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A NOTE ON UMD SPACES AND TRANSFERENCE
IN VECTOR-VALUED FUNCTION SPACES*

by N. H. ASMAR, B. P. KELLY and S. MONTGOMERY-SMITH

(Received 14th September 1994)

A Banach space X is called an HT space if the Hilbert transform is bounded from lf(X) into L'(X), where
1 < p < oo. We introduce the notion of an ACF Banach space, that is, a Banach space X for which we have
an abstract M. Riesz Theorem for conjugate functions in L'(X), 1 < p < co. Berkson, Gillespie and Muhly [5]
showed that X 6 HT => X € ACF. In this note, we will show that X e ACF 4 X e UMD, thus providing a
new proof of Bourgain's result X e HT => X 6 UMD.

1991 Mathematics subject classification. Primary: 43A17, Secondary: 42A50, 60G46.

1. Introduction

Recent structure theorems of orders and results in abstract harmonic analysis on
groups with ordered dual groups have shown that abstract harmonic analysis on such
groups captures martingale theory and classical harmonic analysis (see [4]). Our goal in
this note is to illustrate this further by obtaining Bourgain's result [6] as a consequence
of a generalized version of M. Riesz's theorem due to Berkson, Gillespie and Muhly [5].

We use the usual notation LP(Q, fi, X) — L"(X) to denote the set of all strongly
measurable functions on the measure space (fi, T, n) with values in the Banach space X
such that Jo \\f{(o)\\pdn(aj) < oo. Recall that X is a UMD space if, for some (equi-
valently, all) p e ( l , oo), there exists a constant CP(X) such that for all neN,

m < CP{X)\\

for every X-valued martingale difference sequence (d;) and for every (e,) e {-1, 1}N.
(For further background regarding this property, see [7], [8] and [9].)

We say that X is an HT space if for some p e ( l , oo), there exists a constant NP(X)
such that for all neN, we have | |Hn/ | | L -w < Np(X)||/| |L-.w for a l l / e Z/(R, X), where

* The work of the first and third authors was partially funded by NSF grants. The second and third authors'
work was partially funded by the University of Missouri Research Board.
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Let G be a compact abelian group with dual group F. Let P c F be an order on F,
that is, P + P C P, P n (-P) = {0}, and P U (-P) = F Define a signum function sgnP

on F by sgnP(x) = 1,0, or - 1 according as x e P\W, X = 0, or x e (-P)\{0). Define a
conjugate function operator TP on the X-valued trigonometric polynomials by

>nP(x)axX- (1-2)

Then we will say that a Banach space X has the ACF (abstract conjugate function)
property if, for some pe (l,oo), there is a constant AP(X) such that for all compact
abelian groups G with ordered dual groups, the operator TP extends to L"(G, X), and
for a l l / e L\G, X), | | 7 , / | | L , W < Ap(X)\\f\\L,{X).

In [8], Burkholder showed that if X is a UMD space, it is an HT space. He also
conjectured that the converse was true, and this was soon answered affirmatively by
Bourgain [6]. We will show the same result by first showing that every HT space is an
ACF space, and then showing that every ACF space is a UMD space.

This new concept of ACF provides a natural bridge between the concepts of UMD
and HT, thus demonstrating how the study of functions on abstract abelian groups
enhances and solidifies the connections between harmonic analysis and martingale
theory.

2. Transference and the ACF Property

The following generalized version of M. Riesz's theorem follows from [5, Theorem
4.1] (see also [2, Theorem 6.3]). We will sketch its proof to show the role of
transference and the HT property.

Theorem 2.1. If X has the HT property, then it has the ACF property. Furthermore,
for each p e (1, oo), we have that Ap(X) < Np(X).

We follow the proof of [5, Theorem 4.1]. We will need the following separation
theorem for discrete groups (see [3, Theorem 5.14]). As shown recently, this result
follows easily from the basic background required for the proof of Hahn's Embedding
Theorem for orders ([12, Theorem 16, p. 16]). For details, see [4].

Theorem 2.2. Let P be an order on a discrete abelian group T. Given a finite subset
F C F, there is a homomorphism \p : F —»• E such that for all ^ e f ,

sgnP(X) = sgn(il/(X)). (2.2.1)

Proof of Theorem 2.1. For / an AT-valued trigonometric polynomial, let F be a
finite subset of F such that / = £.,€f axx where as e X. Apply Theorem 2.2 and obtain
a real-valued homomorphism ^ such that sgn(^(x)) = sgnP(x) for all ^ e F . With this
choice of \ji, TP(J) = -i ~£ieF sgn(il/(x))axX-
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Let <f>: R -*• G be the adjoint homomorphism of \p which is defined by the relation
^(x) (0 = x($(0) for aU t e R and all x e T. It is easy to see that for any x € F, we
have

lim I f X(X ~ / ( 0 ) dt = - i sgn^CKMx) (2.3.1)

for all x e G. Consequently, for an .Y-valued trigonometric polynomial, we have

lim if f-±*^»dt=TP(f)(x) (2.3.2)

for all x e G. Thus, it is enough to show that, for all n e N,

(2.3.3)II— f fc^«>*| < N
II" Jl/n<|l|<n ' II L'(G,X)

This last inequality follows by adapting the transference argument of Calderon [10],
Coifman and Weiss [11], to the setting of vector-valued functions, and requires the HT
property of X. We omit its proof and refer the reader to the proof of Theorem 2.8 in
[5] for details. •

3. Proof of Bourgain's result

As noted in [9], to show that X e UMD, it is enough to consider dyadic martingale
difference sequences defined on [0,1] using the Rademacher functions (rn)™,. (A proof
of this reduction can be obtained by adapting Remarque 3 in Maurey [14] to the
vector-valued setting.) Also, as noted by Burkholder in [9], it suffices to consider
martingale difference sequences such that dx = 0. In [6], Bourgain implicitly uses the
fact that to prove X e UMD, it is enough to consider dyadic martingale difference
sequences on the infinite dimensional torus, TN. We will give a precise version of this,
setting the notation in the process.

Let Z00* = flneN * ^ denote the weak direct product of N copies of Z. When endowed
with the discrete topology, Z°°* is topologically isomorphic to the dual group of TN.
For each J = (jn) e Z°°*, we denote the corresponding character by XJ> that is,
XJ(0I>02,-) = T\Z=I^"0" where, except for finitely many factors, e1'"0" = 1. For each
J = (;„) e Z°°'\{0}, define n(J) to be the largest n e N such that jn / 0, and let n(0) = 0.
With a slight abuse of notation, we let Z" denote {J e Z°°* : n(J) < n] for each n > 0.
Note that Z°°* = U~,Z".

Identifying T with the interval [—n, n), define a sequence, (sn)Jjl,, of functions on TN

by S| s 1, and for n > 2, sn(0,, 62, • ..) = sgn(0n_,). Suppose (dn) is a dyadic martingale
difference sequence on [0,1] with dt = 0 and dn — t>n(r,,..., rn_t)rn where
vn : {-1,1}""1 -> X for all n > 2. Letting d\ = 0 and d'n = vn(su . . . . sn_})sn for n > 2 we
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obtain a martingale difference sequence on TN such that the sequences (dn) and (d'n)
are identically distributed. Call such a sequence a dyadic martingale difference
sequence on TN. Therefore, to prove that X e UMD, it suffices to show that there
exists a constant satisfying (1.1) for dyadic martingale difference sequences on TN.
Since we may approximate each d'n by a function with finite spectrum in Z"\Z"~', to
show that X has the UMD property, we see that it is sufficient to show the following.
For pe ( l ,oo) , there exists a constant CP(X) such that if Kj is a finite subset of
!J\TJ-\ and a, e X for all J e Kj, and (en) e {-1,1}N, then

< CP(X) (3.1)
;=1 JeK, \\L'<J".X)

This reduction appears in Bourgain [6]. We will show that if X is an HT space,
(3.1) follows from Theorem 2.1 with specific choices of the order P on Z°°*.
For this purpose, define a reversed lexicographic order on Z°°* as follows:
P = {J = (;„) e Z°°' \jn{r) > 0} U {0} where as previously, if J = (;„), then ;n(y) is the last
non-zero coordinate of J. Thus, sgnP(^) = sgn(;r(y)). Observe that if e = (en) e {-1, 1}N,
then the set P(e) = {J = (jn) e Z°°* : e^j^ > 0} U {0} is also an order on Z°°*. In this
case, sgnP(C)(xj) = en(j)sSnUn(j))- We now state a simple identity that links the un-
conditionality of martingale difference sequences to harmonic conjugation with respect
to orders: for every n>\, and all J = (;„) e Z"\Z""', we have

(3.2)

To verify (3.2), simply note that for each n e N, if J e
From (3.2), one immediately obtains that

Tp o Tn<

\ then n(J) - n.

(3.3)

which expresses the martingale transform on the right side as a composition of two
conjugate function operators. Applying Theorem 2.1 twice yields (3.1) and implies our
next and last result.

Theorem 3.1. Suppose X is a Banach space, and let 1 < p < oo. If X has ACF, then
X is a UMD space and (1.1) holds with CP(X) < (AP(X))\

Remarks, (a) Combining the implications above, we see that for a Banach space
X, the properties UMD, ACF and HT are equivalent.

(b) Burkholder also proved in [8] that when X is a UMD space, the Hilbert
transform is weak-type bounded on L1 (R, X). This weak-type estimate also transfers to
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the conjugate function operator on L\G,X) defined with respect to an arbitrary order
on F. For a proof see [13]. Thus, when X e UMD, we have vector-valued analogues
of the classical results of M. Riesz and Kolmogorov.

Transference of operators on vector-valued Lp-spaces can be carried out in
much greater generality than that shown here. A representation satisfying the
vector-valued version of the distributional control condition introduced in [1] will
transfer strong-type and weak-type bounds for maximal operators. This work will
appear in [13]. The contents of this article are part of the second author's
dissertation.
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