Bull. Aust. Math. Soc. (First published online 2024), page 1 of 10[∗] doi[:10.1017/S0004972724001163](http://dx.doi.org/10.1017/S0004972724001163)
*Provisional—final page numbers to be inserted when paper edition is published

PRIMITIVE IDEAL SPACE OF $C^*(R_+) \approx R^{\times}$

XIAOHUI CHE[N](https://orcid.org/0009-0000-5792-0850)[®] and HUI $LI[®]$

(Received 22 October 2024; accepted 27 October 2024)

Abstract

For an integral domain *R* satisfying certain conditions, we characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product $C^*(R_+) \rtimes R^\times$. We illustrate the result by the example $R = \mathbb{Z}[\sqrt{-3}].$

2020 *Mathematics subject classification*: primary 46L05. *Keywords and phrases*: ring, semigroup crossed product, crossed product, primitive ideal.

1. Introduction

Motivated by the pioneering paper of Bost and Connes [\[2\]](#page-8-0), Cuntz in [\[8\]](#page-8-1) constructed the first ring *C*[∗]-algebra. Cuntz and Li [\[11\]](#page-8-2) generalised the work of [\[8\]](#page-8-1) to an integral domain with finite quotients. Eventually, Li [\[18\]](#page-8-3) generalised the work of [\[8\]](#page-8-1) to arbitrary rings. There is more than one way of studying *C*[∗]-algebras associated to rings. Hirshberg [\[12\]](#page-8-4), Larsen and Li [\[17\]](#page-8-5), and Kaliszewski *et al.* [\[13\]](#page-8-6) independently investigated *C*[∗]-algebras from *p*-adic rings. Li [\[19\]](#page-8-7) defined the notion of semigroup *C*[∗]-algebras and proved that the *ax* + *b*-semigroup *C*[∗]-algebra of a ring is an extension of the ring *C*[∗]-algebra. When the ring is the ring of integers of a field, Li [\[19\]](#page-8-7) proved that the $ax + b$ -semigroup C^* -algebra is isomorphic to another construction due to Cuntz *et al.* [\[9\]](#page-8-8). Very recent work due to Bruce and Li [\[5,](#page-8-9) [6\]](#page-8-10) and Bruce *et al.* [\[4\]](#page-8-11) on algebraic dynamical systems and their associated *C*[∗]-algebras solves quite a few open problems.

For an integral domain *R*, denote by R_+ the additive group $(R, +)$ and by R^{\times} the multiplicative semigroup $(R \setminus \{0\},\cdot)$. There is a natural unital and injective action of R^{\times} on $C^*(R_+)$ by multiplication. Thus, we obtain a semigroup crossed product $C^*(R_+) \rtimes R^\times$. We characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product $C^*(R_+) \rtimes R^\times$ under certain conditions. Our main example is $R = \mathbb{Z}[\sqrt{-3}]$. The semigroup crossed product $C^*(R_+) \rtimes R^\times$ is closely

The second author was supported by Fundamental Research Funds for the Central Universities (Grant No. 2023MS076).

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

2 X. Chen and H. Li [2]

related to other constructions. In the Appendix, we show that $C^*(R_+) \rtimes R^\times$ is an extension of the boundary quotient of the opposite semigroup of the *ax* + *b*-semigroup of the ring and that when the ring is a greatest common divisor (GCD) domain, $C^*(R_+) \rtimes R^\times$ is isomorphic to the boundary quotient of the opposite semigroup of the $ax + b$ -semigroup of the ring. There are only a few investigations of the opposite semigroup C^* -algebra of the $ax + b$ -semigroup of a ring (see for example [\[10,](#page-8-12) [20,](#page-8-13) [21\]](#page-8-14)).

Standing assumptions. Throughout the paper, any semigroup is assumed to be discrete, countable, unital and left cancellative; any group is assumed to be discrete and countable; any subsemigroup of a semigroup is assumed to inherit the unit of the semigroup; any ring is assumed to be countable and unital with $0 \neq 1$; and any topological space is assumed to be second countable.

2. Laca's dilation theorem revisited

Laca [\[14\]](#page-8-15) proved an important theorem which dilates a semigroup dynamical system (A, P, α) to a C^* -dynamical system (B, G, β) so that the semigroup crossed product $A \rtimes_{\alpha}^e P$ is Morita equivalent to the crossed product $B \rtimes_{\beta} G$. In this section, we revisite *L* and *C*^{*} and *C* Laca's theorem when A is a unital commutative C^* -algebra.

NOTATION 2.1. Let *P* be a subsemigroup of a group *G* satisfying $G = P^{-1}P$. For *p*, *q* ∈ *P*, define *p* ≤ *q* if qp^{-1} ∈ *P*. Then, ≤ is a reflexive, transitive and directed relation on *P*.

THEOREM 2.2 (See [\[14,](#page-8-15) Theorem 2.1]). *Let P be a subsemigroup of a group G satisfying* $G = P^{-1}P$ *, let* $A = C(X)$ *, where* X *is a compact Hausdorff space, and let* α : $P \rightarrow$ End(A) *be a semigroup homomorphism such that* α_p *is unital and injective for all* $p \in P$. Then, there exists a dynamical system (X_{∞}, G, γ) *(where* X_{∞} *is compact Hausdorff)* such that $A \rtimes_{\alpha}^e P$ is Morita equivalent to $C(X_\infty) \rtimes_{\gamma} G$.

PROOF. By [\[14,](#page-8-15) Theorem 2.1], there exists a C^* -dynamical system (A_∞, G, β) such that *A* \propto_e^e *P* is Morita equivalent to $A_{\infty} \propto_\beta G$. We cite the proof of [\[14,](#page-8-15) Theorem 2.1] to sketch the construction of *A* and the definition of *B* sketch the construction of A_{∞} and the definition of β .

For $p \in P$, define $A_p := A$. For $p, q \in P$ with $p \le q$, define $\alpha_{p,q} : A_p \to A_q$ to be $\alpha_{ap^{-1}}$. Then, $\{(A_p, \alpha_{p,q}) : p, q \in P, p \le q\}$ is an inductive system. Let A_{∞} := $\lim_{p} (A_{p}, \alpha_{p,q})$, let $\alpha^{p} : A_{p} \to A_{\infty}$ be the natural unital embedding for all $p \in P$ and let β : $G \to \text{Aut}(A_{\infty})$ be the homomorphism satisfying $\beta_{p_0} \circ \alpha^{p p_0} = \alpha^p$ for all *p*₀, *p* ∈ *P*.

For $p \in P$, denote by $f_p: X \to X$ the unique surjective continuous map induced from α_p and set $X_p := X$. For $p, q \in P$ with $p \le q$, denote by $f_{q,p} : X_q \to X_p$ the unique surjective continuous map induced from $\alpha_{p,q}$. Since $\alpha_{p,q} = \alpha_{qp^{-1}}$, we have $f_{q,p} = f_{qp^{-1}}$. Then, $\{(X_p, f_{q,p}) : p, q \in P, p \leq q\}$ is an inverse system. Set

$$
X_{\infty} := \left\{ (x_p)_{p \in P} \in \prod_{p \in P} X_p : f_{q,p}(x_q) = x_p \text{ for all } p \le q \right\},\tag{2.1}
$$

which is the inverse limit of the inverse system. By $[1,$ Example II.8.2.2(i)], *A*_∞ \cong *C*(*X*_∞). For *p* ∈ *P*, denote by *f^p* : *X*_∞ \rightarrow *X_p* the unique projection induced from α^p . Then, $f_{q,p} \circ f^q = f^p$ for all $p, q \in P, p \le q$. For $p, p_0 \in P, f \in C(X_\infty)$, denote by γ_{p_0} : $X_{\infty} \to X_{\infty}$ the unique homeomorphism such that $\beta_{p_0}(f) = f \circ \gamma_{p_0}^{-1}$.
From this construction (X, G, γ) is a dynamical system with $C(T)$

From this construction, (X_{∞}, G, γ) is a dynamical system with $\ddot{C}(X_{\infty}) \rtimes_{\gamma} G \cong$
 $\rtimes_{\alpha} G$. Hence $A \rtimes^c P$ is Morita equivalent to $C(X_{\infty}) \rtimes_{\gamma} G$. $A_{\infty} \rtimes_{\beta} G$. Hence, $A \rtimes_{\alpha}^e P$ is Morita equivalent to $C(X_{\infty}) \rtimes$ γ *G*.

NOTATION 2.3. We give an explicit description of X_{∞} and the action of *G* on X_{∞} given in Theorem [2.2.](#page-1-0) We start with the definition of X_{∞} in [\(2.1\)](#page-1-1). Then, for $p_0, p, q \in P$ with *q* ≥ *p*₀, *p*, and for $(x_p)_{p \in P}$ ∈ X_{∞} , we have

$$
(p_0 \cdot (x_p))(p) = x_{pp_0}, \quad (p_0^{-1} \cdot (x_p))(p) = f_{q,p}(x_{qp_0^{-1}}).
$$

In particular, when *G* is abelian, we have a simpler form of the group action given by

$$
\frac{p_0}{q_0} \cdot (x_p) = (f_{q_0}(x_{pp_0})).
$$

Our goal is to apply Theorem [2.2](#page-1-0) to characterise the primitive ideal space of the semigroup crossed product $C^*(R_+) \rtimes R^\times$ of an integral domain. Since R^\times is abelian, we will need the following version of Williams' theorem.

DEFINITION 2.4. Let *G* be an abelian group, let *X* be a locally compact Hausdorff space and let α : $G \rightarrow$ Homeo(*X*) be a homomorphism. For *x*, $y \in X$, define $x \sim y$ if *G* · *x* = *G* · *y*. Then, ∼ is an equivalence relation on *X*. For *x* ∈ *X*, define [*x*] := *G* · *x*, called the *quasi-orbit* of *x*. The quotient space $Q(X/G)$ by the relation \sim is called the *quasi-orbit space.* For $x \in X$, define $G_x := \{g \in G : g \cdot x = x\}$, called the *isotropy group* (or *stability group*) at *x*. For $([x], \phi)$, $([y], \psi) \in Q(X/G) \times G$, define $([x], \phi) \approx ([y], \psi)$ if $[x] = [y]$ and $\phi|_{G_x} = \psi|_{G_x}$. Then, \approx is an equivalence relation on $Q(X/G) \times \widehat{G}$.

THEOREM 2.5 [\[16,](#page-8-17) Theorem 1.1]. *Let G be an abelian group, let X be a locally compact Hausdorff space and let* α : $G \rightarrow$ Homeo(*X*) *be a homomorphism. Then,* $\text{Prim}(C_0(X) \rtimes_{\alpha} G) \cong (Q(X/G) \times \widehat{G})/\approx.$

3. Primitive ideal structure of $C^*(R_+) \rtimes R^\times$

In this section, we characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product $C^*(R_+) \rtimes R^\times$ under certain conditions.

NOTATION 3.1. Let *R* be an integral domain. Denote by *Q* the field of fractions of *R*, by R_+ the additive group $(R, +)$, by $\widehat{R_+}$ the dual group of R_+ , by R^\times the multiplicative semigroup $(R \setminus \{0\}, \cdot)$, by Q^{\times} the enveloping group $(Q \setminus \{0\}, \cdot)$ of R^{\times} , by $\{u_r\}_{r \in R}$, the family of unitaries generating $C^*(R_+)$ and by $\alpha : R^{\times} \to \text{End}(C^*(R_+))$ the homomorphism such that $\alpha_p(u_r) = u_{pr}$ for all $p \in R^\times$, $r \in R_+$. Observe that for any $p \in R^{\times}, \alpha_p$ is unital and injective, and the map $f_p : \widehat{R_+} \to \widehat{R_+}, \phi \mapsto \phi(p \cdot)$ is the unique
surjective continuous man induced from α . Denote by surjective continuous map induced from α_p . Denote by

4 X. Chen and H. Li [4]

$$
X_{\infty}(R) := \Big\{ \phi = (\phi_p)_{p \in R^{\times}} \in \prod_{p \in R^{\times}} \widehat{R_+} : \phi_q\left(\frac{q}{p} \cdot \right) = \phi_p, \text{ whenever } p \mid q \Big\}.
$$

Then, $(p_0/q_0) \cdot (\phi_p) = (\phi_{pp_0}(q_0))$.

LEMMA 3.2. *Let R be an integral domain. Fix* $(\phi_p)_{p \in R^\times} \in X_\infty(R)$ *. If* $(\phi_p)_{p \in R^\times} \neq (1)_{p \in R^\times}$, then $O^\times = O^\times$ *then* $Q_{\phi}^{\times} = \{1_R\}$ *. If* $(\phi_p)_{p \in R^{\times}} = (1)_{p \in R^{\times}}$ *, then* $Q_{\phi}^{\times} = Q^{\times}$ *.*

PROOF. To prove the first statement, suppose for a contradiction that there exists $p_0/q_0 \in Q^{\times}$ with $p_0/q_0 \neq 1$ and such that $(p_0/q_0) \cdot \phi = \phi$. Since $(\phi_p)_{p \in R^{\times}} \neq (1)_{p \in R^{\times}}$, there exists $p_1 \in R^{\times}$ such that $\phi_{n+1} \neq 1$. Then $\phi_{n+1} \neq \phi_{n+1}(q_0)$ for any $p \in R^{\times}$. Since there exists $p_1 \in R^\times$ such that $\phi_{p_1} \neq 1$. Then, $\phi_p = \phi_{pp_0}(q_0)$ for any $p \in R^\times$. Since $\phi_{p_0}(p_0) = \phi_{p_0}(p_0) = \phi_{p_0}(q_0)$ for all $p \in R^\times$ $\phi_{pp_0}(p_0 \cdot) = \phi_p$ for any $p \in R^\times$, we deduce that $\phi_{pp_0}(p_0 \cdot) = \phi_{pp_0}(q_0 \cdot)$ for all $p \in R^\times$. So $\phi_{pp_0}((p_0 - q_0)) = 1$ for any $p \in R^\times$. Hence, $\phi_{pp_0}((p_0 - q_0)p_0) = 1$ for any $p \in R^\times$. When $p = p_1(p_0 - q_0)$, we get $\phi_{p_1} = \phi_{p_1(p_0 - q_0)p_0}((p_0 - q_0)p_0 \cdot) = 1$, which is a contradiction. Therefore, $Q_{\phi}^{\times} = \{1_R\}$.
To prove the second statement

To prove the second statement, suppose that $(\phi_p)_{p \in R^\times} = (1)_{p \in R^\times}$. For $p_0/q_0 \in Q^\times$, we have $(p_0/q_0) \cdot (1)_{p \in R^\times} = (p_0/q_0) \cdot (\phi_p)_{p \in R^\times} = (\phi_{pp_0}(q_0 \cdot))_{p \in R^\times} = (1)_{p \in R^\times}$. So $Q^{\times}_{\phi} = Q^{\times}$. \Box

LEMMA 3.3. Let R be an integral domain. Suppose that for $\epsilon > 0$, $(1)_{p \in R^{\times}} \neq (\phi_p)_{p \in R^{\times}} \in$
 \mathbf{Y} , (\mathbf{P}) , $\pi \in \mathbf{P}$, $\mathbf{P} \in \mathbf{P}^{\times}$ and \mathbf{r} , π , $\pi \in \mathbf{P}$, there exist $\mathbf{p} \in \mathbf{P}^{\times}$ $X_{\infty}(R)$, $\pi \in \overline{R_+}$, $P \in R^{\times}$ and $r_1, r_2, \ldots, r_n \in R_+$, there exist $p, q \in R^{\times}$ with $P \mid p$ such that $|d_0(qr_1) - \pi(r_1)| < \epsilon$ *i* = 1.2 *n* Then $Q(X, (R)/Q^{\times})$ consists of only two points $|\phi_p(qr_i) - \pi(r_i)| < \epsilon, i = 1, 2, \ldots, n$. Then, $Q(X_\infty(R)/Q^\times)$ consists of only two points *with the only nontrivial closed subset* $\{[(1)_{p\in R^{\times}}]\}.$

PROOF. Since $\overline{Q^{\times} \cdot (1)_{p \in R^{\times}}} = (1)_{p \in R^{\times}} = (1)_{p \in R^{\times}}$, we have $[(\phi_p)_{p \in R^{\times}}] \neq [(1)_{p \in R^{\times}}]$ when-
ever (1) $\overline{Q^{\times} \cdot (1)} = (X, Y, R)$ ever $(1)_{p \in R^{\times}} \neq (\phi_p)_{p \in R^{\times}} \in X_{\infty}(R)$.
Fix $(\phi)_{p \in R^{\times}} (y|_{C})_{p \in R^{\times}} \in X$ (*k*

Fix $(\phi_p)_{p \in R^\times}, (\psi_p)_{p \in R^\times} \in X_\infty(R)$ such that $(\phi_p)_{p \in R^\times}, (\psi_p)_{p \in R^\times} \neq (1)_{p \in R^\times}$. We aim to show that $[(\phi_p)_{p \in R^\times}] = [(\psi_p)_{p \in R^\times}]$. It suffices to show that $((\psi_p)_{p \in R^\times} \in \overline{Q^\times \cdot (\phi_p)_{p \in R^\times}}]$ since $(\phi_p)_{p \in \mathbb{R}^\times} \in \overline{Q^\times \cdot (\psi_p)_{p \in \mathbb{R}^\times}}$ follows from the same argument. Fix $\epsilon > 0$, $p_1, p_2, \ldots, p_n \in R^\times$ and $r_1, r_2, \ldots, r_n \in R$. By the condition imposed in the lemma, there exist $p_0, q_0 \in R^{\times}$ such that

$$
|\phi_{p_1p_2\cdots p_np_0}(q_0p_1\cdots p_{i-1}p_{i+1}\cdots p_nr_j)-\psi_{p_1p_2\cdots p_n}(p_1\cdots p_{i-1}p_{i+1}\cdots p_nr_j)| < \epsilon
$$

for $1 \le i, j \le n$. So $|\phi_{p_i p_0}(q_0 r_j) - \psi_{p_i}(r_j)| < \epsilon$ for $1 \le i, j \le n$. Hence, $(\psi_p)_{p \in R^\times} \in \overline{O(\epsilon)}$. Therefore, $[(\epsilon)$ and $[(\epsilon)$ by $]$ and $[(\epsilon)$ Q^{\times} · $(\phi_p)_{p \in R^{\times}}$. Therefore, $[(\phi_p)_{p \in R^{\times}}] = [(\psi_p)_{p \in R^{\times}}]$.

We conclude that $Q(X_\infty(R)/Q^\times)$ consists of only two points. For any $(1)_{p\in R^\times} \neq$
 \therefore $\begin{pmatrix} Y & (P) & (X_\infty(R)/Q^\times \end{pmatrix} = Y$ (*R*) ((1) is one but not closed. Finally we $(\phi_p)_{p \in R^\times} \in X_\infty(R), Q^\times \cdot (\phi_p)_{p \in R^\times} = X_\infty(R) \setminus \{(1)_{p \in R^\times}\}$ is open but not closed. Finally, we deduce that { $[(1)_{p \in R^{\times}}]$ } is the only nontrivial closed subset of $Q(X_{\infty}(R)/Q^{\times})$.

THEOREM 3.4. *Let R be an integral domain satisfying the condition of Lemma [3.3.](#page-3-0) Take an arbitrary element* $(\phi_p)_{p \in R^\times} \in X_\infty(R)$ *with* $(1)_{p \in R^\times} \neq (\phi_p)_{p \in R^\times}$. Then, we have $\Omega^{(1)}(R) \cup (R^\times) \cong \Omega^{(1)}(R) \cup \Omega^{(1)}(R)$ and the span sate of *have* $\text{Prim}(C^*(R_+) \rtimes R^\times) \cong \{[(\phi_p)_{p \in R^\times}]\} \amalg \{[(1)_{p \in R^\times}]\} \times \widetilde{Q^\times}$, and the open sets of $\text{Prim}(C^*(R_+) \rtimes R^\times)$ comprise $\{[(\phi_p)_{p \in R^\times}]\}$ If $\{[(1)_{p \in R^\times}]\} \times N$ where N is an open subset $\text{Prim}(C^*(R_+) \rtimes R^{\times})$ *comprise* $\{[(\phi_p)_{p \in R^{\times}}]\}$ \amalg $\{[(1)_{p \in R^{\times}}]\} \times N$, where N is an open subset $of \widehat{Q^{\times}}$.

PROOF. By Theorem [2.2,](#page-1-0) $(C^*(R_+) \rtimes R^\times)$ is Morita equivalent to $C(X_\infty(R)) \rtimes Q^\times$. So Prim($C^*(R_+) \rtimes R^{\times}$) \cong Prim($C(X_{\infty}(R)) \rtimes Q^{\times}$). By Theorem [2.5](#page-2-0) and Lemma [3.3,](#page-3-0) $\text{Prim}(C(X_{\infty}(R)) \rtimes Q^{\times}) \cong \{[(\phi_p)_{p \in R^{\times}}], [(1)_{p \in R^{\times}}] \} \times \widehat{Q^{\times}} / \approx$. By Lemma [3.2,](#page-3-1) $Q^{\times}_{(\phi_p)_{p \in R^{\times}}} =$ $\{1_R\}$ and $Q^{\times}_{(1)_{p \in R^{\times}}} = Q^{\times}$. So, Prim $(C(X_{\infty}(R)) \rtimes Q^{\times}) \cong \{[(\phi_p)_{p \in R^{\times}}]\}$ II $\{[(1)_{p \in R^{\times}}] \times \widehat{Q^{\times}}$. Hence, Prim($C^*(R_+) \rtimes R^\times$) $\cong \{[(\phi_p)_{p \in R^\times}]\} \amalg \{[(1)_{p \in R^\times}]\} \times \widehat{Q^\times}$, and the open sets of Prim($C^*(R_+) \rtimes R^\times$) are $\{[(\phi_p)_{p \in R^\times}]\} \amalg \{[(1)_{p \in R^\times}]\} \times N$ where N is an open of Prim($C^*(R_+) \rtimes R^\times$) are $\{[(\phi_p)_{p \in R^\times}]\}$ II $\{[(1)_{p \in R^\times}]\} \times N$, where *N* is an open
subset of $\widehat{O^{\times}}$ subset of $\widehat{O^{\times}}$. \mathcal{Q}^{\times} .

EXAMPLE 3.5. Let $R = \mathbb{Z}$. Then, $\widehat{R_+} = \mathbb{T}$. Fix $\epsilon > 0$, $(1)_{p \in \mathbb{Z}^\times} \neq (\phi_p)_{p \in \mathbb{Z}^\times} \in X_\infty(\mathbb{Z})$, $\pi \in \mathbb{T}$, $P \in \mathbb{Z}^\times$ and $r_1, r_2, \ldots, r_n \in \mathbb{Z}$. Take an arbitrary $p_0 \in \mathbb{Z}^\times$ such that P $\pi \in \mathbb{T}$, $P \in \mathbb{Z}^{\times}$ and $r_1, r_2, \ldots, r_n \in \mathbb{Z}_+$. Take an arbitrary $p_0 \in \mathbb{Z}^{\times}$ such that $P | p_0$ and let $\phi_{p_0} = e^{2\pi i \theta}$ for some $\theta \in (0, 1)$.

Case 1: θ *is rational.* Then, $\phi_{p_0}^{\mathbb{Z}} = \{e^{2\pi i k/n}\}_{k=0}^{n-1}$ for some $n \ge 1$. Since $\phi_{p p_0}^p = \phi_{p_0}$ for any *p* ≥ 1, we get $\phi_{pp_0}^{\mathbb{Z}} = \{e^{2\pi i k/pn}\}_{k=0}^{pn-1}$. Choose $p_1 \ge 1$ such that $|e^{2\pi i/p_1 n} - 1| < \epsilon / \sum_{i=1}^n |r_i|$.
Then there exists $q_0 \in \mathbb{Z}^\times$ such that $|d_0^{q_0}| = \pi | < \epsilon / \sum_{i=1}^n |r_i|$. Then, there exists $q_0 \in \mathbb{Z}^\times$ such that $|\phi_{p_1p_0}^{q_0} - \pi| < \epsilon / \sum_{i=1}^n |r_i|$.

Case 2: θ *is irrational.* Then, by the properties of an irrational rotation, ${\lbrace \phi_{p_0}^z \rbrace}_{z \in \mathbb{Z}}$ is a dense subset of \mathbb{T} . So, there exists $q_0 \in \mathbb{Z}^\times$ such that ${\lbrace \phi_{p_0}^q \rbrace}_{\pi} = \pi | \leq \epsilon / \sum_{p=1}^n |r$ dense subset of T. So, there exists $q_0 \in \mathbb{Z}^\times$ such that $|\phi_{p_0}^{q_0} - \pi| < \epsilon / \sum_{i=1}^n |r_i|$.
In both cases, there exist $p \circ q \in \mathbb{Z}^\times$ with $P | p$ such that $|q_0^q - \pi| < \epsilon / \sum_{i=1}^n |r_i|$.

In both cases, there exist $p, q \in \mathbb{Z}^{\times}$ with $P | p$ such that $|\phi_p^q - \pi| < \epsilon / \sum_{i=1}^n |r_i|$. For $1 \le i \le n$, we may assume that $r_i \ge 0$ and we calculate that

$$
|\phi_p(qr_i) - \pi(r_i)| = |\phi_p^{qr_i} - \pi^{r_i}| = |\phi_p^q - \pi| \left| \sum_{j=0}^{r_i - 1} \phi_p^{q(r_i - 1 - j)} \pi^j \right| \le |\phi_p^q - \pi| \sum_{j=0}^{r_i - 1} |\phi_p^{q(r_i - 1 - j)} \pi^j| < \epsilon.
$$

So, Z satisfies the condition of Lemma [3.3.](#page-3-0)

EXAMPLE 3.6. Let $R = \mathbb{Z}[\sqrt{-3}]$. Then, $\mathbb{Z}[\sqrt{-3}]_+ \cong \mathbb{Z}^2$ and $\mathbb{Z}[\sqrt{-3}]_+ \cong \mathbb{T}^2$. Fix $\epsilon > 0$,
((1, 1)) $_{peR^{\times}} \neq ((a_p, b_p))_{peR^{\times}} \in X_{\infty}(\mathbb{Z}[\sqrt{-3}]), (\pi, \rho) \in \mathbb{T}^2$, $P \in R^{\times}$ and $r_i + s_i\sqrt{-3} \in \mathbb{Z}[\sqrt{-3$ $[-3]_+$ for $i = 1, 2, \ldots, n$. Take an arbitrary $P | p_0 \in R^\times$ such that $(a_{p_0}, b_{p_0}) \neq (1, 1)$. There exist $p, q = q_1 + q_2 \sqrt{-3} \in R^\times$ with $P | p$ such that $|a_p^{q_1} b_p^{q_2} - \pi|, |a_p^{-3q_2} b_p^{q_1} - \rho| < \epsilon/\sum_{p=1}^n |a_p| \leq |a_p|$ For $1 \leq i \leq p$ we may assume that $r > 0$ and we estimate $\epsilon/\sum_{i=1}^{n}(|r_i| + |s_i|)$. For $1 \le i \le n$, we may assume that $r_i \ge 0$ and we estimate

$$
\begin{split} |(a_p, b_p)(q(r_i + s_i\sqrt{-3})) - (\pi, \rho)(r_i + s_i\sqrt{-3})| \\ &= |(a_p^{q_1}b_p^{q_2})^{r_i}(a_p^{-3q_2}b_p^{q_1})^{s_i} - \pi^{r_i}\rho^{s_i}| \\ &= |((a_p^{q_1}b_p^{q_2})^{r_i} - \pi^{r_i})(a_p^{-3q_2}b_p^{q_1})^{s_i} + \pi^{r_i}((a_p^{-3q_2}b_p^{q_1})^{s_i} - \rho^{s_i})| \\ &\le |(a_p^{q_1}b_p^{q_2})^{r_i} - \pi^{r_i}| + |(a_p^{-3q_2}b_p^{q_1})^{s_i} - \rho^{s_i}| \\ &< \frac{\epsilon|r_i|}{\sum_{i=1}^n |r_i| + |s_i|} + \frac{\epsilon|s_i|}{\sum_{i=1}^n |r_i| + |s_i|} \le \epsilon. \end{split}
$$

So, Z[√ −3] satisfies the condition of Lemma [3.3.](#page-3-0) 6 X. Chen and H. Li [6]

By a similar argument to this example, we conclude that any (concrete) order of a number field satisfies the condition of Lemma [3.3.](#page-3-0) (For the background about number fields, one may refer to [\[22\]](#page-8-18).)

Appendix. The relationship between *^C*∗(*R*+) - *R*[×] and semigroup *C*∗-algebras

In this appendix, we show that $C^*(R_+) \rtimes R^\times$ is an extension of the boundary quotient of the opposite semigroup of the $ax + b$ -semigroup of the ring and that when the ring is a GCD domain, $C^*(R_+) \rtimes R^\times$ is isomorphic to the boundary quotient of the opposite semigroup of the $ax + b$ -semigroup of the ring.

DEFINITION A.1 ([\[15,](#page-8-19) Section 2], [\[19,](#page-8-7) Definition 2.13]). Let *P* be a semigroup, *A* be a unital C^* -algebra and $\alpha : P \to \text{End}(A)$ be a semigroup homomorphism such that α_p is injective for all $p \in P$. Define the *semigroup crossed product* $A \rtimes_{\alpha} P$ to be the universal unital C^* -algebra generated by the image of a unital homomorphism the universal unital *C*[∗]-algebra generated by the image of a unital homomorphism $i_A : A \to A \rtimes_\alpha P$ and a semigroup homomorphism $i_P : P \to \text{Isom}(A \rtimes_\alpha P)$ satisfying the following conditions: the following conditions:

- (1) $i_P(p)i_A(a)i_P(p)^* = i_A(\alpha_p(a))$ for all $p \in P, a \in A$;
(2) for any unital C^* -algebra *B* unital homomorp
- (2) for any unital *C*[∗]-algebra *B*, unital homomorphism $j_A : A \rightarrow B$ and semigroup homomorphism $j_P : P \to \text{Isom}(B)$ satisfying $j_P(p)j_A(a)j_P(p)^* = j_A(\alpha_p(a))$, there exists a unique unital homomorphism $\Phi : A \rtimes P \to B$ such that $\Phi \circ i_A = i_A$ and exists a unique unital homomorphism $\Phi : A \rtimes_{\alpha} P \to B$ such that $\Phi \circ i_A = j_A$ and $\Phi \circ i_P = j_P$.

REMARK A.2. We have $i_A(1_A) = i_P(1_P) =$ the unit of $A \rtimes_{\alpha} P$.
If α is united for all $p \in B$, then $i_A(p)$ is a unitary for any

If α_p is unital for all $p \in P$, then $i_P(p)$ is a unitary for any $p \in P$. To see this, we calculate that $i_P(p)i_P(p)^* = i_P(p)i_A(1_A)i_P(p)^* = i_A(\alpha_p(1_A)) = i_A(1_A)$.

NOTATION A.3 [\[3,](#page-8-20) [19\]](#page-8-7). Let *P* be a semigroup. For $p \in P$, we also denote by *p* the left multiplication map $q \mapsto pq$. The set of *constructible right ideals* is defined to be

$$
\mathcal{J}(P) := \{p_1^{-1}q_1 \cdots p_n^{-1}q_n P : n \geq 1, p_1, q_1, \ldots, p_n, q_n \in P\} \cup \{0\}.
$$

A finite subset $F \subset \mathcal{T}(P)$ is called a *foundation set* if for any nonempty $X \in \mathcal{T}(P)$, there exists $Y \in F$ such that $X \cap Y \neq \emptyset$.

DEFINITION A.4 ([\[3,](#page-8-20) Remark 5.5], [\[19,](#page-8-7) Definition 2.2]). Let *P* be a semigroup. Define the *full semigroup C*[∗]*-algebra C*[∗](*P*) of *P* to be the universal unital *C*[∗]-algebra generated by a family of isometries $\{v_p\}_{p \in P}$ and a family of projections $\{e_X\}_{X \in \mathcal{T}(P)}$ satisfying the following relations:

- (1) $v_p v_q = v_{pq}$ for all $p, q \in P$;
- (2) $v_p e_X v_p^* = e_{pX}$ for all $p \in P, X \in \mathcal{J}(P)$;
- (3) $e_{\emptyset} = 0$ and $e_{P} = 1$;
- (4) $e_Xe_Y = e_{X \cap Y}$ for all $X, Y \in \mathcal{J}(P)$.

Define the *boundary quotient* $Q(P)$ of $C^*(P)$ to be the universal unital C^* -algebra generated by a family of isometries $\{v_p\}_{p \in P}$ and a family of projections $\{e_X\}_{X \in \mathcal{T}(P)}$ satisfying conditions (1)–(4) and $\prod_{X \in F} (1 - e_X) = 0$ for any foundation set $F \subset \mathcal{J}(P)$.

DEFINITION A.5 ([\[3,](#page-8-20) Definition 2.1], [\[23,](#page-9-0) Definition 2.17]). Let *P* be a semigroup. Then, *P* is said to be *right* LCM (or to satisfy the *Clifford condition*) if the intersection of two principal right ideals is either empty or a principal right ideal.

NOTATION A.6. Let *P* be a semigroup. Denote by *P*op the opposite semigroup of *P*. Let *R* be an integral domain. Denote by $R_+ \rtimes R^\times$ the $ax + b$ -semigroup of *R*. Denote by \times the multiplication of $(R_+ \rtimes R^{\times})^{\text{op}}$, that is, $(r_1, p_1) \times (r_2, p_2) = (r_2, p_2)(r_1, p_1) =$ $(r_2 + p_2r_1, p_1p_2).$

REMARK A.7. Let *R* be an integral domain. We claim that any nonempty element of $\mathcal{J}((R_+ \rtimes R^{\times})^{\text{op}})$ is a foundation set of $(R_+ \rtimes R^{\times})^{\text{op}}$. To see this, for any $(r_1, p_1), (r_2, p_2) \in$ $(R_+ \rtimes R^{\times})^{\text{op}}$, we compute

$$
(r_1, p_1) \times (p_1r_2, p_2) = (p_1r_2, p_2)(r_1, p_1) = (p_1r_2 + p_2r_1, p_1p_2)
$$

=
$$
(p_2r_1, p_1)(r_2, p_2) = (r_2, p_2) \times (p_2r_1, p_1).
$$

THEOREM A.8. Let R be an integral domain. Then, the crossed product $C^*(R_+) \rtimes R^{\times}$ *is an extension of* $Q((R_+ \rtimes R^\times)^{\text{op}})$ *. Moreover, if R is a* GCD *domain* (see [\[7\]](#page-8-21)), then we $have C^*(R_+) \rtimes R^\times \cong Q((R_+ \rtimes R^\times)^{\text{op}}).$

PROOF. Denote by $i_A : C^*(R_+) \to C^*(R_+) \rtimes R^\times$ and $i_P : R^\times \to \text{Isom}(C^*(R_+) \rtimes R^\times)$ the canonical homomorphisms generating $C^*(R_+) \rtimes R^\times$. Let $\{v_{(r,p)} : (r,p) \in (R_+ \rtimes R^\times)^{\text{op}}\}$ be the family of isometries and $\{e_X : X \in \mathcal{J}((R_+ \rtimes R^{\times})^{\text{op}})\}\)$ be the family of projections generating $Q((R_+ \rtimes R^\times)^{\text{op}})$.

For any $(r, p) \in (R_+ \rtimes R^\times)^{\text{op}}$, note that $1 - v_{(r, p)}v_{(r, p)}^* = 1 - e_{(r, p) \times (R_+ \rtimes R^\times)^{\text{op}}} = 0$ because $\{(r, p) \times (R_+ \rtimes R^{\times})^{\text{op}}\}$ is a foundation set. So each $v(r, p)$ is a unitary.

For $r \in R_+$, define $U_r := v_{(r,1)}$. For any $r, s \in R_+$,

$$
U_r U_s = v_{(r,1)} v_{(s,1)} = v_{(s,1)(r,1)} = v_{(r+s,1)} = v_{(r,1)(s,1)} = v_{(s,1)} v_{(r,1)} = U_s U_r,
$$

so $j_A: C^*(R_+) \to Q((R_+ \rtimes R^\times)^{\text{op}}), u_r \mapsto v_{(r,1)}$ is a homomorphism by the universal property of $C^*(R_+)$. For $p \in R^\times$, define $j_P(p) := v_{(0,p)}^*$. For any $p, q \in R^\times$,

$$
j_P(p)j_P(q) = v_{(0,p)}^*v_{(0,q)}^* = (v_{(0,q)}v_{(0,p)})^* = (v_{(0,p)(0,q)})^* = v_{(0,pq)}^* = j_P(pq),
$$

so $j_P: R^{\times} \to \text{Isom}(Q((R_+ \rtimes R^{\times})^{\text{op}}))$ is a semigroup homomorphism. For any $p \in R^{\times}$, $r \in R_+$, we compute

$$
j_P(p)j_A(u_r)j_P(p)^* = v_{(0,p)}^*v_{(r,1)}v_{(0,p)} = v_{(0,p)}^*v_{(pr,p)} = v_{(pr,1)} = j_A(u_{pr}) = j_A(\alpha_p(u_r)).
$$

By the universal property of $C^*(R_+) \rtimes R^\times$, there exists a unique homomorphism $\Phi: C^*(R_+) \times R^\times \to Q((R_+ \times R^\times)^{op})$ such that $\Phi \circ i_A = j_A$ and $\Phi \circ i_P = j_P$. Since $v_{(r,p)} =$ $v_{(0,p)}v_{(r,1)}$ for any $(r, p) \in (R_+ \rtimes R^\times)^{op}$, we see that Φ is surjective. So, $C^*(R_+) \rtimes R^\times$ is an extension of $Q((R_+ \rtimes R^\times)^{\text{op}})$.

8 X. Chen and H. Li

Now, we assume that *R* is a GCD domain. By [\[23,](#page-9-0) Proposition 2.23], R^{\times} is right LCM. For (r_1, p_1) , $(r_2, p_2) \in (R_+ \rtimes R^\times)^{\text{op}}$, suppose that $p_1 R^\times \cap p_2 R^\times = pR^\times$ for some $p \in R^{\times}$. We claim that

$$
(r_1, p_1) \times (R_+ \rtimes R^{\times})^{\text{op}} \cap (r_2, p_2) \times (R_+ \rtimes R^{\times})^{\text{op}} = (0, p) \times (R_+ \rtimes R^{\times})^{\text{op}}.
$$

Indeed, for any (s_1, q_1) , (s_2, q_2) ∈ $(R_∗ \rtimes R^{\times})^{\text{op}}$, if $(r_1, p_1) \times (s_1, q_1) = (r_2, p_2) \times (s_2, q_2)$, then $(r_1, p_1) \times (s_1, q_1) = (r_2, p_2) \times (s_2, q_2) = (0, p) \times (s_1 + q_1 r_1, q_1 p_1 / p)$. Conversely, for any $(s, q) \in (R_+ \rtimes R^\times)^{\text{op}},$

$$
(0, p) \times (s, q) = (r_1, p_1) \times \left(s - \frac{pqr_1}{p_1}, \frac{pq}{p_1}\right) = (r_2, p_2) \times \left(s - \frac{pqr_2}{p_2}, \frac{pq}{p_2}\right).
$$

This proves the claim. Hence, $(R_+ \rtimes R^{\times})^{\text{op}}$ is right LCM as well.

Since $(R_+ \rtimes R^{\times})^{\text{op}}$ is right LCM, it follows from [\[24,](#page-9-1) Lemma 3.4] that $Q((R_+ \rtimes R^{\times})^{\text{op}})$ is the universal unital *C*[∗]-algebra generated by a family of unitaries ${v_{(r,p)} : (r, p) \in (R_+ \rtimes R^\times)^{\text{op}}}$ satisfying the conditions:

$$
(1) \quad v_{(r_1,p_1)}v_{(r_2,p_2)}=v_{(r_1,p_1)\times(r_2,p_2)};
$$

(2) $v^*_{(r_1,p_1)}v_{(r_2,p_2)} = v_{(s_1,q_1)}v^*_{(s_2,q_2)}$, whenever $(r_1,p_1) \times (s_1,q_1) = (r_2,p_2) \times (s_2,q_2)$ and $(r_1, p_1) \times (R_+ \rtimes R^{\times})^{\text{op}} \cap (r_2, p_2) \times (R_+ \rtimes R^{\times})^{\text{op}} = (r_1, p_1) \times (s_1, q_1) \times (R_+ \rtimes R^{\times})^{\text{op}}.$

For $(r, p) \in (R_+ \rtimes R^\times)^{\text{op}}$, define $V_{(r,p)} := i_P(p)^* i_A(u_r)$. Finally, we check that $\{V_{(r,p)}\}$ satisfies the above two conditions. For any (r_1, p_1) , $(r_2, p_2) \in (R_+ \rtimes R^\times)^{\text{op}}$,

$$
V_{(r_1,p_1)}V_{(r_2,p_2)} = i_P(p_1)^* i_A(u_{r_1}) i_P(p_2)^* i_A(u_{r_2}) = i_P(p_1)^* i_P(p_2)^* i_A(\alpha_{p_2}(u_{r_1})) i_A(u_{r_2})
$$

= $(i_P(p_2)i_P(p_1))^* i_A(u_{p_2r_1}) i_A(u_{r_2}) = i_P(p_1p_2)^* i_A(u_{r_2+p_2r_1})$
= $V_{(r_2+p_2r_1,p_1p_2)} = V_{(r_1,p_1)\times(r_2,p_2)}$.

For (r_1, p_1) , $(r_2, p_2) \in (R_+ \rtimes R^\times)^{op}$, suppose that $p_1 R^\times \cap p_2 R^\times = pR^\times$ for some $p \in R^{\times}$. By the above claim, $(r_1, p_1) \times (R_+ \rtimes R^{\times})^{\text{op}} \cap (r_2, p_2) \times (R_+ \rtimes R^{\times})^{\text{op}} =$ $(0, p) \times (R_+ \rtimes R^{\times})^{op}$. It is not hard to see that $(r_1, p_1) \times (-pr_1/p_1, p/p_1) = (r_2, p_2) \times (-pr_2/p_2, p/p_2) = (0, p)$. So $(-pr_2/p_2, p/p_2) = (0, p)$. So,

$$
V_{(r_1, p_1)}^* V_{(r_2, p_2)} = i_A (u_{-r_1}) i_P (p_1) i_P (p_2)^* i_A (u_{r_2}) = i_A (u_{-r_1}) i_P \left(\frac{p}{p_1}\right)^* i_P \left(\frac{p}{p_2}\right) i_A (u_{r_2})
$$

= $i_P \left(\frac{p}{p_1}\right)^* i_A (u_{-pr_1/p_1}) i_A (u_{pr_2/p_2}) i_P \left(\frac{p}{p_2}\right)$
= $V_{(-pr_1/p_1, p/p_1)} V_{(-pr_2/p_2, p/p_2)}^*$.

By the universal property of $Q((R_+ \rtimes R^\times)^{\text{op}})$, there exists a homomorphism $\Psi : Q((R_+ \rtimes R^\times)^{op}) \to C^*(R_+) \rtimes R^\times$ such that $\Psi(\nu_{(r,p)}) = i_P(p)^* i_A(u_r)$. Since

$$
\Phi \circ \Psi(\nu_{(r,p)}) = \Phi(i_P(p)^* i_A(u_r)) = j_P(p)^* j_A(u_r) = \nu_{(0,p)} \nu_{(r,1)} = \nu_{(r,p)},
$$

$$
\Psi \circ \Phi(i_A(u_r)) = \Psi(j_A(u_r)) = \Psi(\nu_{(r,1)}) = i_A(u_r),
$$

$$
\Psi \circ \Phi(i_P(p)) = \Psi(j_P(p)) = \Psi(\nu_{(0,p)})^* = i_P(p),
$$

we conclude that $C^*(R_+) \rtimes R^\times \cong Q((R_+ \rtimes R^\times))$ \circ p).

Acknowledgement

The first author thanks the second author for his encouragement and patient supervision.

References

- [1] B. Blackadar, *Operator Algebras, Theory of C*[∗]*-Algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III* (Springer-Verlag, Berlin, 2006).
- [2] J. B. Bost and A. Connes, 'Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory', *Selecta Math. (N.S.)* 1 (1995), 411–457.
- [3] N. Brownlowe, J. Ramagge, D. Robertson and M. F. Whittaker, 'Zappa–Szép products of semigroups and their *C*∗-algebras', *J. Funct. Anal.* 266 (2014), 3937–3967.
- [4] C. Bruce, Y. Kubota and T. Takeishi, 'Groupoid homology and *K*-theory for algebraic actions from number theory', Preprint, 2024, [arXiv:2407.01952.](https://arxiv.org/abs/2407.01952)
- [5] C. Bruce and X. Li, 'Algebraic actions II. Groupoid rigidity', Preprint, 2023, [arXiv:2301.04459.](https://arxiv.org/abs/2301.04459)
- [6] C. Bruce and X. Li, 'Algebraic actions I. *C*∗-algebras and groupoids', *J. Funct. Anal.* 286 (2024), Article no. 110263.
- [7] S. T. Chapman and S. Glaz, *Non-Noetherian Commutative Ring Theory* (Kluwer Academic Publishers, Dordrecht, 2000).
- [8] J. Cuntz, '*C*∗-algebras associated with the *ax* + *b*-semigroup over N ', in: *K-theory and Noncommutative Geometry*, EMS Series of Congress Reports (eds. G. Cortiñas, J. Cuntz, M. Karoubi, R. Nest and C. A. Weibel) (European Mathematical Society, Zürich, 2008), 201–215.
- [9] J. Cuntz, C. Deninger and M. Laca, '*C*∗-algebras of Toeplitz type associated with algebraic number fields', *Math. Ann.* 355 (2013), 1383–1423.
- [10] J. Cuntz, S. Echterhoff and X. Li, 'On the *K*-theory of crossed products by automorphic semigroup actions', *Q. J. Math.* 64 (2013), 747–784.
- [11] J. Cuntz and X. Li, 'The regular *C*∗-algebra of an integral domain', in: *Quanta of Maths: Conference in Honor of Alain Connes*, Clay Mathematics Proceedings, 11 (eds. E. Blanchard, D. Ellwood, M. Khalkhali, M. Marcolli, H. Moscovici and S. Popa) (American Mathematical Society, Providence, RI, 2010), 149–170.
- [12] I. Hirshberg, 'On *C*∗-algebras associated to certain endomorphisms of discrete groups', *New York J. Math.* 8 (2002), 99–109.
- [13] S. Kaliszewski, T. Omland and J. Quigg, 'Cuntz–Li algebras from *a*-adic numbers', *Rev. Roumaine Math. Pures Appl.* 59 (2014), 331–370.
- [14] M. Laca, 'From endomorphisms to automorphisms and back: dilations and full corners', *J. Lond. Math. Soc. (2)* 61 (2000), 893–904.
- [15] M. Laca and I. Raeburn, 'Semigroup crossed products and the Toeplitz algebras of nonabelian groups', *J. Funct. Anal.* 139 (1996), 415–440.
- [16] M. Laca and I. Raeburn, 'The ideal structure of the Hecke *C*[∗]-algebra of Bost and Connes', *Math. Ann.* 318 (2000), 433–451.
- [17] N. S. Larsen and X. Li, 'The 2-adic ring *C*[∗]-algebra of the integers and its representations', *J. Funct. Anal.* 262 (2012), 1392–1426.
- [18] X. Li, 'Ring *C*[∗]-algebras', *Math. Ann.* 348 (2010), 859–898.
- [19] X. Li, 'Semigroup *C*[∗]-algebras and amenability of semigroups', *J. Funct. Anal.* 262 (2012), 4302–4340.
- [20] X. Li, 'Semigroup *C*[∗]-algebras of *ax* + *b*-semigroups', *Trans. Amer. Math. Soc.* 368 (2016), 4417–4437.
- [21] X. Li and M. D. Norling, 'Independent resolutions for totally disconnected dynamical systems. II. *C*∗-algebraic case', *J. Operator Theory* 75 (2016), 163–193.
- [22] J. Neukirch, *Algebraic Number Theory* (Springer-Verlag, Berlin, 1999).

10 X. Chen and H. Li [10]

- [23] M. D. Norling, 'Inverse semigroup *C*[∗]-algebras associated with left cancellative semigroups', *Proc. Edinb. Math. Soc. (2)* 57 (2014), 533–564.
- [24] C. Starling, 'Boundary quotients of *C*[∗]-algebras of right LCM semigroups', *J. Funct. Anal.* 268 (2015), 3326–3356.

XIAOHUI CHEN, Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, PR China e-mail: xiaohui20720@126.com

HUI LI, Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, PR China e-mail: [lihui8605@hotmail.com,](mailto:lihui8605@hotmail.com) 50902471@ncepu.edu.cn