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Abstract 

In redundancy analysis (RA), the redundancy variates are interpreted in terms of the 

predictor variables that have the prominent redundancy loadings. Israels (1986) advocated the 

rotation of redundancy loadings to facilitate the interpretation of the rotated redundancy variates. 

In this paper, the purpose is to obtain the standard error estimates for rotated redundancy 

loadings that can facilitate the interpretation of the rotated redundancy variates. To this end, we 

modify the original RA-L model (Gu, Yung, Cheung, Joo, & Nimon, 2023) and specify two 

modified RA-L models for orthogonal and oblique rotations, separately. On the basis of the 

modified RA-L models, we describe the infinitesimal jackknife (IJ) method that can produce the 

standard error estimates for rotated RA estimates. A simulation study is conducted to validate the 

standard error estimates from the IJ method, and two real examples are used to demonstrate the 

use of the standard error estimates for rotated redundancy loadings. Finally, we summarize the 

paper and provide additional remarks regarding the rotation methods and the use of numeric 

derivatives in the implementation of the IJ method. 

 

Key words: redundancy analysis, rotated estimates, standard error estimates, infinitesimal 

jackknife 
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1. INTRODUCTION 

Canonical correlation analysis (CCA; Hotelling, 1935, 1936) and redundancy analysis 

(RA; Van Den Wollenberg, 1977) are two classic multivariate statistical methods that can be 

used to study the relationship between two sets of variables. In CCA, the first pair of canonical 

variates (i.e., linear combinations of original variables) is created from both sets to maximize the 

first canonical correlation (i.e., the correlation between the paired canonical variates), and 

subsequent pairs of canonical variates are created to maximize the following canonical 

correlations, while obeying certain within-set and between-set orthogonality restrictions. One 

potential disadvantage of CCA is that the canonical variates may not be representative of the 

original variables in the sense of the explained variance within the same set. For instance, if all 

the canonical variates created from the first set can only explain 5% (or even less) of the variance 

of the original variables in the first set and all the canonical variates created from the second set 

can only explain 5% (or even less) of the variance of the original variables in the second set, no 

matter how large the canonical correlations are, it is impossible to have a big overlap in variance 

between the two sets of original variables (Fornell, 1979; Van Den Wollenberg, 1977). As a 

remedy, RA was proposed to create the redundancy variates (i.e., linear combinations of original 

variables) from only one set of original variables (say, the predictor variables) with the goal of 

maximizing the explained variance of the other set of original variables (say, the criterion 

variables). Mathematically, the redundancy variates can also be created from the criterion 

variables to maximize the explained variance of the predictor variables, but it is often not 

necessary to do so for theoretical reasons. 

Despite the differences in mathematical goal, the two methods are similar in the sense 

that the interpretations of the linear combinations of original variables are often the focus in 
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practical applications of the two methods. To interpret the canonical variates in CCA, researchers 

should select the original variables with prominent canonical loadings (i.e., the correlations 

between the canonical variates and the original variables within the same set) to assign 

meaningful interpretation to each canonical variate. In a similar way, a redundancy variate 

should be interpreted in terms of the predictor variables with prominent redundancy loadings 

(i.e., the correlations between the redundancy variates and the predictor variables). Nonetheless, 

there is no guarantee that meaningful interpretations can always be found for the 

canonical/redundancy variates. 

To facilitate the interpretations, the idea of rotation that was originally developed to 

rotate the common factors in the context of exploratory factor analysis (EFA) has been adapted 

to rotate the canonical/redundancy variates. In the CCA context, Cliff and Krus (1976) and 

Perreault and Spiro (1978) advocated the rotation of canonical variates, whereas, in the RA 

context, Israels (1986) discussed the rotation of redundancy variates. These authors showed that 

the rotated canonical/redundancy loading matrix often has a simple structure in the sense of 

Thurstone (1947), which makes it easier to interpret the rotated canonical/redundancy variates. 

Additionally, Cudeck and O’Dell (1994) suggested the use of standard error estimates to account 

for the sampling variability of rotated factor loadings when the rotated common factors are 

interpreted. Following this suggestion, Gu, Wu, Yung, and Wilkins (2021) developed the 

standard error estimates for rotated canonical loadings and other rotated CCA estimates. 

However, no work has been done to obtain the standard error estimates for rotated redundancy 

loadings or other rotated RA estimates. Therefore, the purpose of this paper is to develop the 

standard error estimates for rotated RA estimates. With the availability of standard error 
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estimates, the researcher can better interpret the rotated redundancy variates by selecting the 

rotated redundancy loadings that are not only prominent but also statistically significant. 

Because the technical details in this paper are closely related to Gu et al. (2021), it is 

useful to review the related work that leads to the standard error estimates for rotated CCA 

estimates. It is well known that CCA is almost always used in exploratory data analysis, because 

the traditional development of CCA does not provide the inferential information to test the CCA 

parameters, except the canonical correlations, of which the significance can be tested under the 

multivariate normality assumption of the data. Recently, Gu, Yung, and Cheung (2019) provided 

a model-based approach to CCA that can produce the standard error estimates for CCA 

estimates. Particularly, their model-based approach includes four covariance structure models1 

specifically designed for CCA, and one of the models (i.e., the CORR-L model) can produce the 

standard error estimates for canonical loadings. Based on the original CORR-L model, Gu et al. 

                                                           
1 According to Gu et al. (2019), the names of the four models designed for CCA are 1) the COV-

W model, 2) the COV-L model, 3) the CORR-W model, and 4) the CORR-L model. Each name 

has two parts that are separated by a dash. The first part is either COV or CORR. If the first part 

is COV, the model can analyze unstandardized variables (or a covariance matrix) and produce 

unstandardized estimates for the unique parameters. If the first part is CORR, the model can 

analyze not only unstandardized variables (or a covariance matrix) but also standardized 

variables (or a correlation matrix) and produce standardized estimates for the unique parameters. 

The second part of the name is either W or L, indicating the unique parameters subsumed by the 

model. If the second part is W, the model subsumes the weights as the unique parameters. If the 

second part is L, the model subsumes the loadings as the unique parameters. 
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(2021) provided the specification of the modified CORR-L model that can accommodate the 

rotated canonical loadings and other rotated CCA estimates; and they further showed that the 

infinitesimal jackknife (IJ) method2 (Jennrich & Clarkson, 1980; Jennrich, 2008; Zhang, 

Preacher, & Jennrich, 2012) can be applied with the modified CORR-L model to compute the 

standard error estimates for rotated canonical loadings and other rotated CCA estimates. The 

advantage of the IJ method is that it can handle non-normal data and produce the robust standard 

error estimates. Thus, we also focus on the IJ method in this paper. In sum, it is the modified 

CORR-L model that serves as the basis to apply the IJ method. 

Based on the work of Gu et al. (2021) in the CCA context, we can easily outline the work 

required to produce the standard error estimates for rotated redundancy loadings and other 

rotated RA estimates. First, we need a model that can accommodate the rotated RA estimates. 

Then, we can apply the IJ method with the specified model to compute the standard error 

estimates for rotated RA estimates. Recently, Gu, Yung, Cheung, Joo, and Nimon (2023) 

developed a model-based approach to RA that can produce the standard error estimates for RA 

                                                           
2 In the EFA literature, there are two other methods that can be applied to compute the standard 

error estimates for rotated EFA estimates. The first method is the delta method (Archer & 

Jennrich, 1973; Jennrich, 1973), which requires a common factor model whose estimates are the 

unrotated EFA estimates. The second method is the augmented information matrix method 

(Jennrich, 1974), which requires a common factor model whose estimates are the rotated EFA 

estimates. In principle, these two methods can also be applied with the original and modified 

CORR-L models, separately, to produce the standard error estimates for rotated canonical 

loadings. 
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estimates. Particularly, their model-based approach includes two covariance structure models3 

specifically designed for RA, and one of the models (i.e., the RA-L model) can produce the 

standard error estimates for redundancy loadings. Thus, a feasible way to develop a model that 

can accommodate the rotated redundancy loadings and other rotated RA estimates is to modify 

the original RA-L model. Then, the IJ method can be applied with the modified RA-L model. 

Hence, the required work is to specify the modified RA-L model, because the modified RA-L 

model serves as the basis to apply the IJ method to compute the standard error estimates for 

rotated RA estimates. 

The organization of this paper is as follows. In Section 2, we first review the original RA-

L model; then, we specify two modified RA-L models to accommodate the rotated RA estimates 

from orthogonal and oblique rotations, separately. In Section 3, we describe the IJ method with 

the two modified RA-L models estimated by the unweighted least squares (ULS) fitting function. 

In Section 4, we use a simulation study to validate the standard error estimates from the IJ 

method. In Section 5, we use two real examples to demonstrate the interpretation of rotated 

redundancy variates. Finally, in Section 6, we summarize the paper and provide additional 

                                                           
3 Gu et al. (2023) partially inherited the idea from Gu et al. (2019) to name the two models 

designed for RA. The first part of the name is always RA, rather than COV or CORR, because 

RA is defined to analyze standardized variables (or a correlation matrix) by Van Den Wollenberg 

(1977). The second part of the name is either W or L, indicating the unique parameters subsumed 

by the model. If the second part is W, the model subsumes the weights as the unique parameters. 

If the second part is L, the model subsumes the loadings as the unique parameters. 
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remarks regarding the rotation methods and the use of numeric partial derivatives when applying 

the IJ method. 

 

2. THE ORIGINAL RA-L MODEL AND TWO MODIFIED RA-L MODELS 

In this section, we first review the original RA-L model and then specify two modified 

RA-L models for orthogonal and oblique rotations, separately. 

 

2.1 The original RA-L model 

Let x be a p × 1 vector for p predictor variables and y be a q × 1 vector for q criterion 

variables. With p predictor variables, one can construct up to p redundancy variates. Let 

 1 2 p   ξ   be the vector that includes all p redundancy variates. According to Van 

Den Wollenberg (1977), ξi (i = 1, 2, …, p) must satisfy two restrictions. First, ξi is uncorrelated 

with ξj (i ≠ j). Second, ξi has unit variance (i = 1, 2, …, p). With these restrictions, Gu et al. 

(2023) specified the covariance structure of the original RA-L model as 

 

 , , , ,

,

x y x y yy

x x p y x x

y q y yy q y

 

  





      
      
     

Σ Σ D D L L R

D 0 L 0 I L L 0 D 0

0 D 0 I L R 0 I 0 D

  (1) 

where Ip and Iq are identity matrices of orders p and q, separately, Dx is a p × p diagonal matrix 

whose diagonal elements are the standard deviations of p predictor variables, Dy is a q × q 

diagonal matrix whose diagonal elements are the standard deviations of q criterion variables, Lxξ 

is a p × p square matrix that includes the redundancy loadings (i.e., the correlations between p 

predictor variables and p redundancy variates), Lyξ is a q × p matrix that includes the cross-

loadings (i.e., the correlations between q criterion variables and p redundancy variates), and Ryy 
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is a q × q correlation matrix whose off-diagonal elements are the correlations of q criterion 

variables. 

To identify the original RA-L model, three types of constraints must be imposed. The 

first type of constraints is applicable only when the number of predictor variables exceeds that of 

criterion variables by two or more (i.e., p - q ≥ 2). Specifically, let d = p - q be a positive integer. 

When d ≥ 2, the first type of constraints requires one to arbitrarily fix d(d - 1)/2 elements in the 

last d columns of Lxξ. When d = 1 or p ≤ q, the first type of constraints is not applicable. The 

second type of constraints is 

  vecdiag ,x x p p   L L 1 0   (2) 

where vecdiag(M) denotes a column vector created with the diagonal elements of M, and 1p 

denotes a unit vector of order p, and 0p denotes a null vector of order p. Finally, the third type of 

constraints is 

  vecb ,y y  L L 0   (3) 

where vecb(M) denotes a column vector created with the off-diagonal elements below the main 

diagonal of M, and 0 denotes a null vector of appropriate order4. The third type of constraints 

indicate that y y L L  must be a diagonal matrix, but the number of constraints required by 

Equation (3) depends on the relative magnitude of p and q. When p ≤ q, all p columns of Lyξ 

include non-zero cross-loadings. In this situation, y y L L  has p(p - 1)/2 unique off-diagonal 

elements that must be 0. When p > q, only the first q columns of Lyξ include non-zero cross-

                                                           
4 If possible, a subscript is used to indicate the order of a vector. For the null vector 0 on the right 

side of Equation (3), it can be either 0p(p - 1)/2 or 0q(q - 1)/2, depending on the relative magnitude of p 

and q. 
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loadings, while the last d = p - q columns of Lyξ are null vectors (see Appendix A of Gu et al., 

2023). In this situation, the first q × q submatrix of y y L L  has q(q - 1)/2 unique off-diagonal 

elements that must be 0. This completes the three types of constraints for the original RA-L 

model. 

To count the number of parameters of the RA-L model, it is obvious that Dx has p 

standard deviations, Dy has q standard deviations, and Ryy has q(q - 1)/2 correlations. For Lxξ and 

Lyξ, however, the number of parameters in these two matrices also depends on the relative 

magnitude of p and q. For p ≤ q, Lxξ has p2 redundancy loadings, and Lyξ has pq cross-loadings. 

For p > q, Lxξ has p2 - d(d - 1)/2 = (p2 + 2pq - q2 + p - q)/2 redundancy loadings, and Lyξ has q2 

cross-loadings in the first q columns because the last d columns of Lyξ are null vectors. Finally, 

given the number of constraints for identification and the number of parameters, we can verify 

that the RA-L model is a saturated model regardless of the relative magnitude of p and q (see 

Appendix B of Gu et al., 2023). 

 

2.2 Matrix partitions 

To specify the two modified RA-L models in the next two subsections, it is necessary to 

partition some matrices of the original RA-L model. Let m be a positive integer that indicates the 

number of redundancy variates to be rotated. When p ≤ q, m must be equal to or less than p. 

When p > q, m must be equal to or less than q, because there is no need to rotate the last d = p - q 

redundancy variates. 

With these settings, we first partition Lxξ as 

  | | ,x x m x u  L L L   (4) 
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where |x mL  is a p × m matrix, |x uL  is a p × u matrix, and u = p - m. Correspondingly, the 

submatrices Ip and Lyξ in 
p y

y yy





 
 
 

I L

L R
 of Equation (1) should be partitioned as 

  | |   and   ,m
p y y m y u

u
  

 
  
 

I 0
I L L L

0 I
  (5) 

where |y mL  is a q × m matrix and |y uL  is a q × u matrix. 

Based on the partitions in Equations (4) and (5), the covariance structure of the original 

RA-L model can be re-written as 

 

 

 

 

| | | |

| |

| |
| |

| |

, , , , , ,

.

x y x m x u y m y u yy

y mm x m

x m x ux x
y uu x u

y yq
qy m y u yy

   

 
 

 

 



                                      

Σ Σ D D L L L L R

LI 0 L
L L 0 0D 0 D 0L0 I L

0 D 0 D0 I
0 IL L R

  (6) 

In the next two subsections, we will show the effect of orthogonal and oblique rotations on |x mL , 

Im, and |y mL  in Equation (6) and define the two modified RA-L models for orthogonal and 

oblique rotations, separately. 

 

2.3 The modified RA-L model for orthogonal rotations 

When the first m redundancy variates are rotated with an orthogonal rotation method, 

|x mL  is transformed by an m × m orthogonal matrix Torth to produce orth
|x mL , which is a p × m 

matrix that includes the rotated redundancy loadings. That is, 

 orth orth
| | .x m x m L T L   (7) 

At the same time, Im and |y mL  are also transformed by Torth. For Im, the transformation is 

        1 1 1orth orth orth orth .m m

    T I T T T I   (8) 
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For |y mL , the transformation is 

   1orth orth orth
| | | .y m y m y m  

  L T L T L   (9) 

Obviously, orth
|y mL  is a q × m matrix that includes the rotated cross-loadings. Given Equations (7) 

– (9), the covariance structure of the modified RA-L model for orthogonal rotations is defined as  

 

 

   

 

 

orth orth
| | | |

orth orth
|orth |

| |

| |

orth
| |

, , , , , ,x y x m x u y m y u yy

m y m x m
x m x ux x

u
y u x u

y yq

qy m y u yy

   

 
 

 

 



                                          

Σ Σ D D L L L L R

I 0 L L
L L 0 0D 0 D 0

0 I L L0 D 0 D0 I
0 IL L R

.


 

 (10) 

To identify the modified RA-L model for orthogonal rotations, we must impose four 

types of constraints. The first three types of constraints are inherited with or without changes 

from the three types of constraints for the original RA-L model, whereas the fourth type of 

constraints is introduced to remove rotational indeterminacy. The first type of constraints is 

identical to that for the original RA-L model. That is, when x has 2 or more variables than y, one 

should arbitrarily fix d(d - 1)/2 elements in the last d columns of |x uL . 

The second type of constraints involves both rotated and unrotated redundancy loadings. 

That is, 

    orth
orth |

| |

|

vecdiag .x m
x m x u p p

x u


 



  
    
    

L
L L 1 0

L
  (11) 

Compared to the p constraints in Equation (2), the first m constraints in Equation (11) are 

different, because these constraints are imposed on the rotated redundancy loadings in orth
|x mL . 
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To derive the third type of constraints, we must express y y L L  in Equation (3) with the 

partitioned matrix  | |y y m y u  L L L . That is, 

 

 |

| |
|

| | | |

| | | |

.

y m

y y y m y u
y u

y m y m y m y u

y u y m y u y u


   



   

   

 
    

  
    

L
L L L L

L

L L L L

L L L L

  

Given the constraints required by Equation (3), we can see that | |y m y m L L  and | |y u y u L L  must be 

diagonal matrices and | |y u y m L L  must be a null matrix. Thus, we can re-write Equation (3) as 

 

 
 
 

| |

| |

| |

vecb

vecb ,

vec

y m y m

y u y u

y u y m

 

 

 

 
 
  
 
  

L L

L L 0

L L

  

where vec(M) denotes a column vector created with all elements of M. With orthogonal 

rotations, |y mL  should be substituted with orth orth
| |y m y m L L T  so that the first and last components 

in the above expression must be changed as follows: 

 

 

 
 

 

 
 

orth orth orth orth
| | | |

| | | |

orth orth
| | | |

vecb vecb

vecb vecb .

vec vec

y m y m y m y m

y u y u y u y u

y u y m y u y m

   

   

   

                           
   

    
      

L L T L L T

L L L L

L L L L T

  

It is easy to verify that  | |vecb y u y u L L  and  orth
| |vec y u y m L L T  remain to be null vectors after 

orthogonal rotations, but  orth orth
| |vecb y m y m 

    
T L L T  may not be a null vector, because 

 orth orth
| |y m y m 

 T L L T  in general is an m × m symmetric matrix. It means that rotation violates the 
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first m(m - 1)/2 constraints required by Equation (3). Therefore, the third type of constraints for 

the modified RA-L model for orthogonal rotations is 

 
 
 

| |

orth
| |

vecb
.

vec

y u y u

y u y m

 

 

 
  
  

L L
0

L L
  (12) 

In the fourth type of constraints, the results derived by Archer and Jennrich (1973) are 

adapted to remove rotational indeterminacy for orthogonal rotations. That is, the fourth type of 

constraints requires  
orth

orth
| orth

|
x m

x m

h







L
L

 to be a symmetric matrix, where  orth orth orth
|x mh h  L  denotes 

the simplicity function of orth
|x mL  for a particular orthogonal rotation criterion, and this type of 

constraints includes m(m - 1)/2 constraints. Formally, we can write the fourth type of constraints 

as 

  
 

orth orth
orth orth

| | ( 1)/2orth
orth|

|

vecb .x m x m m m
x m

x m

h h
 






 
       

L L 0
L L

  (13) 

This completes the four types of constraints for the modified RA-L model for orthogonal 

rotations. 

It can be seen that the number of parameters of the modified RA-L model for orthogonal 

rotations is the same as that of the original RA-L model, because orthogonal rotations do not 

increase the number of parameters. As for the number of constraints, Equation (12) has m(m - 

1)/2 fewer constraints than Equation (3), while Equation (13) introduces m(m - 1)/2 new 

constraints. Therefore, the modified RA-L model for orthogonal rotations is still a saturated 

model. 

 

2.4 The modified RA-L model for oblique rotations 
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When the first m redundancy variates are rotated with an oblique rotation method, |x mL  

is transformed by an m × m nonsingular matrix Tobli that must satisfy the restriction 

 
1

obli oblidiag m


    

T T I  to produce obli
|x mL , which is a p × m matrix that includes the rotated 

redundancy loadings. That is, 

 obli obli
| | .x m x m L T L   (14) 

At the same time, Im and |y mL  are also transformed by Tobli. For Im, the transformation is 

      
1

1 1obli obli obli obli ,m


       

T I T T T Φ   (15) 

where is Φ a m × m correlation matrix5 of the rotated redundancy variates. For |y mL , the 

transformation is 

   1obli obli
| | ,y m y m 

 L T L   (16) 

where obli
|y mL  is a q × m matrix that includes the rotated cross-loadings. Based on Equations (14) – 

(16), the covariance structure of the modified RA-L model for oblique rotations is defined as  

 

 

   

 

 

obli obli
| | | |

obli obli
|obli |

| |

| |

obli
| |

, , , , , , ,x y x m x u y m y u yy

y m x m
x m x ux x

u
y u x u

y yq

qy m y u yy

   

 
 

 

 



                                         

Σ Σ D D L L Φ L L R

Φ 0 L L
L L 0 0D 0 D 0

0 I L L0 D 0 D0 I
0 IL L R

.




 

 (17) 

                                                           
5 Φ is a correlation matrix due to the restriction imposed on Tobli. That is, 

 
1

obli oblidiag m


    

T T I . 
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Note that Equation (17) has m(m - 1)/2 more parameters than Equations (6) due to the off-

diagonal elements of Φ. 

To identify the modified RA-L model for oblique rotations, we also need to impose four 

types of constraints. The first type of constraints is that when x has 2 or more variables than y, 

one should arbitrarily fix d(d - 1)/2 elements in the last d columns of |x uL  in Equation (17). 

The second type of constraints involves not only the rotated and unrotated redundancy 

loadings but also the correlations of the rotated redundancy variates. That is, 

    obli
obli |

| |

|

vecdiag .x m
x m x u p p

u
x u


 



              

Φ 0 L
L L 1 0

0 I L
  (18) 

Compared to the p constraints in Equation (2), the first m constraints in Equation (18) are 

different, because these m constraints involve the rotated redundancy loadings in obli
|x mL  and the 

correlations in Φ. 

The derivation of the third type of constraints for the modified RA-L model for oblique 

rotations is similar to that for the orthogonal rotations. Recall that Equation (3) requires 

 

 
 
 

| |

| |

| |

vecb

vecb .

vec

y m y m

y u y u

y u y m

 

 

 

 
 
  
 
  

L L

L L 0

L L

  

With oblique rotations, |y mL  should be substituted with   1obli obli
| |y m y m 

L L T  so that the first 

and last components in the above expression must be changed as follows: 

 

 

 
 

 

 
 

obli obli obli obli
| | | |

| | | |

obli obli
| | | |

vecb vecb

vecb vecb .

vec vec

y m y m y m y m

y u y u y u y u

y u y m y u y m

   

   

   

                           
   

    
      

L L T L L T

L L L L

L L L L T
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It is easy to verify that  | |vecb y u y u L L  and  obli
| |vec y u y m L L T  remain to be null vectors after 

oblique rotations, but  obli obli
| |vecb y m y m 

    
T L L T  may not be a null vector, because 

 obli obli
| |y m y m 

 T L L T  in general is an m × m symmetric matrix. Therefore, the third type of 

constraints for the modified RA-L model for oblique rotations is 

 
 
 

| |

obli
| |

vecb
.

vec

y u y u

y u y m

 

 

 
  
  

L L
0

L L
  (19) 

In the fourth type of constraints, the results derived by Jennrich (1973) are adapted to 

remove rotational indeterminacy for oblique rotations. That is, the fourth type of constraints 

requires  
obli

obli 1
| obli

|
x m

x m

h







L Φ
L

 to be a diagonal matrix, where  obli obli obli
|x mh h  L  denotes the 

simplicity function of obli
|x mL  for a particular oblique rotation criterion, and this type of constraints 

includes m(m - 1) constraints. Formally, we can write the fourth type of constraints as 

  
obli

obli 1
| ( 1)obli

|

veco ,x m m m
x m

h







   
  

L Φ 0
L

  (20) 

where veco(M) denotes a column vector created with all off-diagonal elements of M. This 

completes the four types of constraints for the modified RA-L model for oblique rotations. 

It can be seen that the modified RA-L model for oblique rotations has m(m - 1)/2 more 

parameters (i.e., the off-diagonal elements of Φ) than the original RA-L model, Equation (19) 

has m(m - 1)/2 fewer constraints than Equation (3), and Equation (20) introduces m(m - 1) new 

constraints. Therefore, the modified RA-L model for oblique rotations is still a saturated model. 

 

3. THE INFINITESIMAL JACKKNIFE METHOD 
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In this section, we describe the IJ method with the modified RA-L models estimated by 

the ULS fitting function. Computationally, the IJ method requires the pseudo values, which are 

obtained from two quantities: 1) the Jacobian matrix of the estimating equations with respect to 

the estimates and 2) the partial differentials of the estimating equations with respect to the 

sample covariance matrix S. The Jacobian matrix and the partial differentials are described first, 

followed by the descriptions of the pseudo values and the IJ estimate of the asymptotic 

covariance matrix. 

 

3.1 Notations of the parameter vectors 

Strictly speaking, we should use θorth and θobli to denote the parameter vectors for the two 

modified RA-L models, separately. With these notations, we have

   orth orth orth
| | | |, , , , , ,x y x m x u y m y u yy   Σ θ Σ D D L L L L R  and 

   obli obli obli
| | | |, , , , , , ,x y x m x u y m y u yy   Σ θ Σ D D L L Φ L L R . However, to avoid repetitive descriptions in 

this section, we use θ as a generic symbol to denote the parameter vector for both modified RA-

L models. As such,  Σ θ  is used to refer to either  orthΣ θ  or  obliΣ θ . 

 

3.2 Jacobian matrix and partial differentials 

For both modified RA-L models, the ULS fitting function is defined as 

   2
0.5 tr .F    S Σ θ   (21) 

Then, the estimating equations have the following form 
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    
 
 

1

2

3

, ,

F 
  

  
 
 
  

θ
φ θg θ S 0
φ θ

φ θ

  (22) 

where  1φ θ ,  2φ θ , and  3φ θ  represent the second, third, and fourth type of constraints for 

either modified RA-L model. Specifically,  1φ θ  includes p constraints from either Equation 

(11) for orthogonal rotations or Equation (18) for oblique rotations,  2φ θ  includes p(p - 1)/2 - 

m(m - 1)/2 or q(q - 1)/2 - m(m - 1)/2 constraints, depending on the relative magnitude of p and q, 

from either Equation (12) for orthogonal rotations or Equation (19) for oblique rotations, and 

 3φ θ  includes either m(m - 1)/2 constraints from Equation (13) for orthogonal rotations or m(m 

- 1) constraints from Equation (20) for oblique rotations. 

Given Equation (22), the Jacobian matrix of  ,g θ S  with respect to θ is 

    
 

 

 

2

1

2

3

,
, ,

F 
   
 
 

        
 

  
  

θ θ
φ θ

g θ S θJ θ S
φ θθ

θ
φ θ

θ

  (23) 

where 
2F
 θ θ

 is the Hessian matrix of the ULS fitting function, and the remaining components 

are the partial derivatives of the constraints with respect to θ. 

Let    2 , d θ Sg S  be the partial differential of  ,g θ S  with respect to S evaluated at 

 ,θ S , and we define kn as 
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     

  
  

2 ,

vec
vec

,

n n n

n n

      
               
 
  
 

θ Sk g z z z z

Σ θ
z z z z

θ
0

0

0

  (24) 

where n = 1, 2, …, N, N is the sample size, zn is a column vector for the nth observation of all 

predictor and criterion variables, and z  is a column vector of the sample means of all predictor 

and criterion variables. The last three components in Equation (24) are null vectors, because 

 1φ θ ,  2φ θ , and  3φ θ  are not functions of S. 

 

3.3 Pseudo values and asymptotic covariance matrix of parameter estimates 

Given the Jacobian matrix and the partial differentials, the pseudo values for each 

observation can be computed. Let λn (n = 1, …, N) be a column vector collecting the pseudo 

values for the nth observation, and it can be solved from 

  , .n n J θ S λ k   (25) 

Note that  ,J θ S  defined in Equation (23) has more rows than columns so that the system of 

equations in Equation (25) appears to be over-determined. Thus, we apply the QR decomposition 

to  ,J θ S  to solve for λn. 

After λn is obtained for all observations, the IJ estimate of the asymptotic covariance 

matrix of θ̂  is 

    IJ ˆacov scov ,nθ λ   (26) 
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where  scov nλ  is the sample covariance matrix of all λn. Finally, the standard error estimates 

for θ̂  are obtained from dividing the square roots of the diagonal elements of  IJ ˆacov θ  by N . 

 

4. A SIMULATION STUDY 

In this section, we use a simulation study to validate the standard error estimates from the 

IJ method under both multivariate normality and multivariate nonnormality and at different 

sample sizes. 

 

4.1 Data generation 

Two factors are manipulated in this simulation study. The first factor is the data 

distribution, including 1) multivariate normality and 2) multivariate nonnormality. The second 

factor is the sample size, including 1) 200, 2) 400, and 3) 600. In total, there are 6 combinations 

of data distribution and sample size. At each combination, we use the following population 

covariance matrix to generate 1000 random data sets: 

 0 ,xx yx

yx yy

 
  
 

Σ Σ
Σ

Σ Σ
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where the first eight variables are the predictor variables and the last eight variables are the 

criterion variables6. The submatrices of Σ0 are

 

1.00

.71 1.00

.72 .72 1.00

.73 .73 .73 1.00
,

.74 .74 .74 .74 1.00

.20 .10 .10 .10 .20 1.00

.10 .20 .20 .20 .10 .52 1.00

.20 .10 .10 .10 .20 .53 .53 1.00

.40 .50 .35 .50 .40 .05 .04 .03

.35 .35 .40 .40 .35 .04 .02 .01

.

xx

yx

 
 
 
 
 
   
 
 
 
  
 



Σ

Σ

50 .40 .50 .35 .50 .03 .01 .04

.35 .35 .40 .40 .35 .02 .03 .02
,

.40 .50 .35 .50 .40 .01 .05 .05

.01 .01 .02 .02 .03 .40 .30 .35

.02 .03 .01 .03 .02 .35 .40 .30

.03 .02 .03 .01 .01 .30 .35 .40

1.00

.51 1.00

.52 .52 1.00

.53 .5
yy

 
 
 
 
 
 
 
 
 
 
  
 

Σ
3 .53 1.00

.
.54 .54 .54 .54 1.00

.20 .00 .20 .00 .20 1.00

.00 .20 .00 .20 .00 .52 1.00

.20 .00 .20 .00 .20 .53 .53 1.00

 
 
 
 
 
 
 
 
 
 
  
 

  

                                                           
6 By reviewing the RA literature, we found that most methodological articles often use a small 

number of predictor/criterion variables for illustrative purposes. For example, the artificial 

example used by Van Den Wollenberg (1977) has 4 predictor variables and 4 criterion variables, 

whereas Takane and Hwang (2005) set the minimum numbers of predictor and criterion 
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To generate the multivariate normal data, the RANDNORMAL function in SAS PROC 

IML is used. To generate the multivariate non-normal data, we use the procedure developed by 

Qu, Liu, and Zhang (2020). This procedure is implemented by the MNONR package in R, which 

requires the user to specify the population values of multivariate skewness and multivariate 

kurtosis. In this simulation study, we set the values of multivariate skewness and multivariate 

kurtosis to 10 and 400, respectively7. 

                                                           
variables to be 2 and 1, separately. As for the psychological examples analyzed by RA, the 

number of predictor/criterion variables can range from small to large. For example, Fornell 

(1979) used 14 predictor variables in the first example (i.e., Case One) but only 6 criterion 

variables in the second example (i.e., Case Two), while van Dam and van Trijp (2011) used RA 

to analyze 15 predictor variables and 10 criterion variables. Based on these findings, we choose 

to use 8 predictor variables and 8 criterion variables in our simulation study, which can be 

considered as a middle ground in the RA literature. 

7 Qu et al. (2020) conducted a simulation study, where the number of variables is 2, 4, and 6, the 

values of multivariate skewness are 0, 1, 3, and 15, and the values of multivariate kurtosis are 10, 

32, 61, and 91 (p. 943). They chose to report the results from three representative combinations 

of multivariate skewness and multivariate kurtosis, which were referred to as small, medium, and 

large nonnormality (p. 944). Qu et al. (2020) showed that both multivariate skewness and 

multivariate kurtosis are functions of the number of variables (Eqs. 5 and 6) and that the value of 

multivariate kurtosis has a lower bound that depends on not only the number of variables but also 

the value of multivariate skewness (Eq. 17). Because we use 16 variables in this simulation 

study, which is about 3 times of the maximum number of variables (i.e., 6) used by Qu et al. 

https://doi.org/10.1017/psy.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.8


24 
 

 

4.2 Data analysis and evaluation criteria 

By applying RA to Σ0, we obtain the population values of the unrotated redundancy 

loadings and unrotated cross-loadings: 

 

.8401 .1341 .2650 .1836 .0465 .0428 .2225 .3447

.8901 .1721 .0814 .2285 .0159 .0920 .1257 .3077

.8316 .1220 .3780 .2809 .0830 .1485 .0850 .1886

.9066 .1797 .1418 .2203 .1025 .0981 .1493 .1872

.8402 .1346 .2597 .1343 .22x

 
  

  
  


 

L ,
53 .0643 .3674 .0258

.0103 .8084 .1790 .1924 .5022 .0500 .1456 .0374

.0121 .8119 .1419 .0416 .2345 .5073 .0606 .0527

.0123 .8081 .1880 .1739 .2621 .4449 .1104 .0502

 
 
 
 
 
 
  
 

 
      
      

  

                                                           
(2020), we set the value of multivariate skewness to be 10, which is also about 3 times of 

multivariate skewness in medium nonnormality (i.e., 3) used by Qu et al. (2020). As for 

multivariate kurtosis, we decide to choose a number that is about 4 times of the maximum 

multivariate kurtosis (i.e., 91) used by Qu et al. (2020). Overall, the values we choose for 

multivariate skewness and multivariate kurtosis in our simulation study can be considered as a 

middle ground between medium and large nonnormality. The percentiles of multivariate 

skewness and multivariate kurtosis of the 16 variables and the percentiles of univariate skewness 

and univariate kurtosis of individual variables can be found from the supplementary materials of 

this paper. 
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.5159 .0848 .2053 .0324 .0356 .0033 .0099 .0000

.4209 .0139 .0475 .1029 .0095 .0014 .0053 .0001

.4729 .0492 .3565 .0723 .0294 .0048 .0001 .0000

.4203 .0119 .0564 .0895 .0406 .0023 .0053 .0001

.5159 .0779 .1938 .0580y

  
 

   
    


 

L ,
.0221 .0004 .0098 .0000

.0568 .4327 .0045 .0378 .0801 .0614 .0040 .0000

.0536 .4222 .0495 .0030 .0102 .1050 .0006 .0000

.0577 .4204 .0616 .0390 .0908 .0434 .0045 .0000

 
 
 
 
 
 
 
 
    

    
       

  

and the first two population redundancy indices are .1399 and .0698, while the subsequent 

population redundancy indices are less than .03. Thus, for each random data set, we only rotate 

the first two columns of redundancy loadings. In terms of the rotation method, we use a widely 

accepted oblique rotation method: QUARTIMIN (Browne, 2001; Carroll, 1953) with Kaiser’s 

normalization (Kaiser, 1958). In general, oblique rotations are more flexible than orthogonal 

rotations in the sense that oblique rotations can accommodate correlations among rotated 

factors/variates. If the rotated factors/variates are indeed uncorrelated, the resulting correlations 

from oblique rotations would be small and negligible. By applying QUARTIMIN to the first two 

columns of unrotated redundancy loadings, we obtain the population values of rotated 

redundancy loadings, rotated cross-loadings, and correlation of rotated redundancy variates: 

 obli obli
| |

.8525 .0097 .5228 .0921

.9028 .0199 .4172 .0199

.8440 .0203 4578 .0425

.9194 .0240 1.0000 .4162 .01
,    ,    

.8525 .0092 .1826 1.0000

.0011 .8087

.0006 .8119

.0008 8080

x m y m 

 
 
 
  
 

         
 
 
  
 

L Φ L
78

.
.5216 .0852

.0170 .4318

.0184 .4214

.0140 .4195

 
 
 
 
 
 
 
 
 
 
  
 

  

The normalized QUARTIMIN rotation is implemented by SAS PROC FACTOR, and the IJ 

method is implemented by customized code written in SAS PROC IML. 
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After the analyses are completed, we compute the means, standard deviations, and 

average standard error estimates across 1000 replications at each combination of data distribution 

and sample size. The standard deviations are used as the true standard errors to evaluate the 

performance of the IJ method. The first evaluation criterion we use is the relative bias of the 

average standard error estimate, which is calculated as 

 
Avg SE SD

Relative bias .
SD


   

According to Hoogland and Boomsma (1998), the standard error estimate is acceptable when the 

absolute value of relative bias is less than .1. Additionally, we use the estimate and the associated 

standard error estimate to construct a symmetric 95% confidence interval (CI) and evaluate if the 

population value is included in the symmetric 95% CI. Thus, the second evaluation criterion is 

the coverage rate for each parameter across 1000 replications. 

 

4.3 Results 

Because our purpose is to validate the standard error estimates from the IJ method, the 

means of rotated estimates are omitted in this section but can be found from the supplementary 

materials. Instead, we show the standard deviations, average standard errors, relative biases, and 

coverage rates in Tables 1 and 2 under multivariate normality and multivariate nonnormality, 

separately. It is observed that 1) the means are getting closer to their population values as the 

sample size increases, 2) all the absolute values of relative biases are less than 0.1, and 3) all the 

coverage rates are close to 95%. Therefore, we conclude that the IJ method performs well under 

both multivariate normality and multivariate nonnormality. 

[Insert Tables 1 and 2 about here] 
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5. TWO REAL EXAMPLES 

In this section, we use two real examples to demonstrate the interpretation of rotated 

redundancy variates. In the first example, the dimensionality was determined by a previous 

study, and we apply the normalized VARIMAX (Kaiser, 1958) for rotation. In the second 

example, we use the new criterion proposed by Gu et al. (2023) to determine the dimensionality 

and apply the normalized QUARTIMIN (Browne, 2001; Carroll, 1953) for rotation. The data and 

code for Example 1 can be found from the supplementary materials, and those for Example 2 can 

be requested from the first author. 

 

5.1 Example 1 

In the first example, we use the data from van Dam and van Trijp (2011), who collected 

851 survey responses from the light users of sustainable products and applied RA to predict 10 

variables measuring the motivational structure of sustainability by 15 variables that include 

psychographic variables and purchase behavior. The 10 motivational structure variables are 

healthiness (y1), price (y2), convenience (y3), naturalness (y4), taste (y5), local production (y6), 

environment friendliness (y7), fair trade (y8), animal friendliness (y9), and waste (y10). The 15 

predictor variables are concern for future consequences (x1), prevention focus (x2), promotion 

focus (x3), altruistic value (x4), biospheric value (x5), egoistic value (x6), NEP8 scale (x7), 

connectedness to nature (x8), environment affect (x9), ethical orientation (x10), health prevention 

                                                           
8 NEP stands for New Ecological Paradigm. It is a scale to measure pro-environmental 

orientation. 
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(x11), health promotion (x12), social SVO9 (x13), individual SVO (x14), and competitive SVO (x15). 

More details of these variables can be found from van Dam and van Trijp (2011). 

By applying RA, we find that the first three redundancy indices are .2503, .0357, 

and .0074, which are exactly the same as those reported by van Dam and van Trijp (2011, p. 

736), and all subsequent redundancy indices are smaller than .005. According to van Dam and 

van Trijp (2011), the first two redundancy indices are meaningful, and the third and subsequent 

redundancy indices can be ignored. Thus, we focus on the first two columns of the redundancy 

loadings and the cross-loadings. 

To obtain the standard error estimates for unrotated RA estimates, we fit the original RA-

L model. The estimation method we use include maximum likelihood (ML), which requires the 

multivariate normality assumption of the data, and ML with the Satorra-Bentler correction 

(referred to as MLSB hereafter), which does not require any distribution assumptions of the data. 

Table 3 shows the first two columns of Lxξ and Lyξ and the associated standard error estimates 

from ML and MLSB, separately. 

By applying the normalized VARIMAX, we obtain orth
|x mL  and orth

|y mL . To obtain the 

standard error estimates for rotated RA estimates, we fit the modified RA-L model for 

orthogonal rotations estimated by ULS, and apply the IJ method described in this paper. Table 4 

shows orth
|x mL , orth

|y mL , and the associated standard error estimates from the IJ method. 

[Insert Tables 3 and 4 about here] 

                                                           
9 SVO stands for Social Value Orientation. It is a scale that allocates people based on the number 

of choices that maximize the own gain (individual), the joint gain (social), or the difference 

between own and other’s gain (competitive). 
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Using the standard error estimates, we can test if the absolute value of a rotated 

redundancy loading in orth
|x mL  is larger than some cutoff value. Because the rotated redundancy 

loadings are correlations, we take .3 as the cutoff value, which means that at least 9% of the 

variance of a predictor variable must be shared with a rotated redundancy variate. Because we 

need to test the statistical significance of 30 rotated redundancy loadings simultaneously, it is 

necessary to adjust the typical significance level of .05. For convenience, we use the Bonferroni 

adjustment so that the adjusted significance level is .00167. It means that we will select a rotated 

redundancy loading if the associated p-value is smaller than .00167. 

Based on the selected rotated redundancy loadings, we use the corresponding predictor 

variables to interpret the rotated redundancy variates. Specifically, the first rotated redundancy 

variate should be interpreted in terms of biospheric value (x5), NEP scale (x7), connectedness to 

nature (x8), environment affect (x9), and ethical orientation (x10); however, all the rotated 

redundancy loadings are smaller than .3 in the second column of orth
|x mL . Accordingly, the first 

rotated redundancy variate can be interpreted as people’s concern for environmental 

sustainability. 

It is worth noting that if we only compared the absolute values of rotated redundancy 

variates against .3 but did not consider the sampling variability, we would select two more 

rotated redundancy loadings in the first column of orth
|x mL  (i.e., .5698 and .5495) that correspond 

with altruistic value (x4) and health prevention (x11). Nevertheless, the significance tests indicate 

that the rotated redundancy loadings on these two variables are not really larger than .3, and their 

magnitude observed in this example just appear to be larger than .3 due to randomness. If these 

two variables would be used to interpret the first rotated redundancy variate, it would totally 
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change the current interpretation of the first rotated redundancy variate. This reflects the 

advantage of the use of standard error estimates in selecting the rotated redundancy loadings. 

 

5.2 Example 2 

In the second example, we use the data from Jurukasemthawee, Pisitsungkagarn, 

Taephant, and Sittiwong (2021) that collected responses from 424 young adults (mean age = 

19.97, standard deviation of age = 1.64) on 9 psychological variables, serving as the predictor 

variables, and 7 spiritual well-being variables, serving as the outcome variables. The 9 predictor 

variables are family and environment background (x1), crisis in life that contributed to self-

development (x2), positive personal predisposition (x3), good role models (x4), faith activities 

(x5), mindfulness and self-regulation (x6), voluntary activities (x7), self-reflection (x8), and 

listening to positive experience (x9). The 7 spiritual well-being variables are: inner peace (y1), 

acceptance in diversity (y2), compassion (y3), self-transcendence (y4), value in self (y5), meaning 

in life (y6), and insight in learnings (y7). Each of the predictor and outcome variables is computed 

from the sum of item scores that are measured on a Likert scale ranging from 0 – 6. The number 

of items used for each of the predictor and outcome variables is from 5 – 12 items. More details 

of these items can be found from Jurukasemthawee et al. (2021). 

To determine the dimensionality in this example, we apply a new criterion proposed by 

Gu et al. (2023), which relies on the inferential information of redundancy indices. Specifically, 

we need to compare the lower limit of the 95% confidence interval (CI) for cumulative 

redundancy with some cutoff value. As a result, the smallest cumulative redundancy, of which 

the lower limit is larger than the specified cutoff value, can be identified. The identified 

cumulative redundancy determines the dimensionality in RA. In other words, we should retain 
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the individual redundancy indices that constitute the identified cumulative redundancy. As for 

the cutoff value, we choose .3, meaning that at least 30% of the variance of criterion variables 

must be explained. To apply this new criterion, we need to fit the original RA-L model. As for 

the estimation method, we still use ML and MLSB. 

Table 5 shows the results of the individual redundancy indices and cumulative 

redundancy for this example. By examining the lower limit of the 95% CI of cumulative 

redundancy, we find that the second cumulative redundancy is the smallest cumulative 

redundancy whose lower limit is larger than .3. It means that we should retain the first two 

individual redundancy indices. In addition, we notice that the second and third redundancy 

indices have comparable magnitude and both of them are distinctively larger than the fourth and 

subsequent redundancy indices, all of which are smaller than .01. Thus, we further study the 

difference between the second and third redundancy indices and their sum10. The results in Table 

6 show that the 95% CI for the difference includes 0, indicating that the second and third 

redundancy indices are not significantly different; simultaneously, the lower limit of the 95% CI 

for their sum is larger than .06 and the upper limit is nearly .10, indicating that the second and 

third redundancy indices can explain about 6% to 10% of the variance of criterion variables. 

Based on these results, we decide to retain the first three redundancy variates. The unrotated 

                                                           
10 Gu et al. (2023) showed that individual redundancy indices are functions of the parameters of 

the original RA-L model. Thus, the difference between the second and third redundancy indices 

and their sum are also functions of the parameters of the original RA-L model. This allows us to 

apply the multivariate delta method to obtain the relevant inferential information. 
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redundancy loadings and unrotated cross-loadings of the first three redundancy variates are 

shown in Table 7. 

[Insert Tables 5 - 8 about here] 

By applying the normalized QUARTIMIN, we obtain obli
|x mL , obli

|y mL , and Φ. To obtain the 

standard error estimates for rotated RA estimates, we fit the modified RA-L model for oblique 

rotations estimated by ULS, and apply the IJ method described in this paper. Table 8 shows 

obli
|x mL , obli

|y mL , and Φ, and the associated standard error estimates from the IJ method. 

Using the standard error estimates, we can test if the absolute value of a rotated 

redundancy loading in obli
|x mL  is larger than some cutoff value. Again, we take .3 as the cutoff 

value. Because we need to test the statistical significance of 27 rotated redundancy loadings 

simultaneously, it is necessary to adjust the typical significance level of .05. We use the 

Bonferroni adjustment again so that the adjusted significance level is .00185. It means that we 

will select a rotated redundancy loading if the associated p-value is smaller than .00185. 

Based on the selected rotated redundancy loadings, we use the corresponding predictor 

variables to interpret the three rotated redundancy variates. Specifically, the first rotated 

redundancy variate should be interpreted in terms of positive personal predisposition (x3), 

voluntary activities (x7), self-reflection (x8), and listening to positive experience (x9); the second 

rotated redundancy variate should be interpreted in terms of family and environment background 

(x1), crisis in life that contributed to self-development (x2), and Mindfulness and Self-Regulation 

(x6); and the third rotated redundancy variate should be interpreted in terms of faith activities 

(x5). Accordingly, the first rotated redundancy variate can be interpreted as positive personal 

predispositions that facilitated attention to positive experiences, self-reflection, and voluntary 

activities; the second rotated redundancy variate can be interpreted as safe family and 
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environmental backgrounds that facilitated the use of mindfulness and self-regulation in 

transforming crisis into self-development; and the third rotated redundancy variate can be 

interpreted as engagement in activities that were related to own faiths. Also, we found that the 

correlation between the first and second rotated redundancy variates is .7029 (with standard error 

estimate = .0265), suggesting that the first and second rotated redundancy variates share almost 

50% of their variance. It implies that positive personal predispositions and safe family and 

environmental backgrounds are closely and significantly related. It should be noted that only 

oblique rotations can produce correlated rotated redundancy variates and the resulting 

correlations may bring more meaningful interpretations and insights to the study than the 

orthogonal rotations. 

It is worth noting that if we only compared the absolute values of rotated redundancy 

variates against .3 but did not consider the sampling variability, we would select one more 

rotated redundancy loading in the third column of obli
|x mL  (i.e., .3102) that corresponds with 

voluntary activities (x7). Nevertheless, the significance test indicates that the rotated redundancy 

loading on this variable is not really larger than .3. If this variable would be used to interpret both 

the first and third rotated redundancy variates, it would cause some inconvenience in the 

interpretation, which in turn reflects the advantage of the use of standard error estimates in 

selecting the rotated redundancy loadings. 

 

6. DISCUSSIONS 

In this paper, we specify two modified RA-L models for orthogonal and oblique 

rotations, separately, and describe the IJ method with the ULS fitting function to produce the 

standard error estimates for rotated RA estimates. Then, a simulation study is conducted to 
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validate the performance of the IJ method. Additionally, two real examples are used to 

demonstrate the use of standard error estimates for rotated redundancy loadings when the rotated 

redundancy variates are interpreted. It was observed that the use of standard error estimates 

refines the selection of the rotated redundancy loadings and provides meaningful interpretations 

of the rotated redundancy variates in both examples. 

Regarding the rotation method, one can use any of the rotation methods from the 

Crawford-Ferguson family (Crawford & Ferguson, 1970), while the choice of rotation method 

only changes one thing in the implementation of the IJ method. Specifically, the choice of 

rotation method determines the simplicity function (i.e., horth in Equation 13 or hobli in Equation 

14) used in the fourth type of constraints of the modified RA-L model, and the fourth type of 

constraints determines the last component of the Jacobian matrix (i.e., 
 3


φ θ

θ
) in Equation 23. 

In other words, if a different rotation method is used, it is only the partial derivatives of the 

constraints in Equation 13 or 14 that must be changed in the implementation of the IJ method. 

Regarding the computation of partial derivatives, Lord (1975) and Browne and Du Toit 

(1992) recommended the use of numeric derivatives for nonstandard problems and models. Also, 

Jennrich (2008) reported good performance of numeric derivatives in the implementation of the 

IJ method. In our simulation study, we used numeric derivatives and obtained satisfactory results 

from the IJ method. Admittedly, one can argue that, in Equations 23 and 24, the use of numeric 

derivatives is not as efficient/fast as the use of analytic derivatives. But this is a minor limitation 

in practical data analysis, because the difference in speed is trivial if there are only a few data 

sets to be analyzed. If there are a large number of data sets to be analyzed such as in simulation 

studies, then the difference would become noticeable. However, it is quite challenging to derive 
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the necessary formulas for partial derivatives of different kinds of simplicity functions if the 

analytic derivatives must be used. 

Finally, we would like to point out that the IJ method is a very general method for 

standard error estimation, but it is under-utilized in psychometrics. Historically, Jennrich and 

Clarkson (1980) first developed this method in the context of EFA. Later, Jennrich (2008) 

extended this method to the general framework of covariance structure analysis and referred to 

this method as the IJ method. Nonetheless, there are only two studies that applied the IJ method: 

Zhang, Preacher, and Jennrich (2012) and Gu et al. (2021). We hope that our work would draw 

the attentions of not only the researchers but also the software developers who can develop 

accessible software programs to better promote the use of the IJ method. 
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Table 1. Results from simulations under multivariate normality. 

Parm 
N = 200 N = 400 N = 600 

SD 
Avg 
SE 

Relative 
Bias 

Coverage 
Rate (%) 

SD 
Avg 
SE 

Relative 
Bias 

Coverage 
Rate (%) 

SD 
Avg 
SE 

Relative 
Bias 

Coverage 
Rate (%) 

lx11 .0604 .0603 -.0008 95.20 .0421 .0413 -.0190 94.80 .0315 .0332 .0530 96.60 
lx21 .0471 .0492 .0447 95.70 .0319 .0325 .0207 95.80 .0258 .0258 .0018 95.50 
lx31 .0657 .0653 -.0060 94.70 .0440 .0440 -.0008 95.30 .0360 .0355 -.0144 95.00 
lx41 .0442 .0462 .0453 95.90 .0282 .0306 .0821 96.50 .0241 .0241 -.0019 95.30 
lx51 .0616 .0604 -.0203 95.10 .0399 .0406 .0180 95.40 .0323 .0330 .0229 95.60 
lx61 .0680 .0682 .0035 95.70 .0482 .0478 -.0097 95.00 .0395 .0390 -.0114 94.80 
lx71 .0666 .0677 .0177 95.20 .0476 .0478 .0045 96.20 .0396 .0390 -.0140 94.20 
lx81 .0672 .0674 .0034 94.90 .0472 .0476 .0085 95.40 .0371 .0387 .0424 96.20 
lx12 .0680 .0681 .0021 94.50 .0475 .0482 .0147 93.60 .0389 .0394 .0124 94.70 
lx22 .0730 .0752 .0291 94.80 .0549 .0534 -.0269 93.80 .0466 .0440 -.0549 93.40 
lx32 .0786 .0792 .0075 94.00 .0531 .0552 .0391 94.70 .0441 .0454 .0292 94.60 
lx42 .0797 .0802 .0067 93.40 .0589 .0573 -.0268 93.20 .0492 .0475 -.0344 93.60 
lx52 .0627 .0656 .0463 95.40 .0458 .0457 -.0016 94.40 .0364 .0375 .0304 94.80 
lx62 .0840 .0879 .0461 95.30 .0595 .0582 -.0228 94.00 .0469 .0474 .0107 96.00 
lx72 .0813 .0849 .0434 94.70 .0575 .0567 -.0139 94.30 .0441 .0457 .0366 95.10 
lx82 .0816 .0869 .0650 95.90 .0571 .0582 .0200 95.60 .0483 .0480 -.0055 93.80 
ϕ21 .0942 .0937 -.0050 94.40 .0636 .0617 -.0292 94.90 .0509 .0501 -.0151 94.20 
ly11 .0558 .0559 .0017 95.20 .0392 .0393 .0030 94.80 .0322 .0320 -.0065 96.60 
ly21 .0580 .0594 .0238 95.70 .0415 .0423 .0194 95.80 .0348 .0344 -.0116 95.50 
ly31 .0683 .0687 .0056 94.70 .0465 .0488 .0496 95.30 .0394 .0400 .0156 95.00 
ly41 .0596 .0597 .0004 95.90 .0417 .0422 .0137 96.50 .0342 .0345 .0079 95.30 
ly51 .0535 .0550 .0276 95.10 .0388 .0389 .0026 95.40 .0327 .0317 -.0296 95.60 
ly61 .0764 .0758 -.0079 95.70 .0511 .0529 .0348 95.00 .0419 .0429 .0256 94.80 
ly71 .0791 .0763 -.0362 95.20 .0535 .0532 -.0053 96.20 .0425 .0434 .0205 94.20 
ly81 .0792 .0762 -.0379 94.90 .0514 .0534 .0393 95.40 .0430 .0436 .0153 96.20 
ly12 .0870 .0894 .0276 94.50 .0611 .0610 -.0019 93.60 .0500 .0495 -.0091 94.70 
ly22 .0755 .0790 .0472 94.80 .0545 .0544 -.0015 93.80 .0449 .0442 -.0167 93.40 
ly32 .1136 .1152 .0140 94.00 .0803 .0807 .0057 94.70 .0669 .0667 -.0031 94.60 
ly42 .0765 .0798 .0432 93.40 .0541 .0548 .0126 93.20 .0430 .0445 .0348 93.60 
ly52 .0865 .0875 .0116 95.40 .0599 .0599 -.0002 94.40 .0498 .0487 -.0228 94.80 
ly62 .0628 .0615 -.0208 95.30 .0422 .0420 -.0060 94.00 .0344 .0344 .0004 96.00 
ly72 .0611 .0633 .0365 94.70 .0447 .0436 -.0244 94.30 .0365 .0356 -.0253 95.10 
ly82 .0617 .0628 .0188 95.90 .0432 .0438 .0127 95.60 .0359 .0358 -.0014 93.80 

Note. Parm = Parameter, SD = Standard Deviation, Avg SE = Average Standard Error, lx denotes 
the element of obli

|x mL , ϕ denotes the element of Φ, ly denotes the element of obli
|y mL , and the 

subscript after lx, ϕ, and ly refers to the location of the element in the corresponding matrix. 
  

https://doi.org/10.1017/psy.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.8


40 
 

Table 2. Results from simulations under multivariate nonnormality. 

Parm 
N = 200 N = 400 N = 600 

SD 
Avg 
SE 

Relative 
Bias 

Coverage 
Rate (%) 

SD 
Avg 
SE 

Relative 
Bias 

Coverage 
Rate (%) 

SD 
Avg 
SE 

Relative 
Bias 

Coverage 
Rate (%) 

lx11 .0678 .0662 -.0237 94.40 .0471 .0453 -.0391 94.00 .0364 .0369 .0157 94.80 
lx21 .0482 .0509 .0558 97.00 .0324 .0336 .0379 95.80 .0255 .0265 .0404 96.50 
lx31 .0689 .0691 .0039 95.40 .0479 .0474 -.0109 95.10 .0405 .0386 -.0461 93.90 
lx41 .0452 .0489 .0835 97.40 .0310 .0311 .0025 94.60 .0242 .0248 .0233 95.80 
lx51 .0655 .0647 -.0128 95.10 .0432 .0443 .0240 96.20 .0379 .0365 -.0389 94.90 
lx61 .0681 .0696 .0226 96.00 .0489 .0489 -.0009 94.90 .0384 .0399 .0389 96.10 
lx71 .0690 .0701 .0160 95.50 .0503 .0495 -.0150 95.10 .0405 .0406 .0012 94.70 
lx81 .0655 .0679 .0377 95.30 .0494 .0473 -.0438 93.70 .0397 .0389 -.0212 93.70 
lx12 .0660 .0683 .0347 95.00 .0476 .0484 .0164 95.50 .0375 .0396 .0568 95.50 
lx22 .0766 .0741 -.0320 93.30 .0561 .0539 -.0375 92.60 .0459 .0443 -.0366 93.00 
lx32 .0802 .0800 -.0023 93.80 .0544 .0565 .0370 95.70 .0453 .0458 .0107 95.20 
lx42 .0840 .0810 -.0354 92.60 .0598 .0580 -.0298 93.30 .0491 .0478 -.0261 93.10 
lx52 .0641 .0656 .0238 94.60 .0458 .0459 .0018 95.20 .0361 .0378 .0450 96.10 
lx62 .0920 .0961 .0448 95.30 .0655 .0631 -.0369 93.60 .0528 .0519 -.0184 94.50 
lx72 .0859 .0895 .0412 95.00 .0548 .0572 .0434 94.80 .0470 .0470 -.0004 95.20 
lx82 .0891 .0886 -.0053 94.40 .0576 .0592 .0274 94.40 .0482 .0478 -.0074 95.10 
ϕ21 .0954 .0973 .0201 95.40 .0672 .0642 -.0440 93.80 .0537 .0521 -.0308 94.70 
ly11 .0693 .0641 -.0752 94.40 .0485 .0472 -.0269 94.00 .0388 .0387 -.0030 94.80 
ly21 .0679 .0645 -.0491 97.00 .0486 .0476 -.0207 95.80 .0408 .0395 -.0318 96.50 
ly31 .0804 .0785 -.0241 95.40 .0585 .0578 -.0120 95.10 .0476 .0479 .0056 93.90 
ly41 .0676 .0646 -.0451 97.40 .0498 .0470 -.0554 94.60 .0396 .0388 -.0202 95.80 
ly51 .0631 .0611 -.0327 95.10 .0438 .0444 .0129 96.20 .0368 .0362 -.0171 94.90 
ly61 .0754 .0746 -.0105 96.00 .0526 .0527 .0011 94.90 .0431 .0429 -.0060 96.10 
ly71 .0778 .0753 -.0315 95.50 .0525 .0528 .0055 95.10 .0445 .0432 -.0290 94.70 
ly81 .0774 .0752 -.0276 95.30 .0550 .0532 -.0318 93.70 .0445 .0434 -.0253 93.70 
ly12 .0895 .0916 .0245 95.00 .0610 .0632 .0370 95.50 .0512 .0512 .0003 95.50 
ly22 .0813 .0814 .0018 93.30 .0559 .0556 -.0064 92.60 .0468 .0450 -.0383 93.00 
ly32 .1188 .1196 .0071 93.80 .0857 .0847 -.0123 95.70 .0699 .0694 -.0076 95.20 
ly42 .0811 .0817 .0074 92.60 .0560 .0558 -.0026 93.30 .0465 .0452 -.0269 93.10 
ly52 .0875 .0907 .0360 94.60 .0633 .0624 -.0145 95.20 .0514 .0502 -.0228 96.10 
ly62 .0696 .0683 -.0195 95.30 .0510 .0485 -.0488 93.60 .0418 .0399 -.0439 94.50 
ly72 .0714 .0693 -.0304 95.00 .0468 .0480 .0276 94.80 .0417 .0396 -.0522 95.20 
ly82 .0674 .0674 -.0005 94.40 .0472 .0469 -.0058 94.40 .0401 .0387 -.0353 95.10 

Note. Parm = Parameter, SD = Standard Deviation, SE = Standard Error, lx denotes the element 
of obli

|x mL , ϕ denotes the element of Φ, ly denotes the element of obli
|y mL , and the subscript after lx, 

ϕ, and ly refers to the location of the element in the corresponding matrix. 
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Table 3. The first two columns of unrotated redundancy loadings and unrotated cross-loadings 

and the associated standard error estimates from ML and MLSB. 

 Point Estimate SE from ML SE from MLSB 

First two columns of unrotated 
redundancy loadings in |x mL  

 ξ1 ξ2 
x1 -.0792 -.2800 
x2 .0038 -.0711 
x3 .0490 .1530 
x4 .6192 .4499 
x5 .8088 -.0372 
x6 -.0060 .2280 
x7 .5128 .0689 
x8 .7351 .0416 
x9 .5215 .0277 
x10 .7901 -.3497 
x11 .5938 .4012 
x12 .1680 -.0729 
x13 .1290 -.0224 
x14 -.1274 .0619 
x15 -.0136 .0573 

 

 ξ1 ξ2 
x1 .0453 .0782
x2 .0448 .0771
x3 .0447 .0729
x4 .0326 .0525
x5 .0205 .0523
x6 .0452 .0754
x7 .0354 .0711
x8 .0250 .0564
x9 .0349 .0667
x10 .0229 .0492
x11 .0334 .0591
x12 .0440 .0792
x13 .0440 .0733
x14 .0440 .0732
x15 .0445 .0722

 

 ξ1 ξ2 
x1 .0502 .0924
x2 .0503 .0794
x3 .0499 .0822
x4 .0372 .0571
x5 .0238 .0561
x6 .0493 .0826
x7 .0388 .0753
x8 .0277 .0568
x9 .0418 .0666
x10 .0257 .0558
x11 .0382 .0644
x12 .0538 .0877
x13 .0449 .0718
x14 .0462 .0713
x15 .0436 .0758

 

First two columns of unrotated 
cross-loadings in |y mL  

 ξ1 ξ2 

y1 .4749 .2177

y2 .1132 .3267

y3 -.0256 .2974

y4 .6012 -.0103

y5 .2069 .2904

y6 .5684 -.0922

y7 .6677 -.1256

y8 .6591 -.0100

y9 .5933 -.0063

y10 .5522 -.0724
 

 ξ1 ξ2 

y1 .0287 .0315

y2 .0383 .0326

y3 .0385 .0357

y4 .0220 .0238

y5 .0365 .0319

y6 .0235 .0271

y7 .0192 .0224

y8 .0196 .0274

y9 .0224 .0260

y10 .0241 .0269
 

 ξ1 ξ2 

y1 .0329 .0351

y2 .0462 .0341

y3 .0469 .0387

y4 .0262 .0294

y5 .0447 .0329

y6 .0249 .0346

y7 .0209 .0282

y8 .0210 .0293

y9 .0252 .0265

y10 .0261 .0313
 

Note. SE = standard error estimate, ML = maximum likelihood, MLSB = maximum likelihood 

with the Satorra-Bentler correction.  
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Table 4. Rotated redundancy loadings, rotated cross-loadings, and the associated standard error 

estimates from the IJ method. 

 Point Estimate SE from IJ 

Rotated redundancy loadings in obli
|x mL  

 ξ1 ξ2 

x1 -.0501 -.2867

x2 .0110 -.0703

x3 .0330 .1572

x4 .5698 .5110

x5 .8084 .0459

x6 -.0293 .2261

x7 .5030 .1211

x8 .7269 .1167

x9 .5159 .0810

x10 .8217 -.2669

x11 .5495 .4600

x12 .1746 -.0553

x13 .1306 -.0090

x14 -.1331 .0485

x15 -.0194 .0556
 

 ξ1 ξ2 

x1 .0548 .0963

x2 .0490 .0806

x3 .0475 .0846

x4 .0962 .1056

x5 .0258 .1306

x6 .0514 .0826

x7 .0476 .0852

x8 .0345 .1268

x9 .0468 .0932

x10 .0513 .1591

x11 .0888 .1164

x12 .0519 .0914

x13 .0438 .0689

x14 .0462 .0698

x15 .0432 .0765
 

Rotated cross-loadings in obli
|y mL  

 ξ1 ξ2 

y1 .4501 .2652

y2 .0792 .3365

y3 -.0559 .2932

y4 .5991 .0513

y5 .1761 .3101

y6 .5749 -.0335

y7 .6770 -.0565

y8 .6566 .0576

y9 .5908 .0545

y10 .5567 -.0154
 

 ξ1 ξ2 

y1 .0565 .0834

y2 .0750 .0364

y3 .0636 .0387

y4 .0280 .1035

y5 .0666 .0404

y6 .0258 .1076

y7 .0212 .1111

y8 .0241 .1217

y9 .0276 .1014

y10 .0259 .0942
 

Note. SE = standard error estimate, IJ = infinitesimal jackknife. The rotated redundancy loadings 

whose absolute values are significantly larger than .3 are in boldface.  
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Table 5. Results of the individual redundancy indices and cumulative redundancy for the real 

example. 

 Individual 
redundancy index 

Cumulative 
redundancy 

95% CI for cumulative 
redundancy from ML 

95% CI for cumulative 
redundancy from MLSB 

1 .3116 .3116 (.2728, .3504) (.2696, .3536) 
2 .0458 .3574 (.3197, .3951) (.3165, .3982) 
3 .0341 .3915 (.3545, .4285) (.3524, .4306) 
4 .0086 .4001 (.3633, .4369) (.3606, .4396) 
5 .0062 .4063 (.3698, .4428) (.3672, .4454) 
6 .0017 .4080 (.3715, .4445) (.3688, .4472) 
7 .0002 .4081 (.3717, .4446) (.3689, .4474) 

Note. CI = confidence interval, ML = maximum likelihood, MLSB = maximum likelihood with 

the Satorra-Bentler correction. 

 

 

 

 

 

Table 6. Difference between the 2nd and 3rd individual redundancy indices and sum of the 2nd and 

3rd individual redundancy indices. 

 95% CI from ML 95% CI from MLSB 
Difference = .0116 (-.0054, .0287) (-.0059, .0292) 

Sum = .0799 (.0630, .0968) (.0615, .0983) 
Note. Difference = the 2nd individual redundancy index - the 3rd individual redundancy index, 

Sum = the 2nd individual redundancy index + the 3rd individual redundancy index, CI = 

confidence interval, ML = maximum likelihood, MLSB = maximum likelihood with the Satorra-

Bentler correction. 
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Table 7. The unrotated redundancy loadings and unrotated cross-loadings for the first three 

redundancy variates. 

 Point Estimate SE from ML SE from MLSB 

First three 
columns of 
unrotated 
redundancy 
loadings in 

|x mL  

 ξ1 ξ2 ξ3 

x1 .5734 -.1988 -.0432 

x2 .7946 -.2552 .1235 

x3 .9231 .1773 -.1194 

x4 .6062 .1196 .0278 

x5 .5404 .0012 .7650 

x6 .8144 -.3140 -.0987 

x7 .6313 .3061 .2998 

x8 .6755 .2733 -.2178 

x9 .6753 .2858 .2208 
 

 ξ1 ξ2 ξ3 

x1 .0421 .0807 .1126 

x2 .0268 .0784 .1129 

x3 .0145 .0647 .0770 

x4 .0397 .0790 .0938 

x5 .0455 .3001 .0450 

x6 .0251 .0705 .1361 

x7 .0387 .1351 .1331 

x8 .0360 .1084 .1222 

x9 .0358 .1053 .1213 
 

 ξ1 ξ2 ξ3 

x1 .0479 .0894 .1433 

x2 .0289 .0927 .1198 

x3 .0150 .0756 .0878 

x4 .0444 .0921 .1097 

x5 .0483 .3251 .0500 

x6 .0271 .0925 .1558 

x7 .0396 .1710 .1501 

x8 .0396 .1412 .1291 

x9 .0367 .1108 .1410 
 

First three 
columns of 
unrotated 
cross-
loadings in 

|y mL  

 ξ1 ξ2 ξ3 

y1 .6652 -.3248 .0221 

y2 .4895 .1067 -.3511 

y3 .5849 .3443 -.0615 

y4 .5261 .0816 .0785 

y5 .2846 -.2592 -.2134 

y6 .6250 -.0803 .1263 

y7 .6393 .0681 .2091 
 

 ξ1 ξ2 ξ3 

y1 .0289 .0353 .1164 

y2 .0401 .1553 .0486 

y3 .0350 .0448 .1135 

y4 .0356 .0504 .0471 

y5 .0491 .0991 .0887 

y6 .0302 .0667 .0433 

y7 .0297 .0975 .0438 
 

 ξ1 ξ2 ξ3 

y1 .0302 .0378 .1324 

y2 .0488 .1823 .0502 

y3 .0352 .0513 .1309 

y4 .0407 .0513 .0511 

y5 .0548 .0986 .0995 

y6 .0333 .0809 .0455 

y7 .0337 .1185 .0460 
 

Note. SE = standard error estimate, ML = maximum likelihood, MLSB = maximum likelihood 

with the Satorra-Bentler correction. 
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Table 8. Results of the rotated redundancy loadings, the rotated cross-loadings, and the 

correlations of the three rotated redundancy variates. 

 Point Estimate SE from IJ 

Rotated redundancy loadings in 
obli

|x mL  

 ξ1 ξ2 ξ3 

x1 .0327 .5860 -.0044 

x2 .0280 .7620 .1847 

x3 .7291 .3137 -.1069 

x4 .4573 .1880 .0412 

x5 .0870 .2054 .8249 

x6 .0133 .8776 -.0424 

x7 .6529 -.0719 .3102 

x8 .7570 .0629 -.2290 

x9 .6671 -.0106 .2309 
 

 ξ1 ξ2 ξ3 

x1 .0506 .0412 .0802 

x2 .0607 .0636 .0624 

x3 .0557 .0549 .0529 

x4 .1072 .1065 .0719 

x5 .0234 .0261 .0200 

x6 .0294 .0314 .0586 

x7 .0616 .0576 .0479 

x8 .0374 .0248 .0385 

x9 .0854 .0782 .0738 
 

Rotated cross-loadings in obli
|y mL  

 ξ1 ξ2 ξ3 

y1 .4762 .7345 .2226 

y2 .4895 .4401 -.1660 

y3 .6741 .4235 .1500 

y4 .5142 .4545 .2501 

y5 .1542 .3727 -.1209 

y6 .5390 .6018 .3197 

y7 .6126 .5559 .4097 
 

 ξ1 ξ2 ξ3 

y1 .0376 .0245 .0490 

y2 .0467 .0499 .0508 

y3 .0284 .0423 .0472 

y4 .0397 .0415 .0454 

y5 .0535 .0504 .0552 

y6 .0377 .0320 .0463 

y7 .0322 .0343 .0365 
 

Correlations between rotated 
redundancy variates in Φ 

 ξ1 ξ2 ξ3 

ξ1 1.0000  

ξ2 .7029 1.0000  

ξ3 .3218 .2234 1.0000 
 

 ξ1 ξ2 ξ3 

ξ1 N/A  

ξ2 .0265 N/A  

ξ3 .0345 .0289 N/A 
 

Note. SE = standard error estimate, IJ = infinitesimal jackknife. The rotated redundancy loadings 

whose absolute values are significantly larger than .3 are in boldface. 
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