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1. Notation and conventions

Let X = (X,MX) be an fs (fine saturated) log scheme; we denote by (fs/X) the category

of fs log schemes over X and by (fs/X)ét (resp., (fs/X)fl, (fs/X)két, or (fs/X)kfl) the
classical étale site (resp., classical flat site, Kummer étale site, or Kummer flat site) on

(fs/X). In order to shorten formulas, we will mostly abbreviate (fs/X)ét (resp., (fs/X)fl,

(fs/X)két, or (fs/X)kfl) as Xét (resp., Xfl, Xkét, or Xkfl). We refer to [7, §2.5] for the
classical étale site and the Kummer étale site, and to [8, Def. 2.3] and [12, §2.1] for the

Kummer flat site. The site (fs/X)fl is an obvious analogue of (fs/X)ét. We have natural

‘forgetful’ maps of sites:

εét : (fs/X)két → (fs/X)ét (1.1)

and

εfl : (fs/X)kfl → (fs/X)fl. (1.2)

We denote by (st/X) the full subcategory of (fs/X) consisting of strict fs log schemes

over X. Note that (st/X) is canonically identified with the category of the schemes over
the underlying scheme of X.

Kato’s multiplicative group (or the log multiplicative group) Gm,log is the sheaf on Xét

defined by Gm,log(U) = Γ(U,Mgp
U ) for any U ∈ (fs/X), where Mgp

U denotes the group
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envelope of the log structure MU of U. The classical étale sheaf Gm,log is also a sheaf on
Xkét and Xkfl (see [12, Cor. 2.22] for a proof).

By convention, for any sheaf of abelian groups F on Xkfl and a subgroup sheaf G of F

on Xkfl, we denote by (F/G)Xfl
the quotient sheaf on Xfl, and F/G denotes the quotient

sheaf on Xkfl. We abbreviate the quotient sheaf Gm,log/Gm on Xkfl as Gm,log.

Let F be a sheaf on Xét (resp., Xfl, Xkét, or Xkfl) and set U ∈ (fs/X); we denote by

Hi
ét(U,F ) (resp., Hi

fl(U,F ), Hi
két(U,F ), or Hi

kfl(U,F )) the ith sheaf cohomology group

of the sheaf F on Xét (resp., Xfl, Xkét, or Xkfl). For a sheaf F on Xfl = (fs/X)fl, the
canonical map (fs/X)fl → (st/X)fl of sites satisfies the conditions from [15, Tag 00XU];

hence by [15, Tag 03YU], the cohomology of the sheaf F on (fs/X)fl can be computed on

the smaller site (st/X)fl. Hence for U ∈ (st/X), we will use the same notation Hi
fl(U,F )

for the cohomology of F on any of the two sites (fs/X)fl and (st/X)fl.

Let G be a group scheme over X and F be a presheaf of abelian groups on (fs/X)

endowed with a G-action. We denote by Hi
X(G,F ) the ith cohomology group of the

G-module F (see [3, Chap. II, §3] for the definition of such cohomology groups). For an

abstract group Γ and a Γ-module N, we denote by Hi(Γ,N) the ith cohomology group

of the Γ-module N.

2. Introduction

According to [6, §0], the notion of log structure is due to L. Illusie and J.-M. Fontaine,
and the theory of log structure is essentially carried out by K. Kato. One merit of log

geometry is that certain nonsmooth morphisms in classical algebraic geometry become

smooth (more precisely, log smooth) in the world of log geometry. There is also the notion
of log étale morphism, as well as the notion of log flat morphism, in log geometry. Using

log étale morphisms (resp., Kummer log étale morphisms), K. Fujiwara, K. Kato, and C.

Nakayama developed a theory of log étale topology (resp., Kummer log étale topology);
see [7] for an overview. Using Kummer log flat morphisms, K. Kato developed a theory

of Kummer log flat topology [8]. We will abbreviate ‘Kummer log étale’ (resp., ‘Kummer

log flat’) simply as ‘Kummer étale’ (resp., ‘Kummer flat’).

In order to understand cohomology theory in the Kummer étale topology (resp.,
Kummer flat topology), one is led to compare the Kummer étale topology (resp., Kummer

flat topology) with the classical étale topology (resp., classical flat topology). The main

topic of this paper is to investigate such comparisons – that is, to investigate the functor
Riεét∗ (resp., Riεfl∗) associated to the map of sites (1.1) (resp., map (1.2)) for i > 0.

2.1. Main results and outline

In the first half of §3.1 we study the higher direct images Riεét∗G for G a smooth

commutative group scheme with connected fibers over the base. The main result is the

following theorem (see also Theorem 3.8):

Theorem 2.1. Let X be a locally Noetherian fs log scheme, G be a smooth commutative

group scheme with connected fibers over the underlying scheme of X, and i be a positive

integer.
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(1) We have

Riεét∗G= lim−→
n

(
Riεét∗G

)
[n] =

⊕
l prime

(
Riεét∗G

)
[l∞],

where
(
Riεét∗G

)
[n] denotes the n-torsion subsheaf of Riεét∗G and

(
Riεét∗G

)
[l∞]

denotes the l-primary part of Riεét∗G for a prime number l.

(2) The l-primary part
(
Riεét∗G

)
[l∞] is supported on the locus where l is invertible.

(3) If n is invertible on X, then

(
Riεét∗G

)
[n] =Riεét∗G[n] =G[n](−i)⊗Z

i∧
(Gm,log/Gm)Xét

.

When the underlying scheme of the base X is over Q, Theorem 2.1 actually gives an

explicit description of Riεét∗G (see Corollary 3.9). When the underlying scheme of the
base X is over a finite field, we also have an explicit description of Riεét∗G (see Corollary

3.10).

In the second half of §3.1 we study the first higher direct image R1εfl∗G for G a smooth
commutative group scheme over the base. The main result is the following theorem (see

also Theorem 3.14):

Theorem 2.2. Let X be a locally Noetherian fs log scheme, and let G be either a finite flat

group scheme over the underlying scheme of X or a smooth commutative group scheme

over the underlying scheme of X. We endow G with the induced log structure from X.

Then we have

R1εfl∗G= lim−→
n

HomX(Z/nZ(1),G)⊗Z (Gm,log/Gm)Xfl
.

In §3.2 we mainly study the second higher direct image R2εfl∗G for a torus G over the
base. The main result is the following theorem (see also Theorem 3.23):

Theorem 2.3. Let X be a locally Noetherian fs log scheme and let G be a torus over the
underlying scheme of X.

(1) We have

R2εfl∗G= lim−→
n

(
R2εfl∗G

)
[n] =

⊕
l prime

(
R2εfl∗G

)
[l∞],

where
(
R2εfl∗G

)
[n] denotes the n-torsion subsheaf of R2εfl∗G and

(
R2εfl∗G

)
[l∞]

denotes the l-primary part of R2εfl∗G for a prime number l.

(2) We have
(
R2εfl∗G

)
[n] =R2εfl∗G[n].

(3) The l-primary part
(
R2εfl∗G

)
[l∞] is supported on the locus where l is invertible.

(4) If n is invertible on X, then

(
R2εfl∗G

)
[n] =R2εfl∗G[n] =G[n](−2)⊗Z

2∧
(Gm,log/Gm)Xfl

.

https://doi.org/10.1017/S1474748021000359 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000359


1090 H. Zhao

When the underlying scheme of X is a Q-scheme or an Fq-scheme for a finite field Fq,
Theorem 2.3 can be strengthened to give an explicit description of R2εfl∗G (see Corollaries

3.24 and 3.25, respectively).

Another case in which we have an explicit description of R2εfl∗G is related to log
structure. Let Y ∈ (fs/X) be such that the ranks of the stalks of the étale sheaf MY /O×

Y

are at most 1, and let (st/Y ) be the full subcategory of (fs/X) consisting of strict fs

log schemes over Y. Then the restriction of R2εfl∗G to (st/Y ) is zero (here G is as in

Theorem 2.3).
Theorem 2.3 can also be slightly generalized to include a certain class of unipotent

group schemes (see Theorem 3.26).

In §4 we investigate the higher direct image of Kato’s logarithmic multiplicative group
Gm,log. The main result is the following theorem (see also Theorem 4.1):

Theorem 2.4. Let X be an fs log scheme with its underlying scheme locally Noetherian.
Then we have the following:

(1) Rrεfl∗Gm,log = 0 (resp., Rrεét∗Gm,log = 0) for r ≥ 1.

(2) The canonical map Rrεfl∗Gm → Rrεfl∗Gm,log (resp., Rrεét∗Gm → Rrεét∗Gm,log) is

an isomorphism for r ≥ 2.

By Theorem 2.2, we have R1εfl∗Gm = Q/Z⊗Z (Gm,log/Gm)Xfl
. Theorem 2.1 gives a

description of R1εét∗Gm. In contrast to Theorem 2.4(2), the canonical maps R1εfl∗Gm →
R1εfl∗Gm,log and R1εét∗Gm → R1εét∗Gm,log are not isomorphisms in general, by the

following theorem of Kato [8, Cor. 5.2]:

Theorem 2.5 (Kato). Let X be an fs log scheme with its underlying scheme locally

Noetherian. Then we have R1εfl∗Gm,log = 0 and R1εét∗Gm,log = 0.

In §5 we apply the previous results to compute Hi
kfl(X,Gm) for i= 1,2 in the following

two cases:

(1) R is a discrete valuation ring with finite residue field and X =SpecR endowed with

the canonical log structure associated to its closed point.

(2) K is either a number field or a function field. When K is a number field, X is the
spectrum of the ring of integers of K. When K is a function field, X is the unique

smooth projective curve associated to K. Let S be a finite set of closed points of X,

U :=X−S, and j : U ↪→X. We endow X with the log structure j∗O×
U ∩OX →OX .

2.2. History

As we have already stated, the Kummer flat topology was introduced by K. Kato in
[8]. The comparison between the Kummer flat topology and the classical flat topology is

initiated there. In fact, our Theorem 2.2 is a generalization of [8, Thm. 4.1] from smooth

affine commutative group schemes to smooth commutative group schemes. Theorem 2.5 is
also from [8, Cor. 5.2]. We would like to point out that [8] was started around 1991 and was

circulated as an incomplete preprint for a long time – until 2019. The comparison results

there have been reproduced by Nizio�l in [12], with proofs. Besides [8], the only existing
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comparison theorem between the Kummer log topologies and the classical topologies is
the following one from [9]:

Theorem 2.6 (Kato and Nakayama). Let X be an fs log scheme and F be a sheaf of

abelian groups on (fs/X)ét such that

F =
⋃

n : invertible on X

Ker
(
F

n−→ F
)
.

Then the cup product induces an isomorphism

F (−q)⊗Z

q∧
(Gm,log/Gm)Xét

→Rqεét∗ε
∗
étF

for any q ≥ 0, where (−q) denotes the Tate twist.

2.3. Ideas of the proofs

As happens very often in cohomological comparison, Čech cohomology is a key tool for
the proofs of the comparison results in this article.

For Theorem 2.1 (resp., Theorem 2.3), we first prove that Riεét∗G (resp., R2εfl∗G)

is torsion and that Ri−1εét∗G (resp., R1εfl∗G) is divisible. If n is invertible on the base
(resp., n is arbitrary), we have a short exact sequence 0→G[n]→G

n−→G→ 0 on (fs/X)két
(resp., (fs/X)kfl). This short exact sequence further gives rise to a short exact sequence

0→Ri−1εét∗G⊗ZZ/nZ→Riεét∗G[n]→
(
Riεét∗G

)
[n]→ 0

(resp., 0→R1εfl∗G⊗ZZ/nZ→R2εfl∗G[n]→
(
R2εfl∗G

)
[n]→ 0).

Then we are reduced to investigating Riεét∗G[n] (resp., R2εfl∗G[n]). Clearly the sheaf

Riεét∗G[n] can be explicitly described via Theorem 2.6. And actually, the sheaf R1εfl∗G[n]

can be well understood via Theorem 2.6 with some effort (see Corollary 3.21). Theorem
2.1(2) and Theorem 2.3(3) are reduced to local computations (see Corollary 3.6 and

Lemma 3.20(3)).

The proof of Theorem 2.2 is a modification of that of [8, Thm. 4.1], which is the affine

case of Theorem 2.2. Kato first constructs a canonical homomorphism

lim−→
n

HomX(Z/nZ(1),G)⊗Z (Gm,log/Gm)Xfl
→R1εfl∗G. (2.1)

Then it suffices to show that this homomorphism is actually an isomorphism. One is

reduced to checking this for X = SpecA such that A is a Noetherian strictly Henselian
local ring and X admits a chart P →MX with P an fs monoid such that the canonical map

P
∼=−→MX,x/O×

X,x is an isomorphism, where x denotes the closed point of X. Therefore

one is led to the computation of H1
kfl(X,G) in this case. For any positive integer m, we

define

Xm :=X×SpecZ[P ] SpecZ
[
P 1/m

]
(2.2)

endowed with the canonical log structure coming from P 1/m, where P 1/m is a monoid

endowed with a homomorphism P → P 1/m which can be identified with P
m−→ P . We get
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a Kummer flat cover Xm → X, which is also a Kummer étale cover if m is coprime to
the characteristic of the residue field of A. It is shown in [8, Lem. 4.6] and its proof that

H1
kfl(X,G) = Ȟ1

kfl(X,G) = lim−→
m

Ȟ1
kfl(Xm/X,G) = lim−→

m

H1 (CG,m),

where CG,m is the Čech complex for the cover Xm →X with coefficients in G. In order

to show that formula (2.1) is an isomorphism, one is reduced to showing that

HomX(Z/nZ(1),G)⊗ZP
gp →H1 (CG,n) (2.3)

is an isomorphism for each positive integer n (see [8, §4.9] for the details of the reduction).
For this, Kato first deals with the case where A is complete [8, Prop. 4.10]. The proof

of [8, Prop. 4.10] is first given in the Artinian case in [8, §4.11], then achieved in general

by passing to the limit in [8, §4.13]. The proof of our formula (2.3) in the general case is
reduced to the complete case by descent, which requires the condition that G is affine. In

this article we have the following key lemma (see also Lemma 3.12), which reduces the

computation of Ȟ1
kfl(Xm/X,G) directly to the Artinian case, so that we can remove the

condition that G is affine:

Lemma 2.7 (Key lemma). Let X be an fs log scheme whose underlying scheme is SpecA

with A a Noetherian strictly Henselian local ring, and let x be the closed point of X. Let

P →MX be a chart of X with P an fs monoid such that the induced map P
∼=−→MX,x/O×

X,x

is an isomorphism. Let Xm be as constructed in formula (2.2). We regard x as an fs log

scheme with respect to the induced log structure, and xm :=Xm×X x. Let ? be either kfl

or két; then the canonical map

Ȟi
?(Xm/X,G)→ Ȟi

?(xm/x,G)

is an isomorphism for all i > 0.

Finally, we briefly discuss the proof of Theorem 2.4. The second part of the theorem

clearly follows from the first part. And the first part – that is, the vanishings of

Rrεfl∗Gm,log and Rrεét∗Gm,log for r ≥ 1 – follows from the vanishings of Hr
kfl

(
X,Gm,log

)
and Hr

két

(
X,Gm,log

)
, with X having its underlying scheme the spectrum of a Noetherian

strictly Henselian local ring. The latter are given by explicit computations of Čech

cohomology (see Theorem 4.1 and Lemma 4.2).

3. The higher direct images for smooth commutative group schemes

In this section we investigate the higher direct images under εfl and εét for smooth

commutative group schemes. We deal with the case of εét in the first subsection, and

the case of εfl in the second subsection. In the Kummer étale case, we have more tools
at hand and can get results for Riεét∗G for i ≥ 2 and G a smooth commutative group

scheme with connected fibers over the base. In the Kummer flat case, we have only results

for R2εfl∗ for certain smooth commutative group schemes.
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3.1. Kummer étale case

In this subsection we study the higher direct image Riεét∗G along the forgetful map

εét : (fs/X)két → (fs/X)ét, where i ≥ 2 and G is a smooth commutative group scheme

with connected fibers over X regarded as a sheaf on (fs/X)két.

In order to understand Riεét∗G, we need to compute Hi
két(X,G) first, for the case where

X has its underlying scheme SpecA with A a Noetherian strictly Henselian ring. We will

make heavy use of Čech cohomology, for which we often refer to [10, Chap. III].

The following proposition is an analogue of [10, Chap. III, Prop. 2.9]:

Proposition 3.1. Let ? be either fl or ét. Let X be an fs log scheme and F be a sheaf on

(fs/X)k?. Let H
i
k?(F ) be the presheaf U �→Hi

k?(U,F ) for U ∈ (fs/X). Then we have that

the 0th Čech cohomology group Ȟ0
k?

(
U,Hi

k?(F )
)
vanishes for i > 0 and all U ∈ (fs/X).

Proof. The proof of [10, Chap. III, Prop. 2.9] is purely formal, and it also works here.

The following corollary is an analogue of [10, Chap. III, Cor. 2.10]:

Corollary 3.2. Let ?, X, F, and U be as in Proposition 3.1. Then the Čech cohomology
to derived functor cohomology spectral sequence

Ȟi
k?

(
U,Hj

k?(F )
)
⇒Hi+j

k? (U,F )

induces isomorphisms

Ȟi
k?(U,F )

∼=−→Hi
k?(U,F )

for i= 0,1, and an exact sequence

0→ Ȟ2
k?(U,F )→H2

k?(U,F )→ Ȟ1
k?

(
U,H1

k?(F )
)
→ Ȟ3

k?(U,F )→H3
k?(U,F ).

Proof. The results follow from Proposition 3.1.

Corollary 3.3. Let X = SpecA be an fs log scheme with A a Noetherian strictly

Henselian local ring, x the closed point of X, p the characteristic of the residue field

of A, and F a sheaf on (fs/X)két. Let P
α−→MX be a chart of the log structure of X with

P an fs monoid, such that the induced map P → MX,x/O×
X,x is an isomorphism. For

any positive integer m, we define Xm to be the fs log scheme X×SpecZ[P ] SpecZ
[
P 1/m

]
endowed with the canonical log structure coming from P 1/m, where P 1/m is a monoid

endowed with a homomorphism P → P 1/m which can be identified with P
m−→ P . We get

a Kummer flat cover fm :Xm →X, which is also a Kummer étale cover if m is coprime

to p.
Set γ ∈ Hi

két(X,F ); then there exists a positive integer n with (n,p) = 1 such that γ

maps to zero in Hi
két(Xn,F ) along fn :Xn →X.

Proof. By Proposition 3.1, there exists a Kummer étale cover{
Yi

gi−→X
}
i∈I
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such that g∗i (γ) = 0 for each i ∈ I. Let i0 be such that gi0 (Yi0) contains the closed point

of X. By [12, Prop. 2.15], there exists a commutative diagram

Z
h ��

g

��

Xn

fn

��

Yi0

gi0 �� X

such that the image of gi0 ◦ g contains the closed point of X, g is Kummer étale, n

is a positive integer which is invertible on X, and h is classically étale. Then we have

h∗f∗
nγ = g∗g∗i0γ =0. Since h is classically étale and the underlying scheme of Xn is strictly

Henselian local, h has a section s. It follows that

f∗
nγ = s∗h∗ (f∗

nγ) = s∗0 = 0.

Corollary 3.4. Let the notation and the assumptions be as in Corollary 3.3. Then we

have

Hi
két(X,F )∼= lim−→

n

ker

(
Hi

két(X,F )
f∗
n−→Hi

két(Xn,F )

)
.

Proof. This follows from Corollary 3.3.

Proposition 3.5. Let the notation and the assumptions be as in Corollary 3.3. We

further define N′ := {n ∈ N | (n,p) = 1}.

(1) The family XN := {Xn → X}n≥1 (resp., XN′ := {Xn → X}n∈N′) of Kummer flat

covers (resp., Kummer étale covers) of X satisfies condition (L3) from [1, §2],
whence we have a spectral sequence

Ȟi
kfl

(
XN,H

j
kfl(F )

)
⇒Hi+j

kfl (X,F ) (resp., Ȟi
két

(
XN′,Hj

két(F )
)
⇒Hi+j

két (X,F )),

(3.1)

where

Ȟi
kfl(XN,F ) := lim−→

n∈N

Ȟi
kfl(Xn/X,F )

and

Ȟi
két(XN′,F ) := lim−→

n∈N′
Ȟi

két(Xn/X,F ).

(2) We have Ȟ0
két

(
XN′,Hj

két(F )
)
= 0 for any j > 0.
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Proof. Part (1) follows from [1, Chap. II, Sec. 3, (3.3)].

Part (2) follows from Corollary 3.3. Indeed, we have

Ȟ0
két

(
XN′,Hj

két(F )
)
↪→ lim−→

n∈N′
Hj

két(Xn,F ),

and the latter vanishes by Corollary 3.3.

Corollary 3.6. Let the notation and the assumptions be as in Corollary 3.3. Then the

groups Hi
két(X,F ) are torsion and p-torsion-free for all i > 0.

Proof. By the Kummer étale spectral sequence from formula (3.1) and Proposition

3.5(2), it suffices to show that the groups lim−→n∈N′ Ȟ
i
két

(
Xn/X,Hj

két(F )
)
are torsion and

p-torsion-free for all i > 0 and j ≥ 0. Define Hn := SpecZ
[(
P 1/n

)gp
/P gp

]
, which is a

group scheme over SpecZ such that

Xn×X Xn =Xn×SpecZHn

(see [12, the second paragraph on p522] for more detailed descriptions of Hn). Regarded

as a group scheme over X, Hn is constant; Xn is a Galois cover of X with Galois group

Hn. By [10, Example 2.6], we have

Ȟi
két

(
Xn/X,Hj

két(F )
)
=Hi

(
Hn,H

j
két(Xn,F )

)
,

which is torsion and p-torsion-free for i > 0. This finishes the proof.

Corollary 3.7. Let X be a locally Noetherian fs log scheme and F be a sheaf on (fs/X)két.
Then the sheaves Riεét∗F are torsion for i > 0.

Proof. This follows from Corollary 3.6.

Theorem 3.8. Let X be a locally Noetherian fs log scheme, G be a smooth commutative

group scheme with connected fibers over the underlying scheme of X, and i be a positive
integer.

(1) We have

Riεét∗G= lim−→
n

(
Riεét∗G

)
[n] =

⊕
l prime

(
Riεét∗G

)
[l∞],

where
(
Riεét∗G

)
[n] denotes the n-torsion subsheaf of Riεét∗G and

(
Riεét∗G

)
[l∞]

denotes the l-primary part of Riεét∗G for a prime number l.

(2) The l-primary part
(
Riεét∗G

)
[l∞] is supported on the locus where l is invertible.

(3) If n is invertible on X, then

(
Riεét∗G

)
[n] =Riεét∗G[n] =G[n](−i)⊗Z

i∧
(Gm,log/Gm)Xét

.

Proof. Part (1) follows from Corollary 3.7.

Part (2) follows from Corollary 3.6.
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We are left with part (3). Since n is invertible on X, the sequence

0→G[n]→G
n−→G→ 0 (3.2)

is a short exact sequence of sheaves of abelian groups for the classical flat topology and
G[n] is quasi-finite and étale. Indeed, if X is a point, then by the structure theorem of

connected algebraic groups [2, Thm. 2.3, Thm. 2.4], we are reduced to checking the cases

where G is a torus, a connected unipotent group, or an abelian variety, which are all
clearly true. In general, it suffices to show that G

n−→G is an epimorphism for the classical

flat topology. This is clear, since it is set-theoretically surjective and flat by the fiberwise

criterion of flatness, and therefore it is faithfully flat. Moreover, G[n] being étale over X
implies that G

n−→G is even an epimorphism for the classical étale topology, and thus the

sequence (3.2) is also exact for the classical étale topology. Since the pullback functor ε∗ét
is exact, the sequence (3.2) remains exact on (fs/X)két and induces a long exact sequence

→Ri−1εét∗G
n−→Ri−1εét∗G→Riεét∗G[n]→Riεét∗G

n−→Riεét∗G.

This further induces a short exact sequence

0→Ri−1εét∗G⊗ZZ/nZ→Riεét∗G[n]→
(
Riεét∗G

)
[n]→ 0

for each i > 0. We have Riεét∗G[n] =G[n](−i)⊗Z

∧i
(Gm,log/Gm)Xét

by Theorem 2.6. To

finish the proof, it suffices to prove that the sheaf Ri−1εét∗G is n-divisible. We proceed
by induction. For i = 1, this is clear, since G

n−→ G is an epimorphism of sheaves of

abelian groups for the classical étale topology. Assume Rjεét∗G is n-divisible; then we

have Rj+1εét∗G[n]
∼=−→
(
Rj+1εét∗G

)
[n]. Therefore

lim−→
r

(
Rj+1εét∗G

)
[nr] = lim−→

r

Rj+1εét∗G[nr]

= lim−→
r

G[nr](−j−1)⊗Z

j+1∧
(Gm,log/Gm)Xét

,

where the second equality follows from Theorem 2.6. Hence lim−→r

(
Rj+1εét∗G

)
[nr] is

n-divisible. It follows by part (1) that Rj+1εét∗G is n-divisible. This finishes the
induction.

Corollary 3.9. Let X be a locally Noetherian fs log scheme such that the underlying
scheme of X is a Q-scheme, and G be a smooth commutative group scheme with connected

fibers over the underlying scheme of X. Then we have

Riεét,∗G= lim−→
n

G[n](−i)⊗Z

i∧
(Gm,log/Gm)Xét

.

Proof. This follows from Theorem 3.8.

Corollary 3.10. Let p be a prime number. Let X be a locally Noetherian fs log scheme

such that the underlying scheme of X is an Fp-scheme, and G be a smooth commutative
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group scheme with connected fibers over the underlying scheme of X. Then we have

Riεét∗G= lim−→
(n,p)=1

G[n](−i)⊗Z

i∧
(Gm,log/Gm)Xét

.

Proof. This follows from Theorem 3.8.

Now we are going to generalize Kato’s description of R1εfl∗G [8, Thm. 4.1] from smooth
affine group schemes to smooth group schemes. The following lemma is analogous to [10,

Proof of Thm. III.3.9, Step 2 plus Rmk. 3.11 (b)]:

Lemma 3.11. Let X be a locally Noetherian fs log scheme endowed with a chart P →
MX with P an fs monoid satisfying P× = 1, and G be a smooth commutative group
scheme over X endowed with the induced log structure from X. For a positive integer

m, we define P 1/m and fm :Xm →X as in Corollary 3.3. Let Hm be the group scheme

SpecZ
[(
P 1/m

)gp
/P gp

]
over SpecZ; then we have that the (r+1)-fold product Xm×X

· · ·×X Xm is isomorphic to Xm×SpecZH
r
m, where Hr

m denotes the r-fold product of Hm

over SpecZ.
We define C ·(G) to be the complex of functors Ci(G) : (st/X) → Ab such that for

any Y ∈ (st/X), C ·(G)(Y ) is the Čech complex C ·(Ym/Y ,G) for the Kummer flat cover

Ym := Y ×X Xm → Y . Write Zi(G) for the functor

(st/X)→Ab,Y �→ ker
(
di : Ci(Ym/Y ,G)→ Ci+1(Ym/Y ,G)

)
.

Then di−1 : Ci−1(G)→ Zi(G) is representable by a smooth morphism of algebraic spaces
over X for i≥ 1.

Proof. By definition, Ci(G) is the functor

(st/X)→Ab,Y �→G(Ym×Y · · ·×Y Ym) =G
(
Y ×X Xm×SpecZH

i
m

)
;

that is, it is π̊∗G, where π denotes the map Xm ×SpecZ H
i
m → X and π̊ denotes the

underlying map of schemes of π. Since π̊ is clearly finite and faithful flat, Ci(G) is
therefore represented by the Weil restriction of scalars of G×X

(
Xm×SpecZH

i
m

)
, which

is representable by a group algebraic space by [10, Chap. V, 1.4 (a)]. Hence the functor

Zi(G), as the kernel of a map di : Ci(G)→ Ci+1(G) of group algebraic spaces over X, is
representable by a group algebraic space over X.

Now we prove the smoothness of di−1 : Ci−1(G)→ Zi(G). It suffices to show that for

any affine X -scheme T, closed subscheme T0 of T defined by an ideal I of square zero,
and z ∈Zi(G)(T ) whose image z0 in Zi(G)(T0) arises from an element c0 ∈Ci−1(G)(T0),

there exists c ∈ Ci−1(G)(T ) such that c maps to c0. Let N be the functor

(Sch/T )→Ab,Y �→ ker(G(Y )→G(Y ×T T0)).
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Let C ·(Tm/T,N) be the Čech complex for the Kummer flat cover Tm := T ×X Xm → T

with coefficients in N. Then we have the following commutative diagram with exact rows:

0 �� Ci−1(Tm/T,N) ��

��

Ci−1(G)(T ) ��

��

Ci−1(G)(T0)

��

�� 0

0 �� Ci(Tm/T,N) ��

��

Ci(G)(T ) ��

��

Ci(G)(T0)

��

�� 0

0 �� Ci+1(Tm/T,N) �� Ci+1(G)(T ) �� Ci+1(G)(T0) �� 0,

where the exactness property at the right-hand side follows from the smoothness of G.

Let Zi(Tm/T,N) be the kernel of

Ci(Tm/T,N)→ Ci+1(Tm/T,N);

then the diagram induces the following commutative diagram with exact rows:

0 �� Ci−1(Tm/T,N) ��

��

Ci−1(G)(T ) ��

��

Ci−1(G)(T0)

��

�� 0

0 �� Zi(Tm/T,N) �� Zi(G)(T ) �� Zi(G)(T0).

By an easy diagram chasing, for the existence of c it suffices to show that the map

Ci−1(Tm/T,N)→ Zi(Tm/T,N) is surjective – that is, that Ȟi(Tm/T,N) = 0, i≥ 1.

To finish the proof, we compute Ȟi(Tm/T,N) for i≥ 1. Let Ñ be the functor

(Sch/T )→Ab,U �→N(U ×T Tm).

Since Tm×T Tm
∼= Tm×Hm, the group scheme Hm acts on the functor Ñ , and the Čech

complex C ·(Tm/T,N) can be identified with the standard complex C ·
(
Hm,Ñ

)
computing

the cohomology of the Hm-module Ñ . We claim that Ñ is coherent; then the vanishing

of Ȟi(Tm/T,N) follows from Hm being diagonalizable by [4, Exposé I, Thm. 5.3.3]. For

any U ∈ (Sch/T ), the smoothness of G implies that

Ñ(U) =N(U ×T Tm) = ker(G(U ×T Tm)→G(U ×T Tm×T T0))

= Lie(G)⊗Γ(T,OT ) Γ(Tm,IOTm
)⊗Γ(T,OT ) Γ(U,OU ).

Therefore Ñ is coherent.

The following lemma is analogous to [10, Proof of Thm. III.3.9, Step 3 plus Rmk. 3.11

(b)]:

Lemma 3.12 (Key lemma). Let X,Xm,fm,P,P 1/m be as in Lemma 3.11. We further
assume that the underlying scheme of X is SpecA with A a Henselian local ring, and let

x be the closed point of X. We regard x as an fs log scheme with respect to the induced

log structure, and xm := x×SpecZ[P ] SpecZ
[
P 1/m

]
is obviously identified with Xm×X x
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canonically. Let ? be either kfl or két; then the canonical map

Ȟi
?(Xm/X,G)→ Ȟi

?(xm/x,G)

is an isomorphism for all i > 0.

Proof. Since G is smooth and Xm×X · · ·×X Xm
∼=Xm×SpecZH

r
m is a disjoint union of

spectra of Henselian local rings, the maps

Ci(Xm/X,G)→ Ci(xm/x,G)

are surjective by [10, Chap. I, 4.13]. Thus we are reduced to showing that the complex

ker(C ·(Xm/X,G)→ C ·(xm/x,G)) is exact. Let

z ∈ ker

(
Ci(Xm/X,G)

di

−→ Ci+1(Xm/X,G)

)
have image z0 = 0 in Ci(xm/x,G). We seek a c ∈ Ci−1(Xm/X,G) with c0 = 0 such that

di−1(c) = z. By Lemma 3.11 we know that
(
di−1

)−1
(z) is representable by a smooth

scheme over X. But
(
di−1

)−1
(z) has a section over x, namely the zero section, and as X

is Henselian, this lifts to a section of
(
di−1

)−1
(z) over X. This finishes the proof.

With the help of Lemma 3.12, we can give a slightly different proof of Kato’s theorem ([8,

Thm. 4.1]), which describes R1εfl∗G for a smooth affine group scheme G. This alternative

proof allows us to remove the affinity condition on G from [8, Thm. 4.1 (ii)].

Theorem 3.13. Let X = SpecA be an fs log scheme with A a Noetherian strictly

Henselian local ring, x the closed point of X, and p the characteristic of the residue

field of A, and fix a chart P →MX satisfying P ∼=MX,x/O×
X,x. Let ? be either fl or ét,

let ε? : (fs/X)k? → (fs/X)? be the canonical ‘forgetful’ map of sites, and let G be a smooth

commutative group scheme over X endowed with the log structure induced from X. Then

we have canonical isomorphisms

H1
k?(X,G)∼= Ȟ1

k?(X,G)∼=
{
lim−→(n,p)=1

HomX(Z/nZ(1),G)⊗ZP
gp if ? = ét,

lim−→n
HomX(Z/nZ(1),G)⊗ZP

gp if ? = fl.

Proof. In the proof of [12, Prop. 3.13], the affineness of G is only used in the paragraph
before [12, Cor. 3.17]. Its use is to extend from the complete local case [12, Lem. 3.15]) to

the Henselian local case. Note that the proof of [12, Lem. 3.15] deals with the Artinian

local case first, then passes to the complete local case. With the help of Lemma 3.12, we
can pass from the Artinian local case directly to the Henselian local case, and hence no

affineness of G is needed.

Theorem 3.14. Let X be a locally Noetherian fs log scheme and G be either a finite flat
group scheme over the underlying scheme of X or a smooth commutative group scheme

over the underlying scheme of X. We endow G with the induced log structure from X.

Then we have

R1εfl∗G= lim−→
n

HomX(Z/nZ(1),G)⊗Z (Gm,log/Gm)Xfl
.
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Proof. The statement for the finite flat case is the same as in [8, Thm. 4.1]. We only

need to deal with the other case, which follows from Theorem 3.13 in the same way as

[12, Thm. 3.12] follows from [12, Prop. 3.13].

The following proposition about H1
k?(X,G) will be used in next subsection:

Proposition 3.15. Let the notation and the assumptions be as in Theorem 3.13. Then

we have lim−→n
H1

kfl(Xn,G) = 0 and lim−→(n,p)=1
H1

két(Xn,G) = 0.

Proof. We prove only lim−→n
H1

kfl(Xn,G) = 0; the other statement can be proven in the

same way. By Theorem 3.13, we have

H1
kfl(Xn,G)∼= lim−→

r

HomXn
(Z/rZ(1),G)⊗Z

(
P 1/n

)gp
for each n> 0. As n varies, these isomorphisms fit into commutative diagrams of the form

H1
kfl(Xn,G) ��

∼=
��

H1
kfl(Xmn,G)

∼=
��

lim−→
r

HomXn
(Z/rZ(1),G)⊗Z

(
P 1/n

)gp
�� lim−→

r

HomXmn
(Z/rZ(1),G)⊗Z

(
P 1/mn

)gp
,

with the second row induced by the canonical inclusion P 1/n ↪→ P 1/mn. The group

HomXn
(Z/rZ(1),G) is clearly torsion, and thus it follows that

lim−→
n

H1
kfl(Xn,G) = lim−→

n

lim−→
r

HomXn
(Z/rZ(1),G)⊗Z

(
P 1/n

)gp
= 0.

3.2. Kummer flat case

Throughout this subsection, X is an fs log scheme with its underlying scheme locally

Noetherian and G is a smooth commutative group scheme over the underlying scheme of

X. We are going to investigate the second higher direct image R2εfl∗G along the forgetful

map εfl : (fs/X)kfl → (fs/X)fl. We have a satisfactory result in the important case where
G is a torus (as well as in a slightly more general case). The reason we can deal with

Riεfl∗G only for i = 2 and G a suitable group scheme (mainly tori) is that we are only

able to do computations of higher (i > 1) group scheme cohomology in this case.
The following proposition is the counterpart of Corollary 3.3 in the Kummer flat

topology, but only for i= 2 and F =G for a smooth commutative group scheme G :

Proposition 3.16. Let X,x,A,p,P,Xm, and fm be as in Corollary 3.3. Let G be a smooth
commutative group scheme over the underlying scheme of X.

Let γ ∈ H2
kfl(X,G); then there exists a positive integer n such that γ maps to zero in

H2
kfl(Xn,G) along fn :Xn →X.

Proof. By Proposition 3.1, we can find a Kummer flat cover T →X such that γ dies in

H2
kfl(T,G). By [12, Cor. 2.16] we may assume that for some n, we have a factorization

T → Xn → X with T → Xn a classical flat cover. It follows that the class γ on Xn is
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trivialized by a classical flat cover – that is, γ ∈ ker
(
H2

kfl(Xn,G)→H0
fl

(
Xn,R

2εfl∗G
))
.

The seven-term exact sequence of the spectral sequence Hi
fl

(
Xn,R

jεfl∗G
)
⇒Hi+j

kfl (Xn,G)
gives an exact sequence

· · · →H2
fl(Xn,G)→ ker

(
H2

kfl(Xn,G)→H0
fl

(
Xn,R

2εfl∗G
))

→H1
fl

(
Xn,R

1εfl∗G
)
.

Hence, to show that γ = 0 in H2
kfl(Xn,G), it suffices to show that H2

fl(Xn,G) =
H1

fl

(
Xn,R

1εfl∗G
)
= 0.

Since G is smooth and A is strictly Henselian, we have

H2
fl(Xn,G) =H2

ét(Xn,G) = 0.

We have R1εfl∗G = lim−→m
HomXn

(Z/mZ(1),G)⊗ (Gm,log/Gm)Xn,fl
by Theorem 3.14.

By Lemma A.1, the sheaf HomXn
(Z/mZ(1),G) is representable by a quasi-finite étale

separated group scheme over Xn. It follows that

H1
fl

(
Xn,R

1εfl∗G
)
=H1

fl

(
Xn, lim−→

m

HomXn
(Z/mZ(1),G)⊗ (Gm,log/Gm)Xn,fl

)

= lim−→
m

H1
fl

(
Xn,HomXn

(Z/mZ(1),G)⊗ (Gm,log/Gm)Xn,fl

)
= lim−→

m

H1
fl

(
Xn,θ

∗
(
HomXn

(Z/mZ(1),G)⊗Z (Gm,log/Gm)Xn, ét

))
= lim−→

m

H1
ét

(
Xn,HomXn

(Z/mZ(1),G)⊗Z (Gm,log/Gm)Xn, ét

)
= 0,

where θ : (fs/Xn)fl → (fs/Xn)ét denotes the forgetful map between these two sites. This

finishes the proof.

The following corollary is the counterpart of Corollary 3.4 and Proposition 3.5(2) for
the Kummer flat topology:

Corollary 3.17. Let the notation and the assumptions be as in Proposition 3.16. Then

we have the following:

(1) H2
kfl(X,G)∼= lim−→n

ker
(
H2

kfl(X,G)→H2
kfl(Xn,G)

)
.

(2) Ȟ0
kfl

(
XN,H

2
kfl(G)

)
= 0.

Proof. This follows from Proposition 3.16.

Let the notation and the assumptions be as in Proposition 3.16. Let n be a positive

integer. With the help of Corollary 3.17(2), the Kummer flat Čech cohomology to derive
a functor cohomology spectral sequence from formula (3.1) gives rise to an exact sequence

0 → lim−→n
Ȟ1

kfl(Xn/X,G)→H1
kfl(X,G)→ lim−→n

Ȟ0
kfl

(
Xn/X,H1

kfl(G)
)

→ lim−→n
Ȟ2

kfl(Xn/X,G)→H2
kfl(X,G)→ lim−→n

Ȟ1
kfl

(
Xn/X,H1

kfl(G)
)

→ lim−→n
Ȟ3

kfl(Xn/X,G).

(3.3)
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Lemma 3.18. Let the notation and the assumptions be as in Proposition 3.16; then we
have

lim−→
n

Ȟi
kfl

(
Xn/X,H1

kfl(G)
)
= 0

for i≥ 0.

Proof. We denote by Xn,i the fiber product of i+1 copies of Xn over X. We have

Xn,i =Hi
n×SpecZXn = (Hn)

i
X×XXn, whereHn := SpecZ

[(
P 1/n

)gp
/P gp

]
and (Hn)X :=

Hn ×SpecZ X. Note that (Hn)X is a constant group scheme associated to the abstract

group Hn(X) over X if (n,p) = 1.

We first compute the Čech cohomology group Ȟi
kfl

(
Xn/X,H1

kfl(G)
)
for n= pr. In this

case, the underlying scheme of the group scheme (Hpr )X is strictly Henselian local. Let

Apr (resp., xpr ) be the underlying ring (resp., the closed point) of Xpr , and let mApr
be

the maximal ideal of Apr . Since Apr is a finite local A-algebra, it is also Henselian local

by [15, Tag 04GH], and thus
(
Apr,mApr

)
is a Henselian pair [15, Tag 09XE]. Let B be the

underlying ring of (Hpr )
i
X ×X Xpr . Clearly B is a finite local Apr -algebra. Therefore any

finite B -algebra C is also a finite Apr -algebra, and we have
(
mApr

B
)
C =mApr

C. Then by

an easy exercise, one can see that the equivalence [15, Tag 09XI] implies that
(
B,mApr

B
)

is also a Henselian pair. Since the Hom-sheaf HomX(Z/mZ(1),G) is torsion, Gabber’s
theorem [15, Tag 09ZI]) implies that the vertical maps in the canonical commutative

diagram

HomXpr
(Z/mZ(1),G) ��

∼=
��

Hom(Hpr )
i

X
×XXpr

(Z/mZ(1),G)

∼=
��

Homxpr
(Z/mZ(1),G)

∼= �� Hom(Hpr )
i

X
×Xxpr

(Z/mZ(1),G)

are isomorphisms. Since (Hpr )
i
X ×X xpr is an infinitesimal thickening of xpr , the lower

horizontal map in the diagram is also an isomorphism by [15, Tag 03SI]. Thus the

canonical map

HomXpr
(Z/mZ(1),G)

∼=−→Hom(Hpr )
i

X
×XXpr

(Z/mZ(1),G)

is an isomorphism. Combining with Theorem 3.13, we get

H1
kfl (Xpr,i,G) =H1

kfl

(
(Hpr )

i
X ×X Xpr,G

)
= lim−→

m

Hom(Hpr )
i

X
×XXpr

(Z/mZ(1),G)⊗Z

(
P 1/pr

)gp
= lim−→

m

HomXpr
(Z/mZ(1),G)⊗Z

(
P 1/pr

)gp
=H1

kfl (Xpr,G) .
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The Čech complex for H1
kfl(G) with respect to the cover Xpr/X can be identified with

H1
kfl (Xpr,G)

0−→H1
kfl (Xpr,G)

Id−→H1
kfl (Xpr,G)

0−→H1
kfl (Xpr,G)

Id−→ ·· · ,

hence

Ȟi
kfl

(
Xpr/X,H1

kfl(G)
)
=

{
H1

kfl (Xpr,G) if i= 0,

0 if i > 0.
(3.4)

In general, we write n= pr ·n′ with (p,n′) = 1; then we have

Xn,i = (Hn′)
i
X ×X

(
(Hpr )

i
X ×X Xn

)
and

H1
kfl (Xn,i,G) =

∏
x∈Hn′ (X)i

H1
kfl(Xn,G) =Map

(
Hn′(X)i,H1

kfl(Xn,G)
)
.

The Čech complex for H1
kfl(G) with respect to the cover Xn/X can be identified with

the standard complex that computes the cohomology of H1
kfl(Xn,G) regarded as a trivial

Hn′(X)-module. Hence we get

Ȟi
kfl

(
Xn/X,H1

kfl(G)
)
=Hi

(
Hn′(X),H1

kfl(Xn,G)
)
.

Finally, we get

lim−→
n

Ȟi
kfl

(
Xn/X,H1

kfl(G)
)
= lim−→

n=pr·n′
Hi
(
Hn′(X),H1

kfl(Xn,G)
)

=Hi

(
lim←−
n′

Hn′(X), lim−→
n=pr·n′

H1
kfl(Xn,G)

)
,

where the second identification follows from [13, §2, Prop. 8]. By Proposition 3.15 we

have lim−→n
H1

kfl(Xn,G) = 0, and thus lim−→n
Ȟi

kfl

(
Xn/X,H1

kfl(G)
)
= 0.

Theorem 3.19. Let the notation and assumptions be as in Proposition 3.16. Then the

canonical homomorphism lim−→n
Ȟ2

kfl(Xn/X,G)→H2
kfl(X,G) is an isomorphism.

Proof. The result follows from Lemma 3.18 and the exact sequence (3.3).

In order to understand the group H2
kfl(X,G), we are reduced to computing the groups

Ȟ2
kfl(Xn/X,G).

Lemma 3.20. Let the notation and assumptions be as in Proposition 3.16. We further

assume that G is a torus. Then we have the following:

(1) Ȟ2
kfl(Xn/X,G) = Ȟ2

két(Xn/X,G) for (n,p) = 1.

(2) Ȟ2
kfl (Xpr/X,G) = 0 for r > 0.
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(3)

H2
kfl(X,G) = lim−→

(n,p)=1

Ȟ2
kfl(Xn/X,G) = lim−→

(n,p)=1

Ȟ2
két(Xn/X,G) =H2

két(X,G);

in particular, H2
kfl(X,G) is torsion, p-torsion-free, and divisible.

Proof. (1) Since Xn is a Kummer étale cover of X whenever (p,n) = 1, this is clear.

(2) By Lemma 3.12, we may assume that X is a log point Speck with k separably

closed. By [12, page 521-523, in particular Lem. 3.16], we have

Ȟi
kfl (Xpr/X,G)∼=Hi

Xfl
(Hpr,G)

for i ≥ 1, where Hi
Xfl

(Hpr,G) denotes the ith cohomology group of the group scheme

Hpr = SpecZ
[(
P 1/pr)gp

/P gp
]
acting trivially on G over the flat site Xfl. The group

H2
Xfl

(Hpr,G) can be identified with the group of extension classes of Hpr by G which
admit a (not necessarily homomorphic) section [14, Exposé XVII, Prop. A.3.1]. By [14,

Exposé XVII, Prop. 7.1.1], such extensions must be of multiplicative type, and therefore

must be commutative. Since the base field k is separably closed, such extensions must be
trivial. It follows that Ȟ2

kfl (Xpr/X,G)∼=H2
Xfl

(Hpr,G) = 0.

(3) First we show that any class γ ∈H2
kfl(X,G) vanishes inH2

kfl(Xm,G) for some positive

integer m with (m,p) = 1. By Corollary 3.17, γ is annihilated by some cover Xm·pr with

(m,p) = 1. Let γ′ be the image of γ in H2
kfl(Xm,G); we want to show that it is zero. The

Čech-to-derived functor spectral sequence for the cover Xm·pr/Xm gives rise to an exact

sequence

· · · → Ȟ2
kfl (Xm·pr/Xm,G)→ ker

(
H2

kfl(Xm,G)→H2
kfl (Xm·pr,G)

)
→ Ȟ1

kfl

(
Xm·pr/Xm,H1

kfl(G)
)
→ ·· · .

We have γ′ ∈ ker
(
H2

kfl(Xm,G)→H2
kfl (Xm·pr,G)

)
. By part (2), we have Ȟ2

kfl(Xm·pr/

Xm,G) = 0. By equation (3.4) we have Ȟ1
kfl

(
Xm·pr/Xm,H1

kfl(G)
)
=0. Hence we get γ′ =0.

It follows that

lim−→
(m,p)=1

ker
(
H2

kfl(X,G)→H2
kfl(Xm,G)

) ∼=−→H2
kfl(X,G). (3.5)

Now consider the exact sequences

→ Ȟ0
kfl

(
Xm/X,H1

kfl(G)
)
→ Ȟ2

kfl(Xm/X,G)→ ker
(
H2

kfl(X,G)→H2
kfl(Xm,G)

)
→ Ȟ1

kfl

(
Xm/X,H1

kfl(G)
)
→

arising from the spectral sequence Ȟi
kfl

(
Xm/X,Hj

kfl(G)
)
⇒Hi+j

kfl (Xm,G) for the Kummer

flat covers Xm/X with (m,p) = 1. Taking the direct limit, we get an exact sequence

→ lim−→
(m,p)=1

Ȟ0
kfl

(
Xm/X,H1

kfl(G)
) α−→ lim−→

(m,p)=1

Ȟ2
kfl(Xm/X,G)→H2

kfl(X,G)

→ lim−→
(m,p)=1

Ȟ1
kfl

(
Xm/X,H1

kfl(G)
) (3.6)
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by the identification (3.5). Similar to the general case of the proof of Lemma 3.18, we can

show that lim−→(m,p)=1
Ȟi

kfl

(
Xm/X,H1

kfl(G)
)
= 0 for any i ≥ 0. Then the exact sequence

(3.6) tells us that

H2
kfl(X,G) = lim−→

(m,p)=1

Ȟ2
kfl(Xm/X,G) = lim−→

(m,p)=1

Ȟ2
két(Xm/X,G) =H2

két(X,G).

The group H2
két(X,G) is torsion and p-torsion-free by Corollary 3.6, and n-divisible

for (n,p) = 1 by Theorem 3.8(3). Therefore H2
kfl(X,G) is torsion, p-torsion-free, and

divisible.

Corollary 3.21. Let the notation and assumptions be as in Lemma 3.20. Then we have

H2
kfl(X,G[n])∼=G[m](−2)(X)⊗Z

∧2
P gp, where n=m ·pr with (m,p) = 1.

Proof. We have a short exact sequence

0→H1
kfl(X,G)⊗ZZ/nZ→H2

kfl(X,G[n])→H2
kfl(X,G)[n]→ 0.

Since G is a torus, the group H1
kfl(X,G) = lim−→n

HomXkfl
(Z/nZ(1),G)⊗Z P

gp is divisible,

whence H1
kfl(X,G)⊗ZZ/nZ= 0. Therefore for n=m ·pr with (m,p) = 1, we have

H2
kfl(X,G[n]) =H2

kfl(X,G)[n] =H2
két(X,G)[n] =H2

két(X,G)[m]

=H2
két(X,G[m]) =G[m](−2)(X)⊗Z

2∧
P gp.

Corollary 3.22. Let X be a locally Noetherian fs log scheme and G be a torus over the

underlying scheme of X. Let Y ∈ (fs/X) be such that the ranks of the stalks of the étale

sheaf MY /O×
Y are at most 1 and let (st/Y ) be the full subcategory of (fs/X) consisting

of strict fs log schemes over Y. Then we have that the restriction of R2εfl∗G to (st/Y ) is

zero.

Proof. This follows from Corollary 3.21.

Theorem 3.23. Let X be a locally Noetherian fs log scheme and G be a torus over the
underlying scheme of X.

(1) We have

R2εfl∗G= lim−→
n

(
R2εfl∗G

)
[n] =

⊕
l prime

(
R2εfl∗G

)
[l∞],

where
(
R2εfl∗G

)
[n] denotes the n-torsion subsheaf of R2εfl∗G and

(
R2εfl∗G

)
[l∞]

denotes the l-primary part of R2εfl∗G for a prime number l.

(2) We have
(
R2εfl∗G

)
[n] =R2εfl∗G[n].

(3) The l-primary part
(
R2εfl∗G

)
[l∞] is supported on the locus where l is invertible.

(4) If n is invertible on X, then

(
R2εfl∗G

)
[n] =R2εfl∗G[n] =G[n](−2)⊗Z

2∧
(Gm,log/Gm)Xfl

.
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Proof. By Lemma 3.20, R2εfl∗G is torsion. Hence part (1) follows.

We prove part (2). Since G is a torus, we have a short exact sequence 0→G[n]→G
n−→

G→ 0 for any n≥ 1. This short exact sequence induces a short exact sequence

0→R1εfl∗G⊗ZZ/nZ→R2εfl∗G[n]→
(
R2εfl∗G

)
[n]→ 0.

Since the sheaf R1εfl∗G is divisible, we get
(
R2εfl∗G

)
[n] =R2εfl∗G[n].

Part (3) follows from part (2) and Corollary 3.21.

We are left with part (4). By [16, §3], in particular the part between [16, Cor. 3.7] and
[16, Thm. 3.8], we have a cup product for the higher direct image functors for the map

of sites εfl : (fs/X)kfl → (fs/X)fl. The cup product induces homomorphisms

G[n]⊗Z/nZ

2∧
R1εfl∗Z/nZ→G[n]⊗Z/nZR

2εfl∗Z/nZ→R2εfl∗G[n].

Since G[n]⊗Z/nZ

∧2
R1εfl∗Z/nZ = G[n](−2)⊗Z

∧2
(Gm,log/Gm)Xfl

, we get a canonical

homomorphism

G[n](−2)⊗Z

2∧
(Gm,log/Gm)Xfl

→R2εfl∗G[n].

By Corollary 3.21, this homomorphism is an isomorphism. This finishes the proof of

part (4).

Corollary 3.24. Let X be a locally Noetherian fs log scheme such that the underlying

scheme of X is a Q-scheme, and let G be a torus over the underlying scheme of X. Then
we have

R2εfl∗G= lim−→
n

G[n](−2)⊗Z

2∧
(Gm,log/Gm)Xfl

.

Corollary 3.25. Let p be a prime number. Let X be a locally Noetherian fs log scheme

such that the underlying scheme of X is an Fp-scheme, and let G be a torus over the

underlying scheme of X. Then we have

R2εfl∗G= lim−→
(n,p)=1

G[n](−2)⊗Z

2∧
(Gm,log/Gm)Xfl

.

Theorem 3.26. Let X be a locally Noetherian fs log scheme and G be a smooth affine

commutative group scheme over the underlying scheme of X.

(1) If the fibers Gx of G over X are all unipotent and κ(x)-solvable (see [14, Exposé

XVII, Def. 5.1.0]), then we have

R1εfl∗G=R2εfl∗G= 0.

(2) If G is an extension of a group U by a torus T such that the fibers Ux of U over X

are all unipotent and κ(x)-solvable, then the canonical map R2εfl∗T → R2εfl∗G is

an isomorphism.
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Proof. In part (2), since G is smooth, U has to be smooth by fppf descent. Hence part

(2) follows from part (1) and we are left to prove part (1).

By Theorem 3.14, we have

R1εfl,∗G= lim−→
n

HomX(Z/nZ(1),G)⊗Z (Gm,log/Gm)Xfl
,

which is zero by [14, Exposé XVII, Lem. 2.5]. To prove R2εfl,∗G = 0, it suffices to
prove H2

kfl(X,G) = 0 for the case where the underlying scheme of X is SpecA with A

a strictly Henselian ring and X admitting a chart P → MX with P
∼=−→ MX,x/O×

X,x.

By Theorem 3.19, we have lim−→n
Ȟ2

kfl(Xn/X,G)
∼=−→ H2

kfl(X,G). By Lemma 3.12, we are
further reduced to the case where X is a log point with A a separably closed field. We

have Ȟ2
kfl(Xn/X,G) = H2

Xfl
(Hn,G) by [12, page 521-523, in particular Lem. 3.16]. But

H2
Xfl

(Hn,G) = 0 for any positive integer n by [14, Exposé XVII, Thm. 5.1.1 (1) (c)] and
[14, Exposé XVII, Appendice I, Prop. 3.1]. This finishes the proof.

4. The higher direct images of the logarithmic multiplicative group

In this section we show that Riεfl∗Gm,log = 0 (resp., Riεét∗Gm,log = 0) for i ≥ 1,

where Gm,log denotes the quotient of Gm,log by Gm with respect to the Kummer flat

topology (resp., Kummer étale topology). The case i = 1 has been treated essentially

in the proof of [12, Cor. 3.21]. As a corollary, we get Riεfl∗Gm
∼= Riεfl∗Gm,log (resp.,

Riεét∗Gm
∼=Riεét∗Gm,log) for i≥ 2. By Kato’s logarithmic Hilbert 90 [12, Cor. 3.21], we

have R1εfl∗Gm,log = 0 (resp., R1εét∗Gm,log = 0).

We start with the strictly Henselian case.

Theorem 4.1. Let X =SpecA be an fs log scheme with A a Noetherian strictly Henselian

local ring, x the closed point of X, and p the characteristic of the residue field of A. We

fix a chart P →MX satisfying P
∼=−→MX,x/O×

X,x. Then we have the following:

(1) Hr
kfl

(
X,Gm,log

)
= 0 (resp., Hr

két

(
X,Gm,log

)
= 0) for r ≥ 1.

(2) Hr
kfl(X,Gm)∼=Hr

kfl (X,Gm,log) (resp., H
r
két(X,Gm)∼=Hr

két (X,Gm,log)) for r ≥ 2.

Before going to the proof of Theorem 4.1, we prove the following lemma:

Lemma 4.2. Let the notation and assumptions be as in Theorem 4.1. For the Čech

cohomology for the Kummer flat cover Xn/X, we have

Ȟi
kfl

(
Xn/X,Gm,log

)
=

{(
P 1/n

)gp⊗ZQ if i= 0,

0 if i > 0.

If (n,p) = 1, for the Čech cohomology for the Kummer étale cover Xn/X we have

Ȟi
két

(
Xn/X,Gm,log

)
=

{(
P 1/n

)gp⊗ZQ
′ if i= 0,

0 if i > 0.

https://doi.org/10.1017/S1474748021000359 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000359


1108 H. Zhao

Proof. We deal only with the Kummer flat case; the Kummer étale case can be done in
the same way.

It is clear that

Ȟ0
kfl

(
Xn/X,Gm,log

)
= (Gm,log/Gm)(Xn) =

(
P 1/n

)gp
⊗ZQ. (4.1)

Let n=m ·pt with (m,p) = 1; then X×SpecZH
r
m is a constant group scheme over X and

X×SpecZH
r
pt is a connected group scheme over X. Therefore we have

Gm,log(Xn×X · · ·×X Xn︸ ︷︷ ︸
r+1 times

) =Gm,log (Xn×SpecZH
r
n)

=Gm,log

((
Xn×SpecZH

r
pt

)
×X (X×SpecZH

r
m)
)

=
∏

h∈Hm(X)r

Gm,log

(
Xn×SpecZH

r
pt

)
=

∏
h∈Hm(X)r

Gm,log(Xn)

=
∏

h∈Hm(X)r

(
P 1/n

)gp
⊗ZQ

=Map
(
Hm(X)r,

(
P 1/n

)gp
⊗ZQ

)
.

To compute the higher Čech cohomology groups, we consider the Čech complex

Gm,log(Xn)
d0−→Gm,log(Xn×X Xn)

d1−→Gm,log(Xn×X Xn×X Xn)
d2−→ ·· · (4.2)

for Gm,log with respect to the cover Xn/X. Define Γn :=
(
P 1/n

)gp
/P gp. By [10, Chap.

III, Example 2.6], the Čech nerve of the Kummer flat cover Xn/X can be identified with

the sequence

Xn Xn×Hn
d1,0

��

d1,1
�� Xn×H2

n
d2,0

��
��

d2,2
��

Xn×H3
n · · · ,

d3,0

��
��
��

d3,3
��

where the map dr,i on the ring level is given by the A-linear ring homomorphism

A⊗Z[P ]Z

[
P 1/n⊕Γr−1

n

]
→A⊗Z[P ]Z

[
P 1/n⊕Γr

n

]

(a,ā1, · · · ,ār−1) �→

⎧⎪⎨
⎪⎩
(a,ā,ā1, . . . ,ār−1) if i= 0,

(a,ā1, . . . ,āi,āi, . . . ,ār−1) if 0< i < r,

(a,ā1, . . . ,ār−1,0) if i= r,

for any (a,ā1, . . . ,ār−1) ∈ P 1/n⊕Γr−1
n . If m= 1 – that is, n= pt –, we have

Gm,log

(
Xpt ×SpecZH

r
pt

)
=
(
P 1/pt

)gp
⊗ZQ.
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By the description of dr,i, the map

d∗r,i :Gm,log

(
Xpt ×SpecZH

r−1
pt

)
→Gm,log

(
Xpt ×SpecZH

r
pt

)
can be identified with the identity map

Id :
(
P 1/pt

)gp
⊗ZQ→

(
P 1/pt

)gp
⊗ZQ.

In general, the map

d∗r,i :Gm,log

(
Xn×SpecZH

r−1
n

)
→Gm,log (Xn×SpecZH

r
n)

can be identified with the map

Map
(
Hm(X)r−1,

(
P 1/n

)gp
⊗ZQ

)
∂r,i−−→Map

(
Hm(X)r,

(
P 1/n

)gp
⊗ZQ

)

f �→

⎛
⎜⎝∂r,i(f) : (h1, . . . ,hr) �→

⎧⎪⎨
⎪⎩
f(h2, . . . , . . . ,hr) if i= 0,

f(h1, . . . ,hi+hi+1, . . . ,hr) if 0< i < r,

f(h1, . . . , . . . ,hr−1) if i= r

⎞
⎟⎠ .

Therefore the complex (4.2) can be identified with the standard complex(
P 1/n

)gp
⊗ZQ→Map

(
Hm(X),

(
P 1/n

)gp
⊗ZQ

)
→Map

(
Hm(X)2,

(
P 1/n

)gp
⊗ZQ

)
→ ·· ·

for computing the group cohomology of the trivial Hm(X)-module
(
P 1/n

)gp ⊗Z Q. It

follows that

Ȟi
kfl

(
Xn/X,Gm,log

)∼=Hi
(
Hm(X),

(
P 1/n

)gp
⊗ZQ

)
=

{(
P 1/n

)gp⊗ZQ if i= 0,

0 if i > 0.

Proof of Theorem 4.1. Part (2) follows from part (1) clearly. We deal only with the
Kummer flat case; the Kummer étale case can be proven in the same way.

We use induction on r to prove part (1).

First we consider the case r = 1. We want to prove H1
kfl

(
X,Gm,log

)
= 0. The spectral

sequence Ȟi
kfl

(
Xn/X,Hj

kfl

(
Gm,log

))
⇒Hi+j

kfl

(
X,Gm,log

)
gives rise to an exact sequence

0→ Ȟ1
kfl

(
Xn/X,Gm,log

)
→H1

kfl

(
X,Gm,log

) u−→ Ȟ0
kfl

(
Xn/X,H1

kfl

(
Gm,log

))
.

By Lemma 4.2, we have that Ȟ1
kfl

(
Xn/X,Gm,log

)
vanishes, and thus u is injective. We

also have a canonical injection

v : Ȟ0
kfl

(
Xn/X,H1

fl

(
Gm,log

))
↪→H1

kfl

(
Xn,Gm,log

)
.

The composition v ◦ u is nothing but the pullback map f∗
n : H1

kfl

(
X,Gm,log

)
→

H1
kfl

(
Xn,Gm,log

)
, where fn denotes the cover map Xn → X. Hence we get an injection

f∗
n : H1

kfl

(
X,Gm,log

)
↪→ H1

kfl

(
Xn,Gm,log

)
. Passing to the direct limit, we get a canonical

injection H1
kfl

(
X,Gm,log

)
↪→ lim−→n

H1
kfl

(
Xn,Gm,log

)
. Hence it suffices to show that
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lim−→n
H1

kfl

(
Xn,Gm,log

)
= 0. Let α be an element of H1

kfl

(
Xn,Gm,log

)
, and let T → Xn

be a Kummer flat cover such that α dies in H1
kfl

(
T,Gm,log

)
. By [12, Cor. 2.16], we may

assume that for some m, we have a factorization T →Xmn →Xn, where T →Xmn is a

classical flat cover. It follows that the class α on Xmn is trivialized by a classical flat cover
– that is, α is mapped to zero along the mapH1

kfl

(
Xmn,Gm,log

)
→H0

fl

(
Xmn,R

1εfl∗Gm,log

)
.

Hence α lies in the image of the map H1
fl

(
Xmn,εfl∗Gm,log

)
↪→H1

kfl

(
Xmn,Gm,log

)
. But

H1
fl

(
Xmn,εfl∗Gm,log

)
=H1

fl

(
Xmn, (Gm,log/Gm)Xfl

⊗ZQ

)
=H1

ét

(
Xmn, (Gm,log/Gm)Xét

⊗ZQ

)
= 0. (4.3)

This finishes the proof of H1
kfl

(
X,Gm,log

)
= 0.

Now we fix a positive integer r0 and assume that Hr
kfl

(
Y ,Gm,log

)
= 0 for all 0< r ≤ r0

and all fs log schemes Y satisfying the conditions for X in the statement of the theorem.
Note that this assumption implies that Rrεfl∗Gm,log = 0 for 0 < r ≤ r0. We are going to

prove

Hr0+1
kfl

(
X,Gm,log

)
= 0.

in two steps.

In the first step, we prove that the canonical map

Hr0+1
kfl

(
X,Gm,log

)
→Hr0+1

kfl

(
Xn,Gm,log

)
(4.4)

is injective for any n > 0. Clearly Xn satisfies the conditions for X in the state-

ment. For any 0 < j ≤ r0 and any i ≥ 0, consider the ith Čech cohomology group

Ȟi
kfl

(
Xn/X,Hj

kfl

(
Gm,log

))
of the Kummer flat cover Xn/X with coefficients in the

presheaf Hj
kfl

(
Gm,log

)
. Since

Xn×X · · ·×X Xn︸ ︷︷ ︸
k+1 times

=Xn×SpecZH
k
n =

(
Xn×SpecZH

k
pt

)
×X

(
X×SpecZH

k
n′
)

with n = n′ · pt and (n′,p) = 1, Xn ×SpecZ Hk
pt satisfies the conditions for X in the

statement, and X×SpecZH
k
n′ is a constant group scheme over X, so we get

Γ
(
Xn×X · · ·×X Xn︸ ︷︷ ︸

k+1times

,Hj
kfl

(
Gm,log

))
=Hj

kfl

(
Xn×X · · ·×X Xn︸ ︷︷ ︸

k+1 times

,Gm,log

)
= 0.

It follows that Ȟi
kfl

(
Xn/X,Hj

kfl

(
Gm,log

))
= 0 for any 0< j ≤ r0 and any i≥ 0. Then the

spectral sequence

Ȟi
kfl

(
Xn/X,Hj

kfl

(
Gm,log

))
⇒Hi+j

kfl

(
X,Gm,log

)
implies that

Hr0+1
kfl

(
X,Gm,log

) ∼=−→ Ȟ0
kfl

(
Xn/X,Hr0+1

kfl

(
Gm,log

))
.

It follows that the canonical map (4.4) is injective for any n > 0.
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In the second step, we finish the proof of Hr0+1
kfl

(
X,Gm,log

)
= 0. Let β be any element

of Hr0+1
kfl

(
X,Gm,log

)
and let T → X be a Kummer flat cover such that β dies in

Hr0+1
kfl

(
T,Gm,log

)
. By [12, Cor. 2.16], we may assume that for some m, we have a

factorization T → Xm → X such that T → Xm is a classical flat cover. It follows that

the class β on Xm is trivialized by a classical flat cover – that is, it lies in the kernel of

the canonical map

Hr0+1
kfl

(
Xm,Gm,log

)
→H0

fl

(
Xm,Rr0+1εfl∗Gm,log

)
.

Consider the spectral sequence

Hi
fl

(
Xm,Rjεfl∗Gm,log

)
⇒Hi+j

kfl

(
Xm,Gm,log

)
.

The vanishing of Rjεfl∗Gm,log for 0< j ≤ r0 gives rise to an exact sequence

0→Hr0+1
fl

(
Xm,εfl∗Gm,log

)
→Hr0+1

kfl

(
Xm,Gm,log

)
→H0

fl

(
Xm,Rr0+1εfl∗Gm,log

)
.

Hence the class β on Xm comes from Hr0+1
fl

(
Xm,εfl∗Gm,log

)
, which is zero by the

same reasoning as in equation (4.3). Hence the class β on Xm is zero. Thus β = 0

in Hr0+1
kfl

(
X,Gm,log

)
, by the injectivity of the map (4.4). This finishes the proof of

Hr0+1
kfl

(
X,Gm,log

)
= 0.

Theorem 4.3. Let X be an fs log scheme with its underlying scheme locally Noetherian.

Then we have the following:

(1) Rrεfl∗Gm,log = 0 (resp., Rrεét∗Gm,log = 0) for r ≥ 1.

(2) The canonical map Rrεfl∗Gm → Rrεfl∗Gm,log (resp., Rrεét∗Gm → Rrεét∗Gm,log) is

an isomorphism for r ≥ 2.

Corollary 4.4. Let X be a locally Noetherian fs log scheme such that the stalks of

Mgp
X /O×

X for the classical étale topology have rank at most 1. Let (két/X)két (resp.,

(két/X)ét) be the category of Kummer étale fs log schemes over X endowed with the
Kummer étale topology (resp., the classical étale topology), and let ε : (két/X)két →
(két/X)ét be the canonical forgetful map of sites. Then we have R2ε∗Gm,log = 0.

5. Examples

5.1. Discrete valuation rings

Let R be a discrete valuation ring with fraction field K and residue field k. Let π be

a uniformizer of R, and endow X = SpecR with the log structure associated to the
homomorphism N→R,1 �→ π. Let x be the closed point of X and i the closed immersion

x ↪→X, and endow x with the induced log structure from X. Let η be the generic point

of X and j the open immersion η ↪→X.

Now we consider the Leray spectral sequence

Hs
fl

(
X,Rtεfl∗Gm

)
⇒Hs+t

kfl (X,Gm). (5.1)
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We have Hs
fl(X,Gm) =Hs

ét(X,Gm) for s≥ 0 by [5, Thm. 11.7]. We have

R1εfl∗Gm = lim−→
n

HomX(Z/nZ(1),Gm)⊗Z (Gm,log/Gm)Xfl

=Q/Z⊗Z (Gm,log/Gm)Xfl

by Theorem 3.14. Then on (st/X), we have (Gm,log/Gm)Xfl

∼= i∗Z. Therefore,

Hs
fl

(
X,R1εfl∗Gm

)
=Hs

fl(X,Q/Z⊗Z i∗Z) =Hs
fl(x,Q/Z)

=Hs
ét(x,Q/Z) (5.2)

for s≥ 0. We also have

Hs
fl

(
X,R2εfl∗Gm

)
=Hs

fl(X,0) = 0 (5.3)

for s≥ 0, by Corollary 3.22.

Theorem 5.1. Assume that k is a finite field. Then we have

H1
kfl(X,Gm)∼=H0

ét(x,Q/Z)∼=Q/Z

and

H2
kfl(X,Gm)∼=H1

ét(x,Q/Z)∼=Q/Z.

Proof. We have

Hs
fl(X,Gm) =Hs

ét(X,Gm) = 0

for s > 0 by [11, Chap. II, Prop. 1.5 (a)]. Since k is a finite field, it has absolute Galois
group Ẑ. Therefore we can identify the group H1

ét(x,Q/Z) with the Galois cohomology

H1
(
Ẑ,Q/Z

)
=Hom

(
Ẑ,Q/Z

)
∼=Q/Z.

Then the results follow from the spectral sequence (5.1)) with the help of equations (5.2)

and (5.3).

5.2. Global Dedekind domains

Through this subsection, let K be a global field. When K is a number field, X denotes

the spectrum of the ring of integers in K, and when K is a function field, k denotes the

field of constants of K and X denotes the unique connected smooth projective curve over
k having K as its function field. Let S be a finite set of closed points of X, U :=X−S,

j : U ↪→X, and ix : x ↪→X for each closed point x ∈X. We endow X with log structure

j∗O×
U ∩OX →OX . In the case of a number field, define S∞ := S∪{infinite places of K},

and in the case of function field, just set S∞ := S.
On (st/X), we have R1εfl∗Gm =

⊕
x∈S ix,∗Q/Z and R2εfl∗Gm = 0. The Leray spectral

sequence

Hs
fl

(
X,Rtεfl∗Gm

)
⇒Hs+t

kfl (X,Gm)

https://doi.org/10.1017/S1474748021000359 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000359


Comparison of Kummer logarithmic topologies with classical topologies 1113

gives rise to a long exact sequence

0 →H1
fl(X,Gm)→H1

kfl(X,Gm)
α−→H0

fl

(
X,R1εfl∗Gm

)
→H2

fl(X,Gm)→H2
kfl(X,Gm)→H1

fl

(
X,R1εfl∗Gm

)
→H3

fl(X,Gm)→H3
kfl(X,Gm).

(5.4)

The Leray spectral sequences for Gm and Gm,log together give rise to the following

commutative diagram with exact rows and columns:

0

��

0

��

H1
fl(X,Gm) ��

��

H1
fl(X,Gm,log)

��

H1
kfl(X,Gm) ��

α

��

H1
kfl(X,Gm,log)

��

H0
fl(X,R1εfl∗Gm) ��

��

H0
fl(X,R1εfl∗Gm,log)

��

H1
fl(X,(Gm,log/Gm)Xfl

) �� H2
fl(X,Gm) �� H2

fl(X,Gm,log).

We have R1εfl∗Gm,log = 0 by Kato’s logarithmic Hilbert 90 [12, Cor. 3.21]), and

H1
fl

(
X, (Gm,log/Gm)Xfl

)
=H1

fl

(
X,
⊕
x∈S

ix,∗Z

)
=
⊕
x∈S

H1
fl(x,Z) = 0.

By diagram chasing, we find that the map α is surjective. We have

H0
fl

(
X,R1εfl∗Gm

)
=
⊕
x∈S

H0
fl(X,ix,∗Q/Z) =

⊕
x∈S

H0
fl(x,Q/Z) =

⊕
x∈S

Q/Z

and

H1
fl

(
X,R1εfl∗Gm

)
=
⊕
x∈S

H1
fl(X,ix,∗Q/Z) =

⊕
x∈S

H1
fl(x,Q/Z).

We also have

H2
fl(X,Gm)∼=

{
(Z/2Z)r−1 if K has r > 0 real places,

0 otherwise,

and H3
fl(X,Gm) ∼= Q/Z by [11, Chap. II, Prop. 2.1]. Therefore the exact sequence (5.4)

splits into two exact sequences

0→H1
fl(X,Gm)→H1

kfl(X,Gm)
α−→H0

fl

(
X,R1εfl∗Gm

)
→ 0 (5.5)
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and

0→H2
fl(X,Gm)→H2

kfl(X,Gm)→H1
fl

(
X,R1εfl∗Gm

)
→H3

fl(X,Gm), (5.6)

which can be identified with

0→H1
fl(X,Gm)→H1

kfl(X,Gm)
α−→
⊕
x∈S

Q/Z→ 0 (5.7)

and

0→H2
fl(X,Gm)→H2

kfl(X,Gm)→
⊕
x∈S

H1
fl(x,Q/Z)→Q/Z, (5.8)

with H2
fl(X,Gm) =

{
(Z/2Z)r−1 if K has r > 0 real places,

0 otherwise.

Let Pic(X)
(
resp., Pic

(
X log

))
denote the group H1

fl(X,Gm) (resp., H1
kfl(X,Gm)). We

have a canonical degree map deg : Pic(X) → Z in both the number-field case and the
function-field case. By the short exact sequence (5.7), the degree map deg : Pic(X)→ Z

extends uniquely to a map

deg : Pic
(
X log

)
→Q, (5.9)

and the two degree maps fit into the following commutative diagram with exact rows:

0 �� Pic(X) ��

deg

��

Pic
(
X log

)
��

deg

��

⊕
x∈SQ/Z ��

sum

��

0

0 �� Z �� Q �� Q/Z �� 0.

(5.10)

To summarize, we get the following proposition:

Proposition 5.2. Let the notation and assumptions be as in the beginning of this

subsection. Then we have the following:

(1) The group Pic
(
X log

)
:=H1

kfl(X,Gm) admits a canonical degree map into Q which
extends the canonical degree map on Pic(X), and the two degree maps fit into the

following commutative diagram with exact rows:

0 �� Pic(X) ��

deg

��

Pic
(
X log

)
��

deg

��

⊕
x∈SQ/Z ��

sum

��

0

0 �� Z �� Q �� Q/Z �� 0.

(2) The group H2
kfl(X,Gm) fits into an exact sequence

0→H2
fl(X,Gm)→H2

kfl(X,Gm)→
⊕
x∈S

H1
fl(x,Q/Z)→Q/Z.

If K is a function field with its field of constants algebraically closed, then we have

H2
kfl(X,Gm)∼=H2

fl(X,Gm) = 0. If the residue fields at the points of S are finite, then
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the exact sequence becomes

0→H2
fl(X,Gm)→H2

kfl(X,Gm)→
⊕
x∈S

Q/Z→Q/Z,

with H2
fl(X,Gm) =

{
(Z/2Z)r−1 if K has r > 0 real places,

0 otherwise.

Proof. We are left with checking H2
fl(X,Gm) = 0 for X a smooth projective curve over

an algebraically closed field, and H1
fl(x,Q/Z)∼=Q/Z for x a point with finite residue field.

The first follows from [15, Tag 03RM], and the second follows from

H1
fl(x,Q/Z)∼=H1

ét(x,Q/Z)∼=Hom
(
Ẑ,Q/Z

)
∼=Q/Z.

Remark 5.1. A homomorphism (Q/Z)n → Q/Z is either zero or surjective. It follows
that in the case where the residue fields at the points of S are finite, we have either a

short exact sequence

0→H2
fl(X,Gm)→H2

kfl(X,Gm)→
⊕
x∈S

Q/Z→ 0

or an exact sequence

0→H2
fl(X,Gm)→H2

kfl(X,Gm)→
⊕
x∈S

Q/Z→Q/Z→ 0.
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Appendix A. A representability lemma about Hom-Sheaves

Lemma A.1. Let S be a scheme, F be a finite flat commutative group scheme of

multiplicative type over S which is killed by some positive integer n, and G be a
commutative group scheme over S satisfying one of the following two conditions:

(1) G is smooth and affine over S or

(2) G[n] := Ker
(
G

n−→G
)
is finite flat over S.

Then the fppf sheaf H :=HomS(F,G) is representable by an étale quasi-finite separated

group scheme over S.
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Proof. We first deal with case (1). By [14, Exposé XI, Cor. 4.2], the sheaf HomS(F,G)

is representable by a smooth separated group scheme over S. The fibers of the group

scheme HomS(F,G) over S are finite by the structure theorem [14, Exposé XVII, Thm.
7.2.1] of commutative group schemes and [14, Exposé XVII, Prop. 2.4]. It follows that

HomS(F,G) is a quasi-finite étale separated group scheme over S.

Now we deal with case (2). Clearly we have HomS(F,G) = HomS(F,G[n]). Let
0 → G[n] → G1 → G2 → 0 be the canonical smooth resolution of G with G1,G2 affine

smooth commutative group schemes over S (see [11, Thm. A.5]). Then we have an exact

sequence

0→HomS(F,G)→HomS(F,G1)
α−→HomS(F,G2)

of fppf sheaves of abelian groups over S. By case (1), the sheaves HomS(F,Gi) for i =
1,2 are representable by étale quasi-finite separated group schemes over S. Hence H =

HomS(F,G) as the kernel of α is representable. Furthermore, by [15, Tag 02GW], α is

étale. It is also separated. It follows that H is étale, separated, and quasi-finite.
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