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Abstract

In an isolate-free graph G, a subset S of vertices is a semitotal dominating set of G if it is a dominating set
of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number of
G, denoted by γt2(G), is the minimum cardinality of a semitotal dominating set in G. Goddard, Henning
and McPillan [‘Semitotal domination in graphs’, Utilitas Math. 94 (2014), 67–81] characterised the trees
and graphs of minimum degree 2 with semitotal domination number half their order. In this paper, we
characterise all graphs whose semitotal domination number is half their order.
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1. Introduction

In this paper, we consider only finite simple undirected graphs. A subset D of vertices
in a graph G is a dominating set of G if every vertex of V(G) \ D is adjacent to a vertex
in D. The minimum cardinality γ(G) of a dominating set is called the dominating
number. Similarly, D is a total dominating set of G if every vertex of V(G) is adjacent
to a vertex in D and the minimum cardinality γt(G) of a total dominating set is called
the total dominating number of G. The study of a total dominating set is meaningful
only in an isolate-free graph. Since 1997, domination and its variations have been
extensively studied (see, for example, [2, 5, 10]).

Semitotal domination, introduced by Goddard et al. [1] is a relaxed form of total
domination. A subset D of vertices in an isolate-free graph G is a semitotal dominating
set, abbreviated semi-TD-set, of G if it is a dominating set of G and every vertex in D
is within distance 2 of another vertex of D. The semitotal domination number of G,
denoted by γt2(G), is the minimum cardinality of a semi-TD-set in G. We refer to a
minimum semi-TD-set of G as a γt2(G)-set.

This work was funded in part by National Natural Science Foundation of China (Grant No. 12071194) and
the Chongqing Natural Science Foundation Innovation and Development Joint Fund (Municipal Education
Commission) (Grant No. CSTB2022NSCQ-LZX0003).
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

1

https://doi.org/10.1017/S0004972724000509 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972724000509
https://orcid.org/0000-0002-8199-9965
https://orcid.org/0000-0002-2046-3040
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972724000509&domain=pdf
https://doi.org/10.1017/S0004972724000509


2 J. Chen and S.-J. Xu [2]

Two edges in a graph G are independent if they are not adjacent in G. A matching in
G is a set of pairwise independent edges. The matching number of G is the maximum
cardinality of a matching in G.

Since every total dominating set of an isolate-free graph G is a semi-TD-set of
G and every semi-TD-set of an isolate-free graph G is a dominating set of G, we
observe that γ(G) ≤ γt2(G) ≤ γt(G). However, the semitotal domination number is
very different from the domination and total domination number. For example, the
total domination number cannot be compared with the matching number, while the
semitotal domination number is comparable with the matching number and cannot be
greater than the matching number plus one (see [6, 7]). That makes the study of the
semitotal domination number interesting.

There has been much work to determine bounds for the semitotal domination
number of graphs (see, for example, [1, 3, 4, 7–9, 11, 12]). Goddard et al. [1] proved
that if G is a connected graph of order n � 4, then γt2(G) � n/2, and characterised the
trees and graphs of minimum degree 2 achieving this bound.

THEOREM 1.1 [1]. If G is a connected graph of order n � 4, then γt2(G) ≤ n/2.

We aim to characterise the infinite families of graphs that achieve equality in the
bound in Theorem 1.1. In Section 2, we give some basic definitions and some useful
results as preliminaries. In Section 3, we give our main theorem characterising the
graphs whose semitotal domination number is half their order (Theorem 3.1).

2. Preliminaries

In this section, we introduce some basic definitions and some useful results.
Let G be a connected finite simple undirected graph with vertex set V(G), edge set

E(G) and order n = |V(G)|. Let u, v be two vertices in V(G). If uv ∈ E(G), then we
say u, v are adjacent, u is a neighbour of v and vice versa. We denote by NG(v) the
neighbourhood of v and by NG[v] the closed neighbourhood of v. The degree of v is
dG(v) = |NG(v)|. Denote by δ(G) the minimum degree of G. A leaf of G is a vertex of
degree 1, a support vertex of G is a vertex adjacent to at least one leaf and a strong
support vertex of G is a support vertex adjacent to at least two leaves. Denote the sets
of leaves, support vertices and strong support vertices of G by L(G), S(G) and S′(G),
respectively.

For a subset S of V(G) and a vertex v of V(G), we denote NS(v) = NG(v) ∩ S, G[S]
as the subgraph of G induced by S, and G − S as the graph obtained from G by deleting
the vertices in S. Moreover, denote NH(v) = NV(H)(v), where H is a subgraph of G. We
call a path connecting vertices u and v a (u, v)-path. The distance dG(u, v) between u
and v is the length of a shortest (u, v)-path in G. As usual, a cycle and a path of order n
are denoted by Cn and Pn, respectively. For a positive integer r, [r] denotes {1, . . . , r}.
If there is no confusion, the subscript G is omitted.

Seven graphs G1–G7 are shown in Figure 1. Let U be a connected graph and for
each vertex v of U, add either a P2, or a P4 or a C4, and identify v with one end of
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FIGURE 1. Eleven special graphs.

FIGURE 2. A graph of G.

the path or one vertex of the cycle. Let G denote the resulting graph and let G be the
family of all such graphs G that are not isomorphic to P2. We call the graph U used to
construct the graph G an underlying graph of G. A graph of G is illustrated in Figure 2.
Let G1 be the subfamily of G for which every vertex in every U has C4 added.

Goddard et al. [1] provided a characterisation of the graphs whose minimum degree
is at least two and whose semi-total domination number is half their order.

THEOREM 2.1 [1]. Let G be a connected graph of order n ≥ 4 with minimum degree at
least 2. Then γt2(G) = n/2 if and only if G is either C6 or C8 or a spanning subgraph
of K4 or a graph of G1.

We have the following observation.

OBSERVATION 2.2. Let G be a graph of {G3, G4, G5, G6, G7} ∪ (G \ {P4, P6}) and v be
a support vertex of G but not in U, where U is an underlying graph of G if G ∈ G. Then
γt2(G − NG[v]) ≤ γt2(G) − 2.

3. The main theorem

THEOREM 3.1. Let G be a connected graph of order n. Then γt2(G) = n/2 if and only
if G ∈ {K1,3, G1, G2, K4, C6, C8, G3, G4, G5, G6, G7} ∪ G.

PROOF. Suppose that G is a connected graph of order n. If G is one of the graphs
listed above, then it is easy to verify that γt2(G) = n/2. Thus, it suffices to prove the
necessity. Assume γt2(G) = n/2. We proceed by induction on the order n. Since γt2(G)
is an integer of size at least 2, n is an even number of size at least 4. If n = 4, then G is
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a spanning subgraph of K4, implying that G ∈ {P4, C4, K1,3, G1, G2, K4}. We note that
{P4, C4} ⊆ G. The desired result follows for n = 4 and we may now assume that n ≥ 6.

We prove two claims relating to the set of support vertices of G.

Claim 1. Let u be a vertex of S(G). Then there exists a γt2(G)-set containing u.

PROOF. Let u be a vertex of S(G) and D be a γt2(G)-set. If u ∈ D, then the claim
follows. Thus, we may assume that u � D. Let u1 be a leaf in G adjacent to u. To
dominate u1, we must have u1 ∈ D. Since D is a semi-TD-set of G, we note that
(N(u) \ {u1}) ∩ D � ∅. Hence, (D \ {u1}) ∪ {u} is a γt2(G)-set, as desired. �

Claim 2. S′(G) = ∅.

PROOF. Suppose to the contrary that S′(G) � ∅. Let u be a vertex of S′(G), and u1
and u2 be two leaves adjacent to u. Let G′ = G − {u1}. Then G′ is a connected graph
of order n′ = n − 1. Since n ≥ 6, n′ ≥ 5. By Theorem 1.1, γt2(G′) ≤ n′/2. Note that
u ∈ S(G′). Arguments similar to Claim 1 show that there is a γt2(G′)-set containing
u, say D′. Observe that D′ is also a semi-TD-set of G. Thus, γt2(G) ≤ |D′| = γt2(G′) ≤
n′/2 < n/2, which is a contradiction. �

Recall that n ≥ 6. If δ(G) ≥ 2, then G is either C6 or C8 or a graph ofG1 by Theorem
2.1. It follows that G ∈ {C6, C8} ∪ G, as desired. Thus, it remains to consider the case
when δ(G) = 1. Let v1 be a vertex of degree 1 and v2 be the support vertex adjacent to
v1. Let H be a component of G − {v1, v2} and G′ = G − V(H). Then G′ is a connected
graph of order n′ = n − |V(H)|. Note that {v1, v2} ⊆ V(G′). If n′ = 3 or |V(H)| = 1, then
v2 ∈ S′(G), which contradicts Claim 2. Thus, n′ = 2 or n′ ≥ 4, and |V(H)| ≥ 2. When
n′ = 2, let D1 = {v2}. When n′ ≥ 4, it follows from Theorem 1.1 that γt2(G′) ≤ n′/2.
Analogous arguments as in Claim 1 show that there exists a γt2(G′)-set containing v2,
say D1. Hence, no matter what n′ is, we have v2 ∈ D1 and |D1| ≤ n′/2.

Claim 3. If |V(H)| ≤ 3, then G ∈ G.

PROOF. Assume |V(H)| ≤ 3. Since n ≥ 6, n′ = n − |V(H)| ≥ 3. Combined with the
fact that n′ = 2 or n′ ≥ 4 and |V(H)| ≥ 2, we have n′ ≥ 4 and |V(H)| = 2 or 3.
It follows that D1 is a γt2(G′)-set containing v2 and there exists a vertex w
in H such that NH[w] = V(H). Thus, D1 ∪ {w} is a semi-TD-set of G. Further,
γt2(G) ≤ |D1| + 1 ≤ n′/2 + 1 ≤ (n − |V(H)|)/2 + 1 ≤ (n − 2)/2 + 1 ≤ n/2. Since
γt2(G) = n/2, we note that |D1| = n′/2 and |V(H)| = 2. Let H = w1w2. Without loss
of generality, consider v2w1 ∈ E(G). If v2w2 ∈ E(G), then D1 is a semi-TD-set of G.
Further, γt2(G) ≤ |D1| ≤ n′/2 < n/2, which is a contradiction. Thus, v2w2 � E(G).

By the inductive hypothesis, G′ ∈ {K1,3, G1, G2, K4, C6, C8, G3, G4, G5, G6, G7} ∪ G.
Observe that v2 ∈ S(G′). Combined with Claim 2, G′ ∈ {G1, G3, G4, G5, G6, G7} ∪ G.
If G′ � G1, then n = 6 and {v2, w1} is a semi-TD-set of G, which contradicts
γt2(G) = n/2. Thus, G′ ∈ {G3, G4, G5, G6, G7} ∪ G. Note that if G′ ∈ {P4, P6}, then
G ∈ G, as desired. Thus, we may assume that G′ � {P4, P6}. If v2 � V(U), where U is an
underlying graph of G′ when G′ ∈ G, then there is a γt2(G′ − NG′[v2])-set, say D′, with
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size at most γt2(G′) − 2 by Observation 2.2. Observe that D′ ∪ {v2, w1} is a semi-TD-set
of G. Thus, γt2(G) ≤ |D′| + 2 ≤ γt2(G′) = n′/2 < n/2, which is a contradiction. Hence,
G′ ∈ G and v2 ∈ V(U) for any underlying graph U of G′. Therefore, G ∈ G. �

By Claim 3, we may assume that |V(H)| ≥ 4 for any component H of G − {v1, v2},
for otherwise, the desired result follows. Let D2 be a γt2(H)-set. By Theorem
1.1, |D2| ≤ |V(H)|/2. Observe that D1 ∪ D2 is a semi-TD-set of G. Thus, γt2(G) ≤
|D1| + |D2| ≤ n′/2 + |V(H)|/2 = n/2. Since γt2(G) = n/2, we note that |D1| = n′/2 and
|D2| = |V(H)|/2. Applying the inductive hypothesis to H and G′ of order n′ ≥ 4 shows
that they both belong to {K1,3, G1, G2, K4, C6, C8, G3, G4, G5, G6, G7} ∪ G. Let w1 be a
vertex in H adjacent to v2. We prove the following claim.

Claim 4. If H ∈ {K1,3, G1, G2, K4, C6, C8, G3, G4, G5, G6, G7}, then G ∈ {G3, G6, G7}.

PROOF. When H ∈ {K1,3, G1, G2, K4}, there exists a vertex w in H such that NH[w] =
V(H). Recall that v2 ∈ D1. Thus, D1 ∪ {w} is a semi-TD-set of G. Further, γt2(G) ≤
|D1| + 1 ≤ n′/2 + 1 = (n − 4)/2 + 1 < n/2, which is a contradiction.

When H � C6, let w2 and w3 be the two vertices with a distance of 2 from w1
in H. Observe that if D1 is a γt2(G′)-set or |NH(v2)| ≥ 2, then D1 ∪ {w2, w3} is a
semi-TD-set of G. Further, γt2(G) ≤ |D1| + 2 ≤ n′/2 + 2 = (n − 6)/2 + 2 < n/2, which
is a contradiction. Hence, D1 is not a γt2(G′)-set and |NH(v2)| = 1. It follows that n′ = 2
and G � G3.

When H � C8, without loss of generality, we can assume H = w1w2 · · ·w8w1.
Then D1 ∪ {w2, w5, w7} is a semi-TD-set of G. Thus, γt2(G) ≤ |D1| + 3 ≤ n′/2 + 3 =
(n − 8)/2 + 3 < n/2, which is a contradiction.

When H ∈ {G3, G4, G5, G6, G7}, we note that S(H) � ∅. If there exists a vertex u ∈
S(H) such that dG(v2, u) ≤ 2, then D1 ∪ D′ ∪ {u} is a semi-TD-set of G, where D′ is
a γt2(H − NH[u])-set. By Observation 2.2, |D′| ≤ γt2(H) − 2. It follows that γt2(G) ≤
|D1| + |D′| + 1 ≤ n′/2 + γt2(H) − 1 = (n − |V(H)|)/2 + |V(H)|/2 − 1 < n/2, which is a
contradiction. Thus, dG(v2, u) ≥ 2 for any vertex u of S(H).

If H � G3, then |S(H)| = 1. Let S(H) = {x}, x1 be the vertex of degree 3 in H, and
x2, . . . , x6 be the five vertices in H that are not adjacent to x, where xixi+1 ∈ E(H) for
i ∈ [5]. It follows that NH[x] ∩ N(v2) = ∅. So {x2, . . . , x6} ∩ N(v2) � ∅. Without loss of
generality, consider {x2, x3, x4} ∩ N(v2) � ∅. Then D1 ∪ {x, x3, x6} is a semi-TD-set of
G. Further, γt2(G) ≤ |D1| + 3 ≤ n′/2 + 3 = (n − 8)/2 + 3 < n/2, which is a contradic-
tion. Thus, H � G3 and H ∈ {G4, G5, G6, G7}.

Since dG(v2, u) ≥ 2 for any vertex u of S(H), it follows that

( ⋃
u∈S(H)

NH[u]
)
∩ N(v2) = ∅ and NH(v2) ⊆ V(H) \

( ⋃
u∈S(H)

NH[u]
)
.

Next, observe that if D1 is a γt2(G′)-set or |NH(v2)| ≥ 2, then there exists a vertex y in
V(H) \ (

⋃
u∈S(H) NH[u]) such that D1 ∪ S(H) ∪ {y} is a semi-TD-set of G and γt2(G) ≤

|D1| + |S(H)| + 1 ≤ n′/2 + (|V(H)| − 4)/2 + 1 = (n − |V(H)|)/2 + (|V(H)| − 4)/2 + 1 <
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n/2, which is a contradiction. Thus, D1 is not a γt2(G′)-set and |NH(v2)| = 1, implying
that n′ = 2. Hence, H ∈ {G4, G5, G6} and G ∈ {G6, G7}. �

By Claim 4, we may assume that H ∈ G for any component H of G − {v1, v2}, for
otherwise, the desired result follows. It follows that G′ ∈ {P2, G4, G5} ∪ G. According
to the structure of H, there exists a γt2(H)-set containing w1. Without loss of
generality, we can assume w1 ∈ D2. If G′ ∈ {G4, G5}, then there exists a vertex x
in V(G′) \ (

⋃
u∈S(G′) NG′[u]) such that D2 ∪ S(G′) ∪ {x} is a semi-TD-set of G. It

follows that γt2(G) ≤ |D2| + |S(G′)| + 1 = |V(H)|/2 + 3 = (n − 8)/2 + 3 < n/2, which
is a contradiction. Thus, G′ � {G4, G5} and G′ ∈ {P2} ∪ G.

Claim 5. If G′ ∈ G, then there exists an underlying graph U1 of G′ such that
v2 ∈ V(U1).

PROOF. Assume G′ ∈ G. Note that v2 ∈ S(G′). If G′ ∈ {P4, P6}, then there exists an
underlying graph of G′ such that v2 is in it, as desired. Thus, we may assume that G′ �
{P4, P6}. Let U1 be an underlying graph of H. If v2 � V(U1), then γt2(G′ − NG′[v2]) ≤
γt2(G′) − 2 by Observation 2.2. Let D′ be a γt2(G′ − NG′[v2])-set. Then D′ ∪ {v2} ∪ D2
is a semi-TD-set of G. Further, γt2(G) ≤ |D′| + 1 + |D2| ≤ γt2(G′) − 2 + 1 + |V(H)|/2 ≤
n′/2 − 1 + |V(H)|/2 < n/2, which is a contradiction. Thus, v2 ∈ V(U1). �

We proceed with the following final claim.

Claim 6. If |V(H)| = 4, then G ∈ G.

PROOF. Assume |V(H)| = 4. Since H ∈ G, we note that H ∈ {P4, C4}. Let
V(H) = {x1, x2, x3, x4}, where xixi+1 ∈ E(H) for i ∈ [3]. Suppose v2x1 ∈ E(G). Then
NH(v2) = {x1}, otherwise D1 ∪ {x3} is a semi-TD-set of G and γt2(G) ≤ |D1| + 1 ≤
n′/2 + 1 = (n − 4)/2 + 1 < n/2, which is a contradiction. When G′ � P2, we have
G ∈ G. When G′ ∈ G, combined with Claim 5, we have G ∈ G. Similarly, if
v2x4 ∈ E(G), then G ∈ G. Thus, we may assume that v2x1 � E(G) and v2x4 � E(G).
It follows that NH(v2) ⊆ {x2, x3}. When H � P4, combine G′ ∈ {P2} ∪ G with Claim 5
to get G ∈ G. When H � C4, analogous arguments as the case of v2x1 ∈ E(G) show
that G ∈ G. �

By Claim 6, we may assume that |V(H)| ≥ 6, for otherwise, the desired result
follows. Let U2 be an underlying graph of H. If NH(v2) ⊆ V(U2), then it follows
from G′ ∈ {P2} ∪ G and Claim 5 that G ∈ G. Thus, it remains to discuss the case of
NH(v2) � V(U2). Without loss of generality, consider w1 � V(U2).

Suppose that w1 is on a P4-addition. Let x2 be the support vertex of H
on this P4-addition. Then w1 ∈ NH[x2]. If H � {P4, P6}, then γt2(H − NH[x2]) ≤
γt2(H) − 2 by Observation 2.2. Let D′ be a γt2(H − NH[x2])-set. Then D1 ∪ D′ ∪ {x2}
is a semi-TD-set of G. Further, γt2(G) ≤ |D1| + |D′| + 1 ≤ n′/2 + γt2(H) − 1 =
(n − |V(H)|)/2 + |V(H)|/2 − 1 < n/2, which is a contradiction. Thus, H ∈ {P4, P6}.
Recall that |V(H)| ≥ 6. So H � P6.
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Without loss of generality, let H = x1x2 · · · x6. Then w1 = x1, or x2 or x3.
If {x4, x5, x6} ∩ NH(v2) � ∅, then D1 ∪ {x2, x5} is a semi-TD-set of G. Further,
γt2(G) ≤ |D1| + 2 ≤ n′/2 + 2 = (n − 6)/2 + 2 < n/2, which is a contradiction. Thus,
{x4, x5, x6} ∩ NH(v2) = ∅. When v2x1 � E(G), we note that NH(v2) ⊆ {x2, x3}.
Combining G′ ∈ {P2} ∪ G and Claim 5 gives G ∈ G. When v2x1 ∈ E(G), we have
G′ � P2 and NH(v2) = {x1}, otherwise D1 ∪ {x3, x5} is a semi-TD-set of G and
γt2(G) ≤ |D1| + 2 ≤ n′/2 + 2 = (n − 6)/2 + 2 < n/2, which is a contradiction. Observe
that G � P8 ∈ G.

Next, suppose that w1 is on a C4-addition. Let y be the farthest vertex of H from U2
on this C4-addition. Then w1 ∈ NH[y]. If |V(H)| ≥ 8, then γt2(H − NH[y]) ≤ γt2(H) − 2
by the structure of H. Let D′ be a γt2(H − NH[y])-set. Observe that D1 ∪ D′ ∪ {y} is a
semi-TD-set of G. Further,

γt2(G) ≤ |D1| + |D′| + 1 ≤ n′/2 + γt2(H) − 1 = (n − |V(H)|)/2 + |V(H)|/2 − 1 < n/2,

which is a contradiction. Thus, |V(H)| = 6. It follows that H is constructed by the
underlying graph P2 with a P2-addition and a C4-addition. Note that D1 is not a
γt2(G′)-set and |NH(v2)| = 1, otherwise γt2(G) ≤ |D1| + 2 ≤ (n − 6)/2 + 2 < n/2, which
is a contradiction. Hence, G′ � P2 and G ∈ {G4, G5}.

Finally, suppose that any vertex of NH(v2) is not on the P4-additions and
C4-additions. Thus, w1 is on a P2-addition. Recall that |V(H)| ≥ 6. Observe that
if D1 is a γt2(G′)-set or |NH(v2)| ≥ 2, then we have γt2(G) ≤ |D1| + γt2(H) − 1 ≤
(n − |V(H)|)/2 + γt2(H) − 1 < n/2, which is a contradiction. Thus, D1 is not a
γt2(G′)-set and |NH(v2)| = 1. It follows that G′ � P2. Therefore, G ∈ G.
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