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Gravity–capillary waves are waves influenced by both the effects of surface tension
and gravity; these waves are at small scales with wavelength range from approximately
10 cm to less than 1 cm. Gravity–capillary waves play a significant role in air–sea
interactions, and they exhibit much different features compared with gravity waves. They
can be observed widely on the sea surface. Parasitic waves (capillary waves generated
by and that ride on gravity and/or gravity–capillary waves) and micro-breaking can be
observed on the water surface with winds; however, the presence of wind makes it
difficult to analyse the mechanisms of the wave itself. In this paper, parasitic waves
and micro-breaking on gravity–capillary waves are examined experimentally, both in the
absence of wind. Parasitic waves and axisymmetric micro-breaking waves are generated
mechanically in a convergent channel, where energy density increases due to spatial
convergence. Three experimental techniques are used to measure wave properties: planar
laser-induced fluorescence, particle image velocimetry and shadowgraphs. The wave
profile evolution and vortices beneath the parasitic waves are studied. The micro-breaking
of gravity–capillary waves is observed on a surface with added surfactant. The surfactant
increases the Bond number, and makes breaking possible in these small-scale waves.
Energy dissipation of parasitic waves and micro-breaking is quantified, and the enhanced
dissipation caused by parasitic waves is identified through the experiments. In this study,
mechanically generated breaking waves with wavelengths less than 10 cm are studied for
the first time, without the effect of wind. The results yield insight into wave characteristics
and energy dissipation on the air–sea interface at small scales.
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1. Introduction

Steep gravity waves are known to generate capillary waves on their forward faces due
to the large curvature across the crests where surface tension becomes locally important.
These waves are called parasitic capillary waves. Parasitic capillary waves extract energy
from the primary waves through viscous energy dissipation at short scales. There are
few research articles on these small waves available in the literature. The early analytical
analyses for parasitic waves can be found in Longuet-Higgins (1963) and Crapper (1970).
Cox (1958) undertook the first extensive experiments on the generation of capillary
waves by longer waves. However, they were mostly approximately wind-generated waves
and have different boundary conditions from the free, or mechanically generated waves.
Perlin, Lin & Ting (1993) and Jiang et al. (1999) performed experimental studies of
mechanically generated parasitic waves on gravity–capillary waves, and compared the
results with the analytical analysis of Longuet-Higgins (1963) and Crapper (1970). In 1995,
Longuet-Higgins (1995) improved his theory and also compared them with the previous
experiments. Lin & Perlin (2001) used particle image velocimetry (PIV) to measure the
vorticity beneath the parasitic waves, and the results showed agreement with the numerical
study by Mui & Dommermuth (1995). These studies all focused on parasitic wave profiles
and dealt with parasitic waves in a two-dimensional channel, where the parasitic waves
dissipate quickly due to viscosity. Zhang (2002) studied the energy dissipation of the
parasitic waves experimentally, but due to the limitations of the experimental methods,
only potential energy was considered. Later, Tsai & Hung (2010) studied the enhanced
energy dissipation of parasitic waves numerically; they found that the attenuation rate
of the carrier wave can increase by more than one order of magnitude in the presence
of capillary waves. Thus the generation of parasitic waves significantly increases the
dissipation rate of the wave energy. To balance the viscous dissipation and thus achieve
steady solutions of parasitic waves, wind forcing is often applied in numerical simulation,
as done, for example, by Fedorov & Melville (1998). To verify the model in their paper,
experiments on parasitic waves were conducted subsequently by Fedorov, Melville &
Rozenberg (1998), which showed good agreement in wave profiles between numerical
and physical experiments. Melville & Fedorov (2015) compared the parasitic dissipation
and the wind energy in a numerical analysis; the results showed that the dissipation due
to the parasitic capillaries is sufficient to balance the wind energy input in some cases.
However, adding stationary wind to the water surface is not trivial in experimental studies.
More recently, parasitic waves generated by wind were studied experimentally, focusing on
the front–back asymmetry of non-breaking gravity–capillary waves (Dosaev, Troitskaya
& Shrira 2021). Regardless, experimental study of evolution and energy dissipation of
mechanically generated parasitic waves is needed to better understand the mechanics of
parasitic waves and their interactions with the primary waves. There is also a lack of
experimental evidence of enhanced dissipation of parasitic waves in the literature.

On the other hand, breaking gravity waves in deep water have been studied for decades.
One of the most notable contributions in this area is the research by Melville (1982). In
his work, Melville experimentally verified that the Benjamin–Feir instability can lead to
breaking. However, the fundamental question of determining the onset of wave breaking
is still unanswered. For more than two decades, three types of breaking criteria have
been used to analyse the breaking (Ramberg, Barber & Griffin 1985; Ramberg & Griffin
1987; Chabane & Choi 2019): geometric, kinematic and dynamic. To produce a breaking
wave in the laboratory, often the dispersive nature of gravity waves is used. A wave
packet is generated at the wavemaker to produce different frequency components that
reach the same location at a given time. This method is widely used in laboratories to

962 A46-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.322


Parasitic waves and micro-breaking on gravity–capillary waves

generate steep and breaking waves. One famous example is by Rapp & Melville (1990),
which provided remarkable insight into wave breaking. For three-dimensional breaking,
She, Greated & Easson (1994) and Wu & Nepf (2002) used spatial focusing to generate
breaking gravity waves; they found that spatial focusing increased the steepness onset of
wave breaking. Nepf, Wu & Chan (1998) used a phase-shifted wavemaker array to generate
three-dimensional waves and their subsequent diffraction to generate breakers. Due to an
increase in particle velocity, the steepness onset of breaking is decreased.

Unlike geometric or kinematic onset, the dynamic onset is more consistent; the difficulty
is that the kinetic energy cannot be measured easily in experiments. Iafrati (2009)
developed a numerical model to calculate the energy dissipation during the breaking
process. He found that in the most energetic phase of plunging breaking, dissipation is
mainly localized approximately in the small air bubbles generated by the fragmentation of
the air cavity entrapped by the plunging of the jet. The air-entry phenomenon was later
reviewed by Kiger & Duncan (2012). Derakhti & Kirby (2014) studied air entrainment
using a two-phase model. Later, Derakhti & Kirby (2016) presented direct estimates of total
energy and momentum flux in unforced deep-water unsteady breaking waves generated
by dispersive focusing. More recent work on breaking onset can be seen in Barthelemy
et al. (2018) and Derakhti, Banner & Kirby (2018). Although the experimental study of
breaking onset is difficult, there are a few contributions in the literature: Duncan (2001)
used PIV to measure the flow field in a spilling breaker; he found that particle velocity
is slower than the phase velocity at incipient breaking. Lim et al. (2015) used PIV to
measure the velocities and void fraction under an unsteady deep-water plunging breaker.
Khait & Shemer (2018) and Saket et al. (2017) used experiments to verify the kinematic
criterion presented by Barthelemy et al. (2018). Na, Kuang-An & Ho-Joon (2020) studied
the kinematics and breaking onset of spilling breakers using PIV; this study found that the
ratio of potential energy to the total energy remained close to 0.5 throughout the breaking
process.

Surface tension plays a significant role in wave breaking, especially for shorter waves.
Experimental study of surface tension effects on breaking waves can be found in an
early work by Miller (1973). In shorter waves, spilling breakers can be observed more
frequently than plunger breakers, and they are a more important contributor to turbulence,
spray and bubble generation at the water surface. Duncan et al. (1999) studied the crest
profile of spilling breakers. Liu & Duncan (2003) studied spilling breaking waves under
varying surface tension. They found that a high surfactant concentration on the surface will
change a spilling breaker to a plunger breaker. More recently, Deike, Popinet & Melville
(2015) developed a direct numerical simulation method for wave breaking simulation.
By introducing surface tension into the model, capillary effects on wave breaking were
studied. Bond number and steepness were used to distinguish the three types of waves:
spilling, plunging and waves with parasitic capillary waves. The high dissipation rate of
parasitic waves was observed using numerical simulation, but the study did not involve
micro-breaking. Rather, it showed that most of the cases under low Bond number show
parasitic capillary waves. There is a lack of experimental data for low-Bond-number
(gravity–capillary) breaking waves. Other than plunging and spilling breakers in gravity
waves, micro-breaking happens on short waves and is less intense (Babanin 2011). Most
of the previous numerical and experimental studies of breaking waves focused on gravity
waves. There are very few studies of breaking or micro-breaking waves for wavelengths
less than 20 cm, either due to the difficulties in the experiments or due to the subtlety of the
breaking process itself. Zappa, Asher & Jessup (2001) studied the energy dissipation and
spectral properties of wind-generated micro-breaking waves; infrared images were used
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to identify micro-breaking (see Siddiqui et al. 2001; Jessup et al. 1997). Laxague et al.
(2018) studied the spectral characteristics of gravity–capillary waves with wind-generated
micro-breaking through field observations. The presence of wind makes the analysis of
micro-breaking much more complicated. Also, breaking waves at gravity–capillary scales
without wind are basically unexploited in the literature. Experimental studies are needed
to answer the following questions: Will gravity–capillary waves break in the absence of
wind? If they do not break, why? If they do break, how is the breaking different from the
breaking in gravity waves?

In this work, the parasitic waves and micro-breaking of gravity–capillary waves are
studied experimentally. Using spatial convergence, steep and breaking axisymmetric
gravity–capillary waves are generated mechanically (in the absence of wind). The
geometric features, vorticity and energy dissipation caused by the parasitic waves are
analysed. On a surface with added surfactant, breaking occurs on waves with wavelengths
less than 10 cm. The energy dissipation and geometric and kinematic features during the
micro-breaking process are studied. Geometry of the wave profiles and the phase speed are
measured by planar laser-induced fluorescence (PLIF), while the flow fields and vorticity
beneath the interface are measured and quantified by PIV. This paper is organized as
follows. Section 2 discusses the experimental set-up. Section 3 presents the experiments
of parasitic waves on a water surface without added surfactant. In § 4, micro-breaking of
gravity–capillary waves is presented, with some comparison between parasitic waves and
micro-breaking. Conclusions are drawn in § 5.

2. Experimental set-up

The experiments are conducted in a convergent wave tank, as shown in figure 1. A circular
sector wavemaker is used to generate axisymmetric spatially convergent waves; the radius
of the curve is 30 cm and the sector angle is 60◦. To avoid a singularity, at the end of the
tank, there is an extension channel, which has a width of 1.5 cm and length of 8 cm. The
tank height is 6.5 cm and the water depth as used is 5 cm. For the frequencies used here,
4–8 Hz, all waves can be considered deep-water waves. The sidewalls of the tank are coated
with a hydrophilic material; this helps the sides satisfy (almost) a full slip condition and
minimize the dissipation caused by friction and by the contact lines. The circular sector
wavemaker is three-dimensionally printed and is attached to an electrodynamic shaker
(Modal Shop, Model 2110E) that provides vertical (here sinusoidal) excitation from 4 to
8 Hz. A high-speed imager (Phantom VEO340L) operating at 1500 frames per second
with a 50 mm f/1.8D lens (Nikon AF Nikkor) is used to record the required images for
all three techniques mentioned below. The high-speed imager is placed above or on the
side when viewing through the side of the transparent tank, depending on the technique
used. The wavemaker has an immersion depth of 10 mm; its cross-section is shown in
figure 2(b). The coordinate system used herein is shown in figure 2: the origin is defined at
the starting point of the fixed laser sheet; the longitudinal direction of the wave tank is the
x axis; the lateral direction is the y axis; the z axis points vertically upward from the free
surface. The control signals are generated by a National Instruments cRIO-9067 system
and LabView software. The experimental set-ups are shown in figure 2. Three non-invasive
wave measurement techniques are used in these experiments, listed as follows.

(i) PLIF
A continuous laser sheet is projected from above the tank; the laser sheet is aligned
with the centre of the tank, as shown in figure 2(a). The high-speed imager records
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1.5 cm

8 cm

6.5 cm

60°

30 cm

Figure 1. Convergent wave tank: plan and oblique views.

High-speed imager

High-speed imager

Light source

Translucent plate

3 cm

2.5 cm

Laser sheet

Shaker

Shaker

Circular sector

wavemaker

Wavemaker cross-section
(b)(a)

y

zx

Figure 2. Experimental set-up for (a) PLIF and PIV (plan view) and (b) shadowgraph (side view) techniques.
The x axis is along the propagation direction, the y axis is along the lateral direction and the z axis is pointing
upwards. Note that the paddle is curved and its projection is as shown in (b).

frames through the side of the tank. The laser-sheet-illuminated area and the view
area of the camera can be adjusted. In this study, the laser sheet is fixed for all
experimental cases to unify the coordinates. This technique is able to accurately
capture the wave profiles along the laser sheet. This provides information required
for the wave profile and potential energy calculations.

(ii) PIV
Tracking particles (glass hollow spheres) of diameter from 9 to 13 µm are added
to the water. Using the same laser sheet and imager set-up introduced for PLIF,
the velocity field and thus the vorticity field within the waves can be determined
from the acquired images using DaVis software from LaVision. This also provides
information required for wave kinetic energy evaluation.

(iii) Shadowgraphs
A translucent plate is positioned beneath the tank, between the light source and
the water, as shown in figure 2(b). The imager captures the frame from above.
This technique exhibits the three-dimensional wave pattern present on the surface.
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It provides a qualitative measurement of the two-dimensional free surface; this is
required when the surface becomes non-axisymmetric due to instability or breaking.

To analyse the surface tension effect on the parasitic waves and wave breaking,
surfactant is added in some experiments as noted. In this study, Triton X-100 is used as
the surfactant. The surface tensions of treated and untreated water surfaces are inferred via
linear wave theory, by measuring the wavelength of a mechanically generated linear wave,
and using the linear dispersion relation with the frequency used at the wavemaker.

3. Parasitic waves formed by highly nonlinear gravity–capillary waves

Capillary waves riding on longer gravity carrier waves are commonly observed on
ocean surfaces. These parasitic capillary waves, with length scales ranging from a few
centimetres to fractions of millimetres, can be distributed over the entire surface or located
on the leading slope of the carrier waves. The parasitic waves are caused by surface
tension: the surface tension acts as a pressure source on the water surface. To first order,
the pressure is proportional to the curvature of the surface, and as the pressure moves
with the crests, it generates capillary waves on the forward side of the crest. These forced
parasitic waves move at approximately the same phase speed as the primary carrier waves.
Thus, in a reference frame moving with the crest, the parasitic waves are almost steady,
except they dissipate as the wave propagates. Parasitic capillary waves have been studied
for decades; however, most previous work focuses on two-dimensional, wind-generated
waves. When wind is absent, parasitic waves generated by steep waves dissipate quickly
due to viscosity. In the configuration used herein, the axisymmetric primary waves are
generated mechanically in a convergent channel, where the energy density of the primary
waves increases as they propagate, and thus generate the parasitic waves. This compensates
for part of the dissipation and causes the parasitic waves to steepen downstream. At the
same time, high vorticity can be observed under the parasitic waves and the energy of the
primary wave is dissipated through these parasitic waves.

3.1. Profile evolution of parasitic waves
The wave profile evolution in the convergent tank is obtained using the PLIF technique.
The method is similar to that used in Perlin et al. (1993), Xu & Perlin (2021), Duncan
et al. (1999) and many others. The accuracy of the measurement primarily depends on
the optical distortion and the image resolution. To evaluate the induced distortion caused
by the optical devices in this study (one lens and two doublets and the imager itself),
the calibration targets captured in the same plane as the laser sheet are shown in figure 3.
Figure 3 shows two recorded images of the precision 4 cycles mm−1 lines used to calculate
resolution, and as is evident neither horizontal nor vertical images show noticeable
distortion. The resolution of the images is 14.2 pixels mm−1; hence, the accuracy of
the wavelength measurement is ±0.07 mm. The precision of the surface measurement
technique is also impacted by the width of the laser sheet (measured to be 0.5 mm in
the present study), as the camera is not perfectly aligned parallel to the water surface.
To assess the measurement error, a plano-convex lens with known geometrical shape
(Newport KPX184) is utilized. The lens is coated with white paint to facilitate illumination
of the surface with the laser sheet, replicating the illumination of a dyed water surface. The
laser sheet is projected to the centre line of the lens. Figure 4(a) shows one frame of the
image captured by the high-speed imager. The surface profile is extracted using the edge
detection method, which identifies the points where the gradient of the image is maximum.
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(d)

4 C/MM

(c)

(b)(a)

Figure 3. Recorded images of precision Ronchi rulings (4 cycles mm−1) used for calibrations.
(a,c) Horizontal lines. (b,d) Vertical lines.
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Figure 4. Surface profile of a plano-convex lens measured by PLIF compared with manufacturer-provided
profile. (a) Recorded image. (b) Surface profiles.
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Figure 5. Parasitic wave evolution on a 5.5 Hz wave. The vertical dimension of the picture is exaggerated by
a factor of two.

The image clearly depicts a bright line that indicates the illuminated surface. However, due
to the finite width of the laser sheet and the oblique angle of the imager, the bright line
appears to be have finite thickness. Therefore, to obtain an accurate surface profile, the
lower boundary of the bright line is considered while applying the edge detection method.
The extracted surface profile is plotted with the exact profile provided by the manufacturer,
as shown in figure 4(b). The measured result shows excellent agreement with the true

value. The root mean square of the error (defined as R =
√

1/N
∑N

i=1(ηmi − ηpi)2, where
ηmi are the measured surface points and ηpi are the manufacturer-provided surface points)
is calculated to be 0.05 mm. In the figure, it is seen that the measurement does not cover the
entire length of the lens surface, which is due to the limited length of the laser sheet. In the
context of water surface measurements, the lower edge of the illuminated line corresponds
to the air–water interface, and the thickness of the line is a result of the laser sheet’s
reflection above the surface. As such, accounting for the lower boundary of the bright
line yields a more precise surface profile measurement. In practical applications, different
thresholds are utilized to optimize the performance of the edge detection algorithm for
each particular case. It is also important to acknowledge that the angle of the free surface
can impact the accuracy of the measurement. In extreme cases where the free-surface
angle reaches or exceeds 90◦, it is possible that part of the surface may not be illuminated,
thus impacting the measurement. However, in this study, the parasitic waves did not have
a significant impact on the measurement accuracy as they were not steep enough to block
illumination. Therefore, the steepness of the parasitic waves is not a significant factor in
affecting the measurement accuracy.

The PLIF results for 5.5, 6, 6.5 and 7.5 Hz waves are shown in figures 5 and 8. To better
visualize the parasitic waves, the vertical dimensions of these pictures are exaggerated by
a factor of two. The x axis is defined along the laser sheet, starting from the upstream
intersection of the laser sheet with the free surface, which is 147 mm to the circular centre
of the sector. From figure 5, it can be seen that in the early stage, the wave crest is smoother,
small parasitic ripples can be observed (figure 5a) and the crest is 15 mm downstream (i.e.
x = 15 mm). As the crest moves further and the wave converges more, the parasitic waves
along the forward face of the crest continue to grow.

A quantitative comparison of the wave profile at different positions is shown in figure 6.
It can be seen that the parasitic waves become significantly steeper as the wave propagates.
To obtain a better view of the parasitic waves themselves, a plot of parasitic waves
only is shown in the figure inset. The pure parasitic waves are obtained by empirical
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Figure 6. Parasitic waves on a 5.5 Hz wave. Waves in the inset are obtained by subtracting the primary
underlying wave from the wave profile.
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Figure 7. Horizontal particle velocities beneath the crest and trough in a progressive wave propagating to the
right. Only the uppermost velocities are depicted.
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Figure 8. Parasitic ripples on (a) 6 Hz, (b) 6.5 Hz and (c) 7.5 Hz waves. The vertical dimension of the image
is exaggerated by a factor of two.
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mode decomposition (EMD). The EMD technique is a signal decomposition method
first introduced by Huang et al. (1998); it has been used widely in multicomponent
signal analysis. Unlike traditional frequency-based filters, it identifies wave components
by a so-called sifting process, which extracts intrinsic mode functions from the local
maximums and minimums of the original signal. One of the key advantages of this method
is that it can extract components with varying frequencies, in this case, wavenumbers.
As the wavenumber of the parasitic waves change in space, EMD becomes a suitable
method to obtain pure parasitic waves from the original wave form. In this study, only one
sifting iteration is used and the parasitic component of the wave is the first intrinsic mode
function. It can be seen in figure 6 that the parasitic wave crest phases do not change as they
steepen. The maximum steepness of the parasitic waves can be obtained from the figure.
They are ka = 0.21 for the blue profile and ka = 0.43 for the red profile. The parasitic
waves have different wavelengths along the same primary wave; the wavelengths are longer
near the top of the crest and shorter towards the trough. This is due to the variation in
the underlying current beneath the carrier wave. The particle velocities generated by the
primary wave act as underlying currents for the parasitic capillary waves. Near the crest,
under the first parasitic wave crest, the underlying current has a maximum velocity to the
right; in the region where the surface goes through z = 0, the horizontal component of
the particle velocity is zero; beneath the trough, the underlying current is maximum to
the left, as shown in figure 7 (Dean & Dalrymple 1991). It is well known that waves get
stretched when they propagate in the same direction as an underlying current, and are
shortened when they propagate opposite it. The parasitic waves steepen as the carrier
wave propagates towards the tank extension, rather than dissipate and disappear as in
two-dimensional cases. As can be seen from figures 5 and 6, the amplitude of the primary
wave remains almost unchanged, which is counter-intuitive as the channel converges.
It is reasonable to conclude that the energy density gained by spatial convergence is
mainly dissipated by the parasitic waves. They have much greater wavenumber, and
according to viscous linear wave theory, the dissipation rate is proportional to the square
of the wavenumber. Thus, the parasitic waves dissipate at a much greater rate due to
viscosity compared with the primary waves. This is quantitatively studied in the following
section. It is also worth noting that the steepness of the parasitic waves does not increase
continuously; rather, it decreases once the steepness reaches a maximum. The maximum
steepness for each case is discussed in the next section.

Parasitic waves on primary waves of different frequencies are shown in figure 8. It can be
seen that the wavelengths of the parasitic waves increase with the primary wave frequency.
This is consistent with the theory that the parasitic waves satisfy the dispersion relation and
travel at the same phase speed as the primary waves. Theoretically, if surface tension is
considered, there will be a minimum phase speed for water waves (around 0.23 m s−1).
For each phase speed greater than the minimum speed, there are two corresponding
wavenumbers; details are shown in figure 10. Similar to figure 6, the wave profiles are
shown quantitatively in figure 9. The parasitic wave profiles are obtained by EMD. For a
better comparison, in the parasitic wave inset plot, the waves are aligned so that the first
crests start at the same location. The amplitude of the primary wave decreases significantly
with the excitation frequency. However, the amplitudes of the parasitic waves are similar
for different frequencies. It can also be seen that, although the wavelength of the primary
wave decreases with the excitation frequency, the wavelength of the parasitic waves
increases with the frequency. As can be inferred from figure 10, each gravity–capillary
wave has a corresponding resonant capillary wave that travels at the same phase velocity
(i.e. each phase speed other than the minimum has two associated wavenumbers).
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Figure 9. Parasitic ripples on 6, 6.5 and 7.5 Hz waves. The initial point of each wave is aligned so that they
all start approximately near the mean water level.
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Figure 10. Dispersion relation with and without surfactant. Blue curve: filtered water without added
surfactant; red curve: filtered water with added surfactant.

The red curve shows the dispersion relation for a surface with surfactant and is discussed
subsequently.

The steepness, wavelength and Bond number of each experimental case without
surfactant are summarized in table 1. To obtain the steepest primary wave and the parasitic
waves in each experimental condition, for all cases, the wavemaker stroke is established
so that it generates the steepest axisymmetric wave without parasitic waves at the very
first crest near the wavemaker. Here, the Bond number is defined as Bo = ρg/Tk2, where
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Case number Fequency kaprimary kaparasitic λprimary λparasitic Wavelength ratio Bo
(Hz) (cm) (cm)

1 4.5 0.25 0.48 7.91 0.33 24.0 22.9
2 5.5 0.29 0.56 5.62 0.43 12.2 11.2
3 6.0 0.26 0.65 4.85 0.44 11.0 8.34
4 6.5 0.22 0.66 4.26 0.46 9.26 6.45
5 7.0 0.23 0.66 3.77 0.54 6.98 5.13
6 7.5 0.24 0.69 3.44 0.59 5.83 4.19

Table 1. Parameters of primary and parasitic waves in the convergent channel (on a water surface without
surfactant).

30 55 80

x (mm)

12.5

0

–12.5

12.5

0

–12.5

z (
m

m
)

30 55 80

x (mm)

(a) (b)

Figure 11. Parasitic ripples on a 6 Hz wave (a) without and (b) with surfactant. The vertical dimension of the
picture is exaggerated by a factor of two.

ρ is the mass density of water, g is the acceleration of gravity, T is the surface tension
and k is the wavenumber. The steepness of the primary waves, kaparasitic, is calculated
at the instant when the steepness of the first parasitic wave reaches its maximum. The
wavelengths of the parasitic waves, λparasitic, are measured at the mean water level. As the
frequency of the primary wave generated increases, the wavelength of the primary wave is
closer to the wavelength of the parasitic waves. As shown in table 1, the wavelength ratio
of the carrier wave to the first parasitic wave decreases as the frequency of the primary
wave increases. At a certain level, the two waves interact with each other and lead to much
more complicated surfaces. As Longuet-Higgins (1995) wrote: ‘At basic wavelengths less
than approximately 12 cm there may be appreciable interference between the capillary
waves generated at adjacent crests of the basic wave.’ For primary waves greater than
approximately 8 Hz, it is not easy to differentiate the primary wave crests from the parasitic
wave crests. These waves are not presented. It is also shown in table 1 that, for similar
primary wave steepness, the maximum steepness of the parasitic wave increases with the
frequency; in other words, shorter primary waves generate steeper parasitic waves. The
wavelengths of the parasitic waves are of the order of 0.5 cm; thus, they are essentially
pure capillary waves.

As wave breaking was not evident in the convergent waves, another approach was
warranted. Adding surfactant will significantly decrease the surface tension and thus cause
the gravity–capillary wave profiles to more closely resemble those of gravity waves; the
surfactant suppresses the formation of parasitic ripples by reducing the pressure caused
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Figure 12. Wavelengths, λ, of parasitic ripples: predicted and measured. Blue cross: predicted wavelength on
clean water; red cross: predicted wavelength on water with added surfactant; blue square: measured wavelength
on clean water; red square: measured wavelength on water with added surfactant. Error bars are shown for the
measured data.

by surface tension. Figure 11 shows two 6 Hz waves captured at the same location, one
with clean filtered water (figure 11a) and one with surfactant (figure 11b). As can be seen
from the figure, the crest of the wave with surfactant leans further forward, and the first
bulge is further downstream compared with the no-surfactant case. The surface tension
with surfactant is measured to be 34 mN m−1. In this case, a new dispersion relation is
obtained (red curve in figure 10). The parasitic waves in the presence of surfactant are
much shorter than those in the clean water case, and the shorter parasitic waves satisfy
the new dispersion relation. This is verified by experiments shown below. According to
Longuet-Higgins (1995), the parasitic waves are free waves on top of the current generated
by the primary wave, and travel at the same speed as the primary waves in the horizontal
direction. The condition of resonance can be obtained by approximately matching phase
speeds between the longer wave and the shorter capillary wave (Fedorov & Melville
1998). The wavelengths of the parasitic waves vary from the crest to the trough: longer
on the crest and shorter on the trough due to the effect of the underlying current. The
wavelength of the parasitic waves at the mean water level (where the underlying current is
approximately zero in the horizontal direction) is measured, and is compared with those
predicted by the dispersion relation. The results are shown in figure 12. Error bars are
shown for the measurement results in figure 12. Blue crosses represent the data from the
filtered clean water surface (T = 70 mN m−1) and red squares represent data from the
water surface with added surfactant (T = 34 mN m−1). It can be seen in the figure that the
measured wavelengths agree reasonably well with the predicted ones. The wavelengths of
the parasitic waves increase with the primary wave frequency. Figure 12 also shows that
the wavelengths measured in the added surfactant cases agree better with the predicted
ones than those measured in clean water cases, especially for frequencies above 6 Hz.
This is because in the clean water cases, according to the dispersion relation (figure 10,
blue curve), the phase speed near these frequencies is close to the minimum phase speed.
This causes the variation of phase speed to be critical in obtaining the wavelength of
the parasitic waves, and hence the prediction becomes less accurate. In the cases with
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Case 3, λ = 4.85 cm
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Figure 13. Comparison of the wave profiles of the numerical result obtained by Hung & Tsai (2009, figure 9d),
the experimental results in Caulliez (2013, figure 4b) and in the present study. The blue curve shows numerical
results for λ = 5 cm, ka = 0.28; the red curve shows the experimental results for λ = 4.85 cm, ka = 0.26; and
the yellow curve shows experimental results for λ = 6.1 cm, ka = 0.22.

added surfactant, these frequencies are further from the minimum phase speed and so the
prediction is more accurate. Nonlinearity leads to the local resonant condition differing for
different phases of the longer-wave profile. Unlike lower frequencies, the parasitic waves
on a 7 Hz primary wave have a wavelength of the same order as that of the primary wave
itself. This causes significant interactions between parasitic waves and the primary waves.
At higher frequencies, the interaction becomes stronger and the wave surface becomes
irregular; it is difficult then to differentiate the primary waves and the parasitic waves.

Although there are very few experimental results for mechanically generated parasitic
waves in the literature, wind-generated ones and numerical results are available. Figure 13
shows a comparison of the wave profile of the numerical result obtained by Hung
& Tsai (2009), the experimental results in Caulliez (2013) and case 3 in the present
study. Although the wavelength and steepness of the three studies are not identical, the
comparison is still worthwhile as they show similar parasitic wave patterns. Similar to the
experimental ones, in the numerical results, the steepest parasitic wave occurs adjacent to
the primary crest. It should be noted that the present study is conducted in a convergent
channel while most of the studies in the literature are either two-dimensional or in a
rectangular tank.

To compare the wave profiles in detail with the previous findings in the literature,
another definition of parasitic wave steepness, θr, is used. Slope θmax is the maximum slope
of the first parasitic wave profile, θmin is the minimum slope and θr = 0.5(θmax − θmin). A
schematic illustration of the definition of θr is shown in figure 14. Table 2 summarizes
the parasitic wave parameters for several studies. The parameter used in different studies
is not the same; here only the results with the closest wavelength and original steepness
to the present study are compared. The data values cited for Zhang (1995) and Caulliez
(2013) are measured from the wave profiles reported in the literature. It can be seen in
the table that mechanically generated parasitic waves in a rectangular channel have the
smallest θr, while higher wind speed generates greater θr. The parasitic waves generated in
a convergent channel have a similar θr compared with those generated by wind. This is due
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Figure 14. A schematic illustrating the definitions of θr . The steepness of the capillary ripple on the forward
face of the primary wave immediately adjacent to the crest, θr, is defined as θr = 0.5(θmax − θmin), where θmax
and θmin are the maximum and minimum slopes along the ripple surface, respectively.

λprimary kaprimary θr Generation method
(cm)

Zhang (1995) 5 0.25 0.45 Wind (9.7 m s−1)
Fedorov & Melville (1998) 5 0.2 0.10 Mechanical, rectangular
Jiang et al. (1999) 4.72 0.15 0.27 Mechanical, rectangular
Hung & Tsai (2009) 5 0.24 0.33 Numerical
Caulliez (2013) 6.1 0.22 0.30 Wind (5.0 m s−1)
Present 4.85 0.26 0.47 Mechanical, convergent

Table 2. Parameters of primary and parasitic waves in different studies. The data values cited for Zhang
(1995) and Caulliez (2013) are measured from the wave profiles reported in the literature.

to that in the wind-generated cases, energy dissipated by parasitic waves is offset by wind,
while in the convergent channel, the energy density is increased by spatial convergence.

3.2. Vorticity beneath parasitic waves
When parasitic waves form, they perturb the particle velocities, and develop vorticity
beneath the primary waves. The vorticity contributes to primary wave instability and
energy dissipation. In this section, the identification of primary and parasitic wave profiles
was accomplished utilizing the same edge detection algorithm detailed in the previous
section. It is worth noting that the use of dye was not necessary in this section. Rather,
seeding particles were employed in PIV, which have a slightly lower density than water,
resulting in a higher concentration of particles on the free surface relative to the bulk water.
This concentration gradient results in a clear illuminated boundary when the laser sheet
is in operation, as depicted in figures 15–17. The thickness of the illuminated boundary
is influenced by the thickness of the laser sheet and the reflections on the surface. The
efficacy of the edge detection technique in obtaining highly accurate surface profiles has
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Figure 15. Velocity field and vorticity beneath parasitic waves. The inset is an expanded region of the lower
figure. The x and z axes only show the scale, not the exact coordinates. Negative vorticity represents clockwise
rotation.
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Figure 16. Vorticity beneath primary and parasitic waves. The x and z axes only show the scale, not the exact
coordinates.

been demonstrated in the previous section. The lower edge of the illuminated boundary
is established as the air–sea interface, and the velocity field beneath this interface is
computed. Using PIV, the vorticity beneath parasitic waves on a 6 Hz primary wave is
obtained, as shown in figure 15. As can be seen in the figure, high clockwise vorticity
occurs on the crest side of the parasitic trough. This shows that the presence of wind is not
necessary to form the parasitic waves and the vorticity beneath them. The high-vorticity
areas beneath parasitic troughs generate anticlockwise vortices immediately beneath them,
which shows that vorticity diffuses into the interior of the fluid. The vortices observed in
this study are much stronger than the experimental results in Lin & Perlin (2001) and the
numerical results in Mui & Dommermuth (1995) and Hung & Tsai (2009). This is because
the parasitic waves shown in this study are much steeper than those in the previous studies.
Highly vortical regions beneath the primary crest (capillary roller or bore) predicted by
Longuet-Higgins (1992) are not observed. However, the weak vortex in the crest of the
gravity–capillary wave predicted in Mui & Dommermuth (1995) is observed in this study
(see figure 16). The evolution of vorticity for a 6 Hz primary wave is shown in figure 17
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Figure 17. Evolution of vorticity beneath primary and parasitic waves: (a) t = 0 s; (b) t = 0.02 s;
(c) t = 0.04 s; (d) t = 0.06 s.

as the wave propagates. Figure 17(d) is the same time as figure 16. It can be seen that the
vorticity beneath the parasitic waves becomes more intense as the wave propagates into
the convergent area, as does the vortex on the crest. The high-vorticity regions propagate
downstream with the parasitic waves.

3.3. Energy dissipation due to parasitic waves
Parasitic waves are of small scale, which makes them more susceptible to viscous
dissipation. The energy dissipated by parasitic waves comes from the primary waves as
they are the drivers of the motion. According to the numerical simulations by Deike et al.
(2015), the parasitic wave dissipation rate in gravity–capillary waves is comparable to
the spilling and plunger breakers in gravity waves. In Zhang (2002), the dissipation rate
enhanced by parasitic waves was calculated by summing the linear dissipation rate of all
parasitic waves. This may underestimate the dissipation rate in the experiments here as the
parasitic waves are highly nonlinear. Rather, the dissipation rate caused by the parasitic
waves is evaluated by the dissipation function, which can be directly calculated using
the velocity field. The dissipation rate caused by viscosity on a unit volume of fluid in a
two-dimensional flow can be written as

φ = μ

[
2

(
∂u
∂x

)2

+ 2
(

∂w
∂z

)2

+
(

∂u
∂x

+ ∂u
∂z

)2
]

, (3.1)

where μ is the dynamic viscosity of water and u and w are the x- and z-component
velocities, respectively. The wave-height-based Reynolds number is

Re = uH
ν

= 1400. (3.2)

The flow is considered laminar here, and it is reasonable to assume that the flow is
axisymmetric, so that no turbulence dissipation term (from the velocity fluctuation) need
be included. Neglecting the boundary layer effect and the heat transfer on the air–water
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Figure 18. Dissipation function of a 6 Hz wave with parasitic capillary waves.

interface, the mechanical energy dissipation rate is fully represented by (3.1). This study
focuses on the dissipation rate near the free surface; thus the calculation domain is from
the free surface to λ/2 below the surface, where λ is the wavelength. The total dissipation
rate at a given x position is obtained by multiplying the two-dimensional energy dissipation
function φ by the corresponding arc length r(x):

Φ =
∫ η

−(λ/2)

φr(x) dz. (3.3)

Thus Φ represents the depth-integrated energy dissipation rate across the arc per unit
length. At one instant, for a 6 Hz primary wave, the energy dissipation rate along a
wave crest and the parasitic waves is shown in figure 18. In the figure, the x axis is the
distance along the centre laser sheet. It can be seen in the figure that the dissipation rate
reaches its peak directly beneath the first parasitic crest. The wave crest dissipates more
energy than the trough, and the first parasitic wave contributes most of the dissipation.
Thus, it is evident that the presence of parasitic capillary waves significantly increases the
dissipation rate, makes the primary waves more difficult to reach geometric, kinematic
or dynamic breaking onset and hence prevents conventional breaking. The dissipation
function distribution beneath a 6 Hz wave is shown in figure 19. In the figure, φr(x) is
shown for the same instant in figure 18. Rather than integrating over depth, figure 19(a)
shows the dissipation rate distribution over space. To make a better comparison, the wave
profile is shown in figure 19(b). It can be seen in the figure that the majority of dissipation
occurs right beneath the first parasitic wave crest. The dissipation is not significant beneath
a thin surface layer.

In addition to determine the energy dissipation, kinetic and potential energy components
can be obtained using measured wave profiles and velocity fields. The kinetic energy over
half a wavelength can be calculated by

KE = 1
2

∫ η

−(λ/2)

∫ λ/2

0
ρ(u2 + v2)r(x) dx dz, (3.4)
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Figure 19. Dissipation function distribution in space of a 6 Hz wave with parasitic capillary waves.
(a) Dissipation function distribution beneath a 6 Hz wave. (b) Profile of this 6 Hz wave.
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Figure 20. The variation of parasitic wave steepness and the dissipation of total energy in a 6 Hz primary
wave case. Here E0 is the initial total energy of the wave.

where r(x) again is the arc length at a given x position. The potential energy over half a
wavelength is given by

PE =
∫ λ/2

0
ρg

(η + h)2 − h2

2
r(x) dx, (3.5)

where η is the wave elevation and h is the mean water depth.
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(a) (b)

(c) (d )

Figure 21. Overhead shadowgraph view of a time series of spatial images of a breaking 4.5 Hz wave with a
surfactant-laden surface, case 6: (a) t = 0 s; (b) t = 0.06 s; (c) t = 0.12 s; (d) t = 0.18 s.

Obviously, the steepness of the parasitic wave does not increase indefinitely. In the
experiments, it is found that the steepness varies as the wave propagates. Figure 20 presents
the variation of the parasitic wave steepness and dissipation of the total energy (PE + KE)
over half a wavelength; here, the steepness is calculated from the first parasitic wave near
the crest, and the total energy is calculated using (3.4) and (3.5). It can be seen in the figure
that a larger steepness of the parasitic wave leads to a higher dissipation rate, and that the
peaks of the steepness are correlated highly with the large negative slope of the energy
dissipation curve.

4. Micro-breaking of gravity–capillary waves

Herein micro-breaking is defined as breaking of gravity–capillary waves. Although
parasitic waves dissipate a significant amount of energy of the primary waves, in some
cases with reduced surface tension, the primary waves still achieve breaking onset and
subsequent breaking. At the scale of gravity–capillary waves, the breaking is not always
easily visible. Unlike plunging or spilling breakers in gravity waves, micro-breaking does
not produce whitecapping or air entrainment, and therefore does not exhibit acoustic and
other signatures. However, micro-breaking has similar dynamics to regular breaking, such
as changing the wave profile from regular to irregular and dissipating significant amounts
of energy during the breaking process. As the breaking process is subtle, detecting it
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(a) (b)

(c) (d )

Figure 22. Parasitic waves on primary 4.5 Hz wave without surfactant: (a) t = 0 s; (b) t = 0.07 s;
(c) t = 0.14 s; (d) t = 0.21 s.

becomes challenging. In this section, the shadowgraph technique is used to detect wave
breaking on a two-dimensional surface, and both PLIF and PIV are utilized to measure
and analyse the breaking process. In this study, breaking is assumed to occur when the
wave profiles exhibit irregularity in the shadowgraph images. When using PIV, breaking
is assumed when large vorticity is observed.

4.1. Detection and visualization of micro-breaking
Gravity–capillary waves are generated in the convergent channel, with surfactant added,
using the circular wavemaker paddle. The range of the excitation frequency is 4 to 7 Hz.
In the experiments, micro-breaking waves are observed in the middle or near the end of
the convergent channel, depending on the excitation frequency. The signature of breaking
exhibits a dramatic change of the wave profile during the process. It is more obvious in the
shadowgraph images than in the two-dimensional PLIF and PIV images. This is because
when the wave breaks, it rapidly becomes non-axisymmetric, and the information from a
two-dimensional (x, z) measurement becomes limited.

Figure 21 shows the breaking process of a 4.5 Hz wave with added surfactant, captured
by the shadowgraph technique. It can be seen in figure 21(a) that the wave starts with a
clean axisymmetric crest, with some small parasitic waves on the forward crest face. As it
propagates further, due to the convergence, the energy density increases and the wave starts
to steepen and eventually breaks, as shown in figure 21(b). Unlike spilling or plunging
breakers, the breaking process occurs on the rear side of the crest. As the wave propagates
further, the breaking process becomes more obvious (figure 21c), and the rear edge of the

962 A46-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.322


C. Xu and M. Perlin

(a) (b)

(c) (d )

Figure 23. Parasitic waves on a 6 Hz wave without surfactant present: (a) t = 0 s; (b) t = 0.1 s; (c) t = 0.2 s;
(d) t = 0.3 s. Clearly the waves steepen as they propagate and develop a crest-wise instability and phase jumps.
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Figure 24. Wave profile of a breaking 5.5 Hz wave in the presence of surfactant. The vertical dimension of
the images is exaggerated by a factor of two.

crest becomes more and more irregular. The process generates multiple short crests and
becomes three-dimensional (no longer axisymmetric) as can be seen in figure 21(d).

For comparison, 4.5 Hz waves without surfactant are shown in figure 22; the surfactant
significantly suppressed the formation of the parasitic waves. As already mentioned, the
surfactant reduces the surface tension, and hence reduces the pressure force that acts as
a moving source on the surface. With fewer parasitic waves in the case with surfactant
present, less energy is dissipated and the primary wave steepens. The energy dissipates
eventually by micro-breaking. On the other hand, on the water surface without added
surfactant, the parasitic waves dissipate most of the energy, and thus prevent the wave
from breaking.
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Figure 25. Velocity field beneath a breaking 6 Hz wave with surfactant present: (a) t = 0 s, before breaking;
(b) t = 0.05 s, incipient breaking; (c) t = 0.1 s, breaking in progress.

As the waves propagate into a smaller arc in the convergent tank, the parasitic waves
become steeper. This gives rise to nonlinear instabilities of the parasitic waves, and
they depart from axisymmetry, and become three-dimensional. Using shadowgraphs, the
three-dimensional instabilities are observed. Figure 23 shows the evolution of the primary
and parasitic waves under 6 Hz excitation with no surfactant present. It can be seen from
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Figure 26. Dissipation rate (red curve) and vorticity field of a breaking 6 Hz wave.

the figure that, as the wave propagates to a narrower region, the parasitic waves become
obviously steeper. There are approximately seven parasitic wave crests observed on the
forward side of each primary wave crest. Although no breaking is observed, the parasitic
waves still become non-axisymmetric near the end of the tank, and phase shifts can be seen
along a parasitic wave crest. This is caused by nonlinear instabilities of the steep parasitic
waves. More details of this instability could be investigated, but it is beyond the scope of
this investigation.

The PLIF images of the breaking-process evolution of one crest of a 5.5 Hz wave
are shown in figure 24. Surfactant is present so that the wave exhibits micro-breaking.
Figure 24(a) shows a wave crest with some parasitic waves on the forward side. As it
propagates, the crest leans forward, and the wave amplitude decreases. At the first bulge,
the local slope becomes steeper, and eventually the primary wave crest merges into the
parasitic waves (figure 24c). At this point, the wave elevation decreases significantly and
a flattened area can be seen on the crest. Beyond this, a high-vorticity region is generated
under the primary wave crest. This is consistent with the shadowgraph image, where
multiple irregular crests occur on the rear side of the main crest.

4.2. Velocity field and micro-breaking onset
During the breaking process, a high-vorticity region is expected to occur in the vicinity
of the primary wave crest. And, one assumes that the vorticity will be strengthened
and expanded as breaking continues. This is investigated in the experiments using PIV.
A velocity field during the breaking process of a 6 Hz wave is shown in figure 25,
which presents one crest as it propagates. From top to bottom, the waves evolve from
before breaking, to incipient breaking, to active breaking. It can be seen in the figure
that before breaking, the wave profile becomes asymmetric and leans forward (t = 0 s).
When the wave reaches breaking onset, vorticity starts to form under the first parasitic
wave (t = 0.05 s). During the breaking process, increased vorticity is generated and
the surface becomes irregular (t = 0.1 s). The associated vorticity during the breaking
process is quantitatively shown in figure 26, the largest vorticity strength occurring
on the forward side of the crest, where the energy dissipation rate also reaches a
maximum. The vorticity is positive (anticlockwise rotation) close to the interface. A strong
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Figure 27. Evolution of vorticity in the micro-breaking process: (a) t = 0.02 s; (b) t = 0.04 s; (c) t = 0.06 s;
(d) t = 0.08 s.

Reference Wave type Generation Wave frequency (Hz) u/cp

Perlin, He & Bernal (1996) Plunger Dispersive focusing 1.4 0.74
Chang & Liu (1998) Plunger Shallow water 1 0.86
Qiao & Duncan (2001) Spilling Dispersive focusing 1.15–1.42 0.75–0.95
Oh et al. (2005) Spilling Wind 1.6–3 0.75
Na et al. (2020) Spilling Dispersive focusing 0.9 1.1

Table 3. Experimental studies of kinematic breaking onset in the literature.

negative-vorticity (clockwise rotation) region occurs right beneath the positive-vorticity
region. The evolution of vorticity is shown in figure 27. As can be seen in the figure,
vorticity is not observed at t = 0.02 s, while a small area of vorticity can be observed at
t = 0.04 s. The area and intensity of the vorticity continue to grow as the wave propagates.
At t = 0.08 s (figure 27d), the breaking is occurring and large vorticity is observed. The
particle speed in the crest keeps increasing as the wave propagates. The maximum particle
speed is 0.14 m s−1 at t = 0 s, while the maximum particle speed increases to 0.24 m s−1

at t = 0.05 s. Meanwhile, the variation of the phase velocity is very small. At incipient
breaking, the ratio increases to u/cp = 0.78. The kinematic onset of wave breaking has
been widely studied experimentally for gravity waves. However, examination of kinematic
criteria is non-trivial, and the onset is highly dependent on the method of generating the
breaking waves. Table 3 shows some kinematic breaking onsets reported in the literature,
all for gravity waves.

Table 4 shows the parameters for micro-breaking onset recorded in this study. It can
be seen from table 4 that, as the wave shortens, the onset steepness becomes smaller,
but the ratio of particle to phase speed increases. Surface tension plays a significant role
in micro-breaking. The breaking type often depends on the Bond number and the wave
steepness. Although breaking onsets have been studied widely, parameters for breaking
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Case number Frequency Wavelength ka u cp u/cp Bo
(Hz) (cm) (m s−1) (m s−1)

7 4.5 7.85 0.34 0.24 0.35 0.68 51.0
8 5.5 5.37 0.31 0.20 0.29 0.70 23.9
9 6.0 4.58 0.28 0.21 0.27 0.78 17.4

Table 4. Wave parameters at onset of breaking, with added surfactant.
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Kinetic, breaking
Kinetic, parasitic
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Potential, parasitic
Total, breaking
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Calculation domain

Figure 28. Energy evolution of parasitic waves and micro-breaking. Blue curves: waves with surfactant
(breaking); red curves: waves without surfactant (parasitic); solid curves: total energy; dashed curves: kinetic
energy; dotted curves: potential energy.

waves at small scales are virtually absent in the literature. For the same Bond number and
steepness in two-dimensional facilities, only parasitic capillary waves have been presented
in the literature, and no breaking waves have been reported. Thus, the convergent channel
coupled with added surfactant facilitates wave breaking.

4.3. Energy dissipation during micro-breaking
The energy dissipation rate of a breaking 5.5 Hz wave is shown in figure 26. It is obtained
using the same method as described in § 3.3. The maximum dissipation rate appears on the
forward side of the crest where the primary wave crest merges into the parasitic wave. It
can also be seen in figure 26 that the maximum dissipation rate occurs in the vicinity of the
highest vorticity. By comparing the instantaneous dissipation rate of the parasitic waves
and micro-breaking in figures 18 and 26, it can be concluded that the dissipation rate
of micro-breaking is much higher than the dissipation rate of parasitic capillary waves.
After breaking, the wave no longer retains its regular profile and the wave elevation
decreases significantly. In the parasitic wave cases, although parasitic waves dissipate
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0 0.5 1.0 1.5 2.0 2.5

t/T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

E/E0

Kinetic, case 3

Potential, case 3

Total, case 3

Kinetic, Deike et al. (2015)
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Kinetic, Tsai & Hung (2010)
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Figure 29. Energy evolution of waves with parasitic waves. Two numerical studies in the literature and the
present experiments. In Tsai & Hung (2010, figure 1 f,g,h), λ = 5 cm, ka = 0.28 is selected. In Deike et al.
(2015, figure 8e), Bo = 10, ka = 0.3 is selected. Case 3 in this study: Bo = 8.34, λ = 4.85 cm, ka = 0.26.

energy, the primary waves are able to maintain their wave elevation. However, the total
energy dissipated through parasitic waves is comparable to the energy dissipated through
the breaking process. As figures 18 and 26 only show the instantaneous energy dissipation
rate, the parasitic waves persist for the entire propagation, while breaking only occurs for a
shorter period of time. For the breaking cases, due to added surfactant, the parasitic waves
are generally suppressed.

In figure 28, the potential and kinetic energy evolution is shown for waves with parasitic
waves and waves with added surfactant (micro-breaking waves). The data are from the
6 Hz wave experiments (case 3 in table 1 and case 9 in table 4). The energy is calculated
using the wave profile (potential) and velocity field (kinetic); (3.4) and (3.5) are used for
this calculation. Thus the total energy of half of the wavelength is considered (shown
in the figure). The energy evolution of one particular wave segment is calculated by
propagating the calculation domain with the wave, at the phase speed. Here E represents
the instantaneous energy, E0 is the initial total energy and T is the wave period. The initial
energy calculation does not start from the first wave near the wavemaker, but from the
starting point of the laser sheet. Initially, the dissipation rate of the two waves is close,
but by t/T = 0.4, the parasitic waves are dissipating more. However, at approximately
t/T = 0.95, the breaking process starts on the waves with added surfactant, and the
dissipation rate increases significantly, as shown by the solid blue curve. The figure also
shows that the ratio of potential energy and kinetic energy is not 1 : 1 as predicted by linear
theory. In waves with surfactant, where parasitic waves are mostly absent, the initial kinetic
energy contributes approximately 54 % of the total energy while the potential energy
contribution is around 46 %. In the wave without surfactant but with parasitic waves, the
contribution of kinetic energy increases to approximately 60 %, while the potential energy
reduces to 40 %. This is different from the previous studies of waves before and during
spilling or plunging breaking (Lim et al. 2015; Derakhti & Kirby 2016; Na et al. 2020). In
the experiments herein, in a convergent channel, the parasitic waves experience an increase
in the ratio of kinetic energy to total energy.
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Figure 30. Energy evolution of small-scale breaking waves. In Deike et al. (2015, figure 8 f ),
ka = 0.45, Bo = 10 is selected. Case 9 in this study, Bo = 17.4, ka = 0.28 is presented.

Figure 29 shows a comparison of the the kinetic and potential energy evolutions of
parasitic waves in this study with some selected numerical results in the literature. The
numerical results for λ = 5 cm are selected, for comparison with case 3 (λ = 4.85 cm)
in this study. It can be seen in the figure that the dissipation rate in this study is much
higher than those in the numerical results. This is because the steeper parasitic waves
in the convergent channel contribute stronger dissipation. Also, it is noted that in the
numerical results, the ratio of potential and kinetic energy starts at 1. This is because
in the numerical study at t = 0, the parasitic waves are yet to be generated, while in the
experiments, there are already parasitic waves at the beginning of the measurement. Both
numerical and experimental results show higher kinetic energy than potential energy after
the generation of parasitic waves. It might be more suitable to start the numerical results
at around t/T = 1 when comparing with the experimental results. It is also worth noting
that the oscillation modes in the kinetic and potential energy in the numerical results are
not observed in the experiments.

Comparison of energy evolution of small-scale breaking is shown in figure 30. Case 9 in
the present study is compared with numerical results in Deike et al. (2015). In case 9, the
primary wave steepness ka = 0.28. The Bond number Bo = 17.4, while in the case from
Deike et al. (2015), ka = 0.45, Bo = 10. The two cases have similar Bond number, but the
case in Deike et al. (2015) has much higher steepness and was categorized as a spilling
breaker. It can be seen in the figure that the dissipation rate of the experimental results is
close to the numerical one. The kinematic energy remains higher than the potential energy
in both cases.

Two non-dimensional parameters are critical to the breaking pattern of waves: steepness
ka and the Bond number Bo. Deike et al. (2015) showed a wave regime diagram with
boundaries between different types of breaking waves, based on the numerical results. The
figure is replotted here as figure 31. Three micro-breaking cases observed in this study are
added to the diagram, shown as filled blue circles. It is noted that these micro-breaking
cases are beneath the breaking boundary, in the parasitic capillary wave regime. To the
best of the authors’ knowledge, no breaking waves have been reported in this regime
without wind, either numerical or experimental. This is as a consequence that almost
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Figure 31. Wave regime diagram. The boundaries between the wave regimes obtained numerically in Deike
et al. (2015, figure 7). PB: plunging breakers; SB: spilling breakers; PCW: parasitic capillary waves; NB:
non-breaking gravity waves. Blue circles represent micro-breaking cases 7, 8, 9 in this study.

all previous numerical and experimental studies in this regime were conducted either in
two-dimensions or in rectangular tanks, and the subsequent dissipation of parasitic waves
prevented the breaking. Micro-breaking occurs in this study due to the increase of energy
flux caused by spatial convergence.

5. Discussion and concluding remarks

Parasitic waves on gravity–capillary waves are studied experimentally; unlike previous
studies where the waves propagate in a two-dimensional channel, this paper examined the
parasitic waves in a convergent axisymmetric channel. This enables the parasitic waves
to be generated in the absence of wind, and grow to the maximum steepness before
they decay due to viscosity. To the authors’ knowledge, little work has been done on
the experimental study of mechanically generated waves exhibiting parasitic capillaries
since that of Perlin et al. (1993) and Jiang et al. (1999). Both geometric and dynamic
features of the parasitic waves are studied. The wavelength of parasitic waves increases
with the frequency of the primary waves. This is consistent with theoretical prediction. The
parasitic waves become steeper when they propagate along the convergent channel, until
they reach a maximum steepness. Shorter primary waves generate steeper parasitic waves.
The energy dissipation rate increases as the steepness of the parasitic waves grows. For
shorter primary waves, the parasitic waves become longer and interact with the primary
waves. For primary waves above 8 Hz, parasitic waves and primary waves can hardly be
differentiated. A high-vorticity region is observed beneath the trough of each parasitic
wave; the high-vorticity region propagates with the parasitic wave. The instantaneous
dissipation rate of waves is obtained using the viscous dissipation function. The results
demonstrate that the highest dissipation rate occurs under the first parasitic bulge, where
the parasitic wave is the steepest. Although the convergent channel increases the spatial
energy density, the gravity–capillary waves do not break due to the enhanced energy
dissipation of parasitic waves. When the parasitic waves are present, the kinetic energy
in one wavelength is greater than the potential energy. When the parasitic waves are
suppressed by surfactant, the ratio of kinetic energy to potential energy is close to 1 : 1.
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Experiments show that adding surfactant significantly reduces the formation of parasitic
waves, and as a result, the energy is not dissipated sufficiently to prevent the waves
from breaking. Compared with plunging and spilling breakers of gravity waves, the
breaking of gravity–capillary waves does not exhibit air entrainment, and is subtle.
The micro-scale breaking waves are captured using the shadowgraph technique, and
geometric, kinetic and kinematic features are measured using PLIF and PIV. Unlike waves
on surfaces without added surfactant, these waves are almost free of parasitic waves;
thus, the waves steepen and eventually break in the convergent channel. The geometric
and kinematic breaking threshold for micro-breaking in a convergent channel is lower
than the spilling and plunging breaking threshold for two-dimensional gravity waves.
Micro-breaking gravity–capillary waves without wind are basically unexploited in the
literature, both numerical and experimental, and need to be considered when studying
general wave-breaking criteria.
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