in \mathbb{Z}\}, \{k^3 L N_k : k \in \mathbb{Z}\}, \{k B N_k : k \in \mathbb{Z}\}, \{k N_k : k \in \mathbb{Z}\}$$

are norm-bounded, where N_k , F_k , G_k and H_k are defined as in the L^p -wellposedness case. Since this characterization of the $B_{p,q}^s$ -well-posedness of (P_4) does not depend on the parameters $1 \leq p, q \leq \infty$, s > 0, we deduce that when the sets $\{k(F_{k+2} - 2F_{k+1} + F_k): k \in \mathbb{Z}\}, \{k(G_{k+1} - G_k): k \in \mathbb{Z}\}$ and $\{k^2(G_{k+2} - 2G_{k+1} + G_k): k \in \mathbb{Z}\}$ are norm-bounded, then (P_4) is $B_{p,q}^s$ -well-posed for some $1 \leq p, q \leq \infty, s > 0$ if and only if it is $B_{p,q}^s$ -well-posed for all $1 \leq p, q \leq \infty, s > 0$.

Our main tools in the investigation of the well-posedness of (P_4) are the operatorvalued Fourier multiplier theorems obtained by Arendt and Bu [5, 6] on $L^p(\mathbb{T}; X)$ and $B_{p,q}^s(\mathbb{T}; X)$. In fact, our main idea is to transform the well-posedness of (P_4) to an operator-valued Fourier multiplier problem in the corresponding vector-valued function space.

This work is organized as follows: in § 2, we study the well-posedness of (P_4) in vector-valued Lebesgue–Bochner spaces $L^p(\mathbb{T}; X)$. In § 3, we consider the well-posedness of (P_4) in periodic Besov spaces $B_{p,q}^s(\mathbb{T}; X)$. In the last section, we give some examples of degenerate differential equations with finite delay to which our abstract results may be applied.

2. Well-posedness of (P_4) in Lebesgue–Bochner spaces

Let X and Y be complex Banach spaces and let $\mathbb{T} := [0, 2\pi]$. We denote by $\mathcal{L}(X, Y)$ the space of all bounded linear operators from X to Y. If X = Y, we will simply denote it by $\mathcal{L}(X)$. For $1 \leq p < \infty$, we denote by $L^p(\mathbb{T}; X)$ the space of all equivalent

class of X-valued measurable functions f defined on \mathbb{T} satisfying

$$\|f\|_{L^p} := \left(\frac{1}{2\pi} \int_0^{2\pi} \|f(t)\|^p \, \mathrm{d}t\right)^{1/p} < \infty.$$

For $f \in L^1(\mathbb{T}; X)$, the k-th Fourier coefficient of f is defined by

$$\hat{f}(k) := \frac{1}{2\pi} \int_0^{2\pi} e_{-k}(t) f(t) \,\mathrm{d}t$$

where $k \in \mathbb{Z}$ and $e_k(t) = e^{ikt}$ when $t \in \mathbb{T}$.

DEFINITION 2.1. Let X and Y be complex Banach spaces and $1 \leq p < \infty$, we say that $(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$ is an L^p -Fourier multiplier, if for each $f \in L^p(\mathbb{T}; X)$, there exists a unique $u \in L^p(\mathbb{T}; Y)$ such that $\hat{u}(k) = M_k \hat{f}(k)$ when $k \in \mathbb{Z}$.

From the closed graph theorem, if $(M_k)_{k\in\mathbb{Z}} \subset \mathcal{L}(X, Y)$ is an L^p -Fourier multiplier, then there exists a unique bounded linear operator $T \in \mathcal{L}(L^p(\mathbb{T}; X), L^p(\mathbb{T}; Y))$ satisfying $(Tf)^{\wedge}(k) = M_k \hat{f}(k)$ when $f \in L^p(\mathbb{T}; X)$ and $k \in \mathbb{Z}$. The operator-valued Fourier multiplier theorem on $L^p(\mathbb{T}; X)$ obtained in [5] involves the Rademacher boundedness for sets of bounded linear operators. Let γ_j be the *j*-th Rademacher function on [0, 1] defined by $\gamma_j(t) = \operatorname{sgn}(\sin(2^{j-1}t))$ when $j \ge 1$. For $x \in X$, we denote by $\gamma_j \otimes x$ the vector-valued function $t \to r_j(t)x$ on [0, 1].

DEFINITION 2.2. Let X and Y be Banach spaces. A set $\mathbf{T} \subset \mathcal{L}(X, Y)$ is said to be Rademacher-bounded (R-bounded, in short), if there exists C > 0 such that

$$\left\|\sum_{j=1}^{n} \gamma_{j} \otimes T_{j} x_{j}\right\|_{L^{1}([0,1];Y)} \leq C \left\|\sum_{j=1}^{n} \gamma_{j} \otimes x_{j}\right\|_{L^{1}([0,1];X)}$$

for all $T_1, \ldots, T_n \in \mathbf{T}, x_1, \ldots, x_n \in X$ and $n \in \mathbb{N}$.

Remark 2.3.

- (i) Let $\mathbf{S}, \mathbf{T} \subset \mathcal{L}(X)$ be *R*-bounded sets. Then it can be shown easily from the definition that $\mathbf{ST} := \{ST : S \in \mathbf{S}, T \in \mathbf{T}\}$ and $\mathbf{S} + \mathbf{T} := \{S + T : S \in \mathbf{S}, T \in \mathbf{T}\}$ are still *R*-bounded.
- (ii) Let X be a UMD Banach space and let $M_k = m_k I_X$ with $m_k \in \mathbb{C}$, where I_X is the identity operator on X, if $\sup_{k \in \mathbb{Z}} |m_k| < \infty$ and $\sup_{k \in \mathbb{Z}} |k(m_{k+1} m_k)| < \infty$, then $(M_k)_{k \in \mathbb{Z}}$ is an L^p -Fourier multiplier whenever 1 [5].

The main tool in our study of L^p -well-posedness of (P_4) is the L^p -Fourier multiplier theorem established in [5]. The following results will be very important in the proof of our main result of this section. For the concept of UMD Banach spaces, we refer the readers to [5] and references therein.

THEOREM 2.4 [5, Theorem 1.3]. Let X, Y be UMD Banach spaces and $(M_k)_{k\in\mathbb{Z}} \subset \mathcal{L}(X, Y)$. If the sets $\{M_k : k \in \mathbb{Z}\}$ and $\{k(M_{k+1} - M_k) : k \in \mathbb{Z}\}$ are R-bounded, then $(M_k)_{k\in\mathbb{Z}}$ defines an L^p -Fourier multiplier whenever 1 .

PROPOSITION 2.5 [5, Proposition 1.11]. Let X, Y be Banach spaces, $1 \leq p < \infty$, and let $(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$ be an L^p -Fourier multiplier, then the set $\{M_k : k \in \mathbb{Z}\}$ is R-bounded.

Now we consider the following four-order degenerate differential equations with finite delays:

$$(Mu)''''(t) + \alpha(Lu)'''(t) + (Lu)''(t) = \beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t), \quad (t \in \mathbb{T})$$
(P4)

where A, B, M and L are closed linear operators on a Banach space X satisfying $D(A) \cap D(B) \subset D(M) \cap D(L)$, $\alpha, \beta, \gamma \in \mathbb{C}$ are given and $F, G : L^p([-2\pi, 0]; X) \to X$ are bounded linear operators (F and G are known as the delay operators). Moreover, for fixed $t \in \mathbb{T}$, the functions u_t and u'_t are elements in $L^p([-2\pi, 0]; X)$ defined by $u_t(s) = u(t+s)$, $u'_t(s) = u'(t+s)$ for $-2\pi \leq s \leq 0$, here we identify a function u on \mathbb{T} with its natural 2π -periodic extension on \mathbb{R} .

Let $F, G \in \mathcal{L}((L^p[-2\pi, 0]; X), X)$ and $k \in \mathbb{Z}$. We define the linear operators $F_k, G_k \in \mathcal{L}(X)$ by

$$F_k x := F(e_k x), \quad G_k x := G(e_k x), \tag{2.1}$$

for $x \in X$, where $e_k(t) = e^{ikt}$ when $t \in \mathbb{T}$. It is clear that $||F_k|| \leq ||F||$ and $||G_k|| \leq ||G||$ as $||e_k||_p = 1$. It is easy to see that when $u \in L^p(\mathbb{T}; X)$, then

$$\widehat{Fu}(k) = F_k \hat{u}(k), \quad \widehat{Gu}(k) = G_k \hat{u}(k)$$
(2.2)

for $k \in \mathbb{Z}$. This implies that $(F_k)_{k \in \mathbb{Z}}$ and $(G_k)_{k \in \mathbb{Z}}$ are L^p -Fourier multipliers as

$$||Fu_t|| \leq ||F|| ||u_{\cdot}||_{L^p([-2\pi,0];X)} = ||F|| ||u||_{L^p},$$

and

 $||Gu_t|| \leq ||G|| ||u_{\cdot}||_{L^p([-2\pi,0];X)} = ||G|| ||u||_{L^p},$

for $t \in \mathbb{T}$ so that $Fu_{\cdot}, Gu_{\cdot}, Hu_{\cdot} \in L^{p}(\mathbb{T}; X)$.

Now we define the resolvent set of (P_4) by

$$\rho_M(A, B, L) := \left\{ k \in \mathbb{Z} : k^4 M - (\alpha i k^3 + k^2) L - \beta A - i \gamma k B - i k G_k - F_k \text{ is invertible from} \right.$$
$$D(A) \cap D(B) \text{ onto } X \quad \text{and} \quad [k^4 M - (\alpha i k^3 + k^2) L - \beta A - i \gamma k B - i k G_k - F_k]^{-1} \in \mathcal{L}(X) \right\}.$$

For the sake of simplicity, when $k \in \rho_M(A, B, L)$, we will use the following notation:

$$N_k = [a_k M - b_k L - \beta A - c_k B - ikG_k - F_k]^{-1}, \quad (k \in \mathbb{Z}),$$
(2.3)

where

$$a_k = k^4, \quad b_k = \alpha i k^3 + k^2, \quad c_k = i \gamma k, \quad (k \in \mathbb{Z}).$$
 (2.4)

If $k \in \rho_M(A, B, L)$, then MN_k , LN_k , AN_k and BN_k make sense as $D(A) \cap D(B) \subset D(M) \cap D(L)$ by assumption, and they belong to $\mathcal{L}(X)$ by the closed graph theorem and the closedness of A, B, M and L.

Let $(L_k)_{k\in\mathbb{Z}} \subset \mathcal{L}(X, Y)$ be a given sequence of operators. We define

$$(\triangle^0 L)_k = L_k, \quad (\triangle L)_k = L_{k+1} - L_k, \quad (k \in \mathbb{Z})$$

and for n = 2, 3, ..., set

$$(\triangle^n L)_k = \triangle (\triangle^{n-1} L)_k, \quad (k \in \mathbb{Z}).$$

DEFINITION 2.6. A sequence $(d_k)_{k\in\mathbb{Z}} \subseteq \mathbb{C}\setminus\{0\}$ is called 1-regular if the sequence $(k\frac{\Delta^1 d_k}{d_k})_{k\in\mathbb{Z}}$ is bounded; it is called 2-regular if it is 1-regular and the sequence $(k^2\frac{\Delta^2 d_k}{d_k})_{k\in\mathbb{Z}}$ is bounded; it is called 3-regular if it is 2-regular and the sequence $(k^3\frac{\Delta^3 d_k}{d_k})_{k\in\mathbb{Z}}$ is bounded.

REMARK 2.7. It is easy to see that $(a_k)_{k\in\mathbb{N}}$, $(b_k)_{k\in\mathbb{N}}$ and $(c_k)_{k\in\mathbb{N}}$ are 3-regular.

DEFINITION 2.8. Let $1 \leq p < \infty$, $n \geq 1$ be an integer and let X be a Banach space, we define the the following vector-valued function spaces:

$$W_{per}^{n,p}(\mathbb{T};X) := \left\{ u \in L^p(\mathbb{T};X) : \text{ there exists } v \in L^p(\mathbb{T};X), \text{ such that } \hat{v}(k) \\ = (ik)^n \hat{u}(k) \text{ for all } k \in \mathbb{Z} \right\}.$$

 $W^{n,p}_{per}(\mathbb{T};X)$ is the n-th X-valued periodic Sobolev space.

REMARK 2.9. We have the following two useful properties concerning these spaces:

(i) Let $m, n \in \mathbb{N}$. If $n \leq m$, then $W^{m,p}_{\text{per}}(\mathbb{T}; X) \subseteq W^{n,p}_{\text{per}}(\mathbb{T}; X)$.

(ii) If $u \in W^{n,p}_{\text{per}}(\mathbb{T}; X)$, then for any $0 \leq k \leq n-1$, we have $u^{(k)}(0) = u^{(k)}(2\pi)$.

Let $1 \leq p < \infty$, we define the solution space of the L^p -well-posedness of (P_4) by

$$S_p(A, B, M, L) := \left\{ u \in W^{1,p}_{\text{per}}(\mathbb{T}; X) \cap L^p(\mathbb{T}; D(A)) : Mu \in W^{4,p}_{\text{per}}(\mathbb{T}; X), Lu \in W^{3,p}_{\text{per}}(\mathbb{T}; X), u' \in L^p(\mathbb{T}; D(B)) \right\},$$

here we consider D(A) and D(B) as Banach spaces equipped with their graph norms. The space $S_p(A, B, M, L)$ is complete equipped with the norm

$$\begin{aligned} \|u\|_{S_{p}(A,B,M,L)} &:= \|u\|_{L^{p}} + \|Au\|_{L^{p}} + \|(Mu)'\|_{L^{p}} + \|(Mu)''\|_{L^{p}} + \|(Mu)'''\|_{L^{p}} \\ &+ \|(Mu)''''\|_{L^{p}} + \|(Lu)'\|_{L^{p}} + \|(Lu)''\|_{L^{p}} + \|(Lu)'''\|_{L^{p}} + \|Bu'\|_{L^{p}} \end{aligned}$$

If $u \in S_p(A, B, M, L)$, then Mu, (Mu)', (Mu)'' and (Mu)''' are X-valued continuous functions on \mathbb{T} , and $Mu(0) = Mu(2\pi)$, $(Mu)'(0) = (Mu)'(2\pi)$, $(Mu)''(0) = (Mu)''(2\pi)$, $(Mu)'''(0) = (Mu)'''(2\pi)$ by [5, Lemma 2.1].

 $\mathbf{6}$

DEFINITION 2.10. Let $1 \leq p < \infty$ and $f \in L^p(\mathbb{T}; X)$, $u \in S_p(A, B, M, L)$ is called a strong L^p -solution of (P_4) , if (P_4) is satisfied a.e. on \mathbb{T} . We say that (P_4) is L^p -well-posed, if for each $f \in L^p(\mathbb{T}; X)$, there exists a unique strong L^p -solution of (P_4) .

If (P_4) is L^p -well-posed, then there exists a constant C > 0, such that for each $f \in L^p(\mathbb{T}; X)$, if $u \in S_p(A, B, M, L)$ is the unique strong L^p -solution of (P_4) , we have

$$\|u\|_{S_p(A,B,M,L)} \leqslant C \, \|f\|_{L^p} \,. \tag{2.5}$$

This follows easily from the closed graph theorem.

In order to prove our main result of this section, we need the following preparations.

PROPOSITION 2.11. Let A, B, M and L be closed linear operators defined on a UMD Banach space X such that $D(A) \cap D(B) \subset D(M) \cap D(L)$, 1 $and <math>\alpha$, β , $\gamma \in \mathbb{C}$. Let F, $G \in \mathcal{L}(L^p([-2\pi, 0]; X), X)$. Assume that $\rho_M(A, B, L) = \mathbb{Z}$ and the sets $\{a_k M N_k : k \in \mathbb{Z}\}$, $\{b_k L N_k : k \in \mathbb{Z}\}$, $\{c_k B N_k : k \in \mathbb{Z}\}$, $\{k \triangle G_k : k \in \mathbb{Z}\}$ and $\{k N_k : k \in \mathbb{Z}\}$ are R-bounded, then $(a_k M N_k)_{k \in \mathbb{Z}}$, $(b_k L N_k)_{k \in \mathbb{Z}}$, $(c_k B N_k)_{k \in \mathbb{Z}}$ and $(k N_k)_{k \in \mathbb{Z}}$ are L^p -Fourier multipliers.

Proof. We only need to show that the set $\{k(N_k^{-1} - N_{k+1}^{-1})N_k : k \in \mathbb{Z}\}$ is *R*-bounded by [11, Theorem 1.1] and theorem 2.4, here we have used the facts that $(a_k)_{k\in\mathbb{N}}$, $(b_k)_{k\in\mathbb{N}}$ and $(c_k)_{k\in\mathbb{N}}$ are 1-regular sequences. It follows from the definition of N_k that

$$(N_{k}^{-1} - N_{k+1}^{-1})N_{k}$$

$$= [a_{k}M - b_{k}L - \beta A - c_{k}B - ikG_{k} - F_{k} - a_{k+1}M + b_{k+1}L + \beta A + c_{k+1}B + i(k+1)G_{k+1} + F_{k+1}]N_{k}$$

$$= [-\Delta a_{k}M + \Delta b_{k}L + \Delta c_{k}B + ik\Delta G_{k} + iG_{k+1} + \Delta F_{k}]N_{k}, \qquad (2.6)$$

which implies

$$k(N_{k}^{-1} - N_{k+1}^{-1})N_{k}$$

$$= -\frac{k \Delta a_{k}}{a_{k}}(a_{k}MN_{k}) + \frac{k \Delta b_{k}}{b_{k}}(b_{k}LN_{k}) + \frac{k \Delta c_{k}}{c_{k}}(c_{k}BN_{k})$$

$$+ i(k \Delta G_{k})(kN_{k}) + iG_{k+1}(kN_{k}) + \Delta F_{k}(kN_{k}), \qquad (2.7)$$

when $k \neq 0$. It follows from remark 2.3 that the products and sums of *R*-bounded sets are still *R*-bounded. Thus, the set $\{k(N_k^{-1} - N_{k+1}^{-1})N_k : k \in \mathbb{Z}\}$ is *R*-bounded. This completes the proof.

The following statement is the main result of this section which gives a necessary and sufficient condition for the L^p -well-posedness of (P_4) .

THEOREM 2.12. Let X be a UMD Banach space, 1 and let A, B, L $and M be closed linear operators on X satisfying <math>D(A) \cap D(B) \subset D(M) \cap$ D(L) and α , β , $\gamma \in \mathbb{C}$. Let $F, G \in \mathcal{L}(L^p([-2\pi, 0]; X), X)$ be such that the set $\{k \Delta G_k : k \in \mathbb{Z}\}$ is R-bounded. Then the following assertions are equivalent:

- (i) (P_4) is L^p -well-posed;
- (ii) $\rho_M(A, B, L) = \mathbb{Z}$, the sets $\{k^4 M N_k : k \in \mathbb{Z}\}, \{k^3 L N_k : k \in \mathbb{Z}\}, \{kBN_k : k \in \mathbb{Z}\}$ and $\{kN_k : k \in \mathbb{Z}\}$ are *R*-bounded, where N_k is defined by (2.3), the operators F_k and G_k are defined by (2.1).

Proof. First we show that the implication $(i) \Rightarrow (ii)$ holds true. We assume that (P_4) is L^p -well-posed and let $k \in \mathbb{Z}$ and $y \in X$ be fixed, we consider the function f defined by $f(t) = e^{ikt}y$ when $t \in \mathbb{T}$. Then it is clear that $f \in L^p(\mathbb{T}; X)$, $\hat{f}(k) = y$ and $\hat{f}(n) = 0$ when $n \neq k$. Since (P_4) is L^p -well-posed, there exists a unique $u \in S_p(A, B, L, M)$ satisfying

$$(Mu)'''(t) + \alpha(Lu)''(t) + (Lu)''(t) = \beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t)$$
(2.8)

a.e. on \mathbb{T} . We have $\hat{u}(n) \in D(A) \cap D(B)$ when $n \in \mathbb{Z}$ by [5, Lemma 3.1] as $u \in L^p(\mathbb{T}; D(A)) \cap L^p(\mathbb{T}; D(B))$. Taking Fourier transforms on both sides of (2.8), we obtain

$$[k^{4}M - (\alpha ik^{3} + k^{2})L - \beta A - i\gamma kB - ikG_{k} - F_{k}]\hat{u}(k) = y$$
(2.9)

and $[n^4M - (\alpha in^3 + n^2)L - \beta A - i\gamma nB - inG_n - F_n]\hat{u}(n) = 0$ when $n \neq k$. This implies that the operator $k^4M - (\alpha ik^3 + k^2)L - \beta A - i\gamma kB - ikG_k - F_k$ defined on $D(A) \cap D(B)$ with values in X is surjective. To show that it is also injective, we let $x \in D(A) \cap D(B)$ be such that

$$[k^{4}M - (\alpha ik^{3} + k^{2})L - \beta A - i\gamma kB - ikG_{k} - F_{k}]x = 0.$$

Let u be the function given by $u(t) = e^{ikt}x$ when $t \in \mathbb{T}$, then it is clear that $u \in S_p(A, B, M, L)$ and (P_4) is satisfied a.e. on \mathbb{T} when f = 0. Thus, u is a strong L^p -solution of (P_4) when taking f = 0. We obtain x = 0 by the uniqueness assumption. We have shown that the operator $k^4M - (\alpha ik^3 + k^2)L - \beta A - i\gamma kB - ikG_k - F_k$ from $D(A) \cap D(B)$ into X is injective. Therefore, $k^4M - (\alpha ik^3 + k^2)L - \beta A - i\gamma kB - ikG_k - F_k$ is bijective from $D(A) \cap D(B)$ onto X.

Next we show that $[k^4M - (\alpha ik^3 + k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{-1} \in \mathcal{L}(X)$. For $f(t) = e^{ikt}y$, we let $u \in S_p(A, B, M, L)$ be the unique strong L^p -solution of (P_4) . Then

$$\hat{u}(n) = \begin{cases} 0 & n \neq k, \\ [k^4M - (\alpha i k^3 + k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{-1}y & n = k, \end{cases}$$

by (2.9). This implies that u is given by

$$u(t) = e^{ikt} [k^4 M - (\alpha i k^3 + k^2) L - \beta A - i\gamma k B - ikG_k - F_k]^{-1} y$$

when $t \in \mathbb{T}$. By (2.5), there exists a constant C > 0 independent from y and k, such that $\|u\|_{L^p} \leq C \|f\|_{L^p}$. This implies that

$$\left\| [k^{4}M - (\alpha i k^{3} + k^{2})L - \beta A - i\gamma kB - ikG_{k} - F_{k}]^{-1}y \right\| \leq C \|y\|$$

when $y \in X$, or equivalently

$$\left\| \left[k^4M - (\alpha i k^3 + k^2)L - \beta A - i\gamma kB - ikG_k - F_k\right]^{-1} \right\| \leqslant C.$$

We have shown that $k \in \rho_M(A, B, L)$ for all $k \in \mathbb{Z}$. Thus, $\rho_M(A, B, L) = \mathbb{Z}$.

Finally, we show that $(k^4MN_k)_{k\in\mathbb{Z}}$, $(k^3LN_k)_{k\in\mathbb{Z}}$, $(kN_k)_{k\in\mathbb{Z}}$ and $(kBN_k)_{k\in\mathbb{Z}}$ define L^p -Fourier multipliers. Let $f \in L^p(\mathbb{T}; X)$, then there exists $u \in S_p(A, B, M, L)$, a strong L^p -solution of (P_4) by assumption. Taking Fourier transforms on both sides of (P_4) , we get that $\hat{u}(k) \in D(A) \cap D(B)$ by [5, Lemma 3.1] and

$$[k^4M - (\alpha ik^3 + k^2)L - \beta A - i\gamma kB - ikG_k - F_k]\hat{u}(k) = \hat{f}(k)$$

for $k \in \mathbb{Z}$. Since $k^4M - (\alpha ik^3 + k^2)L - \beta A - i\gamma kB - ikG_k - F_k$ is invertible, we have

$$\hat{u}(k) = [k^4 M - (\alpha i k^3 + k^2) L - \beta A - i\gamma k B - ikG_k - F_k]^{-1} \hat{f}(k) = N_k \hat{f}(k)$$

when $k \in \mathbb{Z}$. It follows from $u \in S_p(A, B, M, L)$ that $u \in L^p(\mathbb{T}; D(A)) \cap W^{1,p}_{per}(\mathbb{T}; X)$, $Mu \in W^{4,p}_{per}(\mathbb{T}; X)$, $Lu \in W^{3,p}_{per}(\mathbb{T}; X)$ and $u' \in L^p(\mathbb{T}; D(B))$. We have

$$\begin{split} \widehat{(Mu)''''}(k) &= k^4 M \hat{u}(k), \quad \widehat{(Lu)'''}(k) = -ik^3 L \hat{u}(k), \quad \widehat{Bu'}(k) \\ &= ik B \hat{u}(k), \quad \widehat{u'}(k) = ik \hat{u}(k) \end{split}$$

when $k \in \mathbb{Z}$. We conclude that $(k^4 M N_k)_{k \in \mathbb{Z}}, (k^3 L N_k)_{k \in \mathbb{Z}}, (k B N_k)_{k \in \mathbb{Z}}$ and $(k N_k)_{k \in \mathbb{Z}}$ define L^p -Fourier multipliers as $(M u)^{\prime\prime\prime\prime}, (L u)^{\prime\prime\prime}, B u^{\prime}, u^{\prime} \in L^p(\mathbb{T}; X)$. It follows from proposition 2.5 that the sets $\{k^4 M N_k : k \in \mathbb{Z}\}, \{k^3 L N_k : k \in \mathbb{Z}\}, \{k B N_k : k \in \mathbb{Z}\}$ and $\{k N_k : k \in \mathbb{Z}\}$ are *R*-bounded. We have shown that the implication $(i) \Rightarrow (ii)$ is true.

Next we show that the implication $(ii) \Rightarrow (i)$ is valid. Assume that $\rho_M(A, B, L) = \mathbb{Z}$ and the sets $\{k^4MN_k : k \in \mathbb{Z}\}, \{k^3LN_k : k \in \mathbb{Z}\}, \{kN_k : k \in \mathbb{Z}\}$ and $\{kBN_k : k \in \mathbb{Z}\}$ are *R*-bounded. It follows from proposition 2.11 that $(k^4MN_k)_{k\in\mathbb{Z}}, (k^3LN_k)_{k\in\mathbb{Z}}, (kBN_k)_{k\in\mathbb{Z}}$ and $(kN_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multipliers. This implies that the sequences $(N_k)_{k\in\mathbb{Z}}, (BN_k)_{k\in\mathbb{Z}}, (k^2LN_k)_{k\in\mathbb{Z}}, (MN_k)_{k\in\mathbb{Z}}, (LN_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multiplier. Here we have used the easy fact that $(d_k)_{k\in\mathbb{Z}}$ is an L^p -Fourier multiplier and the fact that the product of two L^p -Fourier multipliers is still an L^p -Fourier multiplier, where d_k is defined by $d_k = 1/k$ when $k \neq 0$ and $d_0 = 0$. In particular, considering $N_k \in \mathcal{L}(X, D(B))$, the sequence $(N_k)_{k\in\mathbb{Z}}$ is an L^p -Fourier multiplier. Then for all $f \in L^p(\mathbb{T}; X)$, there exist $u_i \in L^p(\mathbb{T}; X)$ $(1 \leq i \leq 7)$ and $u \in L^p(\mathbb{T}; D(B))$ satisfying

$$\hat{u}_{1}(k) = k^{4} M N_{k} \hat{f}(k), \quad \hat{u}_{2}(k) = i k N_{k} \hat{f}(k),$$
$$\hat{u}_{3}(k) = M N_{k} \hat{f}(k), \quad \hat{u}_{4}(k) = L N_{k} \hat{f}(k)$$
(2.10)

$$\hat{u}_{5}(k) = ikBN_{k}f(k), \quad \hat{u}_{6}(k) = -ik^{3}LN_{k}f(k),$$
$$\hat{u}_{7}(k) = -k^{2}LN_{k}\hat{f}(k), \\ \hat{u}(k) = N_{k}\hat{f}(k) \quad (2.11)$$

for $k \in \mathbb{Z}$. Hence, $\hat{u}_2(k) = ik\hat{u}(k)$ for $k \in \mathbb{Z}$ by (2.10). This implies that $u \in W^{1,p}_{\text{per}}(\mathbb{T};X)$. It follows from (2.11) that $\hat{u'}(k) = ik\hat{u}(k) = ikN_k\hat{f}(k)$ when $k \in \mathbb{Z}$.

This together with $\hat{u}_5(k) = ikBN_k \hat{f}(k)$ when $k \in \mathbb{Z}$ implies that $u' \in L^p(\mathbb{T}; D(B))$ [5, Lemma 3.1]. By (2.10) and (2.11), we have $\hat{u}_3(k) = M\hat{u}(k)$ when $k \in \mathbb{Z}$. Hence, $u \in L^p(\mathbb{T}; D(M))$ and $Mu = u_3$. Similarly, by using (2.10) and (2.11), we have $\hat{u}_4(k) = L\hat{u}(k)$ when $k \in \mathbb{Z}$. Thus, $u \in L^p(\mathbb{T}; D(L))$ and $Lu = u_4$ [5, Lemma 3.1]. By (2.10) and the fact that $Mu = u_3$, we deduce $\hat{u}_1(k) = (ik)^4 \widehat{Mu}(k) = (ik)^4 \hat{u}_3(k)$ when $k \in \mathbb{Z}$. Thus, $Mu \in W^{4,p}_{\text{per}}(\mathbb{T}; X)$. Similarly, using (2.11) and the fact hat $Lu = u_4$, we deduce that $Lu \in W^{3,p}_{\text{per}}(\mathbb{T}; X)$.

We note that $(G_k)_{k\in\mathbb{Z}}$ and $(F_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multipliers by (2.2), where G_k , F_k and H_k are defined by (2.1). Thus, $(ikG_kN_k)_{k\in\mathbb{Z}}$ and $(F_kD_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multipliers as the product of two L^p -Fourier multipliers is still an L^p -Fourier multiplier. We have

$$\beta AN_k = k^4 M N_k - (\alpha i k^3 + k^2) L N_k - i \gamma k B N_k - i k G_k N_k - F_k N_k - I_X$$

for $k \in \mathbb{Z}$. It follows that $(AN_k)_{k \in \mathbb{Z}}$ is also an L^p -Fourier multiplier as the sum of L^p -Fourier multipliers is an L^p -Fourier multiplier. We deduce from (2.11) and [5, Lemma 3.1] that $u \in L^p(\mathbb{T}; D(A))$. We have shown that $u \in S_p(A, B, M, L)$. This shows the existence of strong L^p -solution.

To show uniqueness of strong L^p -solution, we let $u \in S_p(A, B, M, L)$ be such that

$$(Mu)'''(t) + \alpha (Lu)'''(t) + (Nu)''(t) = \beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t$$

a.e. on \mathbb{T} . Taking the Fourier transforms on both sides, we deduce that

$$[k^{4}M - (\alpha ik^{3} + k^{2})L - \beta A - i\gamma kB - ikG_{k} - F_{k}]\hat{u}(k) = 0$$

when $k \in \mathbb{Z}$. Since $\rho_M(A, B, L) = \mathbb{Z}$, this implies that $\hat{u}(k) = 0$ when $k \in \mathbb{Z}$ and thus u = 0. This shows that the solution is unique. This completes the proof. \Box

We notice that the assumption that the underlying Banach space X is a UMD space in theorem 2.12 was only used in the implication $(ii) \Rightarrow (i)$. Since the second statement of theorem 2.12 does not depend on the space parameter 1 , theorem 2.12 has the following immediate consequence.

COROLLARY 2.13. Let X be a UMD Banach space, let A, B, L and M be closed linear operators on X satisfying $D(A) \cap D(B) \subset D(M) \cap D(L)$, and α , β , $\gamma \in \mathbb{C}$. Then if (P_4) is L^p -well-posed for some $1 , then it is <math>L^p$ -well-posed for all 1 .

3. Well-posedness of (P_4) in Besov spaces

In this section, we consider the well-posedness of (P_4) in periodic Besov spaces $B_{p,q}^s(\mathbb{T}; X)$. Firstly, we briefly recall the definition of periodic Besov spaces in the vector-valued case introduced in [6]. Let $\mathcal{S}(\mathbb{R})$ be the Schwartz space of all rapidly decreasing smooth functions on \mathbb{R} . Let $\mathcal{D}(\mathbb{T})$ be the space of all infinitely differentiable functions on \mathbb{T} equipped with the locally convex topology given by the seminorms $||f||_{\alpha} = \sup_{x \in \mathbb{T}} |f^{(\alpha)}(x)|$ for $\alpha \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$. Let

 $\mathcal{D}'(\mathbb{T}; X) := \mathcal{L}(\mathcal{D}(\mathbb{T}), X)$ be the space of all continuous linear operator from $\mathcal{D}(\mathbb{T})$ to X. We consider the dyadic-like subsets of \mathbb{R} :

$$I_0 = \{t \in \mathbb{R} : |t| \leq 2\}, I_k = \{t \in \mathbb{R} : 2^{k-1} < |t| \leq 2^{k+1}\}$$

for $k \in \mathbb{N}$. Let $\phi(\mathbb{R})$ be the set of all systems $\phi = (\phi_k)_{k \in \mathbb{N}_0} \subset \mathcal{S}(\mathbb{R})$ satisfying $\sup (\phi_k) \subset \overline{I}_k$ for each $k \in \mathbb{N}_0$, $\sum_{k \in \mathbb{N}_0} \phi_k(x) = 1$ for $x \in \mathbb{R}$, and for each $\alpha \in \mathbb{N}_0$, $\sup_{x \in \mathbb{R}, k \in \mathbb{N}_0} 2^{k\alpha} |\phi_k^{(\alpha)}(x)| < \infty$. Let $\phi = (\phi_k)_{k \in \mathbb{N}_0} \subset \phi(\mathbb{R})$ be fixed. For $1 \leq p$, $q \leq \infty$, $s \in \mathbb{R}$, the X-valued periodic Besov space is defined by

$$B_{p,q}^{s}(\mathbb{T};X) = \left\{ f \in \mathcal{D}'(\mathbb{T};X) : \|f\|_{B_{p,q}^{s}} \\ := \left(\sum_{j \ge 0} 2^{sjq} \left\| \sum_{k \in \mathbb{Z}} e_{k} \otimes \phi_{j}(k) \hat{f}(k) \right\|_{p}^{q} \right)^{1/q} < \infty \right\}$$

with the usual modification if $q = \infty$. The space $B_{p,q}^s(\mathbb{T}; X)$ is independent from the choice of ϕ and different choices of ϕ lead to equivalent norms on $B_{p,q}^s(\mathbb{T}; X)$. $B_{p,q}^s(\mathbb{T}; X)$ equipped with the norm $\|\cdot\|_{B_{p,q}^s}$ is a Banach space. See [6, Section 2] for more information about the space $B_{p,q}^s(\mathbb{T}; X)$. It is well known that if $s_1 \leq s_2$, then $B_{p,q}^{s_1}(\mathbb{T}; X) \subset B_{p,q}^{s_2}(\mathbb{T}; X)$ and the embedding is continuous [6, Theorem 2.3]. When s > 0, it is shown in [6, Theorem 2.3] that $B_{p,q}^s(\mathbb{T}; X) \subset L^p(\mathbb{T}; X)$, $f \in B_{p,q}^{s+1}(\mathbb{T}; X)$ if and only if f is differentiable a.e. on \mathbb{T} and $f' \in B_{p,q}^s(\mathbb{T}; X)$. This implies that if $u \in B_{p,q}^s(\mathbb{T}; X)$ is such that there exists $v \in B_{p,q}^s(\mathbb{T}; X)$ satisfying $\hat{v}(k) = ik\hat{u}(k)$ when $k \in \mathbb{Z}$, then $u \in B_{p,q}^{s+1}(\mathbb{T}; X)$ and u' = v.

Let $1 \leq p, q \leq \infty, s > 0$ be fixed. We consider the following four-order degenerate differential equations with finite delay:

$$(Mu)'''(t) + \alpha(Lu)'''(t) + (Lu)''(t) = \beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t), \quad (t \in \mathbb{T})$$
(P₄)

where A, B, M and L are closed linear operators on a Banach space X satisfying $D(A) \cap D(B) \subset D(M) \cap D(L)$ and α , β , $\gamma \in \mathbb{C}$, $f \in B^s_{p,q}(\mathbb{T}; X)$ is given, and $F, G: B^s_{p,q}([-2\pi, 0]; X) \to X$ are bounded linear operators. Moreover, for fixed $t \in \mathbb{T}, u_t \in B^s_{p,q}([-2\pi, 0]; X)$ is defined by $u_t(s) = u(t+s)$ for $-2\pi \leq s \leq 0$, here we identify a function u on \mathbb{T} with its natural 2π -periodic extension on \mathbb{R} .

Let $F, G \in \mathcal{L}(B_{p,q}^s[-2\pi, 0]; X), X)$ and $k \in \mathbb{Z}$. We define the linear operators F_k, G_k by

$$F_k x := F(e_k * \otimes x), \quad G_k x := G(e_k \otimes x) \tag{3.1}$$

when $x \in X$. It is clear that there exists a constant C > 0 such that $\|e_k \otimes x\|_{B^s_{n,q}(\mathbb{T};X)} \leq C \|x\|$ when $k \in \mathbb{Z}$. Thus,

$$||F_k|| \leq C ||F||, ||G_k|| \leq C ||G||$$
 (3.2)

whenever $k \in \mathbb{Z}$. It can be seen easily that when $u \in B^s_{p,q}(\mathbb{T}; X)$, then

$$\widehat{Fu}_{\cdot}(k) = F_k \hat{u}(k), \quad \widehat{Gu}_{\cdot}(k) = G_k \hat{u}(k)$$

for $k \in \mathbb{Z}$. The resolvent set of (P_4) in the $B_{p,q}^s$ -well-posedness setting is defined by

$$\rho_M(A, B, L) := \left\{ k \in \mathbb{Z} : k^4 M - (\alpha i k^3 + k^2) L - \beta A - i\gamma k B - ik G_k - F_k \text{ is invertible from} \right.$$
$$D(A) \cap D(B) \text{ onto } X \text{ and } \left[k^4 M - (\alpha i k^3 + k^2) L - \beta A - i\gamma k B - ik G_k - F_k \right]^{-1} \in \mathcal{L}(X) \right\}.$$

For the sake of simplicity, when $k \in \rho_M(A, B, L)$, we will use the following notation:

$$N_k = [k^4 M - (\alpha i k^3 + k^2) L - \beta A - i \gamma k B - i k G_k - F_k]^{-1}.$$
 (3.3)

If $k \in \rho_M(A, B, L)$, then MN_k , LN_k , AN_k and BN_k make sense as $D(A) \cap D(B) \subset D(M) \cap D(L)$ by assumption, and they belong to $\mathcal{L}(X)$ by the closed graph theorem and the closedness of A, B, M and L.

Let $1 \leq p, q \leq \infty, s > 0$. It is noted that that the functions Gu_{\cdot} and Fu'_{\cdot} are uniformly bounded on \mathbb{T} , but they are not necessarily in $B^s_{p,q}(\mathbb{T}; X)$. We define the solution space of $B^s_{p,q}$ -well-posedness for (P_4) by

$$S_{p,q,s}(A, B, M, L) := \left\{ u \in B_{p,q}^{s}(\mathbb{T}; D(A)) \cap B_{p,q}^{1+s}(\mathbb{T}; X) \\ : Mu \in B_{p,q}^{4+s}(\mathbb{T}; X), Lu \in B_{p,q}^{2+s}(\mathbb{T}; X), \\ u' \in B_{p,q}^{s}(\mathbb{T}; D(B)) \text{ and } Fu_{.}, Gu'_{.} \in B_{p,q}^{s}(\mathbb{T}; X) \right\}.$$

Here again we consider D(A) and D(B) as Banach spaces equipped with their graph norms. $S_{p,q,s}(A, B, M, L)$ is a Banach space with the norm

$$\begin{split} \|u\|_{S_{p,q,s}(A,B,M,L)} &:= \|u\|_{B^{1+s}_{p,q}(\mathbb{T};X)} + \|u\|_{B^{s}_{p,q}(\mathbb{T};D(A))} \\ &+ \|Mu\|_{B^{4+s}_{p,q}(\mathbb{T};X)} + \|Lu\|_{B^{3+s}_{p,q}(\mathbb{T};X)} \\ &+ \|u'\|_{B^{s}_{p,q}(\mathbb{T};D(B))} + \|Fu_{\cdot}\|_{B^{s}_{p,q}(\mathbb{T};X)} + \|Gu'_{\cdot}\|_{B^{s}_{p,q}(\mathbb{T};X)} \,. \end{split}$$

If $u \in S_{p,q,s}(A, B, M, L)$, then Mu, (Mu)', (Mu)'' and (Mu)''' are X-valued continuous function on \mathbb{T} , and $Mu(0) = Mu(2\pi), (Mu)'(0) = (Mu)'(2\pi), (Mu)''(0) = (Mu)''(2\pi)$ and $(Mu)'''(0) = (Mu)'''(2\pi)$ by [5, Lemma 2.1].

Now we give the definition of the $B_{p,q}^s$ -well-posedness of (P_4) .

DEFINITION 3.1. Let $1 \leq p, q \leq \infty, s > 0$ and $f \in B^s_{p,q}(\mathbb{T}; X)$, $u \in S_{p,q,s}(A, B, M, L)$ is called a strong $B^s_{p,q}$ -solution of (P_4) , if (P_4) is satisfied a.e. on \mathbb{T} . We say that (P_4) is $B^s_{p,q}$ -well-posed, if for each $f \in B^s_{p,q}(\mathbb{T}; X)$, there exists a unique strong $B^s_{p,q}$ -solution of (P_4) .

If (P_4) is $B_{p,q}^s$ -well-posed and $u \in S_{p,q,s}(A, B, M, L)$ is the unique strong $B_{p,q}^s$ solution of (P_4) , there exists a constant C > 0 such that for each $f \in B_{p,q}^s(\mathbb{T}; X)$, we have

$$\|u\|_{S_{p,q,s}(A,B,M,L)} \leq C \|f\|_{B^{s}_{p,q}}.$$
(3.4)

This is an easy result that can be obtained by the closedness of the operators A, B, M and L and the closed graph theorem.

Next we give the definition of operator-valued Fourier multipliers in the context of periodic Besov spaces, which is important in the proof of our main result of this section.

DEFINITION 3.2. Let X, Y be Banach spaces, $1 \leq p, q \leq \infty, s \in \mathbb{R}$ and let $(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$. We say that $(M_k)_{k \in \mathbb{Z}}$ is a $B_{p,q}^s$ -Fourier multiplier, if for each $f \in B_{p,q}^s(\mathbb{T}; X)$, there exists $u \in B_{p,q}^s(\mathbb{T}; Y)$, such that $\hat{u}(k) = M_k \hat{f}(k)$ for all $k \in \mathbb{Z}$.

The following result has been obtained in [6, Theorem 4.5] which gives a sufficient condition for an operator-valued sequence to be a $B_{p,q}^s$ -Fourier multiplier. For the notions of *B*-convex Banach spaces, we refer the readers to [6] and references therein.

THEOREM 3.3. Let X, Y be Banach spaces and let $(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$. We assume that

$$\sup_{k \in \mathbb{Z}} \left(\|M_k\| + \left\| k \bigwedge M_k \right\| \right) = \sup_{k \in \mathbb{Z}} \left(\|M_k\| + \|k(M_{k+1} - M_k)\| \right) < \infty,$$
(3.5)

$$\sup_{k \in \mathbb{Z}} \left\| k^2 \bigwedge^2 M_k \right\| = \sup_{k \in \mathbb{Z}} \left\| k^2 \left(M_{k+2} - 2M_{k+1} + M_k \right) \right\| < \infty.$$
(3.6)

Then for $1 \leq p, q \leq \infty, s \in \mathbb{R}$, $(M_k)_{k \in \mathbb{Z}}$ is an $B_{p,q}^s$ -multiplier. If X is B-convex, then the first-order condition (3.5) is already sufficient for $(M_k)_{k \in \mathbb{Z}}$ to be a $B_{p,q}^s$ -multiplier.

Remark 3.4.

- (i) If $(M_k)_{k\in\mathbb{Z}}$ is a $B^s_{p,q}$ -Fourier multiplier, then there exists a bounded linear operator T from $B^s_{p,q}(\mathbb{T};X)$ to $B^s_{p,q}(\mathbb{T};Y)$ satisfying $\widehat{Tf}(k) = M_k \widehat{f}(k)$ when $k \in \mathbb{Z}$. This implies in particular that $(M_k)_{k\in\mathbb{Z}}$ must be bounded.
- (ii) If $(M_k)_{k\in\mathbb{Z}}$ and $(N_k)_{k\in\mathbb{Z}}$ are $B_{p,q}^s$ -Fourier multipliers, it can be seen easily that the product sequence $(M_k N_k)_{k\in\mathbb{Z}}$ and the sum sequence $(M_k + N_k)_{k\in\mathbb{Z}}$ are still $B_{p,q}^s$ -Fourier multipliers.
- (iii) Let $c_k = \frac{1}{k}$ when $k \neq 0$ and $c_0 = 1$, then it is easy to see that the sequence $(c_k I_X)_{k \in \mathbb{Z}}$ satisfies the conditions (3.2) and (3.3). Thus, the sequence $(c_k I_X)_{k \in \mathbb{Z}}$ is a $B_{p,q}^s$ -Fourier multiplier by theorem 3.3.

In order to prove our main result, we need the following facts.

PROPOSITION 3.5. Let A, B, M and L be closed linear operators defined on a Banach space X satisfying $D(A) \cap D(B) \subset D(M) \cap D(L)$, α , β , $\gamma \in \mathbb{C}$ and let F, $G \in \mathcal{L}(B_{p,q}^s([-2\pi, 0]; X), X)$, where $1 \leq p, q \leq \infty$ and s > 0. Assume that $\rho_M(A, B, L) = \mathbb{Z}$ and the sets $\{k\Delta^2 F_k : k \in \mathbb{Z}\}, \{k\Delta G_k : k \in \mathbb{Z}\}, \{k^2\Delta^2 G_k : k \in \mathbb{Z}\}, \{k^4MN_k : k \in \mathbb{Z}\}, \{k^3LN_k : k \in \mathbb{Z}\}, \{kBN_k : k \in \mathbb{Z}\}$ and $\{kN_k : k \in \mathbb{Z}\}$ are norm-bounded, where N_k is defined by (3.3), the operators F_k , G_k , H_k are defined by (3.1). Then $(k^4MN_k)_{k\in\mathbb{Z}}, (k^3LN_k)_{k\in\mathbb{Z}}, (kBN_k)_{k\in\mathbb{Z}}, (N_k)_{k\in\mathbb{Z}}, (kN_k)_{k\in\mathbb{Z}}, (F_kN_k)_{k\in\mathbb{Z}}$ and $(kG_kN_k)_{k\in\mathbb{Z}}$ are $B_{p,q}^s$ -Fourier multipliers. Proof. It follows immediately from the norm boundedness of the set $\{kN_k : k \in \mathbb{Z}\}$ that the set $\{N_k : k \in \mathbb{Z}\}$ is norm-bounded. Let $L_k = (N_k^{-1} - N_{k+1}^{-1})N_k$ when $k \in \mathbb{Z}$. Then the set $\{kL_k : k \in \mathbb{Z}\}$ is norm-bounded by the proof of proposition 2.11. Since remark 2.7 and the sequence $(k^j)_{k\in\mathbb{Z}}$ is 2-regular when $0 \leq j \leq 3$, to show that $(k^4MN_k)_{k\in\mathbb{Z}}, (k^3LN_k)_{k\in\mathbb{Z}}, (kBN_k)_{k\in\mathbb{Z}}, (N_k)_{k\in\mathbb{Z}}$ and $(kN_k)_{k\in\mathbb{Z}}$ are $B_{p,q}^s$ -Fourier multipliers, we only need to show that the set $\{k^2\Delta L_k : k \in \mathbb{Z}\}$ is norm-bounded by [11, Theorem 1.1] and theorem 3.3. We have

$$L_k = L_k^{(1)} + L_k^{(2)},$$

where

$$L_k^{(1)} := -\Delta a_k M N_k + \Delta b_k L N_k + \Delta c_k B N_k,$$

$$L_k^{(2)} := ik \Delta G_k N_k + i G_{k+1} N_k + \Delta F_k N_k,$$

when $k \in \mathbb{Z}$ by (2.6). We observe that

$$\Delta L_k^{(1)} = -\Delta a_{k+1}MN_{k+1} + \Delta b_{k+1}LN_{k+1} + \Delta c_{k+1}BN_{k+1} + \Delta a_kMN_k - \Delta b_kLN_k - \Delta c_kBN_k = -\Delta^2 a_kMN_{k+1} - \Delta a_kM\Delta N_k + \Delta^2 b_kLN_{k+1} + \Delta b_kL\Delta N_k + \Delta^2 c_kBN_{k+1} + \Delta c_kB\Delta N_k = -\Delta^2 a_kMN_{k+1} - \Delta a_kMN_{k+1}L_k + \Delta^2 b_kLN_{k+1} + \Delta b_kLN_{k+1}L_k + \Delta^2 c_kBN_{k+1} + \Delta c_kBN_{k+1}L_k,$$
(3.7)

and

$$\Delta L_k^{(2)} = i(k+1)\Delta G_{k+1}N_{k+1} + iG_{k+2}N_{k+1} + \Delta F_{k+1}N_{k+1} - ik\Delta G_kN_k - iG_{k+1}N_k - \Delta F_kN_k = ik\Delta^2 G_kN_{k+1} + ik\Delta G_k\Delta N_k + i\Delta G_{k+1}N_{k+1} + i\Delta G_{k+1}N_{k+1} + iG_{k+1}\Delta N_k + \Delta^2 F_kN_{k+1} + \Delta F_k\Delta N_k = ik\Delta^2 G_kN_{k+1} + ik\Delta G_k\Delta N_k + 2i\Delta G_{k+1}N_{k+1} + iG_{k+1}\Delta N_k + \Delta^2 F_kN_{k+1} + \Delta F_k\Delta N_k = ik\Delta^2 G_kN_{k+1} + ik\Delta G_kN_{k+1}L_k + 2i\Delta G_{k+1}N_{k+1} + iG_{k+1}N_{k+1}L_k + \Delta^2 F_kN_{k+1} + \Delta F_k\Delta N_k,$$
(3.8)

when $k \in \mathbb{Z}$. It follows from (3.7) and (3.8) that the sets $\{k^2 \Delta L_k^{(1)} : k \in \mathbb{Z}\}$ and $\{k^2 \Delta L_k^{(2)} : k \in \mathbb{Z}\}$ are norm-bounded by the norm boundedness of the sets $\{kL_k : k \in \mathbb{Z}\}$ and the assumptions that the sets $\{k\Delta^2 F_k : k \in \mathbb{Z}\}, \{k\Delta G_k : k \in \mathbb{Z}\}, \{k^2 \Delta^2 G_k : k \in \mathbb{Z}\}, \{k^4 M N_k : k \in \mathbb{Z}\}, \{k^3 L N_k : k \in \mathbb{Z}\}, \{kBN_k : k \in \mathbb{Z}\}$ and $\{kN_k : k \in \mathbb{Z}\}$ are norm-bounded.

It remains to show that the sequences $(F_k N_k)_{k \in \mathbb{Z}}$ and $(kG_k N_k)_{k \in \mathbb{Z}}$ satisfy (3.5) and (3.6). This follows easily from the norm boundedness of the sets $\{k\Delta^2 F_k:$ $k \in \mathbb{Z}$, $\{k\Delta G_k : k \in \mathbb{Z}\}$ and $\{k^2\Delta^2 G_k : k \in \mathbb{Z}\}$. We omit the details. The proof is completed.

Next we give a necessary and sufficient condition for $B_{p,q}^s$ -well-posedness of (P_4) . Its proof is just an easy adaptation of the proof of theorem 2.12 by using proposition 3.5. We omit the detail.

THEOREM 3.6. Let X be a Banach space, $1 \leq p, q \leq \infty, s > 0$, let A, B, M and L be closed linear operators on X satisfying $D(A) \cap D(B) \subset D(M) \cap D(L)$ and $\alpha, \beta, \gamma \in \mathbb{C}$. Let F, $G \in \mathcal{L}(B^s_{p,q}([-2\pi, 0]; X), X)$. We assume that the sets $\{k\Delta^2 F_k : k \in \mathbb{Z}\}, \{k\Delta G_k : k \in \mathbb{Z}\}$ and $\{k^2\Delta^2 G_k : k \in \mathbb{Z}\}$ are norm-bounded. Then the following assertions are equivalent:

- (i) (P_4) is $B^s_{p,q}$ -well-posed.
- (ii) $\rho_M(A, B, L) = \mathbb{Z}$ and the sets $\{k^4 M N_k : k \in \mathbb{Z}\}$, $\{k^3 L N_k : k \in \mathbb{Z}\}$, $\{kBN_k : k \in \mathbb{Z}\}$ and $\{kN_k : k \in \mathbb{Z}\}$ are norm-bounded, where N_k is defined by (3.3).

When the underlying Banach space X is B-convex, the first-order Marcinkiewicztype condition (3.5) is already sufficient for an operator-valued sequence to be a $B_{p,q}^s$ -Fourier multiplier. This remark together with the proof of theorem 2.12 gives immediately the following result which gives an characterization of the $B_{p,q}^s$ -wellposedness of (P_4) under a weaker condition on the sequence $(G_k)_{k\in\mathbb{Z}}$ when the underlying Banach space is B-convex.

THEOREM 3.7. Let X be a B-convex Banach space, $1 \leq p, q \leq \infty, s > 0$, let A, B, M and L be closed linear operators on X satisfying $D(A) \cap D(B) \subset D(M) \cap D(L)$ and α , β , $\gamma \in \mathbb{C}$. Let F, $G \in \mathcal{L}(B_{p,q}^s([-2\pi, 0]; X), X)$. We assume that $\{k\Delta G_k : k \in \mathbb{Z}\}$ is norm-bounded. Then the following assertions are equivalent:

- (i) (P_4) is $B^s_{p,q}$ -well-posed.
- (ii) $\rho_M(A, B, L) = \mathbb{Z}$ and the sets $\{k^4 M N_k : k \in \mathbb{Z}\}, \{k^3 L N_k : k \in \mathbb{Z}\}, \{k B N_k : k \in \mathbb{Z}\}$ and $\{k N_k : k \in \mathbb{Z}\}$ are norm-bounded, where N_k is defined by (3.3).

Since the second statement of theorem 3.6 does not depend on the parameters $1 \leq p, q \leq \infty, s > 0$, theorem 3.6 has the following immediate consequence.

COROLLARY 3.8. Let X be a Banach space, $1 \leq p, q \leq \infty, s > 0$, let A, B, M and L be closed linear operators on X satisfying $D(A) \cap D(B) \subset D(M) \cap D(L)$ and $\alpha, \beta, \gamma \in \mathbb{C}$. Let F, $G \in \mathcal{L}(B_{p,q}^s([-2\pi, 0]; X), X)$. We assume that the sets $\{k\Delta^2 F_k : k \in \mathbb{Z}\}, \{k\Delta G_k : k \in \mathbb{Z}\}$ and $\{k^2\Delta^2 G_k : k \in \mathbb{Z}\}$ are norm-bounded. Then if (P_4) is $B_{p,q}^s$ -well-posed for some $1 \leq p, q \leq \infty, s > 0$, then it is $B_{p,q}^s$ -well-posed for all $1 \leq p, q \leq \infty, s > 0$.

4. Applications

EXAMPLE 4.1. Let Ω be a bounded domain in \mathbb{R}^k with smooth boundary, m be a given non-negative-bounded measurable function on Ω and let $\alpha, \gamma \in \mathbb{C}, \beta > 0$ be

given. We let X be the Hilbert space $H^{-1}(\Omega)$, and let F, $G \in \mathcal{L}(L^p([-2\pi, 0]; X), X)$ for some 1 . We consider the problem

$$\begin{cases} \frac{\partial^4}{\partial t^4}(m(x)u(t,x)) + \alpha \frac{\partial^3}{\partial t^3}(m(x)u(t,x)) + \frac{\partial^2}{\partial t^2}(m(x)u(t,x)) \\ = \beta \Delta u(t,x) + \gamma \Delta \frac{\partial}{\partial t}u(t,x) + Gu'_t(\cdot,x) + Fu_t(\cdot,x) + f(t,x), \ (t,x) \in \mathbb{T} \times \Omega, \\ u(t,x) = 0, \ (t,x) \in \mathbb{T} \times \partial \Omega. \end{cases}$$

where f is defined on $\mathbb{T} \times \Omega$ and the Laplacian Δ only acts on the space variable $x \in \Omega$, u'_t and u_t are defined by $u'_t(s, x) = u'(t + s, x)$ and $u'_t(s, x) = u(t + s, x)$ when $t \in \mathbb{T}$, $s \in [-2\pi, 0]$ and $x \in \Omega$.

Let M be the multiplication operator on X by m, then there exist constants $C > 0, \beta > 0$, such that

$$\left\|M(zM+\Delta)^{-1}\right\| \leqslant \frac{C}{1+|z|} \tag{4.1}$$

whenever $Re(z) \leq \beta(1 + |Im(z)|)$ by [12, Section 3.7], where Δ is the Laplacian on $H^{-1}(\Omega)$ with Dirichlet boundary condition. Let $A = \Delta$ and we assume that $D(A) \subset D(M)$. Then the above equation may be rewritten in the form

$$(Mu)'''(t) + \alpha(Mu)'''(t) + (Mu)''(t) = \beta Au(t) + \gamma Au'(t) + Gu'_t + Fu_t + f(t), \quad (t \in \mathbb{T})$$
(P₁)

a differential equation on \mathbb{T} with values in X, where $f \in L^p(\mathbb{T}; X)$ and the solution $u \in W^{1,p}_{per}(\mathbb{T}; D(A))$ satisfies $Mu \in W^{4,p}_{per}(\mathbb{T}; X)$.

We assume that $\rho_M(A, A, M) = \mathbb{Z}$ and the set $\{k\Delta G_k : k \in \mathbb{Z}\}$ is norm-bounded. Furthermore, we assume that m > 0 a.e. on Ω and m is regular enough so that the multiplication operator by m^{-1} is bounded on $H^{-1}(\Omega)$, then

$$\|(zM + \Delta)^{-1}\| \leq \frac{C}{1 + |z|}$$
(4.2)

whenever $Rez \leq \beta(1 + |Imz|)$ by (4.1). We claim that (P_1) is L^p -well-posed. Indeed, the operator $(k^4 - \alpha i k^3 - k^2)M - (\beta + i k)A - i k G_k - F_k : D(A) \to X$ is bijective and $[(k^4 - \alpha i k^3 - k^2)M - (\beta + i k)A - i k G_k - F_k]^{-1} \in \mathcal{L}(X)$ whenever $k \in \mathbb{Z}$ by the assumption $\rho_M(A, A, M) = \mathbb{Z}$. It follows that the sets

$$\{k^2 M N_k : k \in \mathbb{Z}\}, \ \{\Delta N_k : k \in \mathbb{Z}\}, \ \{k N_k : k \in \mathbb{Z}\}$$

are norm-bounded by (4.1) and (4.2), where $N_k = [(k^4 - \alpha i k^3 - k^2)M - (\beta + ik)A - ikG_k - F_k]^{-1}$. Here we have used the uniform boundedness of the sequences $(F_k)_{k \in \mathbb{Z}}$ and $(G_k)_{k \in \mathbb{Z}}$. Thus, the problem (P_1) is L^p -well-posed by theorem 2.12. Here we have used the fact that $H^{-1}(\Omega)$ is a Hilbert space and the fact that every norm-bounded subset of $\mathcal{L}(X)$ is *R*-bounded when X is isomorphic to a Hilbert space [5].

Under the same assumptions, we obtain the $B_{p,q}^s$ -well-posedness of (P_1) when $1 \leq p, q \leq \infty$ by corollary 3.8.

EXAMPLE 4.2. Let H be a Hilbert space, P be a densely defined positive self-adjoint operator on H with $P \ge \delta > 0$. Let $M = P - \epsilon$ with $\epsilon < \delta$, and let $A = \sum_{i=0}^{k} a_i P^i$ with $a_i \ge 0$, $a_k > 0$, where k is an integer ≥ 2 . Then there exists C > 0 and $\beta > 0$ such that

$$\left\| M(zM+A)^{-1} \right\| \leq \frac{C}{1+|z|}$$
(4.3)

17

whenever $Rez \ge -\beta(1 + |Imz|)$ by [12, page 73]. If M is regular enough so that $0 \in \rho(M)$, then

$$\left\| (zM+A)^{-1} \right\| \leq \frac{C}{1+|z|}$$
(4.4)

whenever $Rez \ge -\beta(1 + |Imz|)$ by (4.3).

Let $\Omega = (0, 1)$ and let $H = L^2(\Omega)$. It is clear that the operator $\frac{d^2}{dx^2}$ with domain $H^2(\Omega) \cap H^1_0(\Omega)$ generates a contraction semigroup on H and $P = -\frac{d^2}{dx^2}$ is positive and self-adjoint in H [4, Example 3.4.7]. Hence, $1 \in \rho(\frac{d^2}{dx^2})$, or equivalently $M = I_X + P$ has a bounded inverse. Let $\alpha, \gamma \in \mathbb{C}$ and $\beta < 0$ be fixed and let $F, G \in \mathcal{L}(L^p([-2\pi, 0]; X), X)$ for some 1 , we consider the following equations:

$$\begin{cases} \frac{\partial^4}{\partial t^4} (1 - \frac{\partial^2}{\partial x^2}) u(t, x) + \alpha \frac{\partial^3}{\partial t^3} (1 - \frac{\partial^2}{\partial x^2}) u(t, x) + \frac{\partial^2}{\partial t^2} (1 - \frac{\partial^2}{\partial x^2}) u(t, x) \\ &= \beta \frac{\partial^4}{\partial x^4} u(t, x) + \gamma \frac{\partial^4}{\partial x^4} \frac{\partial}{\partial t} u(t, x) \\ &+ G u'_t(\cdot, x) + F u_t(\cdot, x) + f(t, x), \quad (t, x) \in \mathbb{T} \times \Omega, \\ u(t, 0) = u(t, 1) = \frac{\partial^2}{\partial x^2} u(t, 0) = \frac{\partial^2}{\partial x^2} u(t, 1) = 0, \ t \in \mathbb{T}. \end{cases}$$

This equation can be rewritten in the compact form:

$$(Mu)'''(t) + \alpha(Mu)'''(t) + (Mu)''(t) = \beta Au(t) + \gamma Au'(t) + Gu'_t + Fu_t + f(t), \quad (t \in \mathbb{T})$$
(P₂)

a differential equation on \mathbb{T} with values in H, where $f \in L^p(\mathbb{T}; H)$ and the solution u is in $u \in W^{1,p}_{\text{per}}(\mathbb{T}; D(A))$, satisfies $Mu \in W^{4,p}_{\text{per}}(\mathbb{T}; H)$, where $M = 1 - \frac{\partial^2}{\partial x^2}$ and $A = \Delta^2$, here we consider Δ as the Laplacian on $L^2(\Omega)$ with Dirichlet boundary condition. If $\rho_M(A, A, M) = \mathbb{Z}$, one can obtain the L^p -well-posedness of (P_2) by using (4.3), (4.4) and theorem 2.12 under suitable assumption on the delay operator G. Here again we have used the fact that $L^2(\Omega)$ is a Hilbert space and the fact that every norm-bounded subset of $\mathcal{L}(X)$ is R-bounded when X is isomorphic to a Hilbert space [5]. One can also obtain the $B^s_{p,q}$ -well-posedness pf (P_2) when $1 \leq p, q \leq \infty$ by using theorem 3.6 or corollary 3.8.

Acknowledgements

This work was supported by the NSF of China (grant No. 12171266, 12171062) and the Natural Science Foundation of Chongqing (grant No. CSTB2022NSCQ-JQX0004).

S. Bu and G. Cai

References

- 1 R. Aparicio and V. Keyantuo. Well-posedness of degenerate integro-differential equations in function spaces. *Electron. J. Differ. Equ.* **79** (2018), 31.
- R. Aparicio and V. Keyantuo. Besov maximal regularity for a class of degenerate integrodifferential equations with infinite delay in Banach spaces. *Math. Methods Appl. Sci.* 43 (2020), 7239–7268.
- R. Aparicio and V. Keyantuo. L^p-maximal regularity for a class of degenerate integrodifferential equations with infinite delay in Banach spaces. J. Fourier Anal. Appl. 26 (2020), 34. 39 pp.
- 4 W. Arendt, C. Batty, M. Hieber and F. Neubrander. Vector-valued Laplace Transforms and Cauchy problems (Basel, Birkhäuser, 2001).
- 5 W. Arendt and S. Bu. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. *Math. Z.* **240** (2002), 311–343.
- 6 W. Arendt and S. Bu. Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. 47 (2004), 15–33.
- 7 S. K. Bose and G. C. Gorain. Exact controllability and boundary stabilization of flexural vibrations of an internally damped flexible space structure. *Appl. Math. Comput.* **126** (2002), 341–360.
- S. K. Bose and G. C. Gorain. Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structure. J. Optim. Theory Appl. 99 (1998), 423–442.
- 9 S. Bu. Well-posedness of second order degenerate differential equations in vector-valued function spaces. Stud. Math. 214 (2013), 1–16.
- 10 S. Bu and J. Kim. Operator-valued Fourier multipliers on periodic Triebel spaces. Acta Math. Sin. Engl. Ser. 21 (2005), 1049–1056.
- 11 J. A. Conejero, C. Lizama, M. Murillo-Arcila and J. B. Seoane-Sepulveda. Well-posedness degenerate third-order equations with delay and applications to inverse problems. *Isr. J. Math.* **229** (2019), 219–254.
- 12 A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Pure and Appl. Math., Vol. 215 (Dekker, New York, Basel, Hong Kong, 1999).
- 13 G. C. Gorain. Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in \mathbb{R}^n . J. Math. Anal. Appl. **319** (2006), 635–650.
- 14 B. Kaltenbacher, I. Lasiecka and M. Pospieszalska. Well-posedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thomson equation arising in high intensity ultrasound. *Math. Models Methods Appl. Sci.* 22 (2012), 1250035. 34 pp.
- 15 C. Leal, C. Lizama and M. Murillo-Arcila. Lebesgue regularity for nonlocal time-discrete equations with delays. *Fract. Calc. Appl. Anal.* **21** (2018), 696–715.
- 16 C. Lizama and R. Ponce. Periodic solutions of degenerate differential equations in vector valued function spaces. *Stud. Math.* **202** (2011), 49–63.
- 17 C. Lizama and R. Ponce. Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces. *Proc. Edin. Math. Soc.* **56** (2013), 853–871.
- 18 V. Poblete, F. Poblete and J. C. Pozo. Strong solutions of a neutral type equations with finite delay. J. Evol. Equ. 19 (2019), 361–386.
- V. Poblete and J. C. Pozo. Periodic solutions of an abstract third-order differential equation. Stud. Math. 215 (2013), 195–219.
- 20 R. Ponce. On well-posedness of degenerate fractional differential equations in vector valued function spaces. Isr. J. Math. 219 (2017), 727–755.

18