

Periodic solutions of four-order degenerate differential equations with finite delay in vector-valued function spaces

Shangquan Bu

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China [\(sbu@math.tsinghua.edu.cn\)](mailto:sbu@math.tsinghua.edu.cn)

Gang Cai*

School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China [\(caigang-aaaa@163.com\)](mailto:caigang-aaaa@163.com)

(Received 28 October 2022; accepted 10 August 2023)

In this paper, we mainly investigate the well-posedness of the four-order degenerate differential equation (P_4) : $(Mu)''''(t) + \alpha (Lu)''(t) + (Lu)''(t)$ $= \beta A u(t) + \gamma B u'(t) + G u'_t + F u_t + f(t),$ ($t \in [0, 2\pi]$) in periodic Lebesgue–Bochner spaces $L^p(\mathbb{T};X)$ and periodic Besov spaces $B^s_{p,q}(\mathbb{T};X)$, where A, B, L and M are closed linear operators on a Banach space X such that $D(A) \cap D(B) \subset D(M) \cap D(L)$ and $\alpha, \beta, \gamma \in \mathbb{C}$, G and F are bounded linear operators from $L^p([-2\pi, 0]; X)$ (respectively $B^s_{p,q}([-2\pi, 0]; X)$) into X, $u_t(\cdot) = u(t + \cdot)$ and $u'_t(\cdot) = u'(t + \cdot)$ are defined on $[-2\pi, 0]$ for $t \in [0, 2\pi]$. We completely characterize the well-posedness of (P_4) in the above two function spaces by using known operator-valued Fourier multiplier theorems.

Keywords: well-posedness; degenerate differential equation; Fourier multiplier; Lebesgue-Bochner spaces; Besov spaces

2020 Mathematics Subject Classification: 47D06; 35K65; 34K13; 47A10; 42A45

1. Introduction

The characterizations of the well-posedness for abstract degenerate differential equations with periodic initial conditions have been studied extensively in the last years. See e.g. [**[5](#page-17-0)**–**[11](#page-17-1)**], [**[14](#page-17-2)**–**[20](#page-17-3)**] and the references therein. For examples, Lizama and Ponce [**[16](#page-17-4)**] considered the first-order degenerate equation:

$$
(Mu)'(t) = Au(t) + f(t), \quad (t \in \mathbb{T} := [0, 2\pi]), \tag{1.1}
$$

they gave necessary and sufficient conditions to guarantee the well-posedness of [\(1.1\)](#page-0-0) in Lebesgue–Bochner spaces $L^p(\mathbb{T};X)$, periodic Besov spaces $B_{p,q}^s(\mathbb{T};X)$ and periodic Triebel–Lizorkin spaces $F_{p,q}^s(\mathbb{T};X)$ under some appropriate assumptions on the modified resolvent operator determined by [\(1.1\)](#page-0-0). Moreover, they also investigated

* Corresponding author.

○c The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

the first-order degenerate equation with infinite delay [**[17](#page-17-5)**]:

$$
(Mu)'(t) = \alpha Au(t) + \int_{-\infty}^{t} a(t-s)Au(s)ds + f(t), \quad (t \in \mathbb{T}), \tag{1.2}
$$

where A and M are closed linear operators defined on a Banach space X with $D(A) \subseteq D(M)$, $a \in L^1(\mathbb{R}_+)$ is a scalar-valued kernel, $\alpha \in \mathbb{R} \setminus \{0\}$ and f an X-valued function defined on T.

Bu [**[9](#page-17-6)**] considered a new second-order degenerate equation and gave necessary or sufficient conditions for this equation to be L^p -well-posed (respectively $B^s_{p,q}$ -wellposed and $F_{p,q}^s$ -well-posed), which recover some known results presented in $[5, 6,$ $[5, 6,$ $[5, 6,$ $[5, 6,$ $[5, 6,$ **[10](#page-17-8)**] in the simpler case $M = I_X$. We notice that third-order differential equations also describe some kinds of models arising from natural phenomena, such as flexible space structures with internal damping, the well-posedness of third-order differential equations has been investigated extensively by many authors. See [**[1](#page-17-9)**–**[3](#page-17-10)**, **[7](#page-17-11)**, **[8](#page-17-12)**, **[13](#page-17-13)**, **[14](#page-17-2)**, **[19](#page-17-14)**] for more information and references therein. For example, Poblete and Pozo [**[19](#page-17-14)**] studied the well-posedness for the abstract third-order equation:

$$
\alpha u'''(t) + u''(t) = \beta A u(t) + \gamma B u'(t) + f(t), \ (t \in \mathbb{T}), \tag{1.3}
$$

where A and B are closed linear operators defined on a Banach space X with $D(A) \cap$ $D(B) \neq \emptyset$, the constants $\alpha, \beta, \gamma \in \mathbb{R}^+$ and f belong to either the Lebesgue–Bochner spaces, or periodic Besov spaces, or periodic Triebel–Lizorkin spaces. They give necessary and sufficient conditions for [\(1.3\)](#page-1-0) to be L^p -well-posed (respectively $B_{p,q}^s$ well-posed and $F_{p,q}^s$ -well-posed) by using vector-valued Fourier theorems in the vector-valued function spaces.

In this paper, we study the following four-order degenerate differential equation:

$$
(Mu)'''(t) + \alpha (Lu)'''(t) + (Lu)''(t)
$$

= $\beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t), \quad (t \in \mathbb{T}),$ (P₄)

where A, B, L and M are closed linear operators on a Banach space X such that $D(A) \cap D(B) \subset D(M) \cap D(L)$ and $\alpha, \beta, \gamma \in \mathbb{C}$, G and F are bounded linear operators from $L^p([-2\pi, 0]; X)$ (respectively $B^s_{p,q}([-2\pi, 0]; X)$) into $X, u_t(\cdot) = u(t + \cdot)$ and $u'_{t}(\cdot) = u'(\cdot + t)$ are defined on $[-2\pi, 0]$ for $t \in [0, 2\pi]$.

Let $f \in L^p(\mathbb{T};X)$ be given, a function $u \in W^{1,p}_{per}(\mathbb{T};X) \cap L^p(\mathbb{T};D(A))$ is called a strong L^p -solution of (P_4) , if $Mu \in W^{4,p}_{\text{per}}(\mathbb{T};X)$, $Lu \in W^{3,p}_{\text{per}}(\mathbb{T};X)$, $u' \in$ $L^p(\mathbb{T}; D(B))$ and (P_4) is satisfied a.e. on \mathbb{T} , here we consider $D(A)$ and $D(B)$ as Banach spaces equipped with the graph norms. We say that (P_4) is L^p -wellposed, if for each $f \in L^p(\mathbb{T}; X)$, there exists a unique strong L^p -solution of (P_4) . We introduce similarly the $B_{p,q}^s$ -well-posedness of (P_4) .

The main purpose of this paper is to give some characterizations of the wellposedness of (P_4) in Lebesgue–Bochner spaces $L^p(\mathbb{T};X)$ and periodic Besov spaces $B_{p,q}^s(\mathbb{T};X)$. The characterizations of the well-posedness of (P_4) involve the Rademacher boundedness (or norm boundedness) of the M-resolvent of A, B and L defined by (P_4) . More precisely, we show that when X is a UMD Banach space and $1 < p < \infty$, if $\{k(G_{k+1} - G_k) : k \in \mathbb{Z}\}\$ is Rademacher-bounded, then (P_4) is L^p -well-posed if and only if $\rho_M(A, B, L) = \mathbb{Z}$ (the M-resolvent set of A, B and L defined by (P_4) and the sets

$$
\{k^4MN_k: k \in \mathbb{Z}\}, \{k^3LN_k: k \in \mathbb{Z}\}, \{kBN_k: k \in \mathbb{Z}\}, \{kN_k: k \in \mathbb{Z}\}
$$

are Rademacher-bounded, where

$$
N_k = [(k^4M - (i\alpha k^3 + k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{-1},
$$

 G_k , F_k , $H_k \in \mathcal{L}(X)$ are defined by $G_k x = G(e_k x)$, $F_k x = F(e_k x)$, $x \in X$. Since this characterization of the L^p -well-posedness of (P_4) does not depend on the space parameter $1 < p < \infty$, we deduce that when X is a UMD Banach space and the set $\{k(G_{k+1} - G_k): k \in \mathbb{Z}\}\$ is Rademacher-bounded, then (P_4) is L^p -well-posed for some $1 < p < \infty$ if and only if it is L^p -well-posed for all $1 < p < \infty$.

We also give a similar characterization for the $B_{p,q}^s$ -well-posedness of (P_4) : let X be a Banach space, $1 \leqslant p, q \leqslant \infty, s > 0$, assume that the sets $\{k(F_{k+2} 2F_{k+1} + F_k$): $k \in \mathbb{Z}$, $\{k(G_{k+1} - G_k) : k \in \mathbb{Z}\}\$ and $\{k^2(G_{k+2} - 2G_{k+1} + G_k) : k^2(G_{k+2} - 2G_{k+1} + G_k)\}$ $k \in \mathbb{Z}$ are norm-bounded, then the problem (P_4) is $B_{p,q}^s$ -well-posed if and only if $\subset \rho_M(A, B, L) = \mathbb{Z}$ and the sets

$$
\{k^4MN_k: k \in \mathbb{Z}\}, \quad \{k^3LN_k: k \in \mathbb{Z}\}, \quad \{kBN_k: k \in \mathbb{Z}\}, \quad \{kN_k: k \in \mathbb{Z}\}
$$

are norm-bounded, where N_k , F_k , G_k and H_k are defined as in the L^p -wellposedness case. Since this characterization of the $B_{p,q}^s$ -well-posedness of (P_4) does not depend on the parameters $1 \leqslant p, q \leqslant \infty, s > 0$, we deduce that when the sets ${k(F_{k+2} - 2F_{k+1} + F_k): k \in \mathbb{Z}}$, ${k(G_{k+1} - G_k): k \in \mathbb{Z}}$ and ${k^2(G_{k+2} - F_k): k \in \mathbb{Z}}$ $2G_{k+1} + G_k$: $k \in \mathbb{Z}$ are norm-bounded, then (P_4) is $B_{p,q}^s$ -well-posed for some $1 \leqslant p, q \leqslant \infty, s > 0$ if and only if it is $B_{p,q}^s$ -well-posed for all $1 \leqslant p, q \leqslant \infty, s > 0$.

Our main tools in the investigation of the well-posedness of (P_4) are the operator-valued Fourier multiplier theorems obtained by Arendt and Bu [[5](#page-17-0), [6](#page-17-7)] on $L^p(\mathbb{T}; X)$ and $B_{p,q}^s(\mathbb{T};X)$. In fact, our main idea is to transform the well-posedness of (P_4) to an operator-valued Fourier multiplier problem in the corresponding vector-valued function space.

This work is organized as follows: in § 2, we study the well-posedness of (P_4) in vector-valued Lebesgue–Bochner spaces $L^p(\mathbb{T};X)$. In § 3, we consider the wellposedness of (P_4) in periodic Besov spaces $B_{n,q}^s(\mathbb{T};X)$. In the last section, we give some examples of degenerate differential equations with finite delay to which our abstract results may be applied.

2. Well-posedness of (*P***4) in Lebesgue–Bochner spaces**

Let X and Y be complex Banach spaces and let $\mathbb{T} := [0, 2\pi]$. We denote by $\mathcal{L}(X, Y)$ the space of all bounded linear operators from X to Y. If $X = Y$, we will simply denote it by $\mathcal{L}(X)$. For $1 \leqslant p < \infty$, we denote by $L^p(\mathbb{T};X)$ the space of all equivalent

class of X-valued measurable functions f defined on $\mathbb T$ satisfying

$$
\|f\|_{L^p} := \left(\frac{1}{2\pi} \int_0^{2\pi} \|f(t)\|^p \, \mathrm{d}t\right)^{1/p} < \infty.
$$

For $f \in L^1(\mathbb{T};X)$, the k-th Fourier coefficient of f is defined by

$$
\hat{f}(k) := \frac{1}{2\pi} \int_0^{2\pi} e_{-k}(t) f(t) dt,
$$

where $k \in \mathbb{Z}$ and $e_k(t) = e^{ikt}$ when $t \in \mathbb{T}$.

DEFINITION 2.1. Let X and Y be complex Banach spaces and $1 \leq p < \infty$, we say *that* $(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$ *is an L^p-Fourier multiplier, if for each* $f \in L^p(\mathbb{T}; X)$ *, there exists a unique* $u \in L^p(\mathbb{T}; Y)$ *such that* $\hat{u}(k) = M_k \hat{f}(k)$ *when* $k \in \mathbb{Z}$ *.*

From the closed graph theorem, if $(M_k)_{k\in\mathbb{Z}}\subset \mathcal{L}(X, Y)$ is an L^p -Fourier multiplier, then there exists a unique bounded linear operator $T \in \mathcal{L}(L^p(\mathbb{T};X), L^p(\mathbb{T};Y))$ satisfying $(Tf)^{\wedge}(k) = M_k \hat{f}(k)$ when $f \in L^p(\mathbb{T};X)$ and $k \in \mathbb{Z}$. The operator-valued Fourier multiplier theorem on $L^p(\mathbb{T};X)$ obtained in [[5](#page-17-0)] involves the Rademacher boundedness for sets of bounded linear operators. Let γ_i be the j-th Rademacher function on [0, 1] defined by $\gamma_j(t) = \text{sgn}(\sin(2^{j-1}t))$ when $j \geq 1$. For $x \in X$, we denote by $\gamma_i \otimes x$ the vector-valued function $t \to r_j(t)x$ on [0, 1].

DEFINITION 2.2. Let X and Y be Banach spaces. A set $\mathbf{T} \subset \mathcal{L}(X, Y)$ is said to be *Rademacher-bounded (*R*-bounded, in short), if there exists* C > 0 *such that*

$$
\left\| \sum_{j=1}^n \gamma_j \otimes T_j x_j \right\|_{L^1([0,1];Y)} \leq C \left\| \sum_{j=1}^n \gamma_j \otimes x_j \right\|_{L^1([0,1];X)}
$$

for all $T_1, \ldots, T_n \in \mathbf{T}, x_1, \ldots, x_n \in X$ *and* $n \in \mathbb{N}$ *.*

REMARK 2.3.

- (i) Let **S**, $\mathbf{T} \subset \mathcal{L}(X)$ be R-bounded sets. Then it can be shown easily from the definition that $ST := \{ST : S \in S, T \in T\}$ and $S + T :=$ ${S + T : S \in \mathbf{S}, T \in \mathbf{T}}$ are still R-bounded.
- (ii) Let X be a UMD Banach space and let $M_k = m_k I_X$ with $m_k \in \mathbb{C}$, where I_X is the identity operator on X, if $\sup_{k\in\mathbb{Z}}|m_k|<\infty$ and $\sup_{k\in\mathbb{Z}}|k(m_{k+1}-m_k)|<\infty$ ∞ , then $(M_k)_{k\in\mathbb{Z}}$ is an L^p-Fourier multiplier whenever $1 < p < \infty$ [[5](#page-17-0)].

The main tool in our study of L^p -well-posedness of (P_4) is the L^p -Fourier multiplier theorem established in [**[5](#page-17-0)**]. The following results will be very important in the proof of our main result of this section. For the concept of UMD Banach spaces, we refer the readers to [**[5](#page-17-0)**] and references therein.

THEOREM 2.4 [[5](#page-17-0), Theorem 1.3]. *Let* X, Y *be* UMD *Banach spaces and* $(M_k)_{k \in \mathbb{Z}} \subset$ $\mathcal{L}(X, Y)$ *.* If the sets $\{M_k: k \in \mathbb{Z}\}\$ and $\{k(M_{k+1} - M_k): k \in \mathbb{Z}\}\$ are R-bounded, *then* $(M_k)_{k \in \mathbb{Z}}$ *defines an L^p-Fourier multiplier whenever* $1 < p < \infty$ *.*

PROPOSITION 2.[5](#page-17-0) [5, Proposition 1.11]. Let X, Y be Banach spaces, $1 \leq p < \infty$, *and let* $(M_k)_{k\in\mathbb{Z}}\subset \mathcal{L}(X, Y)$ *be an L^p-Fourier multiplier, then the set* $\{M_k: k\in\mathbb{Z}\}\$ *is* R*-bounded.*

Now we consider the following four-order degenerate differential equations with finite delays:

$$
(Mu)'''(t) + \alpha (Lu)'''(t) + (Lu)''(t)
$$

= $\beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t), \quad (t \in \mathbb{T})$ (P₄)

where A, B, M and L are closed linear operators on a Banach space X satisfying $D(A) \cap D(B) \subset D(M) \cap D(L)$, $\alpha, \beta, \gamma \in \mathbb{C}$ are given and F, G: $L^p([-2\pi, 0]; X) \to X$ are bounded linear operators (F and G are known as the delay operators). Moreover, for fixed $t \in \mathbb{T}$, the functions u_t and u'_t are elements in $L^p([-2\pi, 0]; X)$ defined by $u_t(s) = u(t + s)$, $u'_t(s) = u'(t + s)$ for $-2\pi \leq s \leq 0$, here we identify a function u on $\mathbb T$ with its natural 2π -periodic extension on $\mathbb R$.

Let $F, G \in \mathcal{L}((L^p[-2\pi, 0]; X), X)$ and $k \in \mathbb{Z}$. We define the linear operators $F_k, G_k \in \mathcal{L}(X)$ by

$$
F_k x := F(e_k x), \quad G_k x := G(e_k x), \tag{2.1}
$$

for $x \in X$, where $e_k(t) = e^{ikt}$ when $t \in \mathbb{T}$. It is clear that $||F_k|| \le ||F||$ and $||G_k|| \le$ $\|G\|$ as $\|e_k\|_p = 1$. It is easy to see that when $u \in L^p(\mathbb{T};X)$, then

$$
\widehat{Fu}(k) = F_k \hat{u}(k), \quad \widehat{Gu}(k) = G_k \hat{u}(k)
$$
\n(2.2)

for $k \in \mathbb{Z}$. This implies that $(F_k)_{k \in \mathbb{Z}}$ and $(G_k)_{k \in \mathbb{Z}}$ are L^p -Fourier multipliers as

$$
||Fu_t|| \leq ||F|| ||u.||_{L^p([-2\pi,0];X)} = ||F|| ||u||_{L^p},
$$

and

 $||Gu_t || \leq ||G|| ||u_{\cdot} ||_{L^p([-2\pi,0];X)} = ||G|| ||u||_{L^p},$

for $t \in \mathbb{T}$ so that Fu , Gu , $Hu \in L^p(\mathbb{T};X)$.

Now we define the resolvent set of (P_4) by

$$
\rho_M(A, B, L) := \{k \in \mathbb{Z} : k^4 M - (\alpha i k^3 + k^2)L
$$

$$
- \beta A - i \gamma k B - i k G_k - F_k \text{ is invertible from}
$$

$$
D(A) \cap D(B) \text{ onto } X \text{ and } [k^4 M - (\alpha i k^3 + k^2)L - \beta A
$$

$$
- i \gamma k B - i k G_k - F_k]^{-1} \in \mathcal{L}(X) \}.
$$

For the sake of simplicity, when $k \in \rho_M(A, B, L)$, we will use the following notation:

$$
N_k = [a_k M - b_k L - \beta A - c_k B - ik G_k - F_k]^{-1}, \quad (k \in \mathbb{Z}),
$$
 (2.3)

where

$$
a_k = k^4, \quad b_k = \alpha i k^3 + k^2, \quad c_k = i \gamma k, \quad (k \in \mathbb{Z}). \tag{2.4}
$$

If $k \in \rho_M(A, B, L)$, then MN_k , LN_k , AN_k and BN_k make sense as $D(A) \cap$ $D(B) \subset D(M) \cap D(L)$ by assumption, and they belong to $\mathcal{L}(X)$ by the closed graph theorem and the closedness of A , B , M and L .

Let $(L_k)_{k\in\mathbb{Z}}\subset \mathcal{L}(X, Y)$ be a given sequence of operators. We define

 $(\triangle^{0}L)_{k} = L_{k}, \quad (\triangle L)_{k} = L_{k+1} - L_{k}, \quad (k \in \mathbb{Z})$

and for $n = 2, 3, \ldots$, set

$$
(\triangle^n L)_k = \triangle (\triangle^{n-1} L)_k, \quad (k \in \mathbb{Z}).
$$

DEFINITION 2.6. *A sequence* $(d_k)_{k \in \mathbb{Z}} \subseteq \mathbb{C} \setminus \{0\}$ *is called* 1*-regular if the sequence* $(k\frac{\Delta^4 d_k}{d_k})_{k\in\mathbb{Z}}$ *is bounded; it is called* 2*-regular if it is* 1*-regular and the sequence* $(k^2 \frac{\Delta^2 d_k}{d_k})_{k \in \mathbb{Z}}$ *is bounded; it is called* 3*-regular if it is 2-regular and the sequence* $(k^3 \frac{\triangle^3 d_k}{d_k})_{k \in \mathbb{Z}}$ *is bounded.*

REMARK 2.7. It is easy to see that $(a_k)_{k\in\mathbb{N}}$, $(b_k)_{k\in\mathbb{N}}$ and $(c_k)_{k\in\mathbb{N}}$ are 3-regular.

DEFINITION 2.8. Let $1 \leq p < \infty$, $n \geq 1$ be an integer and let X be a Banach space, *we define the the following vector-valued function spaces:*

$$
W_{per}^{n,p}(\mathbb{T};X) := \{ u \in L^p(\mathbb{T};X) : \text{ there exists } v \in L^p(\mathbb{T};X), \text{ such that } \hat{v}(k) = (ik)^n \hat{u}(k) \text{ for all } k \in \mathbb{Z} \}.
$$

 $W_{per}^{n,p}(\mathbb{T};X)$ *is the n-th X-valued periodic Sobolev space.*

REMARK 2.9. We have the following two useful properties concerning these spaces:

- (i) Let $m, n \in \mathbb{N}$. If $n \leq m$, then $W^{m,p}_{per}(\mathbb{T};X) \subseteq W^{n,p}_{per}(\mathbb{T};X)$.
- (ii) If $u \in W^{n,p}_{per}(\mathbb{T};X)$, then for any $0 \le k \le n-1$, we have $u^{(k)}(0) = u^{(k)}(2\pi)$.

Let $1 \leq p < \infty$, we define the solution space of the L^p-well-posedness of (P_4) by

$$
S_p(A, B, M, L) := \{ u \in W_{\text{per}}^{1,p}(\mathbb{T}; X) \cap L^p(\mathbb{T}; D(A)) : Mu \in W_{\text{per}}^{4,p}(\mathbb{T}; X),
$$

$$
Lu \in W_{\text{per}}^{3,p}(\mathbb{T}; X), u' \in L^p(\mathbb{T}; D(B)) \},
$$

here we consider $D(A)$ and $D(B)$ as Banach spaces equipped with their graph norms. The space $S_p(A, B, M, L)$ is complete equipped with the norm

$$
||u||_{S_p(A,B,M,L)} := ||u||_{L^p} + ||Au||_{L^p} + ||(Mu)'\|_{L^p} + ||(Mu)'''\|_{L^p} + ||(Mu)''''\|_{L^p}
$$

+
$$
||(Mu)'''''\|_{L^p} + ||(Lu)'\|_{L^p} + ||(Lu)'''\|_{L^p} + ||(Lu)''''\|_{L^p} + ||Bu'\|_{L^p}.
$$

If $u \in S_p(A, B, M, L)$, then Mu , $(Mu)'$, $(Mu)''$ and $(Mu)''''$ are X-valued continuous functions on \mathbb{T} , and $Mu(0) = Mu(2\pi)$, $(Mu)'(0) = (Mu)'(2\pi)$, $(Mu)''(0) =$ $(Mu)''(2\pi), (Mu)'''(0) = (Mu)'''(2\pi)$ by [[5](#page-17-0), Lemma 2.1].

DEFINITION 2.10. Let $1 \leqslant p < \infty$ and $f \in L^p(\mathbb{T};X)$, $u \in S_p(A, B, M, L)$ is called *a* strong L^p -solution of (P_4) , if (P_4) is satisfied a.e. on $\mathbb T$. We say that (P_4) is L^p -well-posed, if for each $f \in L^p(\mathbb{T};X)$, there exists a unique strong L^p -solution of (P_4) .

If (P_4) is L^p -well-posed, then there exists a constant $C > 0$, such that for each $f \in L^p(\mathbb{T}; X)$, if $u \in S_p(A, B, M, L)$ is the unique strong L^p -solution of (P_4) , we have

$$
||u||_{S_p(A,B,M,L)} \leqslant C ||f||_{L^p}.
$$
\n(2.5)

This follows easily from the closed graph theorem.

In order to prove our main result of this section, we need the following preparations.

Proposition 2.11. *Let* A*,* B*,* M *and* L *be closed linear operators defined on a* UMD Banach space X such that $D(A) \cap D(B) \subset D(M) \cap D(L)$, $1 < p < \infty$ and α , β , $\gamma \in \mathbb{C}$ *. Let* F, $G \in \mathcal{L}(L^p([-2\pi, 0]; X), X)$ *. Assume that* $\rho_M(A, B, L)$ \mathbb{Z} and the sets $\{a_kMN_k : k \in \mathbb{Z}\}, \{b_kLN_k : k \in \mathbb{Z}\}, \{c_kBN_k : k \in \mathbb{Z}\}, \{k\triangle G_k : k \in \mathbb{Z}\}$ $k \in \mathbb{Z}$ *and* $\{kN_k : k \in \mathbb{Z}\}$ *are* R-bounded, then $(a_kMN_k)_{k \in \mathbb{Z}}$, $(b_kLN_k)_{k \in \mathbb{Z}}$, $(c_kBN_k)_{k\in\mathbb{Z}}$ and $(kN_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multipliers.

Proof. We only need to show that the set $\{k(N_k^{-1} - N_{k+1}^{-1})N_k : k \in \mathbb{Z}\}\$ is Rbounded by [**[11](#page-17-1)**, Theorem 1.1] and theorem [2.4,](#page-3-0) here we have used the facts that $(a_k)_{k\in\mathbb{N}}, (b_k)_{k\in\mathbb{N}}$ and $(c_k)_{k\in\mathbb{N}}$ are 1-regular sequences. It follows from the definition of N_k that

$$
(N_k^{-1} - N_{k+1}^{-1})N_k
$$

= $[a_kM - b_kL - \beta A - c_kB - ikG_k - F_k - a_{k+1}M + b_{k+1}L + \beta A + c_{k+1}B + i(k+1)G_{k+1} + F_{k+1}]N_k$
= $[-\Delta a_kM + \Delta b_kL + \Delta c_kB + ik\Delta G_k + iG_{k+1} + \Delta F_k]N_k,$ (2.6)

which implies

$$
k(N_k^{-1} - N_{k+1}^{-1})N_k
$$

=
$$
-\frac{k\Delta a_k}{a_k}(a_k MN_k) + \frac{k\Delta b_k}{b_k}(b_kLN_k) + \frac{k\Delta c_k}{c_k}(c_kBN_k)
$$

+
$$
i(k\Delta G_k)(kN_k) + iG_{k+1}(kN_k) + \Delta F_k(kN_k),
$$
 (2.7)

when $k \neq 0$. It follows from remark [2.3](#page-3-1) that the products and sums of R-bounded sets are still R-bounded. Thus, the set $\{k(N_k^{-1} - N_{k+1}^{-1})N_k : k \in \mathbb{Z}\}\$ is R-bounded. This completes the proof. \Box

The following statement is the main result of this section which gives a necessary and sufficient condition for the L^p -well-posedness of (P_4) .

THEOREM 2.12. Let X be a UMD Banach space, $1 < p < \infty$ and let A, B, L *and* M *be closed linear operators on* X *satisfying* $D(A) \cap D(B) \subset D(M) \cap$ $D(L)$ *and* α , β , $\gamma \in \mathbb{C}$ *. Let* $F, G \in \mathcal{L}(L^p([-2\pi, 0]; X), X)$ *be such that the set* ${k\Delta G_k : k \in \mathbb{Z}}$ *is R-bounded. Then the following assertions are equivalent:*

- (i) (P_4) is L^p -well-posed;
- (ii) $\rho_M(A, B, L) = \mathbb{Z}$, the sets $\{k^4MN_k : k \in \mathbb{Z}\}, \{k^3LN_k : k \in \mathbb{Z}\}, \{kBN_k : k \in \mathbb{Z}\}$ \mathbb{Z} *and* $\{kN_k : k \in \mathbb{Z}\}$ *are* R-bounded, where N_k *is defined by* [\(2.3\)](#page-4-0), the *operators* F_k *and* G_k *are defined by* (2.1) *.*

Proof. First we show that the implication $(i) \Rightarrow (ii)$ holds true. We assume that (P_4) is L^p-well-posed and let $k \in \mathbb{Z}$ and $y \in X$ be fixed, we consider the function f defined by $f(t) = e^{ikt}y$ when $t \in \mathbb{T}$. Then it is clear that $f \in L^p(\mathbb{T}; X)$, $\hat{f}(k) = y$ and $\hat{f}(n) = 0$ when $n \neq k$. Since (P_4) is L^p -well-posed, there exists a unique $u \in$ $S_p(A, B, L, M)$ satisfying

$$
(Mu)''''(t) + \alpha (Lu)''(t) + (Lu)''(t) = \beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t)
$$
\n(2.8)

a.e. on T. We have $\hat{u}(n) \in D(A) \cap D(B)$ when $n \in \mathbb{Z}$ by [[5](#page-17-0), Lemma 3.1] as $u \in$ $L^p(\mathbb{T}; D(A)) \cap L^p(\mathbb{T}; D(B))$. Taking Fourier transforms on both sides of [\(2.8\)](#page-7-0), we obtain

$$
[k4M - (\alpha i k3 + k2)L - \beta A - i\gamma kB - ikGk - Fk]\hat{u}(k) = y
$$
 (2.9)

and $[n^4M - (\alpha in^3 + n^2)L - \beta A - i\gamma nB - inG_n - F_n]\hat{u}(n) = 0$ when $n \neq k$. This implies that the operator $k^4M - (\alpha i k^3 + k^2)L - \beta A - i \gamma kB - i kG_k - F_k$ defined on $D(A) \cap D(B)$ with values in X is surjective. To show that it is also injective, we let $x \in D(A) \cap D(B)$ be such that

$$
[k4M - (\alpha ik3 + k2)L - \beta A - i\gamma kB - ikGk - Fk]x = 0.
$$

Let u be the function given by $u(t) = e^{ikt}x$ when $t \in \mathbb{T}$, then it is clear that $u \in$ $S_p(A, B, M, L)$ and (P_4) is satisfied a.e. on T when $f = 0$. Thus, u is a strong L^p solution of (P_4) when taking $f = 0$. We obtain $x = 0$ by the uniqueness assumption. We have shown that the operator $k^4M - (\alpha i k^3 + k^2)L - \beta A - i \gamma kB - i kG_k - F_k$ from $D(A) \cap D(B)$ into X is injective. Therefore, $k^4M - (\alpha i k^3 + k^2)L - \beta A$ $i\gamma kB - ikG_k - F_k$ is bijective from $D(A) \cap D(B)$ onto X.

Next we show that $[k^4M - (\alpha i k^3 + k^2)L - \beta A - i \gamma kB - i kG_k - F_k]^{-1} \in \mathcal{L}(X)$. For $f(t) = e^{ikt}y$, we let $u \in S_p(A, B, M, L)$ be the unique strong L^p -solution of (P_4) . Then

$$
\hat{u}(n) = \begin{cases}\n0 & n \neq k, \\
[k^4M - (\alpha i k^3 + k^2)L - \beta A - i \gamma kB - i k G_k - F_k]^{-1} y & n = k,\n\end{cases}
$$

by (2.9) . This implies that u is given by

$$
u(t) = e^{ikt} [k^4 M - (\alpha i k^3 + k^2) L - \beta A - i \gamma k B - i k G_k - F_k]^{-1} y
$$

when $t \in \mathbb{T}$. By [\(2.5\)](#page-6-0), there exists a constant $C > 0$ independent from y and k, such that $||u||_{L^p} \leqslant C ||f||_{L^p}$. This implies that

$$
\left\| [k^4M - (\alpha i k^3 + k^2)L - \beta A - i \gamma k B - i k G_k - F_k]^{-1} y \right\| \leqslant C \left\| y \right\|
$$

when $y \in X$, or equivalently

$$
\left\| [k^4 M - (\alpha i k^3 + k^2)L - \beta A - i \gamma k B - i k G_k - F_k]^{-1} \right\| \leq C.
$$

We have shown that $k \in \rho_M(A, B, L)$ for all $k \in \mathbb{Z}$. Thus, $\rho_M(A, B, L) = \mathbb{Z}$.

Finally, we show that $(k^4MN_k)_{k\in\mathbb{Z}}$, $(k^3LN_k)_{k\in\mathbb{Z}}$, $(kN_k)_{k\in\mathbb{Z}}$ and $(kBN_k)_{k\in\mathbb{Z}}$ define L^p-Fourier multipliers. Let $f \in L^p(\mathbb{T};X)$, then there exists $u \in$ $S_p(A, B, M, L)$, a strong L^p -solution of (P_4) by assumption. Taking Fourier transforms on both sides of (P_4) , we get that $\hat{u}(k) \in D(A) \cap D(B)$ by [[5](#page-17-0), Lemma 3.1] and

$$
[k^4M - (\alpha i k^3 + k^2)L - \beta A - i \gamma k B - i k G_k - F_k]\hat{u}(k) = \hat{f}(k)
$$

for $k \in \mathbb{Z}$. Since $k^4M - (\alpha i k^3 + k^2)L - \beta A - i \gamma kB - i kG_k - F_k$ is invertible, we have

$$
\hat{u}(k) = [k^4 M - (\alpha i k^3 + k^2)L - \beta A - i \gamma k B - i k G_k - F_k]^{-1} \hat{f}(k) = N_k \hat{f}(k)
$$

when $k \in \mathbb{Z}$. It follows from $u \in S_p(A, B, M, L)$ that $u \in L^p(\mathbb{T}; D(A)) \cap$ $W^{1,p}_{\text{per}}(\mathbb{T};X), M_u \in W^{4,p}_{\text{per}}(\mathbb{T};X), L_u \in W^{3,p}_{\text{per}}(\mathbb{T};X)$ and $u' \in L^p(\mathbb{T};D(B)).$ We have

$$
\begin{aligned} (\widehat{Mu})^{uu}(k) &= k^4 M \hat{u}(k), \quad \widehat{(Lu)^{uu}}(k) = -ik^3 L \hat{u}(k), \quad \widehat{Bu}'(k) \\ &= ik B \hat{u}(k), \quad \widehat{u'}(k) = ik \hat{u}(k) \end{aligned}
$$

when $k \in \mathbb{Z}$. We conclude that $(k^4MN_k)_{k \in \mathbb{Z}}$, $(k^3LN_k)_{k \in \mathbb{Z}}$, $(kBN_k)_{k \in \mathbb{Z}}$ and $(kN_k)_{k\in\mathbb{Z}}$ define L^p -Fourier multipliers as $(Mu)''''$, $(Lu)'''$, Bu' , $u' \in L^p(\mathbb{T};X)$. It follows from proposition [2.5](#page-4-2) that the sets $\{k^4MN_k : k \in \mathbb{Z}\}, \{k^3LN_k : k \in \mathbb{Z}\},\$ ${kBN_k : k \in \mathbb{Z}}$ and ${kN_k : k \in \mathbb{Z}}$ are R-bounded. We have shown that the implication $(i) \Rightarrow (ii)$ is true.

Next we show that the implication $(ii) \Rightarrow (i)$ is valid. Assume that $\rho_M(A, B, L) = \mathbb{Z}$ and the sets $\{k^4MN_k : k \in \mathbb{Z}\}, \{k^3LN_k : k \in \mathbb{Z}\}, \{kN_k : k \in \mathbb{Z}\}$ \mathbb{Z} and $\{kBN_k : k \in \mathbb{Z}\}$ are R-bounded. It follows from proposition [2.11](#page-6-1) that $(k^4MN_k)_{k\in\mathbb{Z}}$, $(k^3LN_k)_{k\in\mathbb{Z}}$, $(kBN_k)_{k\in\mathbb{Z}}$ and $(kN_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multipliers. This implies that the sequences $(N_k)_{k\in\mathbb{Z}}$, $(BN_k)_{k\in\mathbb{Z}}$, $(k^2LN_k)_{k\in\mathbb{Z}}$, $(MN_k)_{k\in\mathbb{Z}}$, $(LN_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multiplier. Here we have used the easy fact that $(d_k)_{k\in\mathbb{Z}}$ is an L^p -Fourier multiplier and the fact that the product of two L^p -Fourier multipliers is still an L^p-Fourier multiplier, where d_k is defined by $d_k = 1/k$ when $k \neq 0$ and $d_0 = 0$. In particular, considering $N_k \in \mathcal{L}(X, D(B))$, the sequence $(N_k)_{k \in \mathbb{Z}}$ is an L^{p-1} Fourier multiplier. Then for all $f \in L^p(\mathbb{T};X)$, there exist $u_i \in L^p(\mathbb{T};X)$ $(1 \leq i \leq 7)$ and $u \in L^p(\mathbb{T}; D(B))$ satisfying

$$
\hat{u}_1(k) = k^4 M N_k \hat{f}(k), \quad \hat{u}_2(k) = ik N_k \hat{f}(k), \n\hat{u}_3(k) = M N_k \hat{f}(k), \quad \hat{u}_4(k) = L N_k \hat{f}(k)
$$
\n(2.10)

$$
\hat{u}_5(k) = ikBN_k\hat{f}(k), \quad \hat{u}_6(k) = -ik^3LN_k\hat{f}(k), \n\hat{u}_7(k) = -k^2LN_k\hat{f}(k), \hat{u}(k) = N_k\hat{f}(k)
$$
\n(2.11)

for $k \in \mathbb{Z}$. Hence, $\hat{u}_2(k) = ik\hat{u}(k)$ for $k \in \mathbb{Z}$ by [\(2.10\)](#page-8-0). This implies that $u \in$ $W^{1,p}_{\text{per}}(\mathbb{T};X)$. It follows from (2.11) that $\hat{u'}(k) = ik\hat{u}(k) = ikN_k\hat{f}(k)$ when $k \in \mathbb{Z}$.

10 *S. Bu and G. Cai*

This together with $\hat{u}_5(k) = ikBN_k\hat{f}(k)$ when $k \in \mathbb{Z}$ implies that $u' \in L^p(\mathbb{T}; D(B))$ [**[5](#page-17-0)**, Lemma 3.1]. By [\(2.10\)](#page-8-0) and [\(2.11\)](#page-8-1), we have $\hat{u}_3(k) = M\hat{u}(k)$ when $k \in \mathbb{Z}$. Hence, $u \in L^p(\mathbb{T}; D(M))$ and $Mu = u_3$. Similarly, by using (2.10) and (2.11) , we have $\hat{u}_4(k) = L\hat{u}(k)$ when $k \in \mathbb{Z}$. Thus, $u \in L^p(\mathbb{T}; D(L))$ and $Lu = u_4$ [[5](#page-17-0), Lemma 3.1]. By [\(2.10\)](#page-8-0) and the fact that $Mu = u_3$, we deduce $\hat{u}_1(k) = (ik)^4 \hat{u}_1(k) = (ik)^4 \hat{u}_3(k)$ when $k \in \mathbb{Z}$. Thus, $Mu \in W^{4,p}_{per}(\mathbb{T};X)$. Similarly, using [\(2.11\)](#page-8-1) and the fact hat $Lu = u_4$, we deduce that $Lu \in W^{3,p}_{per}(\mathbb{T};X)$.

We note that $(G_k)_{k\in\mathbb{Z}}$ and $(F_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multipliers by (2.2) , where G_k , F_k and H_k are defined by [\(2.1\)](#page-4-1). Thus, $(ikG_kN_k)_{k\in\mathbb{Z}}$ and $(F_kD_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multipliers as the product of two L^p -Fourier multipliers is still an L^p -Fourier multiplier. We have

$$
\beta A N_k = k^4 M N_k - (\alpha i k^3 + k^2) L N_k - i \gamma k B N_k - i k G_k N_k - F_k N_k - I_X
$$

for $k \in \mathbb{Z}$. It follows that $(AN_k)_{k \in \mathbb{Z}}$ is also an L^p -Fourier multiplier as the sum of L^p -Fourier multipliers is an L^p -Fourier multiplier. We deduce from (2.11) and $[5, 1]$ $[5, 1]$ $[5, 1]$ Lemma 3.1] that $u \in L^p(\mathbb{T}; D(A))$. We have shown that $u \in S_p(A, B, M, L)$. This shows the existence of strong L^p -solution.

To show uniqueness of strong L^p -solution, we let $u \in S_p(A, B, M, L)$ be such that

$$
(Mu)'''(t) + \alpha (Lu)'''(t) + (Nu)''(t) = \beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t
$$

a.e. on T. Taking the Fourier transforms on both sides, we deduce that

$$
[k4M - (\alpha ik3 + k2)L - \beta A - i\gamma kB - ikGk - Fk]\hat{u}(k) = 0
$$

when $k \in \mathbb{Z}$. Since $\rho_M(A, B, L) = \mathbb{Z}$, this implies that $\hat{u}(k) = 0$ when $k \in \mathbb{Z}$ and thus $u = 0$. This shows that the solution is unique. This completes the proof. \square

We notice that the assumption that the underlying Banach space X is a UMD space in theorem [2.12](#page-6-2) was only used in the implication $(ii) \Rightarrow (i)$. Since the second statement of theorem [2.12](#page-6-2) does not depend on the space parameter $1 < p < \infty$, theorem [2.12](#page-6-2) has the following immediate consequence.

Corollary 2.13. *Let* X *be a* UMD *Banach space, let* A, B, L *and* M *be closed linear operators on* X *satisfying* $D(A) \cap D(B) \subset D(M) \cap D(L)$ *, and* $\alpha, \beta, \gamma \in \mathbb{C}$ *. Then if* (P_4) *is* L^p -well-posed for some $1 < p < \infty$, then it is L^p -well-posed for all $1 < p < \infty$.

3. Well-posedness of (*P***4) in Besov spaces**

In this section, we consider the well-posedness of (P_4) in periodic Besov spaces $B_{p,q}^s(\mathbb{T};X)$. Firstly, we briefly recall the definition of periodic Besov spaces in the vector-valued case introduced in $\mathbf{6}$ $\mathbf{6}$ $\mathbf{6}$. Let $\mathcal{S}(\mathbb{R})$ be the Schwartz space of all rapidly decreasing smooth functions on R. Let $\mathcal{D}(\mathbb{T})$ be the space of all infinitely differentiable functions on T equipped with the locally convex topology given by the seminorms $||f||_{\alpha} = \sup_{x \in \mathbb{T}} |f^{(\alpha)}(x)|$ for $\alpha \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$. Let

 $\mathcal{D}'(\mathbb{T};X) := \mathcal{L}(\mathcal{D}(\mathbb{T}), X)$ be the space of all continuous linear operator from $\mathcal{D}(\mathbb{T})$ to X. We consider the dyadic-like subsets of \mathbb{R} :

$$
I_0=\left\{t\in\mathbb{R}:\left|t\right|\leqslant 2\right\}, I_k=\left\{t\in\mathbb{R}:2^{k-1}<\left|t\right|\leqslant 2^{k+1}\right\}
$$

for $k \in \mathbb{N}$. Let $\phi(\mathbb{R})$ be the set of all systems $\phi = (\phi_k)_{k \in \mathbb{N}_0} \subset \mathcal{S}(\mathbb{R})$ satisfying $\text{supp}(\phi_k) \subset \overline{I}_k$ for each $k \in \mathbb{N}_0$, $\sum_{k \in \mathbb{N}_0} \phi_k(x) = 1$ for $x \in \mathbb{R}$, and for each $\alpha \in$ \mathbb{N}_0 , $\sup_{x \in \mathbb{R}, k \in \mathbb{N}_0} 2^{k\alpha} |\phi_k^{(\alpha)}(x)| < \infty$. Let $\phi = (\phi_k)_{k \in \mathbb{N}_0} \subset \phi(\mathbb{R})$ be fixed. For $1 \leqslant p$, $q \leq \infty$, $s \in \mathbb{R}$, the X-valued periodic Besov space is defined by

$$
B_{p,q}^{s}(\mathbb{T};X) = \left\{ f \in \mathcal{D}'(\mathbb{T};X) : ||f||_{B_{p,q}^{s}} \right\}
$$

$$
:= \left(\sum_{j\geqslant 0} 2^{sjq} \Big\| \sum_{k \in \mathbb{Z}} e_{k} \otimes \phi_{j}(k) \widehat{f}(k) \Big\|_{p}^{q} \right)^{1/q} < \infty \right\}
$$

with the usual modification if $q = \infty$. The space $B_{p,q}^s(\mathbb{T};X)$ is independent from the choice of ϕ and different choices of ϕ lead to equivalent norms on $B_{p,q}^s(\mathbb{T};X)$. $B_{p,q}^s(\mathbb{T};X)$ equipped with the norm $\lVert \cdot \rVert_{B_{p,q}^s}$ is a Banach space. See [[6](#page-17-7), Section 2] for more information about the space $B_{p,q}^s(\mathbb{T};X)$. It is well known that if $s_1 \leqslant s_2$, then $B_{p,q}^{s_1}(\mathbb{T};X) \subset B_{p,q}^{s_2}(\mathbb{T};X)$ and the embedding is continuous [[6](#page-17-7), Theorem 2.3]. When $s > 0$, it is shown in [[6](#page-17-7), Theorem 2.3] that $B_{p,q}^s(\mathbb{T};X) \subset L^p(\mathbb{T};X)$, $f \in B_{p,q}^{s+1}(\mathbb{T};X)$ if and only if f is differentiable a.e. on \mathbb{T} and $f' \in B_{p,q}^s(\mathbb{T};X)$. This implies that if $u \in B_{p,q}^s(\mathbb{T};X)$ is such that there exists $v \in B_{p,q}^s(\mathbb{T};X)$ satisfying $\hat{v}(k) = ik\hat{u}(k)$ when $k \in \mathbb{Z}$, then $u \in B_{p,q}^{s+1}(\mathbb{T};X)$ and $u'=v$.

Let $1 \leqslant p, q \leqslant \infty, s > 0$ be fixed. We consider the following four-order degenerate differential equations with finite delay:

$$
(Mu)''''(t) + \alpha (Lu)'''(t) + (Lu)''(t)
$$

= $\beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t), \quad (t \in \mathbb{T})$ (P₄)

where A, B, M and L are closed linear operators on a Banach space X satisfying $D(A) \cap D(B) \subset D(M) \cap D(L)$ and α , β , $\gamma \in \mathbb{C}$, $f \in B_{p,q}^{s}(\mathbb{T};X)$ is given, and $F, G: B_{p,q}^s([-2\pi, 0]; X) \to X$ are bounded linear operators. Moreover, for fixed $t \in \mathbb{T}, u_t \in B_{p,q}^{s,\mathcal{X}}([-2\pi, 0]; X)$ is defined by $u_t(s) = u(t+s)$ for $-2\pi \leqslant s \leqslant 0$, here we identify a function u on $\mathbb T$ with its natural 2π -periodic extension on $\mathbb R$.

Let $F, G \in \mathcal{L}(B_{n,q}^s[-2\pi, 0]; X), X$ and $k \in \mathbb{Z}$. We define the linear operators F_k , G_k by

$$
F_k x := F(e_k * \otimes x), \quad G_k x := G(e_k \otimes x)
$$
\n
$$
(3.1)
$$

when $x \in X$. It is clear that there exists a constant $C > 0$ such that $||e_k \otimes x||_{B^s_{p,q}(\mathbb{T};X)} \leqslant C ||x||$ when $k \in \mathbb{Z}$. Thus,

$$
||F_k|| \leq C ||F||, \quad ||G_k|| \leq C ||G|| \tag{3.2}
$$

whenever $k \in \mathbb{Z}$. It can be seen easily that when $u \in B_{n,q}^s(\mathbb{T};X)$, then

$$
\widehat{Fu}(k) = F_k \hat{u}(k), \quad \widehat{Gu}(k) = G_k \hat{u}(k)
$$

for $k \in \mathbb{Z}$. The resolvent set of (P_4) in the $B_{p,q}^s$ -well-posedness setting is defined by

$$
\rho_M(A, B, L) := \{k \in \mathbb{Z} : k^4 M - (\alpha i k^3 + k^2)L - \beta A
$$

$$
- i\gamma k B - i k G_k - F_k \text{ is invertible from}
$$

$$
D(A) \cap D(B) \text{ onto } X \text{ and } [k^4 M - (\alpha i k^3 + k^2)L
$$

$$
- \beta A - i\gamma k B - i k G_k - F_k]^{-1} \in \mathcal{L}(X)\}.
$$

For the sake of simplicity, when $k \in \rho_M(A, B, L)$, we will use the following notation:

$$
N_k = [k^4 M - (\alpha i k^3 + k^2)L - \beta A - i\gamma k B - i k G_k - F_k]^{-1}.
$$
 (3.3)

If $k \in \rho_M(A, B, L)$, then MN_k , LN_k , AN_k and BN_k make sense as $D(A) \cap$ $D(B) \subset D(M) \cap D(L)$ by assumption, and they belong to $\mathcal{L}(X)$ by the closed graph theorem and the closedness of A , B , M and L .

Let $1 \leqslant p, q \leqslant \infty, s > 0$. It is noted that that the functions Gu and Fu' are uniformly bounded on \mathbb{T} , but they are not necessarily in $B_{p,q}^s(\mathbb{T};X)$. We define the solution space of $B_{p,q}^s$ -well-posedness for (P_4) by

$$
S_{p,q,s}(A, B, M, L) := \{ u \in B_{p,q}^{s}(\mathbb{T}; D(A)) \cap B_{p,q}^{1+s}(\mathbb{T}; X)
$$

$$
: M u \in B_{p,q}^{4+s}(\mathbb{T}; X), Lu \in B_{p,q}^{2+s}(\mathbb{T}; X),
$$

$$
u' \in B_{p,q}^{s}(\mathbb{T}; D(B)) \text{ and } Fu, Gu' \in B_{p,q}^{s}(\mathbb{T}; X) \}.
$$

Here again we consider $D(A)$ and $D(B)$ as Banach spaces equipped with their graph norms. $S_{p,q,s}(A, B, M, L)$ is a Banach space with the norm

$$
\begin{aligned} \|u\|_{S_{p,q,s}(A,B,M,L)}&:=\|u\|_{B^{1+s}_{p,q}(\mathbb{T};X)}+\|u\|_{B^{s}_{p,q}(\mathbb{T};D(A))}\\ &+\|Mu\|_{B^{4+s}_{p,q}(\mathbb{T};X)}+\|Lu\|_{B^{3+s}_{p,q}(\mathbb{T};X)}\\ &+\|u'\|_{B^{s}_{p,q}(\mathbb{T};D(B))}+\|Fu\|_{B^{s}_{p,q}(\mathbb{T};X)}+\|Gu'\|_{B^{s}_{p,q}(\mathbb{T};X)}\,. \end{aligned}
$$

If $u \in S_{p,q,s}(A, B, M, L)$, then $Mu, (Mu)'$, $(Mu)''$ and $(Mu)'''$ are X-valued continuous function on T, and $Mu(0) = \overline{Mu(2\pi)}$, $(\overline{Mu})'(0) = (\overline{Mu})'(2\pi)$, $(\overline{Mu})''(0) =$ $(Mu)''(2\pi)$ and $(Mu)'''(0) = (Mu)'''(2\pi)$ by [[5](#page-17-0), Lemma 2.1].

Now we give the definition of the $B_{p,q}^s$ -well-posedness of (P_4) .

DEFINITION 3.1. Let $1 \leqslant p, q \leqslant \infty, s > 0$ and $f \in B_{p,q}^{s}(\mathbb{T};X), u \in S_{p,q,s}(A, B, A)$ M, L) is called a strong $B_{p,q}^s$ -solution of (P_4) , if (P_4) is satisfied a.e. on $\mathbb T$. We say that (P_4) is $B_{p,q}^s$ -well-posed, if for each $f \in B_{p,q}^s(\mathbb{T};X)$, there exists a unique $strong B_{p,q}^s$ -solution of (P_4) .

If (P_4) is $B_{p,q}^s$ -well-posed and $u \in S_{p,q,s}(A, B, M, L)$ is the unique strong $B_{p,q}^s$ solution of (P_4) , there exists a constant $C > 0$ such that for each $f \in B_{n,q}^s(\mathbb{T}; X)$, we have

$$
||u||_{S_{p,q,s}(A,B,M,L)} \leqslant C ||f||_{B_{p,q}^s}.
$$
\n(3.4)

This is an easy result that can be obtained by the closedness of the operators A, B, M and L and the closed graph theorem.

Next we give the definition of operator-valued Fourier multipliers in the context of periodic Besov spaces, which is important in the proof of our main result of this section.

DEFINITION 3.2. Let X, Y be Banach spaces, $1 \leqslant p, q \leqslant \infty, s \in \mathbb{R}$ and let $(M_k)_{k\in\mathbb{Z}}\subset \mathcal{L}(X, Y)$ *. We say that* $(M_k)_{k\in\mathbb{Z}}$ *is a B_{p,q}-Fourier multiplier, if for each* $f \in B_{p,q}^s(\mathbb{T};X)$, there exists $u \in B_{p,q}^s(\mathbb{T};Y)$, such that $\hat{u}(k) = M_k \hat{f}(k)$ for all $k \in \mathbb{Z}$.

The following result has been obtained in [**[6](#page-17-7)**, Theorem 4.5] which gives a sufficient condition for an operator-valued sequence to be a $B_{p,q}^s$ -Fourier multiplier. For the notions of B-convex Banach spaces, we refer the readers to [**[6](#page-17-7)**] and references therein.

THEOREM 3.3. Let X, Y be Banach spaces and let $(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$. We assume *that*

$$
\sup_{k \in \mathbb{Z}} \left(\|M_k\| + \|k \bigwedge M_k\| \right) = \sup_{k \in \mathbb{Z}} \left(\|M_k\| + \|k(M_{k+1} - M_k)\| \right) < \infty,\tag{3.5}
$$

$$
\sup_{k \in \mathbb{Z}} \left\| k^2 \bigwedge^2 M_k \right\| = \sup_{k \in \mathbb{Z}} \left\| k^2 \big(M_{k+2} - 2M_{k+1} + M_k \big) \right\| < \infty. \tag{3.6}
$$

Then for $1 \leqslant p, q \leqslant \infty, s \in \mathbb{R}, (M_k)_{k \in \mathbb{Z}}$ *is an* $B_{p,q}^s$ *-multiplier. If* X *is* B-convex, *then the first-order condition* [\(3.5\)](#page-12-0) *is already sufficient for* $(M_k)_{k\in\mathbb{Z}}$ *to be a* $B^s_{p,q}$. *multiplier.*

Remark 3.4.

- (i) If $(M_k)_{k\in\mathbb{Z}}$ is a $B^s_{p,q}$ -Fourier multiplier, then there exists a bounded linear operator T from $B_{p,q}^s(\mathbb{T};X)$ to $B_{p,q}^s(\mathbb{T};Y)$ satisfying $\widehat{Tf}(k) = M_k \widehat{f}(k)$ when $k \in \mathbb{Z}$. This implies in particular that $(M_k)_{k \in \mathbb{Z}}$ must be bounded.
- (ii) If $(M_k)_{k\in\mathbb{Z}}$ and $(N_k)_{k\in\mathbb{Z}}$ are $B^s_{p,q}$ -Fourier multipliers, it can be seen easily that the product sequence $(M_kN_k)_{k\in\mathbb{Z}}$ and the sum sequence $(M_k+N_k)_{k\in\mathbb{Z}}$ are still $B_{p,q}^s$ -Fourier multipliers.
- (iii) Let $c_k = \frac{1}{k}$ when $k \neq 0$ and $c_0 = 1$, then it is easy to see that the sequence $(c_kI_X)_{k\in\mathbb{Z}}$ satisfies the conditions [\(3.2\)](#page-10-0) and [\(3.3\)](#page-11-0). Thus, the sequence $(c_kI_X)_{k\in\mathbb{Z}}$ is a $B_{p,q}^s$ -Fourier multiplier by theorem [3.3.](#page-12-1)

In order to prove our main result, we need the following facts.

Proposition 3.5. *Let* A, B, M *and* L *be closed linear operators defined on a Banach space* X *satisfying* $D(A) \cap D(B) \subset D(M) \cap D(L)$, $\alpha, \beta, \gamma \in \mathbb{C}$ *and let* $F, G \in \mathcal{L}(B_{p,q}^s([-2\pi, 0]; X), X)$ *, where* $1 \leqslant p, q \leqslant \infty$ and $s > 0$ *. Assume that* $\rho_M(A, B, L) = \mathbb{Z}$ and the sets $\{k\Delta^2 F_k : k \in \mathbb{Z}\}, \{k\Delta G_k : k \in \mathbb{Z}\}, \{k^2 \Delta^2 G_k : k \in \mathbb{Z}\}$ $\{k^4MN_k: k \in \mathbb{Z}\}, \{k^3LN_k: k \in \mathbb{Z}\}, \{kBN_k: k \in \mathbb{Z}\} \text{ and } \{kN_k: k \in \mathbb{Z}\}$ *are norm-bounded, where* N_k *is defined by* [\(3.3\)](#page-11-0)*, the operators* F_k , G_k , H_k *are defined by* [\(3.1\)](#page-10-1)*. Then* $(k^4MN_k)_{k \in \mathbb{Z}}$ *,* $(k^3LN_k)_{k \in \mathbb{Z}}$ *,* $(kBN_k)_{k \in \mathbb{Z}}$ *,* $(N_k)_{k \in \mathbb{Z}}$ *,* $(kN_k)_{k \in \mathbb{Z}}$ *,* $(F_kN_k)_{k\in\mathbb{Z}}$ and $(kG_kN_k)_{k\in\mathbb{Z}}$ are $B_{p,q}^s$ -Fourier multipliers.

Proof. It follows immediately from the norm boundedness of the set $\{kN_k : k \in \mathbb{Z}\}$ that the set $\{N_k : k \in \mathbb{Z}\}\)$ is norm-bounded. Let $L_k = (N_k^{-1} - N_{k+1}^{-1})N_k$ when $k \in \mathbb{Z}$. Then the set $\{kL_k : k \in \mathbb{Z}\}\$ is norm-bounded by the proof of proposition [2.11.](#page-6-1) Since remark [2.7](#page-5-0) and the sequence $(k^{j})_{k\in\mathbb{Z}}$ is 2-regular when $0 \leqslant j \leqslant 3$, to show that $(k^4MN_k)_{k\in\mathbb{Z}}$, $(k^3LN_k)_{k\in\mathbb{Z}}$, $(kBN_k)_{k\in\mathbb{Z}}$, $(N_k)_{k\in\mathbb{Z}}$ and $(kN_k)_{k\in\mathbb{Z}}$ are $B^s_{p,q}$ -Fourier multipliers, we only need to show that the set ${k^2 \Delta L_k : k \in \mathbb{Z}}$ is norm-bounded by [**[11](#page-17-1)**, Theorem 1.1] and theorem [3.3.](#page-12-1) We have

$$
L_k = L_k^{(1)} + L_k^{(2)},
$$

where

$$
L_k^{(1)} := -\Delta a_k M N_k + \Delta b_k L N_k + \Delta c_k B N_k,
$$

$$
L_k^{(2)} := ik \Delta G_k N_k + i G_{k+1} N_k + \Delta F_k N_k,
$$

when $k \in \mathbb{Z}$ by (2.6) . We observe that

$$
\Delta L_k^{(1)} = -\Delta a_{k+1} M N_{k+1} + \Delta b_{k+1} L N_{k+1} \n+ \Delta c_{k+1} B N_{k+1} + \Delta a_k M N_k - \Delta b_k L N_k - \Delta c_k B N_k \n= -\Delta^2 a_k M N_{k+1} - \Delta a_k M \Delta N_k + \Delta^2 b_k L N_{k+1} \n+ \Delta b_k L \Delta N_k + \Delta^2 c_k B N_{k+1} + \Delta c_k B \Delta N_k \n= -\Delta^2 a_k M N_{k+1} - \Delta a_k M N_{k+1} L_k + \Delta^2 b_k L N_{k+1} \n+ \Delta b_k L N_{k+1} L_k + \Delta^2 c_k B N_{k+1} + \Delta c_k B N_{k+1} L_k,
$$
\n(3.7)

and

$$
\Delta L_{k}^{(2)} = i(k+1)\Delta G_{k+1}N_{k+1} + iG_{k+2}N_{k+1} \n+ \Delta F_{k+1}N_{k+1} - ik\Delta G_{k}N_{k} - iG_{k+1}N_{k} - \Delta F_{k}N_{k} \n= ik\Delta^{2}G_{k}N_{k+1} + ik\Delta G_{k}\Delta N_{k} + i\Delta G_{k+1}N_{k+1} + i\Delta G_{k+1}N_{k+1} \n+ iG_{k+1}\Delta N_{k} + \Delta^{2}F_{k}N_{k+1} + \Delta F_{k}\Delta N_{k} \n= ik\Delta^{2}G_{k}N_{k+1} + ik\Delta G_{k}\Delta N_{k} + 2i\Delta G_{k+1}N_{k+1} + iG_{k+1}\Delta N_{k} \n+ \Delta^{2}F_{k}N_{k+1} + \Delta F_{k}\Delta N_{k} \n= ik\Delta^{2}G_{k}N_{k+1} + ik\Delta G_{k}N_{k+1}L_{k} + 2i\Delta G_{k+1}N_{k+1} \n+ iG_{k+1}N_{k+1}L_{k} + \Delta^{2}F_{k}N_{k+1} + \Delta F_{k}\Delta N_{k},
$$
\n(3.8)

when $k \in \mathbb{Z}$. It follows from [\(3.7\)](#page-13-0) and [\(3.8\)](#page-13-1) that the sets $\{k^2 \Delta L_k^{(1)} : k \in \mathbb{Z}\}\$ and $\{k^2 \Delta L_k^{(2)} : k \in \mathbb{Z}\}\$ are norm-bounded by the norm boundedness of the sets ${kL_k : k \in \mathbb{Z}}$ and the assumptions that the sets ${k\Delta^2 F_k : k \in \mathbb{Z}}$, ${k\Delta G_k : k \in \mathbb{Z}}$ $k \in \mathbb{Z} \}, \{ k^2 \Delta^2 G_k : k \in \mathbb{Z} \}, \{ k^4 M N_k : k \in \mathbb{Z} \}, \{ k^3 L N_k : k \in \mathbb{Z} \}, \{ k B N_k : k \in \mathbb{Z} \}$ and $\{kN_k: k \in \mathbb{Z}\}\$ are norm-bounded.

It remains to show that the sequences $(F_kN_k)_{k\in\mathbb{Z}}$ and $(kG_kN_k)_{k\in\mathbb{Z}}$ satisfy (3.5) and [\(3.6\)](#page-12-2). This follows easily from the norm boundedness of the sets $\{k\Delta^2F_k:$ $k \in \mathbb{Z}$, $\{k\Delta G_k : k \in \mathbb{Z}\}\$ and $\{k^2\Delta^2 G_k : k \in \mathbb{Z}\}\$. We omit the details. The proof is \Box completed. \Box

Next we give a necessary and sufficient condition for $B_{p,q}^s$ -well-posedness of (P_4) . Its proof is just an easy adaptation of the proof of theorem [2.12](#page-6-2) by using proposition [3.5.](#page-12-3) We omit the detail.

THEOREM 3.6. Let X be a Banach space, $1 \leqslant p, q \leqslant \infty, s > 0, \text{ let } A, B, M$ *and* L *be closed linear operators on* X *satisfying* $D(A) \cap D(B) \subset D(M) \cap D(L)$ and $\alpha, \beta, \gamma \in \mathbb{C}$ *. Let* $F, G \in \mathcal{L}(B_{p,q}^s([-2\pi, 0]; X), X)$ *. We assume that the sets* ${k\Delta^2 F_k : k \in \mathbb{Z}}$, ${k\Delta G_k : k \in \mathbb{Z}}$ and ${k^2 \Delta^2 G_k : k \in \mathbb{Z}}$ are norm-bounded. Then *the following assertions are equivalent:*

- (i) (P_4) is $B_{p,q}^s$ -well-posed.
- (ii) $\rho_M(A, B, L) = \mathbb{Z}$ and the sets $\{k^4MN_k : k \in \mathbb{Z}\}, \{k^3LN_k : k \in \mathbb{Z}\}, \{kBN_k : k \in \mathbb{Z}\}$ $k \in \mathbb{Z}$ *and* $\{kN_k : k \in \mathbb{Z}\}$ *are norm-bounded, where* N_k *is defined by* [\(3.3\)](#page-11-0).

When the underlying Banach space X is B -convex, the first-order Marcinkiewicztype condition [\(3.5\)](#page-12-0) is already sufficient for an operator-valued sequence to be a $B_{p,q}^s$ -Fourier multiplier. This remark together with the proof of theorem [2.12](#page-6-2) gives immediately the following result which gives an characterization of the $B_{p,q}^s$ -wellposedness of (P_4) under a weaker condition on the sequence $(G_k)_{k\in\mathbb{Z}}$ when the underlying Banach space is B-convex.

THEOREM 3.7. Let X be a B-convex Banach space, $1 \leqslant p, q \leqslant \infty, s > 0,$ let A, B, M and L be closed linear operators on X satisfying $D(A) \cap D(B) \subset D(M) \cap$ $D(L)$ and α , β , $\gamma \in \mathbb{C}$ *. Let* $F, G \in \mathcal{L}(B_{p,q}^s([-2\pi, 0]; X), X)$ *. We assume that* ${k\Delta G_k : k \in \mathbb{Z}}$ *is norm-bounded. Then the following assertions are equivalent:*

- (i) (P_4) is $B_{p,q}^s$ -well-posed.
- (ii) $\rho_M(A, B, L) = \mathbb{Z}$ and the sets $\{k^4MN_k : k \in \mathbb{Z}\}, \{k^3LN_k : k \in \mathbb{Z}\}, \{kBN_k : k \in \mathbb{Z}\}$ $k \in \mathbb{Z}$ *and* $\{kN_k : k \in \mathbb{Z}\}$ *are norm-bounded, where* N_k *is defined by* [\(3.3\)](#page-11-0).

Since the second statement of theorem [3.6](#page-14-0) does not depend on the parameters $1 \leqslant p, q \leqslant \infty, s > 0$, theorem [3.6](#page-14-0) has the following immediate consequence.

COROLLARY 3.8. Let X be a Banach space, $1 \leqslant p, q \leqslant \infty, s > 0$, let A, B, M *and* L *be closed linear operators on* X *satisfying* $D(A) \cap D(B) \subset D(M) \cap D(L)$ and $\alpha, \beta, \gamma \in \mathbb{C}$ *. Let* $F, G \in \mathcal{L}(B_{p,q}^s([-2\pi, 0]; X), X)$ *. We assume that the sets* ${k\Delta^2 F_k : k \in \mathbb{Z}}$, ${k\Delta G_k : k \in \mathbb{Z}}$ *and* ${k^2 \Delta^2 G_k : k \in \mathbb{Z}}$ *are norm-bounded. Then if* (P_4) *is* $B_{p,q}^s$ -well-posed for some $1 \leqslant p, q \leqslant \infty, s > 0$, then it is $B_{p,q}^s$ -well-posed *for all* $1 \leqslant p, q \leqslant \infty, s > 0$.

4. Applications

EXAMPLE 4.1. Let Ω be a bounded domain in \mathbb{R}^k with smooth boundary, m be a given non-negative-bounded measurable function on Ω and let $\alpha, \gamma \in \mathbb{C}, \ \beta > 0$ be given. We let X be the Hilbert space $H^{-1}(\Omega)$, and let $F, G \in \mathcal{L}(L^p([-2\pi, 0]; X), X)$ for some $1 < p < \infty$. We consider the problem

$$
\begin{cases} \frac{\partial^4}{\partial t^4} (m(x)u(t,x)) + \alpha \frac{\partial^3}{\partial t^3} (m(x)u(t,x)) + \frac{\partial^2}{\partial t^2} (m(x)u(t,x)) \\ = \beta \Delta u(t,x) + \gamma \Delta \frac{\partial}{\partial t} u(t,x) + Gu'_t(\cdot,x) + Fu_t(\cdot,x) + f(t,x), \ (t,x) \in \mathbb{T} \times \Omega, \\ u(t,x) = 0, \ (t,x) \in \mathbb{T} \times \partial \Omega. \end{cases}
$$

where f is defined on $\mathbb{T} \times \Omega$ and the Laplacian Δ only acts on the space variable $x \in \Omega$, u'_t and u_t are defined by $u'_t(s, x) = u'(t + s, x)$ and $u'_t(s, x) = u(t + s, x)$ when $t \in \mathbb{T}$, $s \in [-2\pi, 0]$ and $x \in \Omega$.

Let M be the multiplication operator on X by m , then there exist constants $C > 0$, $\beta > 0$, such that

$$
||M(zM + \Delta)^{-1}|| \leq C \tag{4.1}
$$

whenever $Re(z) \le \beta(1 + |Im(z)|)$ by [[12](#page-17-15), Section 3.7], where Δ is the Laplacian on $H^{-1}(\Omega)$ with Dirichlet boundary condition. Let $A = \Delta$ and we assume that $D(A) \subset D(M)$. Then the above equation may be rewritten in the form

$$
(Mu)''''(t) + \alpha (Mu)'''(t) + (Mu)''(t)
$$

= $\beta Au(t) + \gamma Au'(t) + Gu'_t + Fu_t + f(t), \quad (t \in \mathbb{T})$ (P₁)

a differential equation on T with values in X, where $f \in L^p(\mathbb{T};X)$ and the solution $u \in W^{1,p}_{per}(\mathbb{T}; D(A))$ satisfies $Mu \in W^{4,p}_{per}(\mathbb{T}; X)$.

We assume that $\rho_M(A, A, M) = \mathbb{Z}$ and the set $\{k \Delta G_k : k \in \mathbb{Z}\}$ is norm-bounded. Furthermore, we assume that $m > 0$ a.e. on Ω and m is regular enough so that the multiplication operator by m^{-1} is bounded on $H^{-1}(\Omega)$, then

$$
\|(zM + \Delta)^{-1}\| \leq \frac{C}{1 + |z|}
$$
\n(4.2)

whenever $Re z \leq \beta(1+|Im z|)$ by [\(4.1\)](#page-15-0). We claim that (P_1) is L^p -well-posed. Indeed, the operator $(k^4 - \alpha i k^3 - k^2)M - (\beta + i k)A - i k G_k - F_k : D(A) \rightarrow X$ is bijective and $[(k^4 - \alpha i k^3 - k^2)M - (\beta + i k)A - i k G_k - F_k]^{-1} \in \mathcal{L}(X)$ whenever $k \in \mathbb{Z}$ by the assumption $\rho_M(A, A, M) = \mathbb{Z}$. It follows that the sets

$$
\{k^2MN_k : k \in \mathbb{Z}\}, \ \{\Delta N_k : k \in \mathbb{Z}\}, \ \ \{kN_k : k \in \mathbb{Z}\}
$$

are norm-bounded by [\(4.1\)](#page-15-0) and [\(4.2\)](#page-15-1), where $N_k = [(k^4 - \alpha i k^3 - k^2)M - (\beta +$ $ik)A - ikG_k - F_k]^{-1}$. Here we have used the uniform boundedness of the sequences $(F_k)_{k\in\mathbb{Z}}$ and $(G_k)_{k\in\mathbb{Z}}$. Thus, the problem (P_1) is L^p -well-posed by theorem [2.12.](#page-6-2) Here we have used the fact that $H^{-1}(\Omega)$ is a Hilbert space and the fact that every norm-bounded subset of $\mathcal{L}(X)$ is R-bounded when X is isomorphic to a Hilbert space [**[5](#page-17-0)**].

Under the same assumptions, we obtain the $B_{n,q}^s$ -well-posedness of (P_1) when $1 \leqslant p, q \leqslant \infty$ by corollary [3.8.](#page-14-1)

EXAMPLE 4.2. Let H be a Hilbert space, P be a densely defined positive self-adjoint operator on H with $P \ge \delta > 0$. Let $M = P - \epsilon$ with $\epsilon < \delta$, and let $A = \sum_{i=0}^{k} a_i P^i$ with $a_i \geq 0$, $a_k > 0$, where k is an integer ≥ 2 . Then there exists $C > 0$ and $\beta > 0$ such that

$$
||M(zM + A)^{-1}|| \leqslant \frac{C}{1 + |z|}
$$
\n(4.3)

whenever $Re z \ge -\beta(1+|Im z|)$ by [[12](#page-17-15), page 73]. If M is regular enough so that $0 \in \rho(M)$, then

$$
||(zM + A)^{-1}|| \leqslant \frac{C}{1 + |z|}
$$
\n(4.4)

whenever $Re z \ge -\beta(1+|Im z|)$ by [\(4.3\)](#page-16-0).

Let $\Omega = (0, 1)$ and let $H = L^2(\Omega)$. It is clear that the operator $\frac{d^2}{dx^2}$ with domain $H^2(\Omega) \cap H_0^1(\Omega)$ generates a contraction semigroup on H and $P = -\frac{d^2}{dx^2}$ is positive and self-adjoint in H [[4](#page-17-16), Example 3.4.7]. Hence, $1 \in \rho(\frac{d^2}{dx^2})$, or equivalently $M =$ $I_X + P$ has a bounded inverse. Let $\alpha, \gamma \in \mathbb{C}$ and $\beta < 0$ be fixed and let $F, G \in$ $\mathcal{L}(L^p([-2\pi, 0]; X), X)$ for some $1 < p < \infty$, we consider the following equations:

$$
\begin{cases}\n\frac{\partial^4}{\partial t^4} (1 - \frac{\partial^2}{\partial x^2}) u(t, x) + \alpha \frac{\partial^3}{\partial t^3} (1 - \frac{\partial^2}{\partial x^2}) u(t, x) + \frac{\partial^2}{\partial t^2} (1 - \frac{\partial^2}{\partial x^2}) u(t, x) \\
= \beta \frac{\partial^4}{\partial x^4} u(t, x) + \gamma \frac{\partial^4}{\partial x^4} \frac{\partial}{\partial t} u(t, x) \\
+ Gu'_t(\cdot, x) + Fu_t(\cdot, x) + f(t, x), \quad (t, x) \in \mathbb{T} \times \Omega, \\
u(t, 0) = u(t, 1) = \frac{\partial^2}{\partial x^2} u(t, 0) = \frac{\partial^2}{\partial x^2} u(t, 1) = 0, \ t \in \mathbb{T}.\n\end{cases}
$$

This equation can be rewritten in the compact form:

$$
(Mu)'''(t) + \alpha (Mu)'''(t) + (Mu)''(t)
$$

= $\beta Au(t) + \gamma Au'(t) + Gu'_t + Fu_t + f(t), \quad (t \in \mathbb{T})$ (P₂)

a differential equation on T with values in H, where $f \in L^p(\mathbb{T}; H)$ and the solution u is in $u \in W^{1,p}_{per}(\mathbb{T};D(A))$, satisfies $Mu \in W^{4,p}_{per}(\mathbb{T};H)$, where $M=1-\frac{\partial^2}{\partial x^2}$ and $A = \Delta^2$, here we consider Δ as the Laplacian on $L^2(\Omega)$ with Dirichlet boundary condition. If $\rho_M(A, A, M) = \mathbb{Z}$, one can obtain the L^p-well-posedness of (P_2) by using [\(4.3\)](#page-16-0), [\(4.4\)](#page-16-1) and theorem [2.12](#page-6-2) under suitable assumption on the delay operator G. Here again we have used the fact that $L^2(\Omega)$ is a Hilbert space and the fact that every norm-bounded subset of $\mathcal{L}(X)$ is R-bounded when X is isomorphic to a Hilbert space [[5](#page-17-0)]. One can also obtain the $B_{n,q}^s$ -well-posedness pf (P_2) when $1 \leqslant p, q \leqslant \infty$ by using theorem [3.6](#page-14-0) or corollary [3.8.](#page-14-1)

Acknowledgements

This work was supported by the NSF of China (grant No. 12171266, 12171062) and the Natural Science Foundation of Chongqing (grant No. CSTB2022NSCQ-JQX0004).

18 *S. Bu and G. Cai*

References

- 1 R. Aparicio and V. Keyantuo.Well-posedness of degenerate integro-differential equations in function spaces. Electron. J. Differ. Equ. **79** (2018), 31.
- 2 R. Aparicio and V. Keyantuo. Besov maximal regularity for a class of degenerate integrodifferential equations with infinite delay in Banach spaces. Math. Methods Appl. Sci. **43** (2020), 7239–7268.
- 3 R. Aparicio and V. Keyantuo. L*p*-maximal regularity for a class of degenerate integrodifferential equations with infinite delay in Banach spaces. J. Fourier Anal. Appl. **26** (2020), 34. 39 pp.
- 4 W. Arendt, C. Batty, M. Hieber and F. Neubrander. Vector-valued Laplace Transforms and Cauchy problems (Basel, Birkhäuser, 2001).
- 5 W. Arendt and S. Bu. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. **240** (2002), 311–343.
- 6 W. Arendt and S. Bu. Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. **47** (2004), 15–33.
- 7 S. K. Bose and G. C. Gorain. Exact controllability and boundary stabilization of flexural vibrations of an internally damped flexible space structure. Appl. Math. Comput. **126** (2002), 341–360.
- 8 S. K. Bose and G. C. Gorain. Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structure. J. Optim. Theory Appl. **99** (1998), 423–442.
- 9 S. Bu. Well-posedness of second order degenerate differential equations in vector-valued function spaces. Stud. Math. **214** (2013), 1–16.
- 10 S. Bu and J. Kim. Operator-valued Fourier multipliers on periodic Triebel spaces. Acta Math. Sin. Engl. Ser. **21** (2005), 1049–1056.
- 11 J. A. Conejero, C. Lizama, M. Murillo-Arcila and J. B. Seoane-Sepulveda. Well-posedness degenerate third-order equations with delay and applications to inverse problems. Isr. J. Math. **229** (2019), 219–254.
- 12 A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Pure and Appl. Math., Vol. 215 (Dekker, New York, Basel, Hong Kong, 1999).
- 13 G. C. Gorain. Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in R*n*. J. Math. Anal. Appl. **319** (2006), 635–650.
- 14 B. Kaltenbacher, I. Lasiecka and M. Pospieszalska. Well-posedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thomson equation arising in high intensity ultrasound. Math. Models Methods Appl. Sci. **22** (2012), 1250035. 34 pp.
- 15 C. Leal, C. Lizama and M. Murillo-Arcila. Lebesgue regularity for nonlocal time-discrete equations with delays. Fract. Calc. Appl. Anal. **21** (2018), 696–715.
- 16 C. Lizama and R. Ponce. Periodic solutions of degenerate differential equations in vector valued function spaces. Stud. Math. **202** (2011), 49–63.
- 17 C. Lizama and R. Ponce. Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces. Proc. Edin. Math. Soc. **56** (2013), 853–871.
- 18 V. Poblete, F. Poblete and J. C. Pozo. Strong solutions of a neutral type equations with finite delay. J. Evol. Equ. **19** (2019), 361–386.
- 19 V. Poblete and J. C. Pozo. Periodic solutions of an abstract third-order differential equation. Stud. Math. **215** (2013), 195–219.
- 20 R. Ponce. On well-posedness of degenerate fractional differential equations in vector valued function spaces. Isr. J. Math. **219** (2017), 727–755.