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Abstract

For an integral domain R satisfying certain conditions, we characterise the primitive ideal space and its
Jacobson topology for the semigroup crossed product C*(R,) = R*. We illustrate the result by the example

R = Z[V-3].
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1. Introduction

Motivated by the pioneering paper of Bost and Connes [2], Cuntz in [8] constructed
the first ring C*-algebra. Cuntz and Li [11] generalised the work of [8] to an integral
domain with finite quotients. Eventually, Li [18] generalised the work of [8] to
arbitrary rings. There is more than one way of studying C*-algebras associated to
rings. Hirshberg [12], Larsen and Li [17], and Kaliszewski et al. [13] independently
investigated C*-algebras from p-adic rings. Li [19] defined the notion of semigroup
C*-algebras and proved that the ax + b-semigroup C*-algebra of a ring is an extension
of the ring C*-algebra. When the ring is the ring of integers of a field, Li [19] proved
that the ax + b-semigroup C*-algebra is isomorphic to another construction due to
Cuntz et al. [9]. Very recent work due to Bruce and Li [5, 6] and Bruce et al. [4] on
algebraic dynamical systems and their associated C*-algebras solves quite a few open
problems.

For an integral domain R, denote by R, the additive group (R, +) and by R* the
multiplicative semigroup (R \ {0},-). There is a natural unital and injective action
of R* on C*(R,) by multiplication. Thus, we obtain a semigroup crossed product
C*(R,) =« R*. We characterise the primitive ideal space and its Jacobson topology
for the semigroup crossed product C*(R,) >~ R* under certain conditions. Our main
example is R = Z[V-3]. The semigroup crossed product C*(R,)>R* is closely
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2 X. Chen and H. Li [2]

related to other constructions. In the Appendix, we show that C*(R,) = R* is an
extension of the boundary quotient of the opposite semigroup of the ax + b-semigroup
of the ring and that when the ring is a greatest common divisor (GCD) domain,
C*(R,) = R* is isomorphic to the boundary quotient of the opposite semigroup of
the ax + b-semigroup of the ring. There are only a few investigations of the opposite
semigroup C*-algebra of the ax + b-semigroup of a ring (see for example [ 10, 20, 21]).

Standing assumptions. Throughout the paper, any semigroup is assumed to be
discrete, countable, unital and left cancellative; any group is assumed to be discrete
and countable; any subsemigroup of a semigroup is assumed to inherit the unit of
the semigroup; any ring is assumed to be countable and unital with 0 # 1; and any
topological space is assumed to be second countable.

2. Laca’s dilation theorem revisited

Laca [14] proved an important theorem which dilates a semigroup dynamical system
(A,P,@) to a C*-dynamical system (B, G, ) so that the semigroup crossed product
A ¢, P is Morita equivalent to the crossed product B >z G. In this section, we revisit
Laca’s theorem when A is a unital commutative C*-algebra.

NOTATION 2.1. Let P be a subsemigroup of a group G satisfying G = P~'P. For
p.q € P, define p < g if gp~' € P. Then, < is a reflexive, transitive and directed
relation on P.

THEOREM 2.2 (See [14, Theorem 2.1]). Let P be a subsemigroup of a group G
satisfying G = P7'P, let A = C(X), where X is a compact Hausdorff space, and let
« : P — End(A) be a semigroup homomorphism such that «, is unital and injective
for all p € P. Then, there exists a dynamical system (X, G,7y) (where X, is compact
Hausdorff) such that A >, P is Morita equivalent to C(X«) >, G.

PROOF. By [14, Theorem 2.1], there exists a C*-dynamical system (A, G,3) such
that A >, P is Morita equivalent to A, <z G. We cite the proof of [14, Theorem 2.1] to
sketch the construction of A, and the definition of S.

For p e P, define A,:=A. For p,ge P with p <gq, define «a,,:4, = A,
to be ag,1. Then, {(Ap,a@,y):p,qeP,p<gq} is an inductive system. Let
A = 1imy(A,, apy), let a? : A, — A, be the natural unital embedding for all p € P
and let §: G — Aut(A.) be the homomorphism satisfying §,, o a?”° = a” for all
posD € P.

For p € P, denote by f, : X — X the unique surjective continuous map induced
from a, and set X, := X. For p,q € P with p < g, denote by f, , : X, — X, the unique
surjective continuous map induced from a,, ;. Since a,, = @ )1, we have f, , = f,,1.
Then, {(X,, f;,») : P,q € P, p < q} is an inverse system. Set

Xoo 1= {(xp)peP € HXP tfap(g) = xp forall p < q}’ @
peP
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which is the inverse limit of the inverse system. By [l1, Example I1.8.2.2(i)],
Aw = C(X). For p € P, denote by f?:X, — X, the unique projection induced
from a”. Then, f, , o f4 = fPforall p,q € P,p < gq.For p,pg € P, f € C(X), denote
by ¥p, : Xeo = X the unique homeomorphism such that 5, (f) = f o 71‘701.

From this construction, (X, G,y) is a dynamical system with C(X.) =, G =
Ao »g G. Hence, A >¢, P is Morita equivalent to C(X) >, G. O

NOTATION 2.3. We give an explicit description of X, and the action of G on X, given
in Theorem 2.2. We start with the definition of X, in (2.1). Then, for pg, p, g € P with
q = po, p, and for (x,)yep € X0, We have

(Po - Cp(P) = Xppys (P D) = fp(Kgpt)-

In particular, when G is abelian, we have a simpler form of the group action given by
Po
_O : (xp) = (fqo(xppo))-

Our goal is to apply Theorem 2.2 to characterise the primitive ideal space of the
semigroup crossed product C*(R,) = R* of an integral domain. Since R* is abelian,
we will need the following version of Williams’ theorem.

DEFINITION 2.4. Let G be an abelian group, let X be a locally compact Hausdorff
space and let @ : G — Homeo(X) be a homomorphism. For x,y € X, define x ~ y if
G-x =G -y. Then, ~ is an equivalence relation on X. For x € X, define [x] := G - x,
called the quasi-orbit of x. The quotient space Q(X/G) by the relation ~ is called the
quasi-orbit space. For x € X, define G, := {g € G : g - x = x}, called the isotropy group
(or stability group) at x. For ([x], #), ([y],¥) € Q(X/G) X G, define ([x], ) ~ ([y], ¢) if
[x] = [y] and ¢|, = ¥lg,. Then, = is an equivalence relation on Q(X/G) X G.

THEOREM 2.5 [16, Theorem 1.1]. Let G be an abelian group, let X be a locally
compact Hausdorff space and let a : G — Homeo(X) be a homomorphism. Then,
Prim(Cy(X) %, G) = (Q(X/G) x G)/ =~.

3. Primitive ideal structure of C*(R,) > R*

In this section, we characterise the primitive ideal space and its Jacobson topology
for the semigroup crossed product C*(R.) = R* under certain conditions.

NOTATION 3.1. Let R be an integral domain. Denote by O the field of fractions
of R, by R, the additive group (R, +), by R, the dual group of R,, by R* the
multiplicative semigroup (R \ {0},-), by Q* the enveloping group (Q \ {0},-) of R*,
by {u,},er, the family of unitaries generating C*(R,) and by a : R* — End(C*(R.))
the homomorphism such that @, (u,) = up, for all p € R, r € R,.. Observe that for any
p € RX, a,, is unital and injective, and the map f,, : RJr - R+, ¢ — ¢(p-) is the unique
surjective continuous map induced from «,,. Denote by
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4 X. Chen and H. Li [4]

Xo(R) 1= {¢ = (¢p)perx € 1_[ 173: : ¢q( . ) = ¢,, whenever p | q}.

4
pERX p

Then, (po/qo) - (¢p) = (¢ppo(q0'))-

LEMMA 3.2. Let R be an integral domain. Fix (¢,)per< € Xeo(R). If (¢)) perx # (1) perx,
then Q; = {1gr}. If(¢p)peRx = (Dpers, then Q; =Qx

PROOF. To prove the first statement, suppose for a contradiction that there exists
Po/qo € Q* with po/qo # 1 and such that (po/qo) - ¢ = ¢. Since (¢p)pers # (1)perx,
there exists p; € R* such that ¢, # 1. Then, ¢, = ¢,p,(qo-) for any p € R*. Since
®ppo(Po*) = ¢, for any p € R*, we deduce that ¢, (po-) = ¢pp,(qo-) for all p € R*.
S0 ¢pp,((Po — qo)) = 1 for any p € R*. Hence, ¢,,,((po — qo)po-) = 1 for any p € R*.
When p = pi(po — qo), We get ¢p, = dp,(po—qo)po(((Po — go)po-) = 1, which is a contra-
diction. Therefore, Q; = {1z}.

To prove the second statement, suppose that (¢,,)perx = (1)per=. For po/qo € O*, we
have (po/qo) - (1)per< =(Po/q0) - ($p)per< = (B ppy(q0))perx = (Dper<. S0Qy = Q*. O

LEMMA 3.3. Let R be an integral domain. Suppose that for € > 0, (1) pepx # (9p) perx €
Xo(R), e I/€: PeR*andry,r,...,r, €R,, there exist p,q € R* with P | p such that
lp,(qr)) —n(r)l < €,i=1,2,...,n Then, Q(X(R)/Q®) consists of only two points
with the only nontrivial closed subset {[(1)per~1}.

PROOF. Since Q% - (1)perx = (1)perx = (1)per=, we have [(¢p)perx] # [(1)perx] when-
ever (Dpepx # (@p)perx € Xoo(R).

Fix (¢,)per<s Wp)perx € Xo(R) such that (¢))perx, W p)perx # (1)perx. We aim to
show that [(¢),)per<] = [(Wp)perx]. It suffices to show that (¥,),erx € OF - (@))perx
since (@p)perx € O% - (Yp)perx Tfollows from the same argument. Fix e >0,
P1,P2s--->Pn €R* and ry,r,...,r, € R. By the condition imposed in the lemma,
there exist pg, go € R* such that

1Pp1 paepupo(QOP1 * * * Pic1 Pist =+ * Pulj) = Wpipoop, (P1+** Pic1 Pist * -+ PalP < €

for 1<i,j<n. So |¢pp(qor) — ¥, (rj)l <€ for 1<i,j<n. Hence, (¥p)perx €
ox- (¢P)pERX- Therefore, [(¢p)pERx] = [(wﬂ)peRx]-

We conclude that Q(X.(R)/Q) consists of only two points. For any (1),epx #
(@p)per € Xeo(R), 0% - (dp)perr = Xoo(R) \ {(1)per} is open but not closed. Finally, we
deduce that {[(1),er~]} is the only nontrivial closed subset of Q(Xo(R)/ Q). O

THEOREM 3.4. Let R be an integral domain satisfying the condition of Lemma 3.3.
Take an arbitrary element (¢,)perx € Xeo(R) with (1)perx # (¢p)per<. Then, we
have Prim(C*(R;) = R*) = {[(¢p)per=1} L {[(1)perx1} X é;, and the open sets of
Prim(C*(R,) = R*) comprise {[(¢,) perx 1} U {[(1)perx]} X N, where N is an open subset

0f§.
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PROOF. By Theorem 2.2, (C*(R;) = R*) is Morita equivalent to C(X.(R)) = Q*.
So Prim(C*(R,) = R*) = Prim(C(X.(R)) =< O%). By Theorem 2.5 and Lemma 3.3,
Prim(C(X(R)) = Q%) = {[(#p) per<], [(1) per<]} x 0%/ ~. By Lemma 3.2, Q(¢p>,,ekx =
{1z} and Q(l)psRX = 0%. So, Prim(C(Xeo(R)) % 0%) = {[($)per<1} LL{[(1)per<1} X O.
Hence, Prim(C*(R.) > R*) = {[(¢p)per< 1} L {[(1)per<1} X @_; and the open sets
of Prim(C*(R,) = R*) are {[(¢,)per<]} LL{[(1)perx]} X N, where N is an open
subset of é; O

EXAMPLE 3.5. Let R=Z. Then, R, =T. Fix € >0, (1)pezx # (¢p)pezs € XoolZ),
neT, PeZ* and ry,ra,...,1r, € Z,. Take an arbitrary py € Z* such that P | py and
let ¢, = ¥ for some 0 € (0, 1).

Case 1: 0 is rational. Then, ¢5 = {e*™*/"}1 for some n > 1. Since ¢}, = ¢, for any
p>1,we get¢ ={e 2’”"/1””}’7"_1 Choose p; > 1 such that [e2"/P1" — 1| < €/ Y1, |ril.
Then, there ex1sts qo € Z* such that |¢p1po —nl<e/ XL, Il

Case 2: @ is irrational. Then, by the properties of an irrational rotation, {
dense subset of T. So, there exists gg € Z* such that |¢Iq,‘(’) —nl <€/ X, Il

In both cases, there exist p, g € Z* with P | p such that |¢Z —n| <€/ X, Iril. For
1 <i < n, we may assume that r; > 0 and we calculate that

folzez 1s @

—J)

< I¢ 7l Z e

< Eri/z |ri| < e.
i=1

l6p(gri) — m(r)l = 1¢," — 7" = |}

So, Z satisfies the condition of Lemma 3.3.

EXAMPLE 3.6. Let R = Z[V-3]. Then, Z[V-3], = Z? and Z[V-3], = T2. Fix € > 0,
(1, 1) pers # ((ap, bp)) per+ € Xe(ZIV=3]), (1, p) € T?, PER* and r; +5,V-3 € Z[V-3],
for i =1,2...,n. Take an arbitrary P | po € R* such that (a,,,bp,) # (1,1). There
exist p,g=q +¢qV-3€R* with P|p such that l|aj b} —nl, |a_3q2bql -pl <
€/ 2 (il + Isi)). For 1 < i < n, we may assume that r; > 0 and we estimate
I(ap, bp)(q(ri + s:N=3)) = (7, p)(r; + siV=3)|

_ |(ap1 bCIZ)r,(ap3612b611)sl s,-|

= @} b)Y = n)(a, by + 7 (@, )~ )

< 1@ b)Y = | + 1, B ) = )

€lril €lsi
< n n <e€
Yy il lsil o X il + sl

So, Z[V-3] satisfies the condition of Lemma 3.3.
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By a similar argument to this example, we conclude that any (concrete) order of a
number field satisfies the condition of Lemma 3.3. (For the background about number
fields, one may refer to [22].)

Appendix. The relationship between C*(R,) = R* and semigroup C*-algebras

In this appendix, we show that C*(R,) = R* is an extension of the boundary quotient
of the opposite semigroup of the ax + b-semigroup of the ring and that when the ring
is a GCD domain, C*(R,) = R* is isomorphic to the boundary quotient of the opposite
semigroup of the ax + b-semigroup of the ring.

DEFINITION A.1 ([15, Section 2], [19, Definition 2.13]). Let P be a semigroup, A be
a unital C*-algebra and @ : P — End(A) be a semigroup homomorphism such that
@, is injective for all p € P. Define the semigroup crossed product A =, P to be
the universal unital C*-algebra generated by the image of a unital homomorphism
iy A — Ax, P and a semigroup homomorphism ip : P — Isom(A >, P) satisfying
the following conditions:

(1) ip(plia(@)ip(p)* = ialap(a)) forall p € P,a € A;

(2) for any unital C*-algebra B, unital homomorphism js : A — B and semigroup
homomorphism jp : P — Isom(B) satisfying jp(p)ja(a)jir(p)* = ja(a,(a)), there
exists a unique unital homomorphism @ : A =, P — B such that ® o iy = js and
(D o ip = jp.

REMARK A.2. We have is(14) = ip(1p) = the unit of A =, P.
If @, is unital for all p € P, then ip(p) is a unitary for any p € P. To see this, we

calculate that ip(p)ip(p)* = ip(p)ia(14)ip(p)" = ia(ap(14)) = ia(14).

NOTATION A.3 [3, 19]. Let P be a semigroup. For p € P, we also denote by p the left
multiplication map g — pgq. The set of constructible right ideals is defined to be

JP) = 1{p'qi- P quP 0> 1,p1,q1,. .., P qn € PYU (0.

A finite subset F C J(P) is called a foundation set if for any nonempty X € J(P),
there exists ¥ € F suchthat X NY # 0.

DEFINITION A.4 ([3, Remark 5.5], [19, Definition 2.2]). Let P be a semigroup.
Define the full semigroup C*-algebra C*(P) of P to be the universal unital C*-algebra
generated by a family of isometries {v,},ep and a family of projections {ex}xc7(p)
satisfying the following relations:

(1) vyvy=vy,forall p,qeP;

(2) vpexv, =epx forall pe P,X € J(P);
(3) eg=0andep =1;

(4) exey = exny forall X, Y € J(P).
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Define the boundary quotient Q(P) of C*(P) to be the universal unital C*-algebra
generated by a family of isometries {v,},cp and a family of projections {ex}xec7(p)
satisfying conditions (1)—(4) and []xer(1 — ex) = O for any foundation set F' c J(P).

DEFINITION A.5 ([3, Definition 2.1], [23, Definition 2.17]). Let P be a semigroup.
Then, P is said to be right LCM (or to satisfy the Clifford condition) if the intersection
of two principal right ideals is either empty or a principal right ideal.

NOTATION A.6. Let P be a semigroup. Denote by P°P the opposite semigroup of P.
Let R be an integral domain. Denote by R, > R* the ax + b-semigroup of R. Denote
by X the multiplication of (R, = R*)°P, that is, (r1, p1) X (r2, p2) = (r2, p2)(r1, p1) =
(r2 + par1, p1p2).

REMARK A.7. Let R be an integral domain. We claim that any nonempty element of
J((Ry = R*)°P) is a foundation set of (R, = R*)°P. To see this, for any (r1, p1), (r2, p2) €
(R4 = R*)°P, we compute

(r1, p1) X (p112, p2) = (p112, p2)(r1, p1) = (p1r2 + pari, p1p2)
= (par1, p1)(r2, p2) = (2, p2) X (pary1, p1)-

THEOREM A.8. Let R be an integral domain. Then, the crossed product C*(R,) = R*
is an extension of Q((R; = R*)°P). Moreover, if R is a GCD domain (see [7]), then we
have C*(R,) = R* = Q((R, = R*)P).

PROOF. Denote by iy : C*(Ry) = C*(R;) = R* and ip : R* — Isom(C*(R,) = R*) the
canonical homomorphisms generating C*(R.) = R*. Let {v.,) : (r, p) € (Ry = R*)°P}
be the family of isometries and {ey : X € J((R; = R*)°P)} be the family of projections
generating Q((R;. = R*)°P).

For any (r,p) € (Ry=R*)°P, note that 1- v(,,p)v’(*r’p) =1 = e pyx@,=<r<yr =0
because {(r, p) X (R, > R*)°} is a foundation set. So each v, , is a unitary.

For r € R,, define U, := v,.y. For any r,s € R,,

U.Us = v 1yis,) = Vsl = Vsl = Vs = VshVe) = UsUy,
SO ja : C*(Ry) = Q((Ry = R*)°P),u, — v 1y is a homomorphism by the universal
property of C*(R.). For p € R, define jp(p) := Vio,p)- Forany p,q € R%,
JP(PIP(D) = Vo V0.9 = VoV0.0)" = V0p0.0)" = Vo =JP(PD:
0 jp : R* — Isom(Q((R; = R*)°P)) is a semigroup homomorphism. For any p € R*,
r € R, we compute
JP(PlAW)P(P)" = V(o ) Ve )VOp) = ViopVorp = Vir) = Jalpy) = jala,(uy)).

By the universal property of C*(R,) > R*, there exists a unique homomorphism
D: C*(Ry) *R* = Q((R, > R*)?) such that ® o iy = jy and ® o ip = jp. Since v, ) =
Vo,n)V(r1) for any (r, p) € (Ry = R*)°P, we see that @ is surjective. So, C*(R,) = R* is
an extension of Q((R; > R*)°P).
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Now, we assume that R is a GCD domain. By [23, Proposition 2.23], R* is right
LCM. For (ry, p1), (r2, p2) € (R = R*)°P, suppose that piR* N p,R* = pR* for some
p € R*. We claim that

(r1, 1) X (Ry x R*) N (2, p2) X (Re x R)P = (0, p) X (R = R)™.

Indeed, for any (s1, g1), (s2,g2) € (Ry = R*)P, if (r1, p1) X (s1,91) = (12, p2) X (52, 92),

then (ry, p1) X (s1,q1) = (r2, p2) X (52,42) = (0, p) X (51 + q1r1,q1p1/p). Conversely,

for any (s, ) € (Ry = R*)°P,

P ﬁ) = (r2, p2) X (S -

P1

This proves the claim. Hence, (R, > R*) is right LCM as well.
Since (R; < R*)°P? is right LCM, it follows from [24, Lemma 3.4] that

Q((R, = R*)°P) is the universal unital C*-algebra generated by a family of unitaries

Virp) © (1, p) € (R, > R*)°P} satisfying the conditions:

pqr ﬂ)

(o,p>><(s,q>=<r1,p1)><(s— ,
P2 D2

ey Vr1.p)V(ra.pa) = V(r.p)X(r.p2)s
(2) Vi, o V) = Vis1a0)Vis, 4,0 Whenever (ri, p1) X (s1,q1) = (r2, p2) X (52,¢2) and
(r1, p1) X (Ry = R)P N (r2, p2) X (R = R*)P = (1, p1) X (51, q1) X (R = RX)P.

For (r, p) € (R, > R*)®?, define V{,. p, := ip(p)*ia(u,). Finally, we check that {V,, )}
satisfies the above two conditions. For any (rq, p1), (r2, p2) € (R4 = R*)°P,
Viri oo Virnpsy = ip(p1) ia(uy)ip(p2) ia(uy,) = ip(p1) ip(p2) iaap, (ur,))ia(uy,)
= (iP(pZ)iP(pl))*iA(upzrl )iA(urz) = iP(plpz)*iA(urz+]72r1)
= V(V2+P2r1»171p2) = V(rlspl)x(rZ»PZ)‘

For (r1, p1), (r2, p2) € (Ry < RX)°P, suppose that piR* N p,R* = pR* for some
p €R*. By the above claim, (ri,p1)X Ry >xR*)P N (ry, p2) X (Ry = R*)P =
(0, p) X (R =< RX)°P_ It is not hard to see that (ry, p1) X (—pri/p1, p/p1) = (2, p2) X
(=pr2/p2, p/p2) = (0, p). So,

*

Voo Vi = ialen i(p0)ip(pa) ia(ur,) = iA<u_n)ip(pﬁl) ip(p%m(urz)

(D ) . (D
= ip|— ) iaQU—pr,1p, Via(Upr,yp, )i (—)
P(pl A\H—pri/p)'A\Hpr,/p, )*P 'S

= V(_Prl/Pl»P/PI)V(*—prz/pz,p/]lz)'

By the universal property of Q((R. = R*)°P), there exists a homomorphism
¥ QR; < R*)P) — C*(R,) = R* such that W(v(, p)) = ip(p)“ia(u,). Since

D o Y (v(r.p) = Cip(p) ia(u,)) = jp(P)jaur) = Vo, p)Vir1) = Virp)s
Yo O(is(uy) = Y(Ga(u,) = Y1) = ia(u,),

Y o D(ip(p)) = Y(ir(p)) = Y(vo,p)" = ir(p),
we conclude that C*(R,) = RX = Q((R, = RX)°P). m]
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