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Abstract
For a class of uncertain systems, a non-overshooting sliding mode control is presented to make them globally expo-
nentially stable and without overshoot. Even when the unknown stochastic disturbance exists, and the time-variant
reference trajectory is required, the strict non-overshooting stabilisation is still achieved. The control law design
is based on a desired second-order sliding mode (2-sliding mode), which successively includes two bounded-gain
subsystems. Non-overshooting stability requires that the system gains depend on the initial values of system vari-
ables. In order to obtain the global non-overshooting stability, the first subsystem with non-overshooting reachability
compresses the initial values of the second subsystem to a given bounded range. By partitioning these initial val-
ues, the bounded system gains are determined to satisfy the robust non-overshooting stability. In order to reject
the chattering in the controller output, a tanh-function-based sliding mode is developed for the design of smoothed
non-overshooting controller. The proposed method is applied to a UAV trajectory tracking when the disturbances
and uncertainties exist. The control laws are designed to implement the non-overshooting stabilisation in position
and attitude. Finally, the effectiveness of the proposed method is demonstrated by the flying tests.

Nomenclature
e(t) system variable of error form
e(n)(t) the n -th derivative of e(t)
f (·) system function
g(·) system function
kp proportional gain of PID controller
ki integral gain of PID controller
kd derivative gain of PID controller
e1(t) sliding variable or error variable
e2(t) sliding variable or error variable
k1 parameter of sliding mode or controller parameter
k2 parameter of sliding mode or controller parameter
ρ parameter of sliding mode or controller parameter
d(t) disturbance or system uncertainty
Ld upper bound of d(t)
σ (t) sliding function
x1(t) system state
x2(t) system state
u(t) controller
δ(t) system uncertainty or disturbance
xd(t) reference
ẋd(t) derivative of reference
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m mass of UAV
g gravity of acceleration
l rotor distance to gravity centre
Jφ moment of inertia about roll
x position in x direction
y position in y direction
z position in z direction
φ roll angle
θ pitch angle
ψ yaw angle
Jθ moment of inertia about pitch
Jψ moment of inertia about yaw
b rotor force coefficient
k rotor torque coefficient
Fi thrust force by rotor i
Qi reactive torque of rotor i
kx drag coefficients of UAV in x direction
ky drag coefficients of UAV in y direction
kz drag coefficients of UAV in z direction
kφ drag coefficients of UAV about roll
kθ drag coefficients of UAV about pitch
kψ drag coefficients of UAV about yaw
�x uncertainty in x direction
�y uncertainty in y direction
�z uncertainty in z direction
�φ uncertainty about roll
�θ uncertainty about pitch
�ψ uncertainty about yaw

1.0 Introduction
This paper considers robust non-overshooting stabilisation for a class of dynamical systems with stochas-
tic disturbance and application to UAV flight control. Control without overshoot is very important for
many industrial control systems [1–3], for example, aircraft safe landing, automated vehicle safety con-
trol and manufacturing process control, etc. In a control system, overshoot makes the actual behaviour
exceed its target, and it may bring the devastating results. Therefore, in order to guarantee the safety
control, a known reference needs to be tracked without overshoot, i.e. non-overshooting stabilisation is
required. For control systems, in addition to reduce the overshoot and oscillations in the system outputs,
the effect from the disturbance or uncertainty also needs to be avoided. Furthermore, a smoothed control
law is helpful to improve the system response and reduce the actuator chattering.

Proportional–integral–derivative (PID) control is very popular for many industrial control systems
because of its simplicity and its acceptable control performance [4, 5]. However, PID control has
some disadvantages; for example, sensitive to the disturbance and uncertainty types, adverse effect
by the time-variant references, overshoot existence because of integral windup or integration satura-
tion. Theoretically, PID control can completely reject the effect from an unknown constant disturbance
because of the integration term. If the disturbance is slowly time-varying, through increasing the con-
trol gains, the disturbance effect can be reduced to some extent. For a fast time-varying disturbance or
nonlinear system uncertainty, PID control performance is affected obviously. In addition, PID control
is usually used to control a system with step reference for good performance. If the time-variant refer-
ence is required, the feedforward term including reference derivatives information should be added in
the PID controller. For PID or proportional–integral (PI) control, the large initial error may bring the
phenomenon of integral windup, and a relatively long-time overshoot exits in the system output. There
are some methods to reduce overshoot in system output: the pole-placement or pole-zero configuration
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methods [6, 7], the optimisation approach to minimise overshoot [8], the compensation-based method
[9, 10], the characteristic ratio assignment method [11], the iterative technique based on gradient
descent-like procedure [12], the eigenvector placement technique to construct an invariant set [13]. They
are mainly used for the step reference non-overshooting tracking in the linear systems. However, they
still cannot overcome the effect from the time-varying disturbances or nonlinear system uncertainties,
and these time-varying disturbances may bring overshoot or oscillations in the system outputs.

Sliding mode is also widely used in many industrial applications due to its strong robustness against
the bounded stochastic disturbances or uncertainties, especially for aircraft navigation and control: the
robust controller [14], the robust observer [15] and the signal corrector [16]. However, chattering in slid-
ing mode affects its output performance, and overshoot is inevitable for the usual sliding mode control
systems. Some methods were proposed to reduce overshoot and chattering, and keep the robustness prop-
erty of sliding mode control [17–20]. In [17], for the systems with the parameter uncertainties and the
matched disturbances, an adaptive sliding mode was designed to create the non-overshooting responses
over the selected output variables. In Ref. [18], a cascade sliding mode-PID control was presented to get
the non-overshooting time responses for a step reference. In Refs [19, 20], for a linear time-invariant
systems with the matched disturbance, the integral sliding mode technique along with the Moore’s
eigenstructure assignment was used to make the system stable with non-overshooting behaviour. For
the above methods, not only the upper bound of disturbance should be known, but also the upper bound
information of disturbance derivatives is required. For some cases, the non-overshooting controllers
with the observers were presented for the systems with the disturbances [21, 22]. The observers were
designed to estimate the disturbances, and the estimations were used for the non-overshooting stabilisa-
tion. However, only the step reference was considered, and the disturbance was assumed to be constant.
Furthermore, the overshoot may exist in the estimation from the observer, and the non-overshooting
control performance is affected adversely.

Recent years, non-overshooting stabilisation for the nonlinear systems with disturbance was devel-
oped [23–26]. In Ref. [23], a non-overshooting control was presented for a class of nonlinear system
under the condition that the initial value of the system output was strictly required below the initial value
of the reference trajectory. The approximately non-overshooting performance was achieved by appro-
priately choosing the control gains under the deterministic disturbances. In Ref. [24], a controller was
designed for a class of nonlinear systems to make the mean of the system output asymptotically track a
given trajectory without overshoot, i.e. the mean-nonovershooting tracking was achieved. Furthermore,
the initial value of the system output has the same constraint as that in Ref. [23]. In Refs [25, 26],
the non-overshooting stabilisers were designed for a class of nonlinear systems that were input-output
linearisable with a full relative degree, and the matched disturbances were considered. The bounded
measurable disturbances should satisfy the two inequalities including the initial values of variables, and
it was required to be continuous in the system variables [26]. In addition, the above non-overshooting
control methods are locally stable.

In this paper, for a class of uncertain systems, a method of globally exponentially stable control
without overshoot is proposed. The design of control law is based on a global non-overshooting 2-sliding
mode of error form. Non-overshooting stability requires that the system gains depend on the initial values
of system variables, making the system locally stable. In order to achieve the global non-overshooting
stability and avoid the excessively large system gains, the 2-sliding mode consists of two bounded-
gain subsystems. The implementation of global non-overshooting stability is through the successive
connection of the first subsystem with non-overshooting reachability and the second subsystem with
locally non-overshooting stability. The first subsystem enables the sliding variables to reach a given
bounded range without overshoot within a finite time. The boundary of this range serves as the initial
values for the second subsystem. Through partitioning these initial values, the sliding variables are
analytically expressed, and in each zone, the bounded system parameters are determined to achieve
the non-overshooting stability. For the second subsystem, the sliding variables are attracted without
overshoot onto a non-overshooting sliding surface (i.e. the sliding variables are made to satisfy a linear
non-overshooting convergence law). Thus, the sliding variables converge exponentially to zero, and

https://doi.org/10.1017/aer.2024.50 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.50


2486 Wang and Mao

there is no overshoot for the first sliding variable. The influence of the bounded stochastic disturbance or
uncertainty is rejected completely due to the sliding mode gain coverage. The disturbance or uncertainty
is only required to be bounded. Also, the 2-sliding mode can separate the measurement noise from the
sliding variables, and it makes the variables smoothed. To implement the trajectory non-overshooting
tracking, it is only required that the second-order derivative of reference trajectory is bounded. In order
to reject the chattering in the controller output, a tanh-function-based sliding mode is developed to get
the smoothed non-overshooting controller.

The rationality of the proposed non-overshooting sliding mode controller in this paper incudes: (1) the
structure of the two successive subsystems, which have the non-overshooting reachability and the non-
overshooting stability respectively, can achieve global non-overshooting stability; (2) the initial value
partitioning of the second subsystem is to determine the analytical expressions for the sliding variables,
so that the conditions on non-overshooting stability can be obtained; (3) the sliding mode gains can
be assigned to completely eliminate the influence of bounded stochastic disturbance. The advantages
of the proposed method are: (1) the robust and global non-overshooting stability even in the presence
of bounded stochastic disturbance; (2) no restriction on the system initial values; (3) the bounded and
smoothed controller to be easily performed by the actuators.

For flight control, for example, spacecraft, hypersonic vehicle or UAV control, sliding mode control
plays an important role [27–29]. However, overshoot or oscillations exist for the traditional sliding mode
control methods. In the high-speed or high-manoeuverability flight conditions, overshoot or oscillations
in attitude control may affect the flight performance and cause the safety issues. In fact, at a supersonic
flying speed, the angles of attack of the aerodynamic surfaces are usually very small. The overshoot of
the system output will cause these angles of attack large and irregular, resulting in the unstable flight.
Therefore, the non-overshooting control is necessary for these aircrafts to implement the safe and maneu-
vering flight. The robust non-overshooting control proposed in this paper can overcome the overshoot
issue, and the strict non-overshooting stability can be achieved even in the presence of bounded stochas-
tic disturbance or system uncertainty. Importantly, the bounded-gain and smoothed sliding controller is
fit for many actuators.

The proposed method is applied to a UAV non-overshooting control. In the UAV flight test, some
adverse situations are considered: only a simple model is constructed; the system uncertainties and the
bounded unknown stochastic disturbances exist; noise is in the measurements of position and attitude;
and the reference includes the multi-segment trajectory. The control laws based on the non-overshooting
sliding mode are designed to drive the UAV to achieve the flight mission. The control system can
implement the agile and non-overshooting tracking for the complex reference trajectory. Furthermore,
even when the reference suddenly changes or jumps, i.e. the reference trajectory is discontinuous, the
controller parameters can be updated to keep the non-overshooting stabilisation through the parameter
regulation conditions.

Compared with the research results in the existing relevant literature, the contributions of this paper
include: (1) even with the presence of stochastic disturbances and the requirement of time-variant refer-
ence trajectories, the strict non-overshooting stability can still be achieved; (2) the stability is global, and
the system gains are bounded; (3) the stochastic disturbances are only required to be bounded; (4) there
is no restriction on the initial values of the systems; (5) due to the filter-corrector property of the sliding
mode surface, the noise can be fully separated from the sliding variables, even when the frequency bands
of the variables and noise overlap; (6) the controller output is bounded and is smoothed, and it is easily
performed by the actuators.

2.0 Problem description and analysis
The problem considered in this paper is for system safety control to implement non-overshooting
stabilisation, even the unknown stochastic disturbance exists, and the time-variant reference is required.
Overshoot means that signal passes over or exceeds its target, and it affects the safety control adversely.
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We know that, the control performance of a system is determined by its closed-loop error system
after a controller is selected. Equivalently speaking, controller design is to determine a control law to
turn the open-loop error system into a desired stable system of error form. The control performance is
determined by the desired stable system. The controller is a connection between the open-loop error
system and the desired stable system.

Therefore, when it is difficult to design a controller to make a system stable and without overshoot,
we can construct a desired stable system with non-overshooting and robust properties. Then, from the
relation between the open-loop error system and the desired stable system, the controller is solved.

A conclusion on controller design based on desired stable system is introduced as follows.

2.1 Controller design and desired stable system
Conclusion 2.1 (Controller design based on desired stable system):

A dynamical system of error form is considered as follows:

e(n)(t) = g
(
e(t), ė(t), · · · , e(n−1)(t), t

)+ u(t) + d(t) (1)

where, e(t) is the system error variable, and ė(t), · · · , e(n)(t) are the derivatives of e(t); g(·) is the known
function; u(t) is the control input; and d(t) is the unknown disturbance or uncertainty of any kind. If the
system

e(n)(t) = f
(
e(t), ė(t), · · · , e(n−1)(t), t

)+ d(t) (2)

is already stable even disturbance d(t) exists, i.e.

lim
t→∞

e(i)(t) = 0, i = 0, 1, · · · , n − 1 (3)

where, f (·) is the known function, then, in order to make system (1) stable, the controller can be selected
as

u(t) = f
(
e(t), ė(t), · · · , e(n−1)(t), t

)− g
(
e(t), ė(t), · · · , e(n−1)(t), t

)
(4)

In fact, system (2) is already stable without control. If we can select controller u(t) to turn system (1)
into system (2), then, the system (1) will become stable. Because the left sides of (1) and (2) are same,
we just make the right sides of (1) and (2) equal, i.e.

g
(
e(t), ė(t), · · · , e(n−1)(t), t

)+ u(t) + d(t) = f
(
e(t), ė(t), · · · , e(n−1)(t), t

)+ d(t) (5)

Then, through solving the equality (5), the disturbance d(t) is canceled out, and we get the
controller (4).

Remark 2.1: For system (1) with controller (4), system (2) determines its stability, transient process and
robustness. Therefore, for a dynamical control system, we can use a desired stable system to determine
the controller and analyse the performance of control system. Importantly, for safety control, if the
desired stable system has the non-overshooting property, then the dynamical control system has the
same performance.

2.2 PID/PI desired stable system
PID/PI control is popular for many industrial control systems. Ideally, PID or PI control can completely
reject the effect of constant disturbance when stabilising a system. The desired stable system in PID
form is a third-order system, and the overshoot often happens. Especially, a large overshoot exists due
to the windup effect or the integration saturation. We have the following two Lemmas.

Lemma 2.1 (PID desired stable system with unknown constant disturbance): For system

ë(t) = −kpe(t) − ki

∫ t

0

e(τ )dτ − kdė(t) + d (6)
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where, d is any unknown constant disturbance, if kp, ki and kd are selected to make the real parts of all the
roots of the characteristic equation s3 + kds2 + kps + ki = 0 negative, then, system (6) is exponentially
stable, and

lim
t→∞

e(t) = 0, lim
t→∞

ė(t) = 0, and lim
t→∞

ki

∫ t

0

e(τ )dτ = d (7)

The proof of Lemma 2.1 is presented in Appendix. �
Remark 2.2 (PID control for second-order systems): Ideally, PID controller is used for the control of
a second-order system with unknown constant disturbance (but not time-varying disturbance). For the
second-order system of error form

ë(t) = −g(t) − u(t) + d (8)

the system (6) is selected as the desired stable system. We select the right sides of (6) and (8) equal, i.e.

−g(t) − u(t) + d = −kpe(t) − ki

∫ t

0

e(τ )dτ − kdė(t) + d (9)

Then, solving the equality (9), the disturbance d is canceled out, and we get the controller:

u(t) = kpe(t) + ki

∫ t

0

e(τ )dτ + kdė(t) − g(t) (10)

From (66), the closed-loop error system is a third-order system, the combination of three roots of
s3 + kds2 + kps + ki = 0 determines the stability and transient process, and the overshooting response
often happens.

For PID control, if the large initial error of system output variable exist, then a relatively large long-
time overshoot may happen due to the integral windup. PID control can only completely reject the
effect of constant disturbance and make lim

t→∞
e(t) = 0 and lim

t→∞
ė(t) = 0. In addition, for a time-varying

disturbance, PID control can only make the system approximately stable. Even the parameter regulation
methods are used to implement the non-overshooting stabilisation, the disturbance is still assumed to
be constant. If disturbance is fast time-varying, then the control performance becomes worse, and the
overshoot and oscillations deteriorate.

Lemma 2.2 (PI desired stable system with unknown constant disturbance): For system

ė(t) = −kpe(t) − ki

∫ t

0

e(τ )dτ + d (11)

where, d is any unknown constant disturbance, if kp and ki are selected to make the real parts of all the
roots of the characteristic equation s2 + kps + ki = 0 negative, then system is exponentially stable, and

lim
t→∞

e(t) = 0, and lim
t→∞

ki

∫ t

0

e(τ )dτ = d (12)

The proof of Lemma 2.2 is presented in Appendix. �
Remark 2.3: Ideally, PI controller is used for the control of a first-order system with unknown constant
disturbance. For the first-order system of error form

ė(t) = −g(t) − u(t) + d (13)

the system (11) is selected as the desired stable system. We select the right sides of (11) and (13) equal,
i.e.

−g(t) − u(t) + d = −kpe(t) − ki

∫ t

0

e(τ )dτ + d (14)

Then, solving the equality (14), the disturbance d is canceled out, and we get the controller:

u(t) = kpe(t) + ki

∫ t

0

e(τ )dτ − g(t) (15)
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From (72), the closed-loop error system is a second-order system, the combination of two roots of
s2 + kps + ki = 0 determines the stability and transient process, and sometimes overshooting response
happens. Furthermore, due to the integral windup, the overshoot happens. Strictly, PI control can only
reject the effect of constant disturbance and make lim

t→∞
e(t) = 0. For a time-varying disturbance, PI control

can only make the system approximately stable.

2.3 Performance metrics to evaluate the control methods
In the view of the problems under consideration, here, we give the performance metrics for evalu-
ating the proposed control methods: (1) global non-overshooting stability; (2) robustness against the
bounded stochastic disturbances; (3) precision and maneuverability for reference trajectory tracking;
(4) non restriction on the system initial values.

3.0 Robust non-overshooting 2-sliding mode
3.1 Configuration of robust non-overshooting 2-sliding mode with global stability
Before we present the design of non-overshooting control for a class of uncertain systems, we create
a desired non-overshooting 2-sliding mode system. Non-overshooting stability requires that the system
gain depends on the initial values of the system variables. When the initial value amplitudes are large,
the system gain also becomes large. In order to achieve the global non-overshooting stability and the
bounded system gain, the 2-sliding mode consists of two successive subsystems. The first subsystem
with non-overshooting reachability enables the sliding variables to reach a given bounded range. This
range boundary serves as the initial condition of the second subsystem and makes the determined system
gain bounded. The second subsystem has the property of local non-overshooting stability, such that the
sliding variables converge to zero, and no overshoot exists for the first sliding variable. The flow chart
of 2-sliding mode is shown in Fig. 1(a).

The configuration of non-overshooting 2-sliding mode with two subsystems is expressed by

ė1(t)= e2(t)

ė2(t)=
{

f1

[
e1(t) , e2(t)+ e2csign(e1(t))

]+ d(t), if|e1(t)|> e1c;

f2[e1(t) , e2(t)] + d(t), if|e1(t)| ≤ e1c

(16)

where, the gains of functions f1[·] and f2[·] are bounded; d(t) is the bounded disturbance; e1c > 0 and
e2c > 0 make the system gains bounded. The sliding variables e1(t) and e2(t) experience the following
convergence process:{

e1(t) reaches e1c sign(e1(t))without overshoot and e2(t) → −e2c sign(e1(t)) , if |e1(t)|> e1c

e1(t) → 0 without overshoot and e2(t) → 0, if |e1(t)| ≤ e1c

(17)

The convergence process of sliding variables is shown in Fig. 1(b):

(1) The first subsystem (with robust non-overshooting reachability): its gain is bounded; it makes
e1(t) reach the given range |e1(t)| ≤ e1c without overshoot, and e2(t) approaches to the assigned
−e2c sign (e1(t)) which is opposite to e1(t); the bounded disturbance d(t) can be rejected com-
pletely; and then the first subsystem switches to the second subsystem, which it has the initial
values e1(tc) and e2(tc).

(2) The second subsystem (with robust non-overshooting stability): its bounded gain is determined
from the initial values e1(tc) and e2(tc); the sliding variables e1(t) and e2(t) converge to zero, and
no overshoot exists for e1(t); moreover, the bounded disturbance d(t) can be rejected completely.

Two Theorems on the explicit forms of robust non-overshooting 2-sliding mode are presented as
follows.
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(a)

(b)

Figure 1. Configuration of globally non-overshooting 2-sliding mode. (a) Flow chart of 2-sliding mode.
(b) Convergence process of sliding variables.

3.2 Design of non-overshooting sliding mode system

Theorem 3.1 (Robust non-overshooting 2-sliding mode): The 2-sliding mode system is as follows:

ė1(t)= e2(t)

ė2(t)=
{−kcsign

[
e2(t)+ e2csign(e1(t))

]+ d(t), if|e1(t)|> e1c;

−k2sign[e2(t)+ k1e1(t)] + d(t), if|e1(t)| ≤ e1c

(18)

where, e1(t) and e2(t) are the sliding variables; the bounded unknown disturbance d(t) satisfies
supt∈[0,∞) |d(t)| ≤ Ld <∞; kc > Ld; e1c ∈(0, k2M − Ld), e2c ∈(e1c,

√
(k2M − Ld) e1c

]
, and k2M > Ld is the up-

bound of k2 from the system gain limitation; e1(tc) and e2(tc) are the initial values of e1(t) and e2(t)
respectively when |e1(t)| ≤ e1c; and

k1 ∈

⎧⎪⎪⎨
⎪⎪⎩

(
0, |e2(tc)|

|e1(tc)|

)
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;(

|e2(tc)|
|e1(tc)| , ∞

)
, if e1(tc) e2(tc)< 0 and |e1(tc)| ≥ |e2(tc)| ;

(0, ∞) , if others

(19)
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k2 >

⎧⎪⎪⎨
⎪⎪⎩

max
{

k1 |e2(tc)| + Ld, e2
2(tc)

2|e1(tc)| + Ld

}
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;

max

{
k1 |e2(tc)| + Ld, k2

1
3

(
|e1(tc)| +

√
e2

1(tc) + 3
(

e2(tc)
k1

)2
)

+ Ld

}
, if others

(20)

Then, we get the linear convergence law ė1(t) = −k1e1(t) (i.e., sliding surface e2(t) + k1e1(t) = 0), i.e.
the system (18) is globally exponentially stable, and

lim
t→∞

e1(t) = 0 and lim
t→∞

e2(t) = 0 (21)

In addition, the convergence of variable e1(t) is non-overshooting.
The proof of Theorem 3.1 is presented in Appendix. �

Remark 3.1 (Performance analysis of sliding mode (18) with conditions (19) and (20)):

(1) Globally exponential stability and no overshoot. During the whole transient process, both e1(t)
and e2(t) converge to zero, and no overshoot exists in e1(t):

(i) Firstly, there exists a finite time tc > 0, for t ≥ tc, the first subsystem enables e1(t) to reach |e1(t)| ≤
e1c without overshoot; meanwhile, e2(t) gets to e2csign(e1(t)); then, the first subsystem switches
to the second subsystem.

(ii) Secondly, for the second subsystem within the range |e1(t)| ≤ e1c, from its initial values e1(tc)
and e2(tc), there exists a finite time ts > 0, for t ≥ tc + ts, the variables 1(t) and e2(t) are attracted
without overshoot onto the sliding surface σ (t) = e2(t) + k1e1(t) = 0, and the sliding function σ (t)
and the sliding variable e1(t) are non-overshooting during t ∈[tc, tc + ts); because ė1(t) = e2(t), the
linear convergence law ė1(t) = −k1e1(t) is achieved; therefore, for t ≥ tc + ts, e1(t) and e2(t) are
exponentially convergent, and no overshoot exists in e1(t). Therefore, it is a non-overshooting
convergence process.

(2) Complete rejection of bounded stochastic disturbance/uncertainty. Disturbances or uncertainties
exist in many dynamic systems. For example, in a UAV flight, the aerodynamic disturbance exists from
the crosswind, and the influences of unmodelled dynamic uncertainties are not avoidable in modeling.
They perform to be stochastic and bounded. Therefore, we can define the disturbance or uncertainty d(t)
to satisfy supt∈[0,∞) |d(t)| ≤ Ld <∞. For the sliding mode (18), even the bounded disturbance d(t) exists,
the strict non-overshooting and exponential stability is still achieved, and lim

t→∞
e1(t) = 0 and lim

t→∞
e2(t) = 0.

In fact, from (84) to (86) in the proof of Theorem 3.1, due to kc > Ld and k2 > Ld in the sliding mode,
the influence of bounded disturbances or uncertainties can be completely rejected. Furthermore, for this
sliding mode, the condition on the stochastic disturbance d(t) is relax, and d(t) is only required to be
bounded.

(3) Bounded gain of the sliding mode. From (20), the selection of e1c ∈(0, k2M − Ld) (i.e., e1c =
|e1(tc)|) and e2c ∈(e1c,

√
(k2M − Ld) e1c

]
(i.e., e2c = |e2(tc)|) makes |e1(tc)|, |e2(tc)| and e2

2(tc)

2|e1(tc)| all bounded.
Therefore, k2 is bounded, and the non-overshooting performance is guaranteed.

(4) Chattering phenomenon in the sliding variable e2(t). For the sliding mode (18), due to the
switching functions in the e2(t) dynamic equation, chattering may exist in e2(t).

Remark 3.2 (Parameter conditions that cause slow convergence): For the selection of k1 and k2, we can
use the partitioning e1(tc) e2(tc)< 0 and e1(tc) e2(tc) ≥ 0, and we get

k1 ∈
{(

0, |e2(tc)|
|e1(tc)|

)
, if e1(tc) e2(tc)< 0;

(0, ∞) , if others
(22)
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k2 >

⎧⎪⎪⎨
⎪⎪⎩

max
{

k1 |e2(tc)| + Ld, e2
2(tc)

2|e1(tc)| + Ld

}
, if e1(tc) e2(tc)< 0;

max

{
k1 |e2(tc)| + Ld, k2

1
3

(
|e1(tc)| +

√
e2

1(tc) + 3
(

e2(tc)
k1

)2
)

+ Ld

}
, if others

(23)

Thus, the system (18) is also globally exponentially stable, and no overshoot exists in e1(t).
However, for the second subsystem, when the initial values e1(tc) and e2(tc) of sliding variables are

in the zones II-1 and IV-1, i.e., in {(e1(tc), e2(tc)) |e1(tc) e2(tc)< 0 and |e1(tc)| ≥ |e2(tc)|}, the slow con-
vergence exists for sliding mode (18) with conditions (22) and (23), but it does not happen for sliding
mode (18) with conditions (19) and (20). In fact:

(1) Slow convergence for sliding mode (18) with conditions (22) and (23): For the second subsys-
tem, when the initial values of sliding variables are in the zones II-1 and IV-1, from (22), we
know that k1 ∈

(
0, |e2(tc)|

|e1(tc)|

)
. k1 ∈(0, 1) should be satisfied when |e1(tc)| ≥ |e2(tc)|. Therefore, the

e1(t) convergence may be slow due to the convergence law ė1(t) = −k1e1(t).
(2) Fast convergence for sliding mode (18) with conditions (19) and (20): for the second subsystem,

when the initial values of sliding variables are in the zones II-1 and IV-1, from (19), we know
that k1 ∈

(
|e2(tc)|
|e1(tc)| , ∞

)
. Because |e1(tc)| ≥ |e2(tc)|, we need to select k1 ≥ 1 for the convergence law

ė1(t) = −k1e1(t) to get a fast convergence.

3.3 Design of smoothed non-overshooting sliding mode system
In order to avoid e2(t) chattering in the sliding mode, the continuous functions are used in the sliding
mode, and the following Theorem is presented.

Theorem 3.2 (Smoothed non-overshooting sliding mode): The tanh-function-based 2-sliding mode
system is as follows:

ė1(t)= e2(t)

ė2(t)=
{−kctanh

[
ρc(e2(t)+ e2csign(e1(t)))

]+ d(t), if|e1(t)|> e1c;

−k2tanh[ρ(e2(t)+ k1e1(t) )] + d(t), if|e1(t)| ≤ e1c

(24)

where, e1(t) and e2(t) are the sliding variables; the bounded unknown disturbance d(t) satisfies
supt∈[0,∞) |d(t)| ≤ Ld <∞; e1c ∈(0, k2M − Ld), e2c ∈(e1c,

√
(k2M − Ld) e1c

]
, and k2M > Ld is the up-bound

of k2 from the system gain limitation; function

tanh(ρ · x)= eρ·x − e−ρ·x

eρ·x + e−ρ·x = 1 − 2

e2ρ·x + 1
(25)

e1c > 0, e2c > 0, kc > Ld, ρc 	 1

2
ln

kc + Ld

kc − Ld

(26)

e1(tc) and e2(tc) are the initial values of e1(t) and e2(t) respectively when |e1(t)| ≤ e1c; and

k1 ∈

⎧⎪⎪⎨
⎪⎪⎩

(
0, |e2(tc)|

|e1(tc)|

)
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;(

|e2(tc)|
|e1(tc)| , ∞

)
, if e1(tc) e2(tc)< 0 and |e1(tc)| ≥ |e2(tc)| ;

(0, ∞) , if others

(27)

https://doi.org/10.1017/aer.2024.50 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.50


The Aeronautical Journal 2493

k2 >

⎧⎪⎪⎨
⎪⎪⎩

max
{

k1 |e2(tc)| + Ld, e2
2(tc)

2|e1(tc)| + Ld

}
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;

max

{
k1 |e2(tc)| + Ld, k2

1
3

(
|e1(tc)| +

√
e2

1(tc) + 3
(

e2(tc)
k1

)2
)

+ Ld

}
, if others

(28)

ρ	 max

{
1

2k1

, 1

}
ln

k2 + k1e2 max + Ld

k2 − k1e2 max − Ld

(29)

and

e2 max = max

⎧⎨
⎩|e2(tc)| ,

k1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦
⎫⎬
⎭ (30)

Then:

(i) The effect of disturbances is rejected, and the variables e1(t) and e2(t) of system (24) are in the
bounds as follows:

lim
t→∞

|e1(t)| ≤ 1

2ρk1

ln
k2 + k1e2 max + Ld

k2 − k1e2 max − Ld

, and lim
t→∞

|e2(t)| ≤ 1

ρ
ln

k2 + k1e2 max + Ld

k2 − k1e2 max − Ld

(31)

In addition, the convergence of variable e1(t) is non-overshooting.

(ii) Specially, if ρ is large enough, i.e., ρ→ +∞, then the system (24) becomes the ideal sliding
mode (18), and we get

lim
t→∞

lim
ρ→+∞

e1(t) = 0 and lim
t→∞

lim
ρ→+∞

e2(t) = 0 (32)

The proof of Theorem 3.2 is presented in Appendix. �
Remark 3.3 (Smoothed and non-overshooting convergence for sliding mode (24) with (25)∼(30)):

In addition to the non-overshooting convergence, the smoothed sliding mode system (24) has the
following properties:

(1) Universal approximation: because lim
ρ→+∞

tanh (ρ · x)= sign (x), the sliding mode system (24) is
the smoothed approximation of ideal sliding mode system (18).

(2) Smoothed outputs of e1(t) and e2(t): Due to continuity in the sliding mode system (24), the out-
puts of both e1(t) and e2(t) are smoothed. For −kctanh

[
ρc(e2(t) + e2c sign(e1(t)))

]+ d(t) in (24),
the function sign (e1(t)) does not change its sign due to continuity of e1(t) when |e1(t)|> e1c.
Therefore, no chattering happens.

Remark 3.4 (Parameters determination for the sliding mode system (24))

For the algorithm calculation, we need to turn the inequality expressions of the parameters into the
corresponding equalities, and the calculated maximum or minimum values of k1 and k2 are multiplied
by the corresponding coefficients. The determination steps of e1c, e2c, kc, ρc, k1, k2 and ρ are presented
as follows.

Step 1: Get the initial errors e1(0) and e2(0).
Step 2: Select

e1c ∈ (0, k2M − Ld) , e2c ∈
(

e1c,
√
(k2M − Ld) e1c

]
kc ≥ Ld, ρc = ρc0

1

2
ln

kc + Ld

kc − Ld

(33)

where, k2M > Ld is the up-bound of k2 limited from the system gain; and ρc0 > 1
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Step 3: Determine the parameters k1, k2 and ρ through the following calculations.

k1 =

⎧⎪⎪⎨
⎪⎪⎩
β11

|e2(tc)|
|e1(tc)| ∈

(
0, |e2(tc)|

|e1(tc)|

)
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;

β12
|e2(tc)|
|e1(tc)| ∈

(
|e2(tc)|
|e1(tc)| , ∞

)
, if e1(tc) e2(tc)< 0 and |e1(tc)| ≥ |e2(tc)| ;

β13 ∈(0, ∞) , if others

(34)

k2 =

⎧⎪⎪⎨
⎪⎪⎩
β2max

{
k1 |e2(tc)| + Ld, e2

2(tc)

2|e1(tc)| + Ld

}
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;

β2max

{
k1 |e2(tc)| + Ld, k2

1
3

(
|e1(tc)| +

√
e2

1(tc) + 3
(

e2(tc)
k1

)2
)

+ Ld

}
, if others

(35)

where, e1(tc) and e2(tc) are the initial values of e1(t) and e2(t) respectively when |e1(t)| ≤ e1c; β11 ∈(0, 1),
β12 > 1 and β2 > 1.

Adjustment of k1:

k1 = 1is selected if the calculated k1 ∈(0, 1) (36)

[Note: If k1 is calculated to be k1 ∈(0, 1), we can select k1 = 1 for the convergence law ė1(t) = −k1e1(t)
to get a fast convergence. We find that k1 = 1 always holds from the condition (27).]

For ρ, we select

ρ = ρ0 max

{
1

2k1

, 1

}
ln

k2 + k1e2 max + Ld

k2 − k1e2 max − Ld

(37)

where, ρ0 > 1, and

e2 max = max

⎧⎨
⎩|e2(tc)| ,

k1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦
⎫⎬
⎭ (38)

4.0 Simulation examples on non-overshooting sliding mode
We use two examples to demonstrate the stability of the two non-overshooting sliding mode systems.

For sliding modes (18) and (24), we suppose:
the initial sliding variables e1(0)= 100, e2(0)= −10;
the disturbance d(t) = 3 + 2sin (0.3t) sin (1.6t), and its upper bound Ld = 5.
Suppose the system gain k2 ≤ k2M = 20.

Example 4.1: (Sliding mode (18) from Theorem 3.1):

From e1c ∈(0, k2M − Ld)= (0, 15), we select e1c = 2. Then, we get e2c ∈(e1c,
√
(k2M − Ld) e1c

]=(
2,

√
(20 − 5)× 2

]= (2, 5.5]. We select e2c = 5. Select kc = 6> Ld.
Determination of sliding mode parameters k1 and k2 according to the parameter determination steps

(34)∼(36):

k1 =

⎧⎪⎨
⎪⎩

0.5 |e2(tc)|
|e1(tc)| , if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;

2.3 |e2(tc)|
|e1(tc)| , if e1(tc) e2(tc)< 0 and |e1(tc)| ≥ |e2(tc)| ;

1 ∈(0, ∞) , if others

where, e1(tc) and e2(tc) are the initial values of e1(t) and e2(t) respectively when |e1(t)| ≤ e1c.
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Figure 2. Example 4.1 Sliding variables e1(t) and e2(t) of sliding mode (18).

Adjustment of k1: k1 = 1 is selected if the calculated k1 ∈(0, 1); and

k2 =

⎧⎪⎪⎨
⎪⎪⎩

1.5 max
{

k1 |e2(tc)| + Ld, e2
2(tc)

2|e1(tc)| + Ld

}
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;

1.5 max

{
k1 |e2(tc)| + Ld, k2

1
3

(
|e1(tc)| +

√
e2

1(tc) + 3
(

e2(tc)
k1

)2
)

+ Ld

}
, if others

From the algorithm calculation for the above equations, we can obtain k1 = 1.25 and k2 = 16.93.
Figure 2 shows the plots of sliding variables e1(t) and e2(t). Even the time-varying disturbance exists,

the non-overshooting convergence is implemented: the sign of e1(t) is always unchanged, and lim
t→∞

e1(t) =
0 and lim

t→∞
e2(t) = 0 hold. Also, we find that, small chattering exists in e2(t).

Example 4.2: (Smoothed sliding mode (24) from Theorem 3.2):

Similar to Example 4.1, select e1c = 2, e2c = 5, and kc = 6> Ld. Then, we get

ρc = 50
1

2
ln

kc + Ld

kc − Ld

= 59.95

Determination of sliding mode parameters k1, k2 and ρ according to the parameter determination
steps (34)∼(38):

Firstly, for determination of k1 and k2, we use the same algorithm steps as Example 3.1, and we can
obtain k1 = 1.26 and k2 = 16.95. Secondly, for ρ, we have

e2 max = max

⎧⎨
⎩|e2(tc)| ,

k1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦
⎫⎬
⎭

ρ = 20 max

{
1

2k1

, 1

}
ln

k2 + k1e2 max + Ld

k2 − k1e2 max − Ld

From the algorithm calculation for the above equations, we can read ρ = 12.19.
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Figure 3. Example 4.2 Sliding variables e1(t) and e2(t) of sliding mode (24).

Figure 3 describes the plots of sliding variables e1(t) and e2(t). Even the time-varying disturbance
exists, the sliding variables e1(t) and e2(t) converge to zero, and e1(t) convergence is non-overshooting.
In addition, both e1(t) and e2(t) are smoothed.

5.0 Non-overshooting control for uncertain systems
5.1 Model of uncertain systems
The following uncertain system has a minimum number of states and inputs but retains the essential
features that must be considered when designing control laws for many dynamical systems (e.g. UAV
dynamics):

ẋ1(t) = x2(t)

ẋ2(t) = h(t) + u(t) − δ(t) (39)

where, x1(t) and x2(t) the system states; h(t) is the known function; u(t) is the control input; and δ(t) is the
unknown time-varying disturbance or system uncertainty, and supt∈[0,∞) |δ(t)| ≤ Lδ <∞. We consider to
design a controller for the uncertain system (39) when the reference is time variant, and x1(t) tracking
the reference is required to be non-overshooting.

5.2 Non-overshooting control for uncertain systems

Theorem 5.1 (Non-overshooting control based on sliding mode (18)): For the uncertain system (39)
with the time-variant reference xd(t), if the controller is selected as

u(t) =
{

kc sign
[
e2(t) + e2c sign(e1(t))

]− h(t), if |e1(t)|> e1c

k2 sign[e2(t) + k1e1(t)] − h(t), if |e1(t)| ≤ e1c

(40)
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then, the system is globally exponentially stable, x1(t) tracking xd(t) is non-overshooting, and

lim
t→∞

x1(t) = xd(t) and lim
t→∞

x2(t) = ẋd(t) (41)

where, e1(t) = xd(t) − x1(t) and e2(t) = ẋd(t) − x2(t); supt∈[0,∞) |ẍd(t)| ≤ Lx <∞, and supt∈[0,∞) |δ(t)| +
supt∈[0,∞) |ẍd(t)| ≤ Ld <∞; kc > Ld; e1c ∈(0, k2M − Ld), e2c ∈(e1c,

√
(k2M − Ld) e1c

]
, and k2M > Ld is the up-

bound of k2 from the system gain limitation; e1(tc) and e2(tc) are the initial values of e1(t) and e2(t)
respectively when |e1(t)| ≤ e1c; and

k1 ∈

⎧⎪⎪⎨
⎪⎪⎩

(
0, |e2(tc)|

|e1(tc)|

)
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;(

|e2(tc)|
|e1(tc)| , ∞

)
, if e1(tc) e2(tc)< 0 and |e1(tc)| ≥ |e2(tc)| ;

(0, ∞) , if others

(42)

k2 >

⎧⎪⎪⎨
⎪⎪⎩

max
{

k1 |e2(tc)| + Ld, e2
2(tc)

2|e1(tc)| + Ld

}
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;

max

{
k1 |e2(tc)| + Ld, k2

1
3

(
|e1(tc)| +

√
e2

1(tc) + 3
(

e2(tc)
k1

)2
)

+ Ld

}
, if others

(43)

The proof of Theorem 5.1 is presented in Appendix. �
Remark 5.1 (Non-overshooting control (40)):

(1) Non-overshooting of x1(t) tracking xd(t): The sliding mode (18) is the desired stable system
of error form, therefore, e1(t) = xd(t) − x1(t) converges to zero without overshoot. Thus, x1(t)
tracking xd(t) is non-overshooting.

(2) Complete rejection of the influence from bounded disturbance and time-variant reference: For the
uncertain system (39), the disturbance δ(t) and the second-order derivative of reference xd(t) are
bounded, and supt∈[0,∞) |δ(t)| + supt∈[0,∞) |ẍd(t)| ≤ Ld <∞ are satisfied. The parameters of con-
troller (40) satisfy kc > Ld and (43). When selecting the controller (40), from (168) and (169) in
the proof of Theorem 5.1, the closed-loop error system for (39) is the robust non-overshooting
2-sliding mode (18). Therefore, lim

t→∞
x1(t) = xd(t) and lim

t→∞
x2(t) = ẋd(t), and there is no overshoot

for x1(t) tracking xd(t).
(3) Smoothed x1(t): Due to the integral-chain structure of second-order sliding mode (18), e1(t) is

smoothed. Therefore, for the control system, x1(t) is smoothed.
(4) Chattering in the variable x2(t) and the controller u(t): For system (39), due to the controller

of switching function exists in the x2(t) dynamic equation, chattering happens in x2(t). Also, the
controller u(t) in (40) is discontinuous, therefore, chattering exists in the controller output. The
chattering in controller output will affect actuator performance adversely.

5.3 Smoothed non-overshooting control for uncertain systems
In order to reject chattering in the outputs of controller u(t) and and variable x2(t), we present a smoothed
control based on the sliding mode (24), and a Theorem is presented as follows.

Theorem 5.2 (Non-overshooting control based on smoothed sliding mode (24)): For the uncertain
system (39) with the time-variant reference xd(t), if the controller is selected as

u(t) =
{

kctanh
[
ρc(e2(t) + e2c sign(e1(t)))

]− h(t), if |e1(t)|> e1c;

k2tanh[ρ(e2(t) + k1e1(t))] − h(t), if |e1(t)| ≤ e1c

(44)
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then, the system is globally exponentially stable, x1(t) tracking xd(t) is non-overshooting, and

lim
t→∞

|e1(t)| ≤ 1

2ρk1

ln
k2 + k1e2 max + Ld

k2 − k1e2 max − Ld

, and lim
t→∞

|e2(t)| ≤ 1

ρ
ln

k2 + k1e2 max + Ld

k2 − k1e2 max − Ld

(45)

where, e1(t) = xd(t) − x1(t) and e2(t) = ẋd(t) − x2(t); supt∈[0,∞) |ẍd(t)| ≤ Lx <∞, and supt∈[0,∞) |δ(t)| +
supt∈[0,∞) |ẍd(t)| ≤ Ld <∞;e1c ∈(0, k2M − Ld), e2c ∈(e1c,

√
(k2M − Ld) e1c

]
, and k2M > Ld is the up-bound

of k2 from the system gain limitation;

kc > Ld, ρc 	 1

2
ln

kc + Ld

kc − Ld

(46)

e1(tc) and e2(tc) are the initial values of e1(t) and e2(t) respectively when |e1(t)| ≤ e1c; and

k1 ∈

⎧⎪⎪⎨
⎪⎪⎩

(
0, |e2(tc)|

|e1(tc)|

)
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;(

|e2(tc)|
|e1(tc)| , ∞

)
, if e1(tc) e2(tc)< 0 and |e1(tc)| ≥ |e2(tc)| ;

(0, ∞) , if others

(47)

k2 >

⎧⎪⎪⎨
⎪⎪⎩

max
{

k1 |e2(tc)| + Ld, e2
2(tc)

2|e1(tc)| + Ld

}
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;

max

{
k1 |e2(tc)| + Ld, k2

1
3

(
|e1(tc)| +

√
e2

1(tc) + 3
(

e2(tc)
k1

)2
)

+ Ld

}
, if others

(48)

ρ	 max

{
1

2k1

, 1

}
ln

k2 + k1e2 max + Ld

k2 − k1e2 max − Ld

(49)

with

e2 max = max

⎧⎨
⎩|e2(tc)| ,

k1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦
⎫⎬
⎭ (50)

The proof of Theorem 5.2 is presented in Appendix. �
Remark 5.2 (Smoothed non-overshooting control (44)):

(1) Non-overshooting of x1(t) tracking xd(t): The sliding mode (24) is the desired stable system of
error form, therefore, no overshoot happens in e1(t) = xd(t) − x1(t). Thus, x1(t) tracking xd(t) is
non-overshooting.

(2) Smoothed x1(t) and x2(t): Due to the use of continuous functions in sliding mode (24), both e1(t)
and e2(t) are smoothed. Therefore, for the control system, x1(t) and x2(t) are smoothed.

(3) Smoothed controller u(t): For system (39), the controller u(t) in (44) is smoothed, and it is fit for
the implementation by many actuators.

Remark 5.3 (Rejection of measurement noise):

For system (39) with the controller (40) or (44), the measurement noise is rejected on the sliding
surface because of its filter-corrector property. Even when the frequency bands of the variables and
noise overlap, the outputs of sliding surface are smoothed and are accurate.

In fact, suppose noise n1(t) and n2(t) exist in the measurements of x1(t) and x2(t), respectively. Then,
for the sliding surface, we get

ẋd(t) − x2(t) − n2(t) + k1[xd(t) − x1(t) − n1(t)] = 0 (51)

i.e.

k2(t) + k1e1(t) = k1n1(t) + n2(t) (52)
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Define the Laplace transforms E1(s)= L[e1(t)], E2(s)= L[e2(t)], N1(s)= L[n1(t)], and N2(s)=
L[n2(t)]. Taking Laplace transform for (52), we get

sE1(s)+ k1E1(s)= k1N1(s)+ N2(s) (53)

i.e.

E1(s)= k1

s + k1

(
N1(s)+ 1

k1

N2(s)

)
(54)

where, k1
s+k1

is the form of first-order filter, and k1 is the cut-off frequency of the filter. For the filter, the
input is the noise, and the output is the system error. As long as k1 is less than the minimum frequency
of the noise, the noise will be rejected. From k1 selection conditions, k1 can be neither too large nor too
small, for example, k1 = 1 or k1 = 2. Therefore, the noise N1(s)+ 1

k1
N2(s) is rejected sufficiently, and the

system error is reduced to be small enough.

Remark 5.4 (Parameters regulation of the controller):

(1) The parameter selection conditions (42) and (43) (i.e., (47) and (48)) make the system non-
overshooting stable.

(2) kc > Ld. If |e2(0)| is large, kc should increase to reduce |e2(t)| effectively.
(3) k1 determines the convergence rate of linear convergence law ė1(t) = −k1e1(t); from (54), k1 also

determines the filtering frequency band of the sliding mode. Therefore, k1 should not be too
small to keep a convergence rate of linear convergence law; and k1 should not be too large to get
a suitable frequency band for noise rejection.

(4) k2 determines the convergence rate of the second subsystem; k2 also keeps the signs of sliding
function σ (t) = e2(t) + k1e1(t) and sliding variable e1(t) unchanged for t ∈[tc, ∞); also, k1 affects
the selection of k2.

(5) Because |e1(tc)| = e1c and |e2(tc)| = e2c when t = tc, the selection of e1c ∈(0, k2M − Ld) and e2c ∈(
e1c,

√
(k2M − Ld) e1c

]
makes |e1(tc)|, |e2(tc)|, |e2(tc)|

|e1(tc)| and e2
2(tc)

2|e1(tc)| are all bounded. Then, the bounded
k1 and k2 are determined from (47) and (48).

(6) The selection of ρ from (49) affects the smoothness of system variables and controller output.
Also, from (45), ρ affects the control precision. Therefore, the selection of ρ should balance the
smoothness of variables and controller and the precision of control performance.

Remark 5.5 (Steps on determination of non-overshooting controller)

For the system (39), the flow chart of controller design is explained in Fig. 4. Furthermore, the the
steps on controller determination are described as follows.

Step 1: Measure the system initial states, and get the initial errors e1(0) and e2(0).
Step 2: Select e1c ∈(0, k2M − Ld) and e2c ∈(e1c,

√
(k2M − Ld) e1c

]
, respectively, and

kc > Ld, ρc = ρc0

1

2
ln

kc + Ld

kc − Ld

(55)

where, k2M > Ld is the up-bound of k2 from the system gain limitation; ρc0 > 1.
Step 3: Determine the controller parameters k1, k2 and ρ through the calculations in Equations

(34)∼(38). [Note: When the known reference jumps or suddenly changes, the parameters k1, k2 and
ρ are updated.]

Step 4: Controller output:

u(t) =
{

kctanh
[
ρc(e2(t) + e2c sign(e1(t)))

]− h(t), if |e1(t)|> e1c;

k2tanh[ρ(e2(t) + k1e1(t))] − h(t), if |e1(t)| ≤ e1c

(56)
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Figure 4. Flow chart of non-overshooting controller design.

6.0 Simulation examples on non-overshooting control of uncertain systems
We use two examples to illustrate the non-overshooting control presented in Theorems 5.1 and 5.2,
respectively. Consider the uncertain system:

ẋ1(t)= x2(t)

ẋ2(t)= h(t) + u(t) − δ(t)

where, h(t) = 5x
1
3
1 sin(0.5t), and the unknown disturbance or uncertainty δ(t) = 1 +

0.3sin(0.3t) sin(1.6t).
The initial conditions of states: x1(0)= 10, x2(0)= −1
The reference: xd(t) = 2 + 0.5sin(0.8t). Therefore, we know that ẋd(t) = 0.4cos(0.8t) and ẍd(t) =

−0.32sin(0.8t); xd(0)= 2, and ẋd(0)= 0.4.
The upper bound of disturbance/uncertainty: supt∈[0,∞) |δ(t)| + supt∈[0,∞) |ẍd(t)| = 1.3 + 0.32 = 1.62,

and we can select Ld = 1.62.
Define system errors e1(t) = xd(t) − x1(t) and e2(t) = ẋd(t) − x2(t). Then, the error system is:

ė1(t)= e2(t)

ė2(t)= −h(t) − u(t) + ẍd(t)+ δ(t)

and the initial errors are e1(0)= xd(0)− x1(0)= −8, and e2(0)= ẋd(0)− x2(0)= 1.4.
Suppose the system gain k2 ≤ k2M = 10.

Example 6.1: (Non-overshooting control from Theorem 5.1):

(1) Selection of the desired stable error system

https://doi.org/10.1017/aer.2024.50 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.50


The Aeronautical Journal 2501

The sliding mode (18) is selected as the desired stable error system, and

ė1(t) = e2(t)

ė2(t) =
{−kcsign

[
e2(t)+ e2csign(e1(t))

]+ ẍd(t)+ δ(t) , if|e1(t)|> e1c;

−k2sign[e2(t)+ k1e1(t)] + ẍd(t)+ δ(t) , if|e1(t)| ≤ e1c

(2) Determination of parameters k1 and k2

From e1c ∈(0, k2M − Ld)= (0, 8.38), we select e1c = 1. Then, we get e2c ∈(e1c,
√
(k2M − Ld) e1c

]=(
1,

√
(10 − 1.62)× 1

]= (1, 2.9]. We select e2c = 2. Select kc = 2.5> Ld.
According to the parameter determination steps (34)∼(38), we get

k1 =

⎧⎪⎨
⎪⎩

0.5 |e2(tc)|
|e1(tc)| , if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;

2.3 |e2(tc)|
|e1(tc)| , if e1(tc) e2(tc)< 0 and |e1(tc)| ≥ |e2(tc)| ;

2 ∈(0, ∞) , if others

Adjustment of k1: k1 = 1 if the calculated k1 ∈(0, 1); and

k2 =

⎧⎪⎪⎨
⎪⎪⎩

1.5 max
{

k1 |e2(tc)| + Ld, e2
2(tc)

2|e1(tc)| + Ld

}
, if e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)| ;

1.5 max

{
k1 |e2(tc)| + Ld, k2

1
3

(
|e1(tc)| +

√
e2

1(tc) + 3
(

e2(tc)
k1

)2
)

+ Ld

}
, if others

where, e1(tc) and e2(tc) are the initial values of e1(t) and e2(t), respectively, when |e1(t)| ≤ e1c. From the
algorithm calculation for the above equations, we can read k1 = 1 and k2 = 5.44.

(3) Controller design

According to the controller (40), we get

u(t) =
{

kc sign
[
e2(t) + e2c sign(e1(t))

]− h(t), if |e1(t)|> e1c

k2 sign[e2(t) + k1e1(t)] − h(t), if |e1(t)| ≤ e1c

where, e1c = 1, e2c = 2, kc = 2.5, k1 = 1, k2 = 5.44, and h(t) = 5x
1
3
1 sin(0.5t).

(4) Analysis of simulation results

The control performance based on the ideal sliding mode is presented in Fig. 5. Figure 5(a) describes
the system variable x1 tracking the reference xd(t). x1 tracking xd(t) is smoothed and non-overshooting,
even the unknown time-varying disturbance exists, and the reference is also time variant. Figure 5(b)
presents the variable x2 convergence to the reference derivative ẋd(t). At the beginning, x2 increases to
speed up the finite-time convergence, then it makes x1 in the linear convergence law ė1(t) = −k1e1(t), and
lim
t→∞

x1(t) = xd(t) and lim
t→∞

x2(t) = ẋd(t). Figure 5(c) shows the controller u(t) output. Even the controller
can make the system stable and non-overshooting, chattering happens in the controller output, and it
may increase actuator trembling.

Example 6.2: (Smoothed non-overshooting control from Theorem 5.2):

(1) Selection of the desired stable error system

The smoothed sliding mode (24) is selected as the desired stable error system, and

ė1(t) = e2(t)

ė2(t) =
{−kctanh

[
ρc(e2(t) + e2c sign(e1(t)))

]+ ẍd(t) + δ(t), if |e1(t)|> e1c;

−k2tanh[ρ(e2(t) + k1e1(t))] + ẍd(t) + δ(t), if |e1(t)| ≤ e1c
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Figure 5. Example 6.1 Non-overshooting sliding mode control. (a) x1. (b) x2. (c) Controller u(t).
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(2) Determination of parameters k1, k2 and ρ according to the parameter determination steps
(34)∼(38):

Select e1c = 1, e2c = 2, and kc = 2.5. Then, we get ρc = 20 1
2
ln kc+Ld

kc−Ld
= 15.44.

Firstly, for determination of k1 and k2, we use the same algorithm steps to Example 6.1, and we can
read k1 = 1.01 and k2 = 5.49.

Secondly, for ρ, we have

e2 max = max

⎧⎨
⎩|e2(tc)| ,

k1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦
⎫⎬
⎭

ρ = 20 max

{
1

2k1

, 1

}
ln

k2 + k1e2 max + Ld

k2 − k1e2 max − Ld

From the algorithm calculation for the above equations, we can read ρ = 32.19.

(3) Controller design

According to the smoothed controller (44), we get

u(t) =
{

kctanh
[
ρc(e2(t) + e2c sign(e1(t)))

]− h(t), if |e1(t)|> e1c;

k2tanh[ρ(e2(t) + k1e1(t))] − h(t), if |e1(t)| ≤ e1c

where, e1c = 1, e2c = 2, kc = 2.5, ρc = 15.44, k1 = 1.01, k2 = 5.33, ρ = 32.19, and h(t) = 5x
1
3
1 sin(0.5t).

(4) Analysis of simulation results

Figure 6 presents the control performance based on the smoothed sliding mode. Figure 6(a) describes
x1 tracking the reference xd(t), and Figure 6(b) presents x2 convergence to the reference derivative
ẋd(t). Even time-varying disturbance exists, and time-variant reference is required, x1 tracking xd(t) is
smoothed and non-overshooting. Comparing to x2 in Example 6.1, x2 in Example 6.2 is smoother. Figure
6(c) shows the smoothed controller u(t) output. The smoothed controller output is beneficial for actuator
implementation, and it reduce the actuator trembling.

7.0 UAV Control application
A quadrotor UAV prototype is used [30], which is shown in Fig. 7, and the forces and torques of UAV
are described. The system parameters are introduced in Table I.

7.1 Model of UAV flight dynamics [30]
The inertial and fuselage frames are denoted by �g = (Ex, Ey, Ez

)
and �b = (Eb

x , Eb
y , Eb

z

)
, respectively;

ψ , θ and φ are the yaw, pitch and roll angles, respectively. Fi = bω2
i is the thrust force by rotor i, and its

reactive torque is Qi = kω2
i . The sum of the four rotor thrusts is F =

4∑
i=1

Fi. The motion equations of the

UAV flight dynamics can be expressed by

ẋ∗1 = x∗2

ẋ∗2 = h∗(t) + ū∗(t)+ δ∗(t) (57)

where, ∗ = x, y, z,ψ , θ , φ; xx1 = x, xy1 = y, xz1 = z, xψ1 =ψ , xθ1 = θ , xφ1 = φ; hx(t) = 0,
hy(t) = 0, hz(t) = −g, hψ (t) = 0, hθ (t) = 0, hφ(t) = 0; δx(t)=−1(−kxẋ +�x); t) = m−1

(−kyẏ +�y

)
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Figure 6. Example 6.2 Smoothed non-overshooting sliding mode control. (a) x1. (b) x2. (c) Controller
u(t).
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Table 1. UAV Parameters [30]

Symbol Quantity Value
m mass of UAV 2.01 kg
g gravity acceleration 9.81 m/s2

l rotor distance to gravity centre 0.2 m
Jφ moment of inertia about roll 0.25 kg · m2

Jθ moment of inertia about pitch 0.25 kg · m2

Jψ moment of inertia about yaw 0.5 kg · m2

b rotor force coefficient 2.923 × 10−3

k rotor torque coefficient 5 × 10−4

Figure 7. Forces and torques in UAV [30].

δy(t) = m−1
(−kyẏ +�y

)
; δz(t) = m−1(−kzż +�z); δψ (t) = J−1

ψ

(−kψψ̇ +�ψ

)
; δθ (t) = J−1

θ

(−lkθ θ̇ +�θ

)
;

δφ(t) = J−1
φ

(−lkφφ̇ +�φ

)
; kx, ky, kz, kψ , kθ and kφ are the unknown drag coefficients;

(
�x,�y,�z

)
and(

�ψ ,�θ ,�φ

)
are the uncertainties in position and attitude dynamics, respectively; J = diag

{
Jψ , Jθ , Jφ

}
is the matrix of three-axial moment of inertias; cθ and sθ are expressed for cosθ and sinθ , respectively;
and

ūx(t) = ux(t) /m = (cψsθcφ + sψsφ)F/m

ūy(t) = uy(t) /m = (sψsθcφ − cψsφ)F/m

ūz(t) = uz(t) /m = cθcφF/m

ūψ(t) = uz(t) /Jψ = k

b

(
4∑

i=1

( − 1)i+1Fi

)
/Jψ

ūθ (t) = uθ (t) /Jθ = (F3 − F1)l/Jθ

ūφ(t) = uφ(t) /Jφ = (F2 − F4)l/Jφ (58)

7.2 Measurements
A Vicon system provides position and velocity, and a Doppler radar sensor measures height and vertical
velocity. An IMU gives the attitude angle and angular velocity. The sensor outputs are:

y∗1(t) = x∗1; y∗2(t) = x∗2 (59)

where, ∗ = x, y, z,ψ , θ , φ.
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7.3 Controller design
In this section, the control laws are derived for UAV trajectory tracking and attitude stabilisation.

(1) Error systems

The control laws are designed to stabilise the UAV flight. For the desired trajectory (xd(t), yd(t),
zd(t)) and attitude angle (ψd(t), θd(t), φd(t)), the error systems of position and attitude dynamics can be
expressed, respectively, by

ė∗1(t) = ė∗2(t)

ė∗2(t) = −h∗(t) − ū∗(t)+ ∗̈d(t)− δ∗(t) (60)

where, e∗1(t) = ∗d(t) − x∗1, e∗2(t) = ∗̇d(t) − x∗2; ∗ = x, y, z,ψ , θ , φ.

(2) Controller design

From (24), we select the smoothed non-overshooting sliding mode as the desired stable, i.e.,

ė∗1(t) = e∗2(t)

ė∗2(t) =
{−k∗ctanh

[
ρ∗c(e∗2(t)+ e∗2csign(e∗1(t)))

]+ ∗̈d(t)− δ∗(t), if|e∗1(t)|> e∗1c;

−k∗2tanh[ρ∗(e∗2(t)+ k∗1e∗1(t) )] + ∗̈d(t)− δ∗(t), if|e∗1(t)| ≤ e∗1c

(61)

In order to turn the error system (60) into the desired stable sliding mode (61), we select

−h∗(t) − ū∗ (t)+ ∗̈d (t)− δ∗(t)

=
{−k∗ctanh

[
ρ∗c (e∗2 (t)+ e∗2csign (e∗1 (t)))

]+ ∗̈d (t)− δ∗(t), if |e∗1 (t)|> e∗1c;

−k∗2tanh [ρ∗(e∗2 (t)+ k∗1e∗1 (t) )] + ∗̈d (t)− δ∗(t), if |e∗1 (t)| ≤ e∗1c

(62)

Therefore, we get the controller as follows:

ū∗(t)=
{

k∗ctanh
[
ρ∗c(e∗2(t)+ e∗2csign(e∗1(t)))

]− h∗(t), if|e∗1(t)|> e∗1c;
k∗2tanh[ρ∗(e∗2(t)+ k∗1e∗1(t) )] − h∗(t), if|e∗1(t)| ≤ e∗1c

(63)

where, ∗ = x, y, z,ψ , θ , φ. Thus, for the UAV system (57), when the controller (63) is selected, the system
is stable, and the system variables x∗1 (where, ∗ = x, y, z, ψ , θ , φ) are non-overshooting.

8.0 Experiment on uav non-overshooting control
In this section, an experiment on a quadrotor UAV is presented to demonstrate the proposed non-
overshooting control in practice. The UAV prototype shown in Figure 7 is used for the flight test. The
flight control system implementation on the hardware is shown in Figure 8, whose elements include:
A Gumstix and Arduino Mega 2560 (16MHz) are selected as the driven boards; Gumstix is to collect
data from measurements; Arduino Mega is to run control algorithm, which has multiple PWM output
channels; a XsensMTI AHRS (10 kHz) provides the 3-axial attitude angles and the angular velocities.
A microwave Doppler radar sensor (24GHz) is to detect the height and its vertical velocity. The Vicon
system provides position and velocity.

Flight reference trajectory: The UAV reference trajectory includes: (1) take off vertically and hover
at the height of 1 m; (2) then cruise along a horizontal line and keep the height; (3) then climb and
cruise in a circle with the radius 5m and the height 2.5 m. The 3D reference trajectory is shown in
Fig. 9(a).

In the experiment, considering the disturbance (e.g. the crosswind from a swinging electric fan) and
the modelling uncertainty in the UAV flight dynamics, the UAV is controlled to track the reference
trajectory. The position and velocity are obtained from the Vicon, the height and its vertical velocity
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Figure 8. Control system hardware.

Figure 9. UAV 3D flight trajectories. (a) Reference trajectory. (b) Flight trajectory comparison.
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are detected by the microwave Doppler radar sensor, and the attitude angle and the angular velocity are
measured by the IMU. The controller (63) drives the UAV to track the reference trajectory.

8.1 Controller parameters determination
Through testing the crosswind from the electric fan, and considering the system uncertainties, we esti-
mate the upper bound of disturbances and uncertainties to be within Lδ = 4.5 N. The up-bound of k2 is
k2M = 8N through the motor tests.

Steps on determination of controller parameters according to (34)∼(38):
Step 1: Measure the initial states, and determine the initial errors.
the initial states:

x(0)= 0.3, ẋ(0)= −0.02;
y(0)= 0.2, ẏ(0)= −0.01;
z(0)= 0.05, ż(0)= 0.01;

the initial reference:
xd(0)= 0, ẋd(0)= 0;
yd(0)= 0, ẏd(0)= 0;
zd(0)= 1, żd(0)= 0;

then, the initial errors:
ex1(0)= −0.3, ex2(0)= 0.02;
ey1(0)= −0.2, ey2(0)= 0.01;
ez1(0)= 0.95, ez2(0)= −0.01.

Step 2: Select e∗1c and e∗2c and determine k∗c and ρ∗c.
From e∗1c ∈(0, k∗2M − Lδ)= (0, 3.5), we select e∗1c = 1. Then, we get e∗2c ∈(e∗1c,

√
(k∗2M − Lδ) e∗1c

]=(
1,

√
(8 − 4.5)× 1

]= (1, 1.87]. We select e∗2c = 1.2. Select k∗c = 5.5> Lδ. Then, ρ∗c = 6 1
2
ln k∗c+L∗d

k∗c−L∗d
=

6 1
2
ln 5.5+4.5

5.5−4.5
= 8.83, where, ∗ = x, y, z,ψ , θ , φ.

Step 3: Determine the controller parameters k∗1, k∗2 and ρ∗ (where, ∗ = x, y, z,ψ , θ , φ) through the
following calculations:

k∗1 =

⎧⎪⎨
⎪⎩

0.5 |e∗2(tc)|
|e∗1(tc)| , if e∗1(tc) e∗2(tc)< 0 and |e∗1(tc)|< |e∗2(tc)| ;

2.3 |e∗2(tc)|
|e∗1(tc)| , if e∗1(tc) e∗2(tc)< 0 and |e∗1(tc)| ≥ |e∗2(tc)| ;

2 ∈(0, ∞) , if others

where, e∗1(tc) and e∗2(tc) are the initial values of e∗1(t) and e∗2(t), respectively, when |e∗1(t)| ≤ e∗1c.
Adjustment of k∗1: k∗1 = 1 if the calculated k∗1 ∈(0, 1);

k∗2 =

⎧⎪⎪⎨
⎪⎪⎩

1.5 max
{

k∗1 |e∗2(tc)| + Ld, e2∗2(tc)

2|e∗1(tc)| + L∗d

}
, if e∗1(tc) e∗2(tc)< 0 and |e∗1(tc)|< |e∗2(tc)| ;

1.5 max

{
k∗1 |e2(tc)| + L∗d, k2∗1

3

(
|e∗1(tc)| +

√
e2

∗1(tc) + 3
(

e∗2(tc)
k∗1

)2
)

+ L∗d

}
, if others

e∗2 max = max

⎧⎨
⎩|e∗2(tc)| ,

k∗1

3

⎡
⎣|e∗1(tc)| +

√
e2

∗1(tc) + 3

(
e∗2(tc)

k∗1

)2
⎤
⎦
⎫⎬
⎭

ρ∗ = 3 max

{
1

2k∗1

, 1

}
ln

k∗2 + k∗1e∗2 max + L∗d

k∗2 − k∗1e∗2 max − L∗d
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Step 4: Controller output (63):

ū∗(t) =
{

k∗ctanh
[
ρ∗c(e∗2(t)+ e∗2csign(e∗1(t)))

]− h∗(t), if|e∗1(t)|> e1∗c;
k∗2tanh[ρ∗(e∗2(t)+ k∗1e∗1(t) )] − h∗(t), if|e∗1(t)| ≤ e∗1c

Because the reference trajectory jumps once at the 6th second, the algorithm in Remark 5.5 updates
the controller parameters at this time. From the program algorithm calculation, we can read the two
groups of controller parameters as follows:

(1) Parameters for takeoff and hovering for 0 ≤ t< 6 (sec):

kx1 = 1, kx2 = 7.05, ρx = 4.83

ky1 = 1, ky2 = 6.95, ρy = 4.83

kz1 = 1, kz2 = 7.70, ρz = 4.83

(2) Parameters for climbing and cruise in a circle for t ≥ 6 (sec):

kx1 = 1, kx2 = 8.75, ρx = 4.83

ky1 = 2, ky2 = 6.81, ρy = 4.83

kz1 = 2, kz2 = 6.94, ρz = 4.83

8.2. Analysis of UAV control performance
Figure 9(b) gives the UAV 3D flight trajectory comparison. Figures 10, 11 and 12 show the UAV flight
trajectories, the tracking errors and the controller outputs in the three directions, respectively: Figure 10
describes the control performance in x-direction; Figure 11 shows the control performance in y-direction;
and Figure 12 presents the height control performance in z-direction. From the error outputs, the position
errors were within 0.04m, and the velocity errors were within 0.2 m/s.

The position (x, y, z) of the UAV was controlled to track the reference (xd(t), yd(t), zd(t)). From the
position trajectory outputs in Figures 10, 11 and 12, the smooth and accurate trajectory tracking was
achieved with almost no chattering and no overshoot. Even in the presence of time-varying disturbance
(i.e. the crosswind from a swinging electric fan), the position and velocity tracking errors remained
very small, and there was no overshoot. In addition, by reading the program, we found that although the
reference trajectory jumped at the 6th second, the control system re-made the range judgement and the
initial value partitioning, and the control parameters were updated at this moment. The UAV remained
in the safe flight status throughout the flight.

In this indoor flight test, the bounded time-varying crosswind was generated by a swinging electric
fan. Because the up-bound of disturbance was within a certain range, the influence of disturbance was
rejected sufficiently by the proposed controller. The experimental environment and test equipment are
shown in Ref. [30]. Since the proposed control method only requires that the magnitude of disturbance
is within a given range, and it is unrelated to other aspects of the disturbance. For the outdoor flight
tests, as long as the magnitude of outdoor wind is within the required range, this control method will be
equally effective in suppressing the disturbance.

8.3. Limitations of the proposed method
Through the theoretical analysis (see Theorem 3.1 and Remark 5.3) and the experimental results, we
found that the high-frequency noise in the measurements and the bounded stochastic disturbances in the
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Figure 10. Control performance in x-direction. (a) x1. (b) x2. (c) Controller ux(t).
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Figure 11. Control performance in y-direction. (a) y1. (b) y2. (c) Controller uy(t).
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Figure 12. Control performance in z-direction. (a) z1. (b) z2. (c) Controller uz(t).
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system dynamics almost do not affect the control performance. However, the low-frequency disturbances
or errors in the measurements cannot be suppressed effectively by the sliding mode system, resulting in
the reduced control accuracy. The potentially effective methods, such as utilising the signal fusion with
multiple sensors, can be used to obtain the relatively accurate measurements.

9.0 Conclusions
In this paper, a non-overshooting sliding mode control has been presented to stabilise a class of uncer-
tain systems, and the global non-overshooting stability has been implemented. Even when the bounded
stochastic disturbance exists, and the time-variant reference is required, the strict non-overshooting sta-
bilisation is still achieved. The performance of the proposed control method was demonstrated by two
simulation examples, and it was applied successfully to a UAV flying test: (1) the high-precision and non-
overshooting trajectory tracking was performed; (2) the bounded stochastic disturbances were rejected
sufficiently; (3) the bounded and smoothed controller outputs were easily performed by the actuators;
(4) the UAV trajectory tracking experiments verified the high maneuverability control capability and
non-overshooting performance for the proposed control. The merits of the control method include its
global non-overshooting stability, strong robustness and no restriction on the system initial values. Our
future work is to optimise the parameters in the proposed controller.
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Appendix
Proof of Lemma 2.1:

Define a new variable

z(t) =
∫ t

0

e(τ )dτ − d

ki

(64)

Then, we get

ż(t) = e(t), z̈(t) = ė(t),
...
z (t) = ë(t) (65)

Substituting the relations (64) and (65) into system (6), we can rewrite the system (6) as
...
z (t) + kdz̈(t) + kpż(t) + kiz(t) = 0 (66)

The characteristic equation of system (66) can be expressed by

s3 + kds2 + kps + ki = 0 (67)

According to the stability conditions, for system (67), if kp, ki and kd are selected to make the real
parts of all the roots of the characteristic equation (67) negative, then system is exponentially stable, and
we get

lim
t→∞

z(t) = 0, lim
t→∞

ż(t) = 0, and lim
t→∞

z̈(t) = 0 (68)

For (68), from the relations (64) and (65), we get

lim
t→∞

∫ t

0

e(τ )dτ = d

ki

, lim
t→∞

e(t) = 0, and lim
t→∞

ė(t) = 0 (69)

This concludes the proof. �

Proof of Lemma 2.2:
Define a new variable

z(t) =
∫ t

0

e(τ )τ − d

ki

(70)

Then, we get

ż(t) = e(t), z̈(t) = ė(t) (71)
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Substituting the relations (70) and (71) into system (11), we can rewrite the system (11) as

z̈(t) + kpż(t) + kiz(t) = 0 (72)

The characteristic equation of system (72) can be expressed by

s2 + kps + ki = 0 (73)

According to the stability conditions, for system (72), if kp and ki are selected to make the real parts
of all the roots of the characteristic equation (73) negative, then system is exponentially stable, and we
get

lim
t→∞

z(t) = 0, and lim
t→∞

ż(t) = 0 (74)

For (74), from the relations (70) and (71), we get

lim
t→∞

∫ t

0

e(τ )dτ = d

ki

, and lim
t→∞

e(t) = 0 (75)

This concludes the proof. �

Proof of Theorem 3.1:
Proof introduction. The proof on the robust and global non-overshooting stability of the proposed

2-sliding mode is divided into three steps:

A. Robust non-overshooting reachability of the first subsystem. It proves that the first subsystem can
make the sliding variables reach a given bounded range and without overshoot. That is to say,
the initial values of the second subsystem are compressed to a given bounded range by the first
subsystem with robust non-overshooting reachability.

B. Robust non-overshooting stability of the second subsystem. It proves that: conditions on finite-
time stability; analytical expressions of sliding variables through partitioning the initial values;
and the determination of the bounded parameters for the robust non-overshooting stability.

C. Existence and determination of the initial value range for the second subsystem to obtain the
bounded system gains and the non-overshooting stability.

A. Robust non-overshooting reachability of the first subsystem
Case one: If e1(t)> e1c, for system (18), we get

d (e2(t) + e2c)

dt
= −kcsign [e2(t) + e2c] + d(t) (76)

A Lyapunov function candidate is selected as

Vc = 1

2
(e2(t) + e2c)

2 (77)

Then, taking the derivative for Vc, we get

V̇c = (e2(t) + e2c) {−kcsign [e2(t) + e2c] + d(t)}
≤ − (kc − Ld) |e2(t) + e2c| = −√

2 (kc − Ld) V
1
2

c (78)

We know that kc > Ld. Therefore, there exists a finite time tc1 > 0, for t ≥ tc1, such that e2(t) = −e2c.
According to ė1 = e2, we get that ė1(t) = −e2c for t ≥ tc1. Therefore, there exists a finite time tc > 0, for
t ≥ tc, such that e1(t) ≤ e1c.

Case two: If e1(t)<−e1c, for system (18), we get
d (e2(t) − e2c)

dt
= −kcsign [e2(t) − e2c] + d(t) (79)
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Similar method to case e1(t)> e1c, when we select the Lyapunov function candidate as Vc =
1
2
(e2(t) − e2c)

2, we can get that e1(t) ≥ −e1c.
Combining cases one and two, we can get that |e1(t)| ≤ e1c for t ≥ tc.

B. Robust non-overshooting stability of the second subsystem
In the followig, we discuss the case |e1(t)| ≤ e1c.

Finite-time stability conditions
For the sliding mode (18) when |e1(t)| ≤ e1c, a Lyapunov function candidate is selected as

V1 = 1

2
σ (t)2 (80)

where, the sliding function σ (t) = e2(t) + k1e1(t). Then, we get

V̇1 = (e2(t) + k1e1(t)) {−k2sign [e2(t) + k1e1(t)] + d(t) + k1e2(t)}
= −k2 |e2(t) + k1e1(t)| + (k1e2(t) + d(t)) (e2(t) + k1e1(t))

≤ −k2 |e2(t) + k1e1(t)| + (k1 |e2(t)| + Ld) |e2(t) + k1e1(t)|
= − (k2 − k1 |e2(t)| − Ld) |e2(t) + k1e1(t)|
= −√

2 (k2 − k1 |e2(t)| − Ld) V
1
2 (81)

If k2 > k1 |e2(t)| + Ld, then the sliding mode is finite-time stable. That means there exists a finite time
ts > 0, for t ≥ tc + ts, the sliding function σ (t) = e2(t) + k1e1(t) = 0. Then, we get the linear convergence
law ė1(t) = −k1e1(t), and lim

t→∞
e1(t) = 0.

Trajectories of e1(t), e2(t) and σ (t) for t ∈ [tc, tc + ts)

For the sliding mode (18), according to the differential inclusion theory, we get

ė2(t) ∈ − [k2 − Ld, k2 − Ld] sign [e2(t) + k1e1(t)] (82)

That is to say, there exists k̄2 ∈ [k2 − Ld, k2 − Ld], such that

ė2(t) = −k̄2sign [e2(t) + k1e1(t)] (83)

We will determine k1 and k2 to make the sign of sliding function σ (t) = e2(t) + k1e1(t) unchanged for
t ∈ [tc, tc + ts), i.e., sign[e2(t) + k1e1(t)] =sign[e2(tc) + k1e1(tc)] for t ∈ [tc, tc + ts). Then, we can get the
simple solution to (83) for t ∈ [tc, tc + ts), as follows:

e2(t) = e2(tc) − k̄2sign [e2(t) + k1e1(t)] (t − tc) (84)

From ė1(t) = e2(t) in sliding mode (18) and e2(t) expression in (84), we get

e1(t) = e1(tc) + e2(tc) (t − tc)− 1

2
k̄2sign [e2(t) + k1e1(t)] · (t − tc)

2 (85)

and

σ (t) = e2(t) + k1e1(t) = e2(tc) + k1e1(tc) − (k̄2sign [e2(t) + k1e1(t)] − k1e2(tc)
)
(t − tc)

− 1

2
k1k̄2sign [e2(t) + k1e1(t)] · (t − tc)

2 (86)

Non-overshooting convergence conditions
1) For the 2-sliding mode (18), we will determine k1 and k2 to generate the two convergence laws:

1) the finite-time convergence law to get the sliding surface σ (t) = e2(t) + k1e1(t) = 0 after a finite time
tc + ts; 2) the linear convergence law ė1(t) = −k1e1(t) to make lim

t→∞
e1(t) = 0.
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Figure 13. Partitioning of e1(tc) and e2(tc) in coordinate.

2) For the 2-sliding mode (18), in order to get the simple form of sliding variables assumed in
(84)–(86), we hope that, for t ∈ [tc, tc + ts), the sign of sliding function σ (t) = e2(t) + k1e1(t) unchanged
as σ (tc) = e2(tc) + k1e1(tc). Thus, function sign[e2(t) + k1e1(t)] becomes constant 1 or −1 for t ∈
[tc, tc + ts). Then, we can get ė2(t) = −k̄2 or ė2(t) = k̄2 for t ∈ [tc, tc + ts).

3) For being non-overshooting, sign[e1(t)] =sign[e1(tc)] needs always hold until lim
t→∞

e1(t) = 0.
We know that, the sliding variable e1(t) is non-overshooting when it is in the convergence law ė1(t) =

−k1e1(t) for t ≥ tc + ts. Therefore, in order to make e1(t) non-overshooting during the whole transient
process, we only need to guarantee e1(t) non-overshooting in the finite-time convergence law for t ∈
[tc, tc + ts).

Partitioning of e1(tc) and e2(tc) in coordinate
We consider e1(tc) and e2(tc) in the zones shown in Fig. 13:

1) Zones II-2 and IV-2: e1(tc) e2(tc)< 0 with |e1(tc)|< |e2(tc)|
2) Zones IV-1 and II-1: e1(tc) e2(tc)< 0 with |e1(tc)| ≥ |e2(tc)|
3) Zones III-1 and I-1: e1(tc) e2(tc) ≥ 0 with |e1(tc)| ≤ |e2(tc)|
4) Zones III-2 and I-2: e1(tc) e2(tc) ≥ 0 with |e1(tc)|> |e2(tc)|

The right side of the sliding mode (18) is the odd function about the origin, therefore, we only consider
the convergence performance for the zones (II-2, IV-1, III-1 and III-2). The corresponding zones (IV-2,
II-1, I-1 and I-2) about the origin have the same stability performance to the zones (II-2, IV-1, III-1 and
III-2), respectively.

Therefore, in the following, we will consider the convergence performance for the following zones:

1) Zone II-2: −e2(tc)> e1(tc)> 0

2) Zone IV-1: −e1(tc) ≥ e2(tc)> 0
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3) Zone III-1: −e2(tc) ≥ −e1(tc) ≥ 0

4) Zone III-2: −e1(tc)>−e2(tc) ≥ 0

Analytical expressions of sliding variables by assuming the unchanged sign of σ (t) = e2(t) + k1e1(t)
for t ∈ [tc, tc + ts)

In the selected zones (II-2, IV-1, III-1 and III-2), we will determine k1 and k2 to make σ (t) = e2(t) +
k1e1(t)< 0 for t ∈ [tc, tc + ts). Then, sign[e2(t) + k1e1(t)] =sign[e2(tc) + k1e1(tc)] = −1. Therefore, from
(84), (85) and (86), for t ∈ [tc, tc + t), we get the expressions of variables e2(t), e1(t) and function σ (t) =
e2(t) + k1e1(t), respectively, as follows:

e2(t) = e2(tc) + k̄2 (t − tc) (87)

e1(t) = e1(tc) + e2(tc) (t − tc)+ 1

2
k̄2(t − tc)

2 define= c1 + b1 (t − tc)+ a1(t − tc)
2 (88)

σ (t) = e2(t) + k1e1(t) = e2(tc) + k1e1(tc) + (k̄2 + k1e2(tc)
)
(t − tc)+ 1

2
k1k̄2(t − tc)

2

define= c + b (t − tc)+ a(t − tc)
2 (89)

From (88), e1(t) is a segment of a parabola for t ∈ [tc, tc + ts), and we get its axis of symmetry:

− b1

2a1

= −e2(tc)

k̄2

(90)

its vertex:
4a1c1 − b2

1

4a1

= 2k̄2e1(tc) − e2
2(tc)

2k̄2

(91)

and the time instant when e1(t) = 0:

t|e1(t)=0 = −b1 +√b2
1 − 4a1c1

2a1

+ tc = −e2(tc)

k̄2

+
√(

e2(tc)

k̄2

)2

− 2e1(tc)

k̄2

+ tc (92)

From (89), function σ (t) = e2(t) + k1e1(t) is a segment of a parabola for t ∈ [tc, tc + ts), and we get its
axis of symmetry:

− b

2a
= − k̄2 + k1e2(tc)

k1k̄2

(93)

its vertex:

4ac − b2

4a
= 2k1k̄2 (e2(tc) + k1e1(tc))−

(
k̄2 + k1e2(tc)

)2

2k1k̄2

(94)

and the time instant when σ (t) = 0, i.e., the settling time tc + ts:

tc + ts = tc + −b + √
b2 − 4ac

2a
= tc −

(
1

k1

+ e2(tc)

k̄2

)
+
√

1

k2
1

+
(

e2(tc)

k̄2

)2

− 2e1(tc)

k̄2

(95)

In the following, for any zone of e1(tc) and e2(tc), we will determine the parameters k1 and k2 to make
the sliding mode finite-time stable and e1(t) non-overshooting for t ∈ [tc, tc + ts). We know the linear
convergence law ė1(t) = −k1e1(t) makes the system non-overshooting stable automatically.

Trajectories arrangement of sliding variables: In general, for the different zones of e1(tc) and e2(tc)
shown in Fig. 13, the parameters k1 and k2 will be determined to make sliding variables e1(t), e2(t) and
function σ (t) generate the desired convergent trajectories with e1(t) non-overshooting, shown in Fig. 14:

1) Fig. 14 (a)-1 and (a)-2 are for the zones II-2 and IV-2 in Fig. 13, respectively;
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Figure 14. Arranged trajectories of e1(t), e2(t) and σ (t) for e1(t) non-overshooting convergence.

2) Fig. 14 (b)-1 and (b)-2 are for the zones IV-1 and II-1 in Fig. 13, respectively;
3) Fig. 14 (c)-1 and (c)-2 are for the zones III-1 and I-1 in Fig. 13, respectively; and Fig. 13 (d)-1

and (d)-2 are for zones III-2 and I-2 in Fig. 13, respectively.

Conditions on robust non-overshooting stability
1) For zone II-2: −e2(tc)> e1(tc)> 0
From Figure 13, for zone II-2, we know that the corresponding symmetrical zone is IV-2.
For zone II-2, we can get the conditions of non-overshooting convergence for t ∈ [tc, tc + ts):
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Figure 15. Arranged trajectories of e1(t) and σ (t) for e1(t) non-overshooting convergence for
t ∈[tc, tc + ts) in range II-2: −e2(tc)> e1(tc)> 0.

1) k̄2 > k1 |e2(t)| [finite-time stability to get convergence law ė1(t) = −k1e1(t)];
2) the sliding function σ (t) = e2(t) + k1e1(t)< 0 for t ∈ [tc, tc + ts), and σ (tc + ts)= e2 (tc + ts)+

k1e1 (tc + ts)= 0;
3) e1(t)> 0 for t ∈ [tc, tc + ts) [ e1(t) does not go beyond zero];
4) e2(t)< 0 for t ∈ [tc, tc + ts) [ e2(t) does not go beyond zero].

In the following, we will determine k1 and k2 to satisfy these conditions.
From (88), for e1(t) (a segment of a parabola) for t ∈ [tc, tc + ts), we get its axis of symmetry

− b1

2a1

= −e2(tc)

k̄2

> 0 (96)

because e2(tc)< 0. In order to make e1(t)> 0 for t ∈ [tc, tc + ts) (See e1(t) in Figure 15(a)), the vertex
needs to satisfy

4a1c1 − b2
1

4a1

= 2k̄2e1(tc) − e2
2(tc)

2k̄2

> 0 (97)

Because e1(tc)> 0 and e2(tc)< 0, for (97), the positive k̄2 should satisfy

k̄2 >
e2

2(tc)

2e1(tc)
(98)

Therefore, from k̄2 in condition (98), we can get that e1(t)> 0 for t ∈ [tc, tc + ts).
From (89), for the sliding function σ (t) = e2(t) + k1e1(t) (a segment of a parabola) for t ∈ [tc, tc + ts),

we get its axis of symmetry

− b

2a
= − k̄2 + k1e2(tc)

k1k̄2

< 0 (99)

because of the finite-time convergence condition

k̄2 >−k1e2(tc) (100)

In order to make σ (t) = e2(t) + k1e1(t)< 0 for t ∈ [tc, tc + ts) (See σ (t) in Figure 15(b)), the vertex
needs to satisfy

4ac − b2

4a
= 2k1k̄2 (e2(tc) + k1e1(tc))−

(
k̄2 + k1e2(tc)

)2

2k1k̄2

< 0 (101)
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In order to get the relation in (101), we can let σ (tc) = e2(tc) + k1e1(tc)< 0, i.e., k1e1(tc)<−e2(tc).
Therefore, we get the condition on k1, as follows:

k1 <
−e2(tc)

e1(tc)
(102)

For e2(t) in (87), we get the time instant when e2(t) = 0 as follows:

t|e2(t)=0 = −e2(tc)

k̄2

+ tc (103)

Comparing the settling time tc + ts in (95) and t|e2(t)=0 in (103), we can get

ts + tc < t|e2(t)=0 (104)

Then, it follows that

e2(t)< 0 for t ∈ [tc, tc + ts) (105)

We know that zones II-2 and IV-2 have the same convergence performance because of the odd func-
tion property in the sliding mode. Therefore, combing (98), (100) and (102), for the zones II-2 (where,
−e2(tc)> e1(tc)> 0) and IV-2 (where, e2(tc)>−e1(tc)> 0), we get the non-overshooting convergence
conditions, when e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)|, as follows:

k1 ∈
(

0,
|e2(tc)|
|e1(tc)|

)
(106)

k̄2 >max

{
k1 |e2(tc)| ,

e2
2(tc)

2 |e1(tc)|
}

(107)

Furthermore, considering the disturbance d(t), the conditions of parameters selection, when
e1(tc) e2(tc)< 0 and |e1(tc)|< |e2(tc)|, are expressed as follows:

k1 ∈
(

0,
|e2(tc)|
|e1(tc)|

)
(108)

k2 >max

{
k1 |e2(tc)| + Ld,

e2
2(tc)

2e1(tc)
+ Ld

}
(109)

Therefore, when k1 and k2 are selected from (108) and (109), the sliding mode is non-overshooting
stable for t ∈ [tc, tc + ts), and σ (t) = e2(t) + k1e1(t) = 0 holds for t ≥ tc + ts. Then, the linear convergence
law ė1(t) = −k1e1(t) makes lim

t→∞
e1(t) = 0 without overshoot. In addition, from σ (t) = e2(t) + k1e1(t) = 0

for t ≥ tc + ts, we get lim
t→∞

e2(t) = lim
t→∞

[−k1e1(t)] = 0.
In general, when e1(tc) and e2(tc) are in zones II-2 and IV-2, the system is exponentially stable, and no

overshoot exists for the variable e1(t). This confirms the convergence curves of sliding variables e1(t),
e2(t) and function σ (t) described in Figures 14 (a)-1 and (a)-2 for the zones II-2 and IV-2, respectively.

2) For zone IV-1: −e1(tc) ≥ e2(tc)> 0
From Figure 13, for zone IV-1, we know that its corresponding symmetrical zone is II-1.
For zone IV-1, we can get the conditions of non-overshooting convergence for t ∈ [tc, tc + ts):

1) k̄2 > k1 |e2(t)| [finite-time stability to get convergence law ė1(t) = −k1e1(t)]
2) the sliding function σ (t) = e2(t) + k1e1(t)< 0 for t ∈ [tc, tc + ts), and σ (tc + ts)= e2 (tc + ts)+

k1e1 (tc + ts)= 0;
3) e1(t)< 0 for t ∈ [tc, tc + ts) [ e1(t) does not go beyond zero];
4) e2(t)> 0 for t ∈ [tc, tc + ts) [ e2(t) does not go beyond zero].

In the following, we will determine k1 and k2 to satisfy these conditions.
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Figure 16. Arranged trajectories of e1(t) and σ (t) for e1(t) non-overshooting convergence for
t ∈ [tc, tc + ts) in range IV-1: −e1(tc) ≥ e2(tc)> 0.

From (88), for e1(t) (a segment of a parabola) for t ∈ [tc, tc + ts), we get its axis of symmetry

− b1

2a1

= −e2(tc)

k̄2

< 0 (110)

because e2(tc)> 0. Also, its vertex satisfies
4a1c1 − b2

1

4a1

= 2k̄2e1(tc) − e2
2(tc)

2k̄2

< 0 (111)

because e1(tc)< 0 (See e1(t) in Figure 16(a)).
From (89), for the sliding function σ (t) = e2(t) + k1e1(t) for t ∈ [tc, tc + ts), its axis of symmetry

satisfies

− b

2a
= − k̄2 + k1e2(tc)

k1k̄2

< 0 (112)

because of the finite-time stability condition:

k̄2 > k1 |e2(tc)| (113)

In order to make σ (t) = e2(t) + k1e1(t)< 0 for t ∈ [tc, tc + ts) (See σ (t) in Figure 16(b)), the vertex
needs to satisfy

4ac − b2

4a
= 2k1k̄2 (e2(tc) + k1e1(tc))−

(
k̄2 + k1e2(tc)

)2

2k1k̄2

< 0 (114)

To satisfy (114), we can make σ (tc) = e2(tc) + k1e1(tc)< 0 i.e., −k1e1(tc)> e2(tc). Therefore, we get
the condition on k1, as follows:

k1 >
e2(tc)

−e1(tc)
(115)

Comparing the settling time tc + ts in (95) and t|e1(t)=0 in (92), we get

tc + ts < t|e1(t)=0 (116)

Therefore, we get

e1(t)< 0 for t ∈ [tc, tc + ts) (117)

For e2(t), when t = tc + ts, from (87) and (95), we get

e2(t)|t=tc+ts = e2(tc) + k̄2ts = − k̄2

k1

+
√√√√e2

2(tc) +
(

k̄2

k1

)2

− 2k̄2e1(tc) (118)
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For t ∈ [tc, tc + ts), considering the finite-time convergence condition, we need

k̄2 > k1max {|e2(t)|} = k1

∣∣e2(t)|t=tc+ts

∣∣ (119)

Combining (118) and (119), we get

k̄2 > k1

∣∣e2(t)|t=tc+ts

∣∣= k1

∣∣∣∣∣∣∣−
k̄2

k1

+
√√√√e2

2(tc) +
(

k̄2

k1

)2

− 2k̄2e1(tc)

∣∣∣∣∣∣∣ (120)

Therefore, k̄2 should satisfy

k̄2 >
k2

1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦ (121)

We know that zones IV-1 and II-1 have the same convergence performance because of the odd func-
tion property in the sliding mode. Therefore, combing (113), (115) and (121), for the zones IV-1 (where,
−e1(tc) ≥ e2(tc)> 0) and II-1 (where, e1(tc) ≥ −e2(tc)> 0), we get the non-overshooting convergence
conditions, when e1(tc) e2(tc)< 0 and |e1(tc)| ≥ |e2(tc)|, as follows:

k1 ∈
( |e2(tc)|

|e1(tc)| , ∞
)

(122)

k̄2 >max

⎧⎨
⎩k1 |e2(tc)| ,

k2
1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦
⎫⎬
⎭ (123)

Furthermore, considering the disturbance d(t), the conditions of parameters selection, when
e1(tc) e2(tc)< 0 and |e1(tc)| ≥ |e2(tc)|, are expressed as follows:

k1 ∈
( |e2(tc)|

|e1(tc)| , ∞
)

(124)

k2 >max

⎧⎨
⎩k1 |e2(tc)| + Ld,

k2
1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦+ Ld

⎫⎬
⎭ , (125)

Therefore, the sliding mode is non-overshooting stable for t ∈ [tc, tc + ts), and σ (t) = 0 holds for
t ≥ tc + ts. Then, the linear convergence law ė1(t) = −k1e1(t) makes lim

t→∞
e1(t) = 0 without overshoot. In

addition, from e2(t) + k1e1(t) = 0 for t ≥ tc + ts, we get lim
t→∞

e2(t) = 0.
In general, for e1(tc) and e2(tc) in zones IV-1 and II-1, when k1 and k2 are selected from (124) and

(125), the system is exponentially stable, and no overshoot exists for the variable e1(t). This confirms
the convergence curves of sliding variables e1(t), e2(t) and function σ (t) described in Fig. 14 (b)-1 and
(b)-2 for the zones IV-1 and II-1, respectively.

3) For zone III, i.e., III-1: −e2(tc) ≥ −e1(tc) ≥ 0 and III-2: −e1(tc)>−e2(tc) ≥ 0
From Figure 13, we know that the corresponding symmetrical zone of III is zone I; and the

corresponding symmetrical zone of III-2 is zone I-2.
For zone III, we can get the conditions of non-overshooting convergence for t ∈ [tc, tc + ts):

1) k̄2 > k1 |e2(t)| [finite-time stability to get convergence law ė1(t) = −k1e1(t)];
2) the sliding function σ (t) = e2(t) + k1e1(t)< 0 for t ∈ [tc, tc + ts), and σ (tc + ts)= e2 (tc + ts)+

k1e1 (tc + ts)= 0;
3) e1(t)< 0 [ e1(t) does not go beyond zero].

In the following, we will determine k1 and k2 to satisfy these conditions.
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Figure 17. Arranged trajectories of e1(t) and σ (t) for e1(t) non-overshooting convergence for
t ∈ [tc, tc + ts) in range III-1: −e2(tc) ≥ −e1(tc) ≥ 0 and range III-2: −e1(tc)>−e2(tc) ≥ 0.

From (88), for e1(t) (a segment of a parabola) for t ∈ [tc, tc + ts), we get its axis of symmetry

− b1

2a1

= −e2(tc)

k̄2

≥ 0 (126)

because e2(tc) ≤ 0. Also, its vertex satisfies

4a1c1 − b2
1

4a1

= 2k̄2e1(tc) − e2
2(tc)

2k̄2

< 0 (127)

because e1(tc) ≤ 0 (See e1(t) in Figure 17(a)).
From (89), for σ (t) = e2(t) + k1e1(t) (the segment of a parabola) for t ∈ [tc, tc + ts), we get its axis of

symmetry:

− b

2a
= − k̄2 + k1e2(tc)

k1k̄2

< 0 (128)

because of the finite-time convergence condition

k̄2 > k1 |e2(tc)| (129)

In order to make σ (t) = 2(t) + k1e1(t)< 0 for t ∈ [tc, tc + ts) (See Figure 17(b)), its vertex needs to
satisfy

4ac − b2

4a
= 2k1k̄2 (e2(tc) + k1e1(tc))−

(
k̄2 + k1e2(tc)

)2

2k1k̄2

< 0 (130)

To satisfy (130), it should be that σ (tc) = e2(tc) + k1e1(tc)< 0. Therefore, for zones III, we get the k1

condition as

k1 > 0 (131)

Comparing the settling time tc + ts in (95) and t|e1(t)=0 in (92), we get

tc + ts < t|e1(t)=0 (132)

Therefore, we get

e1(t)< 0 for t ∈ [tc, tc + ts) (133)

For e2(t), when t = tc + ts, from (87) and (95), we get

e2(t)|t=tc+ts = e2(tc) − k̄2ts = − k̄2

k1

+
√√√√e2

2(tc) +
(

k̄2

k1

)2

− 2k̄2e1(tc) (134)
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For t ∈ [tc, tc + ts), considering the finite-time convergence condition, we need
k̄2 > k1max {|e2(t)|} = k1

∣∣e2(t)|t=tc+ts

∣∣ (135)
Combining (134) and (135), we get

k̄2 > k1

∣∣e2(t)|t=tc+ts

∣∣= k1

∣∣∣∣∣∣∣−
k̄2

k1

+
√√√√e2

2(tc) +
(

k̄2

k1

)2

− 2k̄2e1(tc)

∣∣∣∣∣∣∣ (136)

Therefore, k̄2 should satisfy

k̄2 >
k2

1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦ (137)

We know that zones III and I have the same convergence performance because of the odd function
property in the sliding mode. Therefore, combing (129), (131) and (137), for the zones III and I, we get
the non-overshooting convergence conditions:

k1 ∈ (0, ∞) (138)

k̄2 >max

⎧⎨
⎩k1|e2(tc)| ,

k2
1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦
⎫⎬
⎭ (139)

Furthermore, considering the disturbance d(t), the conditions of parameters selection are expressed
as follows:

k1 ∈ (0, ∞) (140)

k2 >max

⎧⎨
⎩k1|e2(tc)| + Ld,

k2
1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦+ Ld

⎫⎬
⎭ (141)

Therefore, the sliding mode is non-overshooting stable for t ∈ [tc, tc + ts), and σ (t) = 0 holds for
t ≥ tc + ts. Then, the linear convergence law ė1(t) = −k1e1(t) makes lim

t→∞
e1(t) = 0 without overshoot. In

addition, from e2(t) + k1e1(t) = 0 for t ≥ tc + ts, we get lim
t→∞

e2(t) = 0.
In general, for e1(tc) and e2(tc) in zones III and I, when k1 and k2 are selected from (140) and (141),

the system is exponentially stable, and no overshoot exists for the variable e1(t). This confirms the con-
vergence curves of sliding variables e1(t), e2(t) and function σ (t) described in Fig. 13 (c)-1 and (c)-2 for
the zones III-1 and I-1, and Fig. 13 (d)-1 and (d)-2 for zones III-2 and I-2, respectively.

Finally, combing parameter selection conditions (108)–(109), (124)–(125), and (140)–(141) in the
different zones, we can get the parameter conditions (19) and (20) for non-overshooting stable system
in Theorem 3.1.

C. Determination of e1c and e2c for bounded system gain and without overshoot
From the expression of k2 in (20), in order to make the system gain bounded, we need to reduce |e1(tc)|,
|e2(tc)| and e2

2(tc)

2|e1(tc)| . For the first subsystem, according to the robust and non-overshooting reachability,
we get e1c = e1(tc) and e2c = e2(tc) when t = tc. Therefore, we can select the bounded e1c and e2c for
bounded |e1(tc)| and |e2(tc)|. Furthermore, we hope to get the fast convergence as the mode in the zones
II-1 and IV-1, and the up-bound of k2 from the system gain limitation is considered. In order to get the
non-overshooting stability with the bounded system gain, we select

e1c ∈ (0, k2M − Ld)

e2c ∈
(

e1c,
√
(k2M − Ld) e1c

]
(142)
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where, k2M is the up-bound of k2. In fact, due to e1c = e1(tc) and e2c = e2(tc) when t = tc, we get the
parameter k1 ∈

(
0, e2c

e1c

)
for the second subsystem. Therefore, there exists β11 ∈ (0, 1) such that k1 = β11

e2c
e1c

.
In (20), we know that

k1e2c ≤ k2M − Ld (143)

From k1 = β11
e2c
e1c

and (143), we can get

β11

e2
2c

e1c

≤ k2M − Ld (144)

In (20), we also know that

e2
2c

2e1c

≤ k2M − Ld (145)

Combing (144) and (145), we can select

max

{
β11,

1

2

}
e2

2c

e1c

≤ k2M − Ld (146)

Because the system gain limitation 0< k2 ≤ k2M, i.e., k2M is the maximum implementation of k2.
Because β11 ∈ (0, 1), we get max

{
β11, 1

2

}
< 1. Therefore, from e1c < e2c, for (146), we select

e1c < e2c ≤√(k2M − Ld) e1c (147)

i.e., e2
1c < (k2M − Ld) e1c and e1c < e2c ≤ √

(k2M − Ld) e1c. Then, we get (142).
This concludes the proof. �

Proof of Theorem 3.2:
(i) Firstly, we consider |e1(t)|> e1c.
Case one: If e1(t)> e1c, for (24), we get

d (e2(t) + e2c)

dt
= −kctanh [ρc (e2(t) + e2c)] + d(t) (148)

A Lyapunov function candidate is selected as

Vc = 1

2
(e2(t) + e2c)

2 (149)

Then, taking the derivative for Vc, we get

V̇c = (e2(t) + e2c) {−kctanh [ρc (e2(t) + e2c)] + d(t)}
≤ − (kc |tanh [ρc (e2(t) + e2c)]| − Ld) |e2(t) + e2c|

= −√
2 (kc |tanh [ρc (e2(t) + e2c)]| − Ld)V

1
2

c (150)

From (150), if |tanh [ρc (e2(t) + e2c)]|> Ld
kc

, then V̇c(t)< 0, and |e2(t) + e2c| decreases, and we get

|tanh [ρc (e2(t) + e2c)]| ≤ Ld

kc

(151)

i.e., ∣∣∣∣1 − 2

e2ρc(e2(t)+e2c) + 1

∣∣∣∣≤ Ld

kc

(152)

Therefore, there exists a finite time tc1 > 0, for t ≥ tc1, such that

|e2(t) + e2c| ≤ 1

2ρc

ln
kc + Ld

kc − Ld

(153)

https://doi.org/10.1017/aer.2024.50 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.50


The Aeronautical Journal 2527

Because ρc 	 1
2
ln kc+Ld

kc−Ld
, we get |e2(t) + e2c| � 1. There exists |O (1/ρ)| ≤ 1

2ρc
ln kc+Ld

kc−Ld
, such that e2(t) =

−e2c + O (1/ρ). From ė1 = e2, we get ė1 = −e2c + O (1/ρc) for t ≥ tc1. Therefore, there exists a finite
time tc2 > tc1 > 0, for t ≥ tc2, such that e1(t) ≤ e1c.

We know that kc > Ld. Therefore, there exists a finite time tc1 > 0, for t ≥ tc1, such that e2(t) = −e2c.
According to ė1 = e2, we get that ė1(t) = −e2c for t ≥ tc1. Therefore, there exists a finite time tc > 0, for
t ≥ tc, such that e1(t) ≤ e1c.

Case two: If e1(t)<−e1c, for (24), we get
d (e2(t) − e2c)

dt
= −kctanh [ρc (e2(t) − e2c)] + d(t) (154)

Similar method to case e1(t)> e1c, when we select the Lyapunov function candidate as Vc =
1
2
(e2(t) − e2c)

2, there exists a finite time tc > 0, for t ≥ tc, such that e1(t) ≥ −e1c.
Combining cases one and two, we can get that |e1(t)| ≤ e1c for t ≥ tc.
In the following, we discuss the sliding mode system when |e1(t)| ≤ e1c.
For the smoothed sliding mode (24), a Lyapunov function candidate is selected as

V2(t) = 1

2
[e2(t) + k1e1(t)]2 (155)

Then, taking the derivative for V2(t), we get

V̇2 = [e2(t) + k1e1(t)] {−k2tanh [ρ (e2(t) + k1e1(t))] − d(t) + k1e2(t)}
≤ −k2 [e2(t) + k1e1(t)] |tanh [ρ (e2(t) + k1e1(t))]| sign [e2(t) + k1e1(t)]

+ (k1 |e2(t)| + Ld) |e2(t) + k1e1(t)|
= − (k2 |tanh [ρ (e2(t) + k1e1(t))]| − k1 |e2(t)| − Ld) |e2(t) + k1e1(t)|
= − (k2 |tanh [ρ (e2(t) + k1e1(t))]| − k1 |e2(t)| − Ld) V

1
2 (t) (156)

From (156), if |tanh [ρ (e2(t) + k1e1(t))]|> k1|e2(t)|+Ld
k2

, then V̇2(t)< 0, and |e2(t) + k1e1(t)| decreases.
We know that, the function |tanh [ρ (e2(t) + k1e1(t))]| is the the monotonically increasing function about
|e2(t) + k1e1(t)|. Therefore, |e2(t) + k1e1(t)| decreases until

|tanh [ρ (e2(t) + k1e1(t))]| ≤ k1 |e2(t)| + Ld

k2

(157)

We define

max {|e2(t)|} = max

⎧⎨
⎩|e2(tc)| ,

k1

3

⎡
⎣|e1(tc)| +

√
e2

1(tc) + 3

(
e2(tc)

k1

)2
⎤
⎦
⎫⎬
⎭ define= e2max (158)

For (157), from (158), we get∣∣∣∣1 − 2

e2ρ[e2(t)+k1e1(t)] + 1

∣∣∣∣≤ k1e2max + Ld

k2

(159)

Function e2 + k1e1 < 0 holds for t ∈ [tc, tc + ts) in the zones (II-2, IV-1, III-1 and III-2). Therefore,
(159) can be expressed by

2

e2ρ[e2(t)+k1e1(t)] + 1
− 1 ≤ k1e2max + Ld

k2

(160)

Then, it follows that

|e2(t) + k1e1(t)| ≤ 1

2ρ
ln

k2 + k1e2max + Ld

k2 − k1e2max − Ld

(161)

From the relation ė1(t) = e2(t) in the sliding mode (24), for (161), there exists a function β(t), where
|β(t)| ≤ 1

2ρ
ln k2+k1e2max+Ld

k2−k1e2max−Ld
, such that the following convergence law holds:

ė1(t) = −k1e1(t) + β(t) (162)
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The solution to the convergence law (162) is

e1(t) =
(∫ t

tc

β(τ )ek1τdτ

)
e−k1 t (163)

Therefore, we get

|e1(t)| ≤ |β(τ )|
(∫ t

tc

ek1τdτ

)
e−k1t ≤ 1

2ρk1

ln
k2 + k1e2max + Ld

k2 − k1e2max − Ld

(
1 − e−k1(t−tc)

)
(164)

Then, it follows that

lim
t→∞

|e1(t)| ≤ 1

2ρk1

ln
k2 + k1e2max + Ld

k2 − k1e2max − Ld

(165)

Because ρ	 1
2k1

ln k2+k1e2max+Ld
k2−k1e2max−Ld

is selected, the up-bound of lim
t→∞

|e1(t)| is sufficiently small, and
1

2ρk1
ln k2+k1e2max+Ld

k2−k1e2max−Ld
� 1 holds. For e2(t), from (161) and (164), we have

|e2(t)| = |e2(t) + k1e1(t) − k1e1(t)| ≤ |e2(t) + k1e1(t)| + k1 |e1(t)|

≤ 1

2ρ
ln

k2 + k1e2max + Ld

k2 − k1e2max − Ld

+ 1

2ρ
ln

k2 + k1e2max + Ld

k2 − k1e2max − Ld

(
1 − e−k1(t−tc)

)
(166)

Therefore, we get

lim
t→∞

|e2(t)| ≤ 1

ρ
ln

k2 + k1e2max + Ld

k2 − k1e2max − Ld

(167)

Because ρ	 ln k2+k1e2max+Ld
k2−k1e2max−Ld

is selected, the up-bound of lim
t→∞

|e2(t)| is sufficiently small, and
1
ρ
ln k2+k1e2max+Ld

k2−k1e2max−Ld
� 1 holds.

(ii) Specially, when ρ is selected large enough, i.e., ρ→ +∞, the sliding variable up-bounds in (165)
and (167) approach to zero, and

lim
t→∞

lim
ρ→+∞

e1(t) = 0and lim
t→∞

lim
ρ→+∞

e2(t) = 0

From lim
ρ→+∞

tanh(ρ · x)=sign(x), the tanh-function-based sliding mode (24) becomes the ideal 2-
sliding mode (18). This concludes the proof. �

Proof of Theorem 5.1:
Define e1(t) = xd(t) − x1(t) and e2(t) = ẋd(t) − x2(t). Then, the error system is

ė1(t) = e2(t)

ė2(t) = −h(t) − u(t) + ẍd(t) + δ(t) (168)

The desired stable sliding mode (18) in Theorem 3.1 is selected, where, d(t) = ẍd(t) + δ(t). In order
to turn the error system (168) into the sliding mode (18), we select

ė2(t) = −h(t) − u(t) + ẍd(t) + d(t)

=
{−kcsign

[
e2(t) + e2csign (e1(t))

]+ ẍd(t) + δ(t), if |e1(t)|> e1c;
−k2sign [e2(t) + k1e1(t)] + ẍd(t) + δ(t), if |e1(t)| ≤ e1c

(169)

Therefore, we get the controller as follows:

u(t) =
{

kcsign
[
e2(t) + e2csign (e1(t))

]− h(t), if |e1(t)|> e1c

k2sign [e2(t) + k1e1(t)] − h(t), if |e1(t)| ≤ e1c
(170)

Thus, for the uncertain system (39), when the controller (40) is selected, the system is stable, and x1

tracking xd(t) is non-overshooting. This concludes the proof. �

https://doi.org/10.1017/aer.2024.50 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.50


The Aeronautical Journal 2529

Proof of Theorem 5.2:
Define e1(t) = xd(t) − x1(t) and e2(t) = ẋd(t) − x2(t). Then, the error system is

ė1(t) = e2(t)

ė2(t) = −h(t) − u(t) + ẍd(t) + δ(t) (171)

The desired stable sliding mode (24) in Theorem 3.2 is selected, where, d(t) = ẍd(t) + δ(t). In order
to turn the error system (171) into the sliding mode (24), we select

ė2 = −h(t) − u(t) + ẍd(t) + d(t)

=
{−kctanh

[
ρc (e2(t) + e2csign (e1(t)))

]+ ẍd(t) + δ(t), if |e1(t)|> e1c;
−k2tanh [ρ (e2(t) + k1e1(t))] + ẍd(t) + δ(t), if |e1(t)| ≤ e1c

(172)

Therefore, we get the controller as follows:

u(t) =
{

kctanh
[
ρc (e2(t) + e2csign (e1(t)))

]− h(t), if |e1(t)|> e1c;
k2tanh [ρ (e2(t) + k1e1(t))] − h(t), if |e1(t)| ≤ e1c

(173)

Thus, for the uncertain system (39), when the controller (44) is selected, the system is stable, and x1

tracking xd(t) is non-overshooting. This concludes the proof. �
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