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This paper deals with the construction of the tip asymptotes for a hydraulic fracture
deflating in a permeable elastic medium. Specifically, the paper describes the changing
nature of the asymptotic fields during the arrest and recession phases following
propagation of the fracture after fluid injection has ended. It shows that as the fracture
deflates in the arrest phase, the region of dominance of the linear elastic fracture mechanics

tip asymptote w ~ x'/2 of the fracture aperture w with distance x from the front shrinks to
the benefit of an intermediate asymptote w ~ x>/%. Hence only the velocity-independent
3/4 asymptote is left at the arrest-recession transition. Furthermore, with increasing
receding velocity of the front, a linear asymptote w ~ x develops progressively at the

fracture tip, with w ~ x3/# again becoming an intermediate asymptote. These universal
multiscale asymptotes for the arrest and recession phases are key to determining, in
combination with a computational algorithm that can simulate the evolution of a finite
fracture, the decaying stress intensity factor during arrest, the time at which the fracture
transitions from arrest to recession, and the negative front velocity during recession.
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1. Introduction

A large body of research in the last 10 years has demonstrated unequivocally that the
construction of accurate and efficient numerical models of hydraulic fractures benefits
from embedding the tip asymptotic behaviour, which is appropriate for the discretization
length of the computational grid (Adachi & Detournay 2008; Peirce & Detournay
2008; Lecampion et al. 2013; Peirce 2015, 2016). Hitherto, research has focused on
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the simulation of a propagating fracture. Nonetheless, there is considerable interest in
modelling the deflation of hydraulic fractures once injection has ceased, as they evolve
through successive phases of arrest and recession following propagation. The main
motivation for this work is to provide a more rigorous framework to interpret the decline
of the borehole pressure during deflation of the fracture, either to determine the leak-off
coefficient (Nolte 1979, 1986) or to estimate accurately the minimum in situ stress (Zoback
et al. 1977; Haimson 1989; Hayashi & Haimson 1991; Plahn ef al. 1997; Sano et al. 2005;
Fjar et al. 2008; Lakirouhani, Detournay & Bunger 2016).

In this paper, we describe the construction of multiscale tip asymptotes for deflating
fractures in permeable elastic media, when the front is either at rest or receding. When
combined with an algorithm to simulate an evolving hydraulic fracture, these asymptotes
make it possible to compute accurately not only the stress intensity factor as it declines
when the front is at rest until it eventually vanishes at the transition between arrest
and recession, but also the negative front velocity during recession. The asymptotes are
derived by analysing the stationary solution of a semi-infinite hydraulic fracture either at
rest or steadily receding, using an approach similar to the one used to construct the tip
asymptotes for a propagating fracture (Desroches et al. 1994; Lenoach 1995; Garagash &
Detournay 2000; Garagash, Detournay & Adachi 2011; Dontsov & Peirce 2015; Dontsov
2016; Dontsov & Kresse 2018; Moukhtari & Lecampion 2018; Lecampion & Zia 2019).

The paper is structured as follows. First, the governing equations are summarized within
the context of a semi-infinite fracture. Salient features of the tip asymptotics near the end
of the propagation phase are then reviewed. Next, we determine successively, through a
local eigenvalue analysis, the singular asymptotes that develop closest to the fracture tip
during arrest, at the transition between arrest and recession, and during recession. We then
construct the multiscale asymptotes that control the development of singular boundary
layers at the tip, either at the end of the arrest phase or at the beginning of recession.
Implementation of these multiscale asymptotes in a numerical code is briefly discussed.
Finally, an argument based on the tip asymptotics, about the inability of a fracture to recede
in an impermeable medium, is described in Appendix A.

2. Governing equations for a semi-infinite hydraulic fracture

Here, we consider the problem of a semi-infinite hydraulic fracture that is either travelling
at a constant velocity V or at rest in an infinite permeable elastic medium; see figure 1.
The velocity V is taken as positive if the fracture is advancing and thus creating new
solid surfaces, and negative if the fracture is receding, thus closing previously created
solid surfaces at the tip. There is a far-field uniform compressive stress op normal to the
fracture. Fluid is leaking from the fracture into the solid medium. The solution to this
idealized problem can actually be understood as capturing the asymptotics in the vicinity
of the crack front of a finite hydraulic fracture.

Although the tip asymptotics are critically dependent on the nature of the leak-off in
propagating fractures, it is not the case for fractures that are either at rest or receding.
Indeed, leak-off can be singular at the tip of an advancing fracture only under conditions
of linear flow, when a Carter-type leak-off prevails (Lenoach 1995; Garagash et al. 2011);
otherwise, leak-off is a regular function of position and time, and does not affect the
singularity of the stress field at the fracture tip.

Let x denote a moving coordinate centred on the tip with the x-axis pointing inside
the fracture. Let w(x, 1), p(x, f) and g(x, t) denote the fracture aperture, net pressure and
flux, all functions of position x and time ¢. The problem is formulated in terms of the
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Figure 1. Receding tip of a deflating hydraulic fracture.

net pressure defined as p = py — oy instead of the fluid pressure pr(x, r), recognizing
that o9 introduces only a shift to the fluid pressure ps(x, ) when the crack is completely
filled by the fracturing fluid. By convention, the flux ¢ is taken as positive when directed
opposite to the x-axis; thus flux ¢ and tip velocity V have the same sign convention. The
equations governing w(x, 1), p(x, t) and g(x, t) depend on, besides V: Young’s modulus E,
Poisson’s ratio v, and toughness Kj. of the solid; viscosity p of the fluid; and also Carter’s
leak-off coefficient Cy, (as in the fracture propagating phase) or more generally on a known
regular leak-off function g(x, ). However, the equations are formulated here in terms of
the alternative parameters

E 2\ 1/2
E=——, K =4 (—) K, W =12u, C =2Cp, (2.1a—d)
1—2 7T
which are introduced to keep the equations uncluttered by numerical factors, noting also
that E’ is the plane strain modulus. These alternative parameters will simply be referred to
as the elastic modulus (E”), toughness (K"), viscosity (1) and leak-off coefficient (C").
The elasticity integral equation for a semi-infinite crack under plane strain conditions

reads (Bilby & Eshelby 1968)
E' [ ow d&

=) EioE (2.2)

P

This equation represents asymptotically the elasticity equation in the tip region of a finite
planar crack at distances from the crack front that are small compared to its radius of
curvature (Peirce & Detournay 2008). For the singular integral in (2.2) to converge,
it is sufficient that: (i) w™ <~ x! with A € (0, 1); (i) limeow = 0; and (iii) w is a
monotonically increasing function of x.

Under the approximation of lubrication theory, the viscous flow in the crack is governed
by Poiseuille’s law,

q9=— 7 (2.3)

and by the continuity equation

ow aw  dq
o T ox ax 8 @4
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According to Carter’s law (Carter 1957), the leak-off rate g(x, t) is given by
Vo4
TV

where 7o(x, ¢) denotes the time of first exposure to the fracturing fluid of a fixed point on the
fracture wall that is located at x at time ¢. The leak-off term has a square root singularity at

the tip if V > 0, but is finite if V < 0. Indeed, 7 — f0(x, 1) *~° x/V if V > 0, implying that

(2.5)

0 . . .
g el (V/x) 1/2 in that case. However, as stated earlier, the assumption of Carter leak-off
is relaxed when V < 0, with g(x, f) simply assumed to be a known regular function.
The aperture at the fracture tip must satisfy the condition

wkx) K
xl_r)% )&7 = E h(V), (2.6)
where i(V) is a set-valued function defined as
1, V>0,
h(V) =410,1], V=0, (2.7)
0, V <O0.

Equation (2.6) is equivalent to stating that: (i) the stress intensity factor K7 is equal to
toughness Kj. if the fracture propagates (V > 0) — the classical expression for the linear
elastic fracture mechanics (LEFM) propagation criterion; (ii) 0 < K; < K. if the fracture
is at rest (V = 0); and (iii) K; = 0 if the fracture is receding (V < 0). In particular, the

condition (2.6) for V < 0 implies that the power-law index 1 > 1/2 if w ~ x* as x — 0,
and the fracture is closed, w(x) = 0, for x < 0.
3. General considerations about tip asymptotes
We are now considering asymptotic solutions for w(x, f) of the form
wix, 1) = A(r) x4, (3.1)
with the power-law index A constrained to the range
I<asl (3.2)

The lower-bound restriction on A stems from the requirement for the elastic energy release
rate at the crack tip to be finite (Rice 1968), while the upper-bound limit results from an
inability to satisfy simultaneously the elasticity and the lubrication equations if 4 > 1, as
will become clear in § 5.2.

By invoking the elasticity equation (2.2) and Poiseuille’s law (2.3), the asymptotic
behaviour of g(x, t), consistent with (3.1), can be derived. The asymptotics of w(x, f) and
q(x, t) can then be used, in conjunction with the continuity equation (2.3), to identify
the power-law index A corresponding to different dominant balances in the continuity
equation. Different values of the index A can thus be related to different phases in the
evolution of the hydraulic fracture.
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The solution of the elasticity equation (2.2), for an aperture w varying as the power law
(3.1), is given by (Oberhettinger 1970)

Pl
p=AE Z oot L0 <a<, (3.3)

noting that the restriction on A also defines the conditions for which the aperture (3.1) is
an eigenfunction of the integral operator in (2.2). However, A is necessarily restricted to
A> % in the context of elasticity, as A4 in the range (0, %) is associated with an infinite
energy release rate.

. . . 0
We note that for the near-tip asymptotic behaviour w 27 Ax,

x—0 AE/
47
This asymptotic expression for the net pressure for the case A = 1 can be obtained by
considering the dominant term of the solution near the tip of a finite fracture (Adachi &
Detournay 2002; Peirce & Detournay 2022b).
Differentiating Poiseuille’s law (2.3) with aperture w given by (3.1), and net pressure p
given by (3.3)if 1/2 < A < lorby (3.4) if A = 1, yields

Inx. (3.4)

d 1 AE 1
Y da=1D (A= =)cot(m) 2= 3, Z < a<1, (3.5)
dx 2 w 2
dg A*F
. x, =1, (3.6)
dx 27w/

keeping in mind that (3.5) and (3.6) apply only asymptotically for x — O.

In order to determine dg/dx in the particular case A = %, we need to account for the
next-order term in the asymptotic expansion of w, as w ~ x!/2 is strictly compatible
only with an inviscid fluid or a fluid at rest in the context of an hydraulic fracture after
noting that (3.3) reduces to p =0 if 1 = % The next-order term depends, however, on
whether the fracture is at rest or propagating, and on whether the medium is permeable or
impermeable (Garagash et al. 2011). The case of a deflating fracture at rest is analysed in
§ 5, while the case of a hydraulic fracture propagating in an elastic medium with toughness
is summarized next.

4. Tip asymptotics near the end of the propagation phase
The tip asymptotics for a hydraulic fracture propagating in a permeable elastic medium has
been constructed using the device of a semi-infinite fracture moving steadily at velocity V
under the condition of plane strain (Lenoach 1995; Adachi & Detournay 2008; Garagash
et al. 2011). This asymptotic solution has a multiscale nature characterized by two length
scales, £ and £,,;:
K/S 26 C/6 E/2

4E/6C/2,u/2v’ Ein = M/2v5 :

The structure of the solution depends on the number x defined in terms of the length scale

ratio as Garagash et al. (2011)
o ()" 20E 42
Cig K'vi/z2: :

L = (4.1a,b)
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If x is O(100) or larger, then the crack aperture behaves as x'/? in the near field, x°/3 at
intermediate distance, and x*/3 in the far field. In particular, the LEFM asymptote w =
(K'/E"x'/? applies approximately to the region 0 < x < 10774, for large .

Noting that £ ~ V~!and x ~ V~!/2, the near-tip region of a finite hydraulic fracture
is dominated by the LEFM asymptote near the end of the propagation phase after fluid
injection has stopped. In this region of LEFM dominance, the pressure gradient is given
by (Garagash et al. 2011)

dp ZC/M/E/3V1/2
& K% *3

implying that the flux is ¢ ~ x'/2. Thus the three dominant terms V dw/dx, d¢/dx and g

in the continuity equation (2.4) have the same singularity x /2 at the fracture tip. As will
be shown below, the dominant balance in the continuity equation changes during deflation
of the fracture.

5. Near-field tip asymptotics during fracture arrest and recession

After the fracture stops propagating, it is in a state of arrest that lasts as long as the stress
intensity factor 0 < K < K’. The arrest phase is then followed by recession of the tip
until the fracture closes completely. In this section, we study the near-field tip asymptotics
during the phases of arrest and recession, as well at the transition between arrest and
recession, while relaxing the assumption of Carter’s leak-off. We refer to these solutions
as vertex solutions.

5.1. Arrest (K >0,V =0)

During the arrest phase (V = 0), the stress intensity factor K decreases steadily from K’ to
0. The near-tip asymptote is thus given by LEFM:

x—0 1/2 K 2
w22 gy = (E) : (5.1a,b)

with ¢; a decreasing function of time. We refer to (5.1a,b) as the k-asymptote. Once
the fracture stops propagating, the leak-off g(x, r) is no longer singular at the crack tip,
and to first order, it is assumed to be spatially uniform in the asymptotic tip region. To
acknowledge this approximation, leak-off is now denoted by go(#), a regular function of
time.

Considering the continuity equation (2.4), which can now be written as

ow  dq
— - —+g0=0, 5.2
57 oy T80 (5.2)

and the aperture asymptote (5.1a,b), it is evident that the rate term ow/dt in (5.2) is
subdominant, and that the leak-off g¢ can be balanced only by the divergence of the flux as

947 A17-6
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x — 0. Hence integrating the dominant terms in (5.2) with the condition ¢(0) = 0 yields
q=gox, x— 0. (5.3)

Further integrating Poiseuille’s law, while taking into account (5.1a,b) and (5.3), leads to
the non-singular pressure field in the tip region

2 !/
p=po+ ’é/gzo X2 xS, (5.4)
Zk

where the finite tip pressure p, and the length sale £; are both functions of time.

5.2. Arrest-recession transition (K =0,V =0)

At the end of the arrest phase, K = 0 and V = 0. Although the passage from arrest to
recession is instantaneous, the transition is accompanied by a switch in the near-field
asymptote, as shown next.

To construct the tip asymptote at the arrest-recession transition, we assume that w(x) ~
x! as x — 0, and again neglect the rate term dw/dt in (5.2), since it is subdominant
compared to gog as x — 0. Thus the continuity equation at the arrest-recession transition
is again given asymptotically by (5.3). We further note that the power-law index A is
necessarily in the range 1/2 < A < 1. Indeed, 4 > 1/2 since K = 0; also, 4 < 1, because
the flux divergence deduced from elasticity and Poiseuille’s law would be subdominant to
go for 4 > 1, in contradiction to (5.3).

Combining the elastic eigensolution (3.1) and (3.3), and Poiseuille’s law (2.3), yields

A'E 412
qg = A — 1)cot(md) —x , x—0. (5.5)
4u’
Then after inserting (5.3) in (5.5), identifying the power-law index A so as to remove the
dependence of the equation on x, and finally solving the remaining algebraic equation for
A, leads to

A=2 A=Bi* (5.6a,b)
with the coefficient B, and the length scale £, given by
64\ '/ w'go
By = (;) ~2.149, {, = B (5.7a,b)

Hence the asymptotic expressions for the aperture and the net pressure at the
arrest—recession transition read

1/4
x—>0 1/4 3/4 P x>0 3138 g
w ﬂggg/ X/ y E ~ —F (; . (58a,b)

We refer to this asymptote as the g-asymptote.

5.3. Recession (K =0,V <0)

We again search for an asymptotic expression of the form w(x) ~ x* as x — 0, where, for
the reasons outlined above, the power-law index A is in the range 1/2 < A4 < 1. However,

947 A17-7
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in contrast to the arrest and transition cases, the full continuity equation (2.4) needs to be
considered when the fracture is receding.

It can be shown readily that the continuity equation (2.4) can be satisfied only if 4 = 1.
Indeed, with A = 1, leak-off at the tip is balanced during recession by the advective term
|V| 0w/dx rather than the flux divergence dg/dx as is the case during arrest, while the two
other terms are subdominant as dw/d¢, dq/dx ~ x. Hence the leading-order match yields

ow
— V=g, (5.9)
ax
while matching the next order yields
0 d
G ) (5.10)
at 0x

noting again that gp is not singular as in the arrest phase. (A power-law index
A =2/3 could in principle balance dw/dx and dq/dx, but the two terms cannot balance
algebraically because of the sign mismatch.)

The dominant balance (5.9) yields a positive aperture factor A = —go/V = go/| V],

hence
g0 goE’

=22y — Inx, 0, 5.11a,b
|V|x p 2|V nx, x— (5.11a,b)

which will be referred as the r-asymptote. It will be convenient, when constructing the
recession multiscale asymptote, to define the length scale ¢, as

/
1%
e,:”" I'
E/

w

(5.12)

Integrating (3.6) with g(0) = 0 shows that ¢ > 0 in the tip region, thus implying that
the fluid is flowing towards the tip, even though the crack is receding. Furthermore,
we deduce from (5.10) that dw/dt > 0, since dg/dx > 0 according to (3.6). In other
words, the asymptotic aperture at a fixed distance from the moving tip is increasing
with respect to time. However, it can be shown that in a fixed coordinate system,
Dw/Dt = 0w/dt+ V ow/dx <0 as x — 0, since dw/dt ~ x and is subdominant to
V ow/dx, which is a negative x-independent quantity.

6. Multiscale tip asymptotics during fracture arrest and recession
6.1. The connection problem

Changes in the power-law index of the tip aperture w ~ x%, as the fracture evolves during
the arrest and recession phases (1 =1/2 for K >0 and V=0, 4 =3/4 for K =0 and
V=0,and 1 =1 for K =0 and V < 0), suggest the existence of multiscale asymptotes
in the progressive transition between these two phases. Specifically, we envision that the
region of dominance of the k-asymptote shrinks in favour of the far-field g-asymptote,
as the length scale £; decreases with diminishing K during arrest. At the ephemeral
arrest-recession transition, the g-asymptote fully characterizes the tip region. However,
this asymptote is replaced progressively in the near field by the r-asymptote as the
magnitude |V| of the receding tip velocity increases. It is therefore expected that for
a finite hydraulic fracture, the g-asymptote acts as an intermediate asymptote near the
arrest—recession transition.

947 A17-8
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Thus the multiscale kg-asymptote applies when the fracture is arrested, and the
rg-asymptote when it is receding. Construction of the asymptotes, referred to as edge
solutions, involves connecting the vertex solutions that are present in the tip boundary
layer. Following the approach described by Dontsov & Peirce (2015), this connection
problem is formulated as a nonlinear non-singular integral equation for the aperture, which

can be solved using simple quadratures. This integral equation is obtained as follows.
— 00

First, (2.2) is inverted (provided that p X O(x™) for a > 0) to yield an expression for
w(x) in terms of an integral operator acting on p (Garagash & Detournay 2000). After an
integration by parts, this integral equation reads

K ip, 4 ap [®an (57 d
W(X):EX —i—ﬁx ) N G m Tds (61)

Here, K is the scaled stress intensity factor, and G(#) is a non-singular kernel given by

11— |1+¢
G(t) = In 1—+t +2, (6.2)
with
4
Git)=4,t— 0, and G()~ 5 1 (6.3a,b)

A nonlinear Fredholm integral equation of the second kind for w(x) is finally deduced by
replacing the pressure gradient in (6.1) by its expression from the lubrication equation. The
dominant balance in the lubrication equation depends, however, on whether the fracture is
at rest or receding, as shown earlier.

6.2. kg-edge solution

A universal description of the kg-asymptote, independent of any physical parameter, can
be achieved by selecting appropriately the scales for length (¢x¢), aperture (wig), flux (gg)
and pressure (pgg). This is done by defining length scale ¢, as the distance from the

fracture tip at which the k- and g-asymptotes yield approximately the same aperture wyg;
thus wig ~ £,/26,/% ~ ¢"*¢;/*. In view of (5.1a,b) and (5.8a.b), both scales £y and wig
can be expressed in terms of £; and £, according to

G 6"

Ekg = g, Wkg = W (64a,b)
8

From Poiseuille’s law (2.3) and the continuity equation (5.3), we further deduce the scales
kg and pyg:
Wig

qkg = 80lkg. Dkg = E' o (6.5a,b)
8

After introducing the dimensionless variables X = x/lig, W= W/Wig, D = p/Pkgs
g = q/qig, and accounting for V = 0, the lubrication equation (2.3) and (5.3) combine

947 A17-9
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to give
dp X
- = —. 6.6
dv w3 (6.6)
Scaling the elastic integral equation (6.1) and combining it with (6.6) yields
4 [o° §12\ 32
A AN A1/2 - v B T
wx) =X |:1 + - /0 G (3%1/2> PG ds:| , (6.7)

noting also that w = X1/2 if ¥ < 1, and W = B,&*/* if * >> 1. The universal kg-asymptote
w(x) is the solution of the Fredholm integral equation (6.7).
To solve for w(x), the integral equation (6.7) is reformulated as (Dontsov & Peirce 2015)

A 8 [ n\ ndn
DE) =1+ = / G (9) 41, (6.8)
7 Jo £) o)
where the variables &, £ and 7 are defined as
o= 5;;2, E=3'7 7=3" (6.9a—c)

Under this transformation, the k- and g-asymptotes transform to @ (0) = 1 and & = ,Bgé 1/2

as é — 00, respectively. These asymptotic behaviours can actually be recovered directly
from the transformed integral equation (6.8) by assessing the integral in the limits & = 0

and é — 00, and taking into account the asymptotic behaviours (6.3a,b) of the function
G (1), and the result (Dontsov & Peirce 2015)

*G@n ,  2=n b1

Since the integrand in (6.8) is positive and non-singular, a numerical solution of c?)(é )
can be obtained by solving a system of nonlinear algebraic equations formulated by
discretizing the integral using the trapezoidal rule. To capture correctly the complete
kg-asymptote, the grid points should be spaced uniformly on a logarithmic scale.

As in Dontsov & Peirce (2015), it is possible to obtain an approximate kg-edge solution,
which in this case has relative error less than 3 %, by differentiating (6.8) and assuming
a power-law behaviour for @ to obtain a separable ordinary differential equation, whose
solution, along with the condition &(0) = 1, yields

&~ (14 BEHY or a2+ i) (6.11)

In figure 2, we plot /2 /W versus % (or equivalently 1/é& versus £2). We have chosen to
plot the reciprocal of @ as this emphasizes the variation in @, with respect to the scaled
variables, between the small- and large—é asymptotic behaviours. The solid curve in this
figure represents the numerical solution of (6.8), and the dashed curve the approximate
solution (6.11).

6.3. rg-edge solution

For the multiscale tip asymptote applicable to the recession phase, we proceed in a manner
similar to the construction of the kg-transition. Now the r-asymptote (instead of the
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1.0

0 1 1 1 1 1 1 1 1 1 1 n
106 1073 100 103 106 10°
X

Figure 2. The kg-asymptote plotted as £!/2 /i versus X (or equivalently 1/é& versus £2): numerical solution
(continuous line) and approximate closed-form solution (dashed line).

k-asymptote) dominates the near-tip region, x < £, and the g-asymptote applies in the
far-tip region, x > £,,, where £, is the transition length scale of the rg-asymptote.

The scales £,, and w,, are deduced from the r- and g-asymptotes by determining the
distance from the tip at which both asymptotes yield approximately the same aperture:

(6.12a.,b)

BN

4
¢ =£—r Wy =
rg E3’ rg
8

Hence w=7% if ¥ < 1, and w = B, /% if ¥ 1, with X = x/l,, and W = w/wy,.
Moreover, from the continuity equation (2.4) and Poiseuille’s law (2.3), we deduce the
flux scale g, and the pressure scale py,:

Wrg

Grg = 4 Wrgs  Prg = E E_ (6.13a,b)
g

In the early stage of the recession, when the tip is under the rg-asymptotic umbrella, we
can again neglect the rate term dw/dt in the continuity equation (2.4), which, after scaling
and integration and noting that V < 0 in (2.4), now reads

§=3%—w. (6.14)

Hence the lubrication equation simplifies to

dp  x—w 6.15)
v w3’ ‘
where the tilde denotes a dimensionless variable in the rg-scaling.
For the rg-transition, the elasticity equation (6.1) becomes
4xt/2 oo o (52N S —w
W(x) = /s/G¢ﬁ>fT&, (6.16)
T Jo xl/ w

after dropping the inhomogeneous term %'/2 since K = 0, and replacing the pressure

gradient by its expression derived from the lubrication equation (6.15). We note, however,
that w = 5 is in the null space of the integral operator (6.16). Moreover, w ~ § is the
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Figure 3. The rg-asymptote plotted as w(X)/X versus X.

near-tip asymptote valid for § << 1. We therefore define the function & (X) as a perturbation
of the near-tip asymptote, i.e.
OX) = MO, (6.17)
X
such that ®(0) = 0 and @w(oc0) = —1
The integral equation can then be rewritten as

D(X) = —1— * /OOGCW) 26 ds (6.18)
w(X) = W 0 W m S. .

In view of the limiting behaviours (6.3a,b) of the function G(¢), the above integral
converges if @ (X) ~ X as x — 0, provided that y > 1/2.

Figure 3 shows w(x)/X as a function of the scaled distance to the fracture tip, Xx. We
have chosen to plot the shifted perturbation 1 4+ @ as it varies from O to 1, noting that the

. ~ . ~ x—0 . .
perturbation ® is bounded above by the asymptote @ 27 0 associated with the r-vertex

solution, and bounded below by the asymptote @ 1+ ,Bgfc*I/ 4 associated with the
g-vertex solution. The solid black curve in figure 3 represents the numerical solution of
(6.18).

6.4. Application of the kg- and rg-asymptotes during deflation

Here, we outline briefly the determination of the stress intensity factor K during the arrest
phase of a deflating fracture, using the kg-asymptote within the framework of a numerical
hydraulic fracturing simulator. This methodology is inspired by procedures developed
for implementing multiscale tip asymptotics in numerical codes to simulate propagating
hydraulic fractures (Peirce 2015, 2016; Dontsov & Peirce 2017).

The methodology relies on the ability to compute the fracture aperture at a grid point,
away from the tip but still inside the asymptotic region, by solving numerically the system
of equations governing the response of a hydraulic fracture during deflation. Assume that
at a certain time ¢, the aperture w,gk) at node n located at distance ¢, from the tip has
been calculated iteratively, with superscript (k) denoting the current iteration count at
time ¢. The pair (¢, w,(f)) is forced to be mapped onto the kg-asymptotic solution w(x) by

selecting the appropriate stress intensity factor K. However, this new value of K impacts
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the asymptotic aperture of the fracture behind node n, which in turn affects the aperture
at node n through the elasticity and the lubrication equation. An iterative procedure is
thus needed to determine the arrest solution at a given time ¢ to correctly identify K. It is
important to point out that the distance ¢, should be constrained by ¢, < 106£kg so that
the node is outside the region of dominance of the g-asymptote, as all information about
K would otherwise be lost since

X—> 00
woo~ wkg,Bg<

A similar approach is used to determine the recession velocity V using the rg-asymptote.
Again, the nodal point must not be inside the g-asymptotic region, i.e. £, < 109£,g, noting
that

3/4
: = B LL/4x3/4, (6.19)
Cig 8¢

3/4

— X

W X NOO Wrgﬁg (E_) — ﬂg6§/4x3/4’ (620)
rg

which shows that the asymptote is agnostic about the tip velocity when x > £,, The
rg-edge solution is used until the point at which there is a negligible difference between the
value of |V| determined from the rg-edge solution and that given by the linear asymptote
in (5.11a,b).

The detailed procedure for applying the kg- and rg-asymptotes to the numerical
modelling of a deflating fracture is described elsewhere (Peirce 2022; Peirce & Detournay
2022b).

7. Concluding remarks
This paper describes the construction of two multiscale tip asymptotes for a hydraulic
fracture deflating in a permeable elastic medium, the kg-asymptote when the fracture is at
rest, and the rg-asymptote when the fracture is receding. The asymptotes were obtained
by solving a Fredholm integral equation of the second kind, formulated in terms of the
aperture for a semi-infinite deflating fracture that is either at rest or steadily receding.
The arrest kg-asymptote is characterized in the near field by the classic LEFM asymptote
w ~ x!/2 as x — 0, while the receding asymptote behaves as w ~ x as x — 0; however,
both asymptotes share the same power law w ~ x3/# as x — oo. Thus the fluid pressure is
regular when the fracture is at rest, but has a logarithmic singularity during recession.
The scaled tip asymptotes are universal since they do not depend on any parameter.
Scaling indicates that: during arrest, the region of dominance of the 1/2 asymptote shrinks
to the benefit of the intermediate 3/4 asymptote as the fracture deflates; and during
recession, a linear 1/1 asymptote develops progressively at the fracture tip with increasing
receding velocity, with the 3 /4 becoming again an intermediate asymptote. Hence only the
fleeting 3/4 asymptote remains at the arrest—recession transition point. It is worth noting
that the multiscale receding asymptote has an unusual structure in that the power-law index
is larger in the near field than in the far field. This ordering is dictated by the nature of the
3/4 asymptote, which cannot exist with a non-zero velocity and is thus agnostic about the
velocity, hence is unable to balance the leak-off as x — 0 during recession. Finally, note
that the asymptotes for a deflating fracture can be extended to cases where the criterion
for fracture closure is more generally described by w = wq. Here, wy is a residual aperture
associated, for example, with the presence of proppant in the fracture. The tip asymptotes
then apply to the difference aperture field w — wy.
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These universal multiscale asymptotes are key to determining the decaying stress
intensity factor during arrest, the time at which the fracture transitions from arrest to
recession, and the negative front velocity during recession when simulating the deflation of
a hydraulic fracture in a permeable elastic medium. The dependence of the tip asymptotic
response on time is thus only indirect, via the stress intensity factor if the fracture is
arrested, or via the tip velocity if receding. It further requires combining consideration
of the finite fracture and of the tip asymptotes.

The arrest and recession asymptotes are instrumental both for implementing robust
algorithms for simulating deflating fractures (Peirce 2022; Peirce & Detournay 2022a)
and for constructing closed-form solutions for radial and plane strain fractures in the
latest stage of closure (Peirce & Detournay 2022b). Such ‘sunset’ solutions can be used to
interpret the leak-off coefficient or the in situ stress from measurements collected during
shut-in.

It has been assumed in this work that the permeable solid has toughness K’ > 0.
Consideration of the case K’ = 0 would require analysing the evolution of the asymptotics
during the direct transition from propagation to recession, as there is no arrest phase in
this particular case. The case K’ > 0 for an impermeable solid is treated in Appendix A,
where it is shown that a deflating hydraulic fracture in an impermeable medium cannot
recede even if it is bleeding fluid back to the borehole.
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Appendix A. Fracture closure in an impermeable medium

In an impermeable medium, the deflation of a hydraulic fracture following shut-in is
associated with indefinite propagation if K’ = 0, and propagation followed by arrest if
K’ > 0. Indeed, the volume of fluid trapped in the fracture is constant after shut-in,
therefore the fracture deflates as it propagates with the pressure progressively dropping.
If K > 0, then the fracture will come to rest after a finite time, when the pressure
becomes uniform and the fracture stays open indefinitely. If K’ = 0, then a state of uniform
pressure can be achieved only when the net pressure vanishes, i.e. after an infinite time.
In this appendix, we establish these results using an asymptotic analysis of the lubrication
equation in the tip region. This analysis assumes that there is no lag between the fluid front
and the fracture tip.

The case of flow-back is more complicated than shut-in as the fracture inlet at the
borehole wall could close and open cyclically. Although an analysis of the fracture
response during flow-back is beyond the scope of this paper, we prove nonetheless that
the tip of a hydraulic fracture in an impermeable medium cannot recede during flow-back.
If K’ = 0, then the fracture can propagate only until it closes. If K > 0, then the fracture
can either arrest or propagate. These conclusions are based essentially on an analysis of
the continuity equation in the vicinity of the tip,

ow aw  dgq

— 4+ V———=0, Al
8t+ 0x 0x (A)
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taking into account the tip asymptotic behaviour of the fields w(x, ) and g(x, r) that are
derived from the elasticity and lubrication theories established in § 3.

The impossibility of a hydraulic fracture receding in an impermeable medium is known
as the Stevenson condition in the dyke literature. However, the argument put forward by
Stevenson (1982) (see also Roper & Lister 2007) relies on the infinite amount of work
needed to squeeze a viscous fluid between two approaching parallel plates, and not on
the impossibility of satisfying the continuity equation in the neighbourhood of the tip as
presented below.

A.l. Zero toughness case

First, consider the particular case K’ = 0 for which the power-law exponent A of the
aperture w(x, f) is necessarily in the range 1/2 < A < 1 since the energy release rate is
zero. In view of the dependence of each term on x summarized in § 3, there are only two
cases, 4 = 1 and A = 2/3, for which two of the terms in (A1) have the same power-law
exponents and could, in principle, balance. It can be proven readily that A = 2/3 for
a propagating fracture (V > 0) (Spence & Sharp 1985; Lister 1990; Desroches et al.
1994). In this case, the terms V dw/dx and dq/dx balance, and the continuity equation
is satisfied in the limit x — O since it is dominated by these two singular terms. Hence
A =1 could apply, in principle, only to a deflating fracture at rest (V = 0) or receding
(V < 0). However, neither case is possible as proven next. Indeed, (A1) cannot be satisfied
near x =0 if V <0 and w = A(¢) x, as there is a residual term V A(f). Furthermore, a
power-law index 1 = 1 implies that p ~ A Inx from elasticity, thus g ~ A*x* according to
Poiseuille’s law. It follows that d¢/0x > 0, and satisfying the continuity equation (A1) for
V = 0 would then require dw/dt > 0 (dA/dt > 0), which is not physically possible if the
fracture is deflating. Furthermore, the negative pressure near x = 0 (A > 0) and positive
flux are also physically incompatible with a deflating fracture in an impermeable medium.

We conclude therefore if K' = 0 and C’ = 0 that the fracture can only propagate and
thin.

A.2. Finite toughness case

Next, we consider the fracture response for K’ > 0 after the injection phase. First, the
fracture tip slows down progressively to eventually arrest during shut-in and flow-back.
The fracture then deflates if there is flow-back but without the tip receding. Indeed,
following the same line of argument used for K’ =0, it can be concluded that the
fracture cannot recede, as a the continuity equation (A1) cannot be satisfied with V < 0.
This establishes the Stevenson condition using an asymptotic analysis of the lubrication
equation.
It is well understood that a multiscale asymptote characterized by a local length scale

K/6

= E/4M/2 V2 (A2)

Lk
controls the solution during propagation (Garagash & Detournay 2000). If £, is small
compared to the characteristic dimension of the hydraulic fracture, then the tip behaviour
is dominated, at the scale of the fracture, by the viscosity asymptote w ~ x*/3. In the
opposite case, the tip is dominated by the toughness asymptote w ~ x'/2. However, as
we are concerned here about the tip response during shut-in or flow-back when the
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propagation velocity slows down progressively before the fracture is arrested, we focus
on the toughness asymptote, noting that £,,,x ~ V2.

During the propagation phase following shut-in or flow-back, the two balanced terms
V ow/dx and dq/0dx in the continuity equation (A1) become dominated by the square root
singularity x~!/? once the tip velocity is sufficiently small. Then invoking Poiseuille’s law
after recognizing that ¢ = Vw in the vicinity of the tip (which is deduced by integrating
(A1) and taking into account ¢(0, 1) = w(0, 1) = 0) yields

In x. (A3)

Since the strength of the pressure logarithmic singularity is proportional to the tip velocity,
the fluid pressure becomes regular at the tip when the fracture stops propagating.

During deflation of the hydraulic fracture when the fracture is at rest (V = 0), the
aperture is given asymptotically by
K(t

(1 /%1 /2’

E/

according to LEFM, with K < K’ denoting the (reduced) mode I stress intensity factor K =

4./2/mK;. As the fracture is deflating, we expect that K = dK/dr < 0 and the continuity
equation (A1) reduces to

W o (A4)

%9 _ 2 12 A5
ox E’x (A3)
Since g = 0 at x =0,
2K 5
q=ﬁx/, (A6)

which shows that ¢ is negative, i.e. the fluid is flowing away from the tip. Then, after
invoking Poiseuille’s law, we obtain

_ WEK + po(t) (A7)
= —x ,
P="3k3 po

where the pressure at the tip, po(?), is expected to be positive. Thus the pressure decreases
away from the tip during deflation of a fracture at rest.
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