
RING ISOMORPHISMS OF BANACH ALGEBRAS 

IRVING KAPLANSKY 

1. Introduction. In discussing an isomorphism between two Banach 
algebras, one will ordinarily tacitly assume that the mapping is linear (i.e., 
preserves the complex scalars as well as the ring operations). In general this 
cannot be avoided; for instance if the two Banach algebras are just the field 
of complex numbers, then the isomorphism is unrestricted, and could be given 
by any one of the myriads of discontinuous automorphisms of the complex 
numbers. A similar remark applies generally to the finite-dimensional case. But 
if the algebras are genuinely infinite-dimensional in an appropriate sense, 
interesting results become possible. The first such theorem was proved by 
Arnold (1 ) : if A and B are both algebras of all bounded operators on infinite-
dimensional Banach spaces, then any ring isomorphism between A and B is 
automatically real-linear (or alternatively, it is either linear or conjugate 
linear relative to complex scalars). Kakutani and Mackey (5) used a similar 
argument in connection with their characterization of complex Hilbert space. 
Rickart (7) generalized Arnold's theorem to the case of primitive Banach 
algebras with minimal ideals. 

In this paper we shall extend Rickart's result to any semi-simple Banach 
algebra, the precise theorem being as follows: if <j> is a ring isomorphism from 
one semi-simple Banach algebra A onto another, then A is a direct sum A± 0 A2 

0 A 3 with A ! finite-dimensional, <f> linear on A2, and <t> conjugate linear on A%. 
Some of the preliminary lemmas (particularly Lemmas 7 and 9) may be of 
independent interest. 

2. Elements with infinite spectrum. Let A be a Banach algebra,1 x an 
element in A. We define the non-zero spectrum of x to consist of all scalars X 
such that — X_1x is not quasi-regular. We insert 0 in the spectrum of x unless A 
has a unit element and x is regular. 

LEMMA 1. If there exists a non-zero element z with zx — \z = 0, then X is in the 
spectrum of x. 

Proof. If not, suppose y is the quasi-inverse of — X-1x, so that 

— \~lx + y — \~lxy = 0. 

A left multiplication by z yields the contradiction z = 0. 
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XA11 our Banach algebras will admit complex scalars. The results can probably be extended 

to the case where only real scalars are assumed, but it seemed preferable in the present paper 
to avoid the extra complications. 
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LEMMA 2. IfaBanach algebra possesses an infinite set of orthogonal idempotents, 
then it has an element with an infinite spectrum. 

Proof. Denote the idempotents by et and write x = SX^, where \ t are 
distinct numbers satisfying |x*| | ^ | | < 2~\ Since etx = Xz-e*, it follows from 
Lemma 1 that X* is in the spectrum of x. 

LEMMA 3. Let e be an idempotent in a Banach algebra A. Then the non-zero 
spectrum of an element of eAe is the same, whether computed in eAe or in A. The 
same is true2 for the subalgebra (1 — e) A (1 — e). 

Proof. We can cover both cases by using a symbol/ for either e or 1 — e. The 
problem comes to this : given an element fxf which has a quasi-inverse in A, 
prove that it already has a quasi-inverse in fAf. Let y denote the quasi-inverse 
in A, so that 

fxf+y+ fxf y = fxf + y + yfxf = 0. 

On left and right multiplying by/ , we see t h a t / ) / is likewise a quasi-inverse of 

LEMMA 4. Let A be a Banach algebra with unit element and radical R. Suppose 
that every element of A has only one number in its spectrum. Then R consists pre­
cisely of all elements with spectrum 0, and A/R is one-dimensional. 

Proof. Let N be the set of all elements with spectrum 0 ; of course N Z) R. 
We note that the elements of A having (two-sided) inverses are precisely those 
not in N. We are now going to prove that TV is a right ideal, for which purpose 
we have two things to verify. 

(1) If x Ç Nand y Ç 4 , w e have to prove xy Ç N. If not, then xy is regular, 
say with inverse z. Thus x has at any rate a right inverse, namely yz. But if yz 
is not also a left inverse of x, then the element yzx is an idempotent other than 
0 and 1, and has 0 and 1 in its spectrum, contrary to hypothesis. 

(2) If x, y Ç N, we must show x — y Ç N. If not, x — y = u is regular. 
By what we have just shown, both xu~l and yu~1 are in N. But then xu~1 

= 1 + yu~l is regular, a contradiction. 
We have thus shown that N is a right ideal. Since it consists of quasi-regular 

elements, it is part of the radical. Hence N = R, and it is immediate that A/R 
is one-dimensional. 

LEMMA 5. Let A be a commutative Banach algebra having exactly r regular 
maximal ideals. Then A contains r orthogonal (non-zero) idempotents. 

Proof. Let R be the radical of A. Then A/R is the direct sum of r copies of 
the complex numbers. It is known that the r orthogonal idempotents in A/R, 
which arise in this way, can be lifted to orthogonal idempotents in A (see for 
example (2)). 

2The symbol 1 is used here formally, and does not indicate that we are assuming the presence 
of a unit element. 
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Our next lemma is an elementary purely algebraic one, recorded for the 
convenience of the reader. 

LEMMA 6. Let A be a ring with unit element and no nilpotent ideals. Suppose 
that 1 = e± + . . . + en with the e's orthogonal idempotents such that each eiAet 

is a division ring. Then A has the descending chain condition on right ideals {and 
so is the direct sum of a finite number of matrix rings over division rings). 

Proof. Since A has no nilpotent ideals, and etAei is a division ring, it is known 
(4, p. 13) that etA is a minimal right ideal. Moreover A = e±A + . . . + enA 
is a direct sum decomposition of A into a finite number of minimal right ideals. 
It follows from the Jordan-Holder theorem that A has the descending chain 
condition on right ideals. 

LEMMA 7. In any infinite-dimensional semi-simple Banach algebra there exists 
an element with an infinite spectrum. 

Proof. Suppose that A is a semi-simple Banach algebra, and that every 
element of A has a finite spectrum. We shall prove that A is finite-dimensional. 

It cannot be the case that every element has 0 spectrum, for then A would be 
all radical. Select an element x with some non-zero spectrum, and let B be the 
closed subalgebra generated by x. One knows that the number of regular maxi­
mal ideals in B is the same as the number of non-zero numbers in the spectrum 
of x. It follows from Lemma 5 that B contains idempotents. 

Let then e\ be an idempotent in A. By Lemma 3, the Banach algebra e\Ae\ 
inherits the hypothesis that all its elements have finite spectrum. There may 
exist in e\Ae\ an idempotent e2 other than 0 and ei, and then a third one e3 

inside e^Ae^ etc.; but this cannot continue indefinitely, for we would find the 
infinite set {et — ei+i] of orthogonal idempotents, contrary to Lemma 2. 

Thus we may assume that eiAei contains no idempotents other than 0 and ei. 
For any y in eiAei we form the closed subalgebra C generated by y and ex. 
\iy has two or more numbers in its spectrum, then C has at least two maximal 
ideals (the presence of 0 in the spectrum is not treated specially here, since C 
has a unit element). Since this contradicts Lemma 5, it must be the case that 
every element in eiAei has a one-element spectrum. It is known that eiAei, 
along with A, is semi-simple. It now follows from Lemma 4 that eiAei is one-
dimensional. 

Let ei, . . . , en be a maximal set of idempotents in A such that each etAei is 
one-dimensional. (That such a maximal set is finite follows from Lemma 2.) 
We write e = e\ + . . . + en and turn our attention to (1 — e)A (1 — e) ; 
according to Lemma 3, its elements all have finite spectrum. If (1 — e) A (1 — e) 
is not all radical, the preceding argument shows that we can find in it an idem-
potent en+i with en+iAen+i one-dimensional. This contradicts the maximality of 
ei, . . . , en. Hence (1 — e) A{1 — e) is all radical. But on the other hand it, 
like A, is semi-simple. Hence (1 — e) A (1 — e) = 0. We next observe that 
(1 — e)A is a nilpotent right ideal, and so (1 — e)A = 0 and similarly 
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A (1 — e) = 0. In other words, e is a unit element for A. We are now ready to 
apply Lemma 6. In the light of the Gelfand-Mazur theorem that all Banach 
division algebras are one-dimensional, we conclude that A is finite-dimensional. 
This completes the proof of Lemma 7. 

3. A remark on ideals. Our program is to study mappings which are 
isomorphisms purely in the ring-theoretic sense. It is therefore important for 
us to know that certain ideals (such as primitive ideals) which are defined with 
no reference to scalars, are automatically algebra ideals when they occur in an 
algebra. Actually, for later purposes we wish to consider more generally the 
admissibility of the ideal under general operators, where by an operator on a 
ring we mean an additive endomorphism that commutes with all left and right 
multiplications. The principal fact is given in the following lemma. 

LEMMA 8. Let A be any ring and M a regular maximal right ideal in A. Then 
M automatically admits any operator on A. 

Proof. Let the operator be denoted by 6 and placed on the left. Then for 
x Ç M we have to prove 6x Ç M. Let e be a left unit modulo M, so that 
ey — y G M for all y in A. If 6x is not in M, then the right ideal generated by 
6x and M must be all of A. In particular we have 

e = Sx (a + n) + m 

where a Ç A, m £ M, and n is an integer. On right multiplying by e and com­
muting 6 past x we get 

e2 = x(6ae + One) -{-me Ç M. 

Now e2 — e Ç M; this tell us that e is in M, whence M is all of A, a contra­
diction. 

From Lemma 8 we deduce that any primitive ideal is automatically operator-
admissible. More generally, if / is any two-sided ideal such that A/1 is semi-
simple then / is admissible, for in that case / is an intersection of regular maxi­
mal right ideals. 

4. The centroid. By the centroid3 of a ring A we mean the set of all operators 
on A where, as above, an operator is an additive endomorphism commuting 
with all left and right multiplications. If A has a unit element, the centroid is 
easily seen to coincide with the ordinary center of A. 

Suppose that A is an algebra over a field F. Then the elements of F form part 
of the centroid. We call A central if the elements of F in this way form all of 
the centroid. 

LEMMA 9. Any primitive Banach algebra is central. 

3This term (used by Artin in a Princeton seminar) seems better than earlier ones that have 
been used, such as "multiplication centralizer" in (3). 
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Proof. Let M be a regular maximal right ideal such that A is faithfully 
represented by right multiplication on A/M. We propose to invoke the theory 
of the eigenring B of M, for which we refer the reader to (3, p. 236) and (6, 
Lemma 3). We summarize briefly: B is defined to be the set of all a in A w4th 
aM C M, M is a two-sided ideal in the subring B, B/M is a division ring and in 
fact coincides in a natural way with the ring of all endomorphisms of A/M 
commuting with all right multiplications on A/M. 

Now in our case we have further that M is an algebra ideal (Lemma 8). 
Also, any regular maximal right ideal in a Banach algebra is closed. It follows 
further that B is closed and that B/M is a Banach division algebra which, by 
the Gelfand-Mazur theorem, is simply the complex numbers. 

Let an element 6 of the centroid be presented. By Lemma 8, 6 sends M into 
itself and accordingly induces an additive endomorphism of A/M. This latter 
manifestly commutes with all right multiplications by elements of A. We are 
thus led to a certain element of B/M, i.e. to a complex number X. The infor­
mation we have is that for any a in A, 6a — \a £ M. Then for a further ele­
ment x in A 

6xa — \xa = x(6a — \a) Ç M. 

Thus right multiplication by 6a — Xa sends A into M, and induces the 0 map 
on A/M. Since the representation of A on A/M is faithful, we have da — \a = 0. 
The centroid of A therefore coincides with the complex numbers and A is 
central. 

5. The primitive case. Next we need a lemma which is concerned with the 
construction of an entire function with desired properties. 

LEMMA 10. Let {Xt} be a sequence of distinct non-zero complex numbers. For 
each i let there be given a discontinuous automorphism at of the complex numbers 
(the a's need not be distinct). Then there exists an entire function f, vanishing at 
0, such that the set {^[/(X^)]} is unbounded. 

Proof. The function / will be constructed as a sum 2gn of polynomials. 
Assuming that gi, . . . , gn-\ have been selected, we take 

gn = cz{z — Xi) . . . 0 - X„_i). 

The coefficient c is to be chosen so that 

(1) \gn(z)\ < 2~n for \z\ < n, 

(2) k»ki(X„) + . . . + gn(K)]\ > n. 

Of course (1) merely requires that c be suitably small. This having been ar­
ranged, we can achieve (2), for it is known that a discontinuous automorphism 
<rn is unbounded on any open subset of the complex plane. 

By (1), the sum 2gn converges uniformly on any bounded set. Hence the 
sum / is an entire function. Since gi(Xn) = 0 for i > n, the terms from the 
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(n + l)-st on do not disturb (2) and we have \<rn[f(\n)]\ > n. Finally/(0) = 0 
since each gn vanishes at 0. 

We can now dispose of the primitive case. 

LEMMA 11. Let A and B be infinite-dimensional primitive Banach algebras. 
Then any ring isomorphism from A onto B is automatically real-linear (and 
hence either linear or conjugate linear relative to complex scalars). 

Proof. The given isomorphism induces an isomorphism between the cen-
troids of A and B (this is a general fact about isomorphisms between rings). 
By Lemma 10 the centroid of both A and B is just the complex numbers. So the 
isomorphism between the two centroids is describable as an automorphism a 
of the complex numbers. Our problem is to prove that a is continuous, and we 
suppose the contrary. By Lemma 7, A possesses an element x with an infinite 
spectrum. Let Xi, X2, • . • be distinct non-zero numbers in the spectrum of x. 
Apply Lemma 10 (with all the o-/s equal to a). Uf is the resulting entire func­
tion, t h e n / m a y be applied to x to yield a well defined element y in A, and the 
spectrum of y con tains/(Xi),/(X2), . . . . If we write y' for the image of y under 
the isomorphism, the spectrum of y' will contain the numbers <r[fÇhi)]. But 
these numbers are unbounded, whereas in any Banach algebra the spectrum of 
every element is bounded. This contradiction shows that a must be continuous, 
and completes the proof of Lemma 11. 

6. The main theorem. The next step in the discussion is to show that dis­
continuous automorphisms of the complex numbers can arise at only a finite 
number of primitive ideals. We first need a lemma somewhat analogous to 
Lemma 2. 

LEMMA 12. Let A be a Banach algebra, {Mi} an infinite set of regular maximal 
two-sided ideals in A. Then we can find an element x in A and distinct non-zero 
complex numbers X* such that \ t is in the spectrum of^ x(Mi). 

Proof. By the Chinese remainder theorem there exists an element yt with 
yi(Mi) — 1, yi(Mj) = 0 for j < i. We proceed to choose numbers at and Xz in 
succession. Having selected them up to i — 1, we take at satisfying 

0 <at <2- ' | |y< | | f 

and such that (aiyi + . . . + a^<) (Mt) has X* p̂  0 in its spectrum, where X* is 
any number different from Xi, . . . , X*_i. We define x = 2a ŷ*. Since the terms 
from yi+i on map into 0 mod Mu % has the desired property that x(Mt) has Xt 

in its spectrum. 
Before stating the next lemma, we consider the following situation: <f> is a 

ring isomorphism of a Banach algebra A onto a second one B, P is a primitive 
ideal in A, and Q — 4>(B). Then (see the remark after Lemma 8) P is an algebra 
ideal in A. Moreover it is known that P is closed ; indeed P is an intersection of 
regular maximal right ideals and the latter are closed. Thus A/P is a primitive 

4The notation x(M) denotes the image of x in the natural homomorphism from A onto A/M. 
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Banach algebra. The same is true of B/Q, and we observe that 4> induces a ring 
isomorphism of A/P onto B/Q. 

LEMMA 13. Let A be a Banach algebra and 4> a ring isomorphism of A onto a 
second Banach algebra B. Then there can exist only a finite number of primitive 
ideals P in A such that the isomorphism induced by </> on A/P is not real-linear. 

Proof. Suppose on the contrary that there are an infinite number of such 
primitive ideals and denote them by Pi. Then by Lemma 11 each A/Pt is 
finite-dimensional (and hence a total matrix algebra). In particular Pi is 
regular maximal. We now apply Lemma 12 and produce an element x in A and 
distinct non-zero numbers A* such that, for all i, x(P/) has A* in its spectrum. 
Write ai for the discontinuous automorphism of the complex numbers asso­
ciated with the isomorphism of A/Pt. We apply Lemma 10, and write y = f(x) 
w i t h / the entire function given there. Then y (Pi) has /(A*) in its spectrum. 
Passing to the algebra B, we observe that the image of <t>(y) in B/<j>(P\) has 
(Ti[f(\i)] in its spectrum. Then further all these numbers ^[/(A*)] lie in the 
spectrum of cj>(y) itself. This contradicts the boundedness of the spectrum of 

We shall now state and prove the main theorem of the paper. 

THEOREM. Let A and B be semi-simple Banach algebras and let 0 be a ring 
isomorphism of A onto B. Then we may write A = Ai 0 A2 © A% with Ax 

finite-dimensional, </> linear on A2, and <j> conjugate linear on A?J. 

COROLLARY. If A has no finite-dimensional ideals, then any ring isomorphism 
of A onto B is automatically real-linear. 

Proof. We first single out (by Lemma 13) the finite number of primitive 
ideals Pi , . . . , Pr in A such that the induced isomorphism on A/P i is not real-
linear. We shall prove that P\ is a direct summand of A, or rather the equi­
valent statement that Qi is a direct summand of B, where Qt = <j>{Pt). By 
Lemma 11, each A/P\ is finite-dimensional, whence Pt is regular maximal. By 
the Chinese remainder theorem, there exists in A an element x with x(Pi) = 1, 
x(P2) = . . . = x(Pr) = 0. For any other primitive ideal P we have | |x(P) | | 
< ||x||, and a fortiori the spectrum of x(P) is bounded by ||x||. Write a for the 
discontinuous automorphism of the complex numbers attached to the iso­
morphism on A / P i . There exists a complex number A such that |<r(A)| >2|A| | |X| | . 

Write y = 0(Ax)/o-(A). Then ;y(<2i) = 1, y(Q2) = . . . = y{QT) = 0. Let 
Q = </>(P) be any other primitive ideal in B. Since the induced isomorphism 
from A/P onto B/Q is real-linear, it preserves the absolute value of the 
spectrum of any element. Since the spectrum of x(P) is bounded by ||x|| we 
compute that the spectrum of y(Q) is bounded by \\x\\ \x\/\a(\)\ < \. We 
apply to y the Cauchy integral, in the appropriate version for algebras that 
may lack a unit element: 

e = àJc (-X" l y ) 'X _ l d X-
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Here C may be taken to be a circle of radius \ about 1, and the prime denotes 
quasi-inverse. Then by known properties of this integral we have that e(Qi) = 1, 
while e(Q) = 0 for every other primitive ideal in B (including of course 
Q2, . . . , Qr)- Because of the semi-simplicity of B it follows that e is a central 
idempotent, and indeed we have the desired direct sum decomposition 
B = Qi 0 eB. 

Transferring this back by the inverse of </>, we have likewise that P\ is a 
direct summand of A. We may of course subject P2, • • • , Pr to the same 
treatment. The result is to reduce our problem to the case where 0 is already 
real-linear, and we accordingly make that assumption in the rest of the proof. 

This last portion of the proof is purely algebraic, and is best understood by 
making use of the centroid. Multiplication by i is an operator on the ring A 
and thereby gives rise to a centroid element. Likewise we get an element of the 
centroid of B from multiplication by i. This latter may be transferred to the 
centroid of A, via the given isomorphism of A and B. We now have two 
centroid elements of A, both with square equal to — 1. The vital thing is to 
know that they commute, for then their product will be a centroid element with 
square 1. Such an element splits A into a direct sum A2 © As of ideals, on the 
first of which it is the identity, on the second the negative of the identity. This 
is the decomposition we are seeking. 

So it remains only to convince ourselves that the centroid of a semi-simple 
ring is commutative. Here is a stronger result: if a ring A has no total left 
annihilator other than 0, then its centroid is commutative. Given x in A and 
0i, 02 in the centroid, we have to prove 0]02x = 020ix. It is enough to prove that 
this holds after a right multiplication by y. By repeated use of the fact that the 
0's commute with left and right multiplications we find: 

[{dld2)x]y = (did2)(xy) = 01(x-02^) = 0iX-023>, 

[(020i)*b> = (020i)O:y) = e2{elx-y) = e^e^. 

With this the proof of the theorem is complete. 
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