PRIMITIVE IDEAL SPACE OF $C^*(R_+) \rtimes R^{\times}$

XIAOHUI CHEN[®] and HUI LI^{®™}

(Received 22 October 2024; accepted 27 October 2024)

Abstract

For an integral domain *R* satisfying certain conditions, we characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product $C^*(R_+) \rtimes R^{\times}$. We illustrate the result by the example $R = \mathbb{Z}[\sqrt{-3}]$.

2020 Mathematics subject classification: primary 46L05.

Keywords and phrases: ring, semigroup crossed product, crossed product, primitive ideal.

1. Introduction

Motivated by the pioneering paper of Bost and Connes [2], Cuntz in [8] constructed the first ring C^* -algebra. Cuntz and Li [11] generalised the work of [8] to an integral domain with finite quotients. Eventually, Li [18] generalised the work of [8] to arbitrary rings. There is more than one way of studying C^* -algebras associated to rings. Hirshberg [12], Larsen and Li [17], and Kaliszewski *et al.* [13] independently investigated C^* -algebras from *p*-adic rings. Li [19] defined the notion of semigroup C^* -algebras and proved that the ax + b-semigroup C^* -algebra of a ring is an extension of the ring C^* -algebra. When the ring is the ring of integers of a field, Li [19] proved that the ax + b-semigroup C^* -algebra is isomorphic to another construction due to Cuntz *et al.* [9]. Very recent work due to Bruce and Li [5, 6] and Bruce *et al.* [4] on algebraic dynamical systems and their associated C^* -algebras solves quite a few open problems.

For an integral domain *R*, denote by R_+ the additive group (R, +) and by R^{\times} the multiplicative semigroup $(R \setminus \{0\}, \cdot)$. There is a natural unital and injective action of R^{\times} on $C^*(R_+)$ by multiplication. Thus, we obtain a semigroup crossed product $C^*(R_+) \rtimes R^{\times}$. We characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product $C^*(R_+) \rtimes R^{\times}$ under certain conditions. Our main example is $R = \mathbb{Z}[\sqrt{-3}]$. The semigroup crossed product $C^*(R_+) \rtimes R^{\times}$ is closely

The second author was supported by Fundamental Research Funds for the Central Universities (Grant No. 2023MS076).

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

related to other constructions. In the Appendix, we show that $C^*(R_+) \rtimes R^{\times}$ is an extension of the boundary quotient of the opposite semigroup of the ax + b-semigroup of the ring and that when the ring is a greatest common divisor (GCD) domain, $C^*(R_+) \rtimes R^{\times}$ is isomorphic to the boundary quotient of the opposite semigroup of the ax + b-semigroup of the ring. There are only a few investigations of the opposite semigroup C^* -algebra of the ax + b-semigroup of a ring (see for example [10, 20, 21]).

Standing assumptions. Throughout the paper, any semigroup is assumed to be discrete, countable, unital and left cancellative; any group is assumed to be discrete and countable; any subsemigroup of a semigroup is assumed to inherit the unit of the semigroup; any ring is assumed to be countable and unital with $0 \neq 1$; and any topological space is assumed to be second countable.

2. Laca's dilation theorem revisited

Laca [14] proved an important theorem which dilates a semigroup dynamical system (A, P, α) to a C^* -dynamical system (B, G, β) so that the semigroup crossed product $A \rtimes_{\alpha}^{e} P$ is Morita equivalent to the crossed product $B \rtimes_{\beta} G$. In this section, we revisit Laca's theorem when A is a unital commutative C^* -algebra.

NOTATION 2.1. Let *P* be a subsemigroup of a group *G* satisfying $G = P^{-1}P$. For $p, q \in P$, define $p \le q$ if $qp^{-1} \in P$. Then, \le is a reflexive, transitive and directed relation on *P*.

THEOREM 2.2 (See [14, Theorem 2.1]). Let P be a subsemigroup of a group G satisfying $G = P^{-1}P$, let A = C(X), where X is a compact Hausdorff space, and let $\alpha : P \to \text{End}(A)$ be a semigroup homomorphism such that α_p is unital and injective for all $p \in P$. Then, there exists a dynamical system (X_{∞}, G, γ) (where X_{∞} is compact Hausdorff) such that $A \rtimes_{\alpha}^{e} P$ is Morita equivalent to $C(X_{\infty}) \rtimes_{\gamma} G$.

PROOF. By [14, Theorem 2.1], there exists a C^* -dynamical system (A_{∞}, G, β) such that $A \rtimes_{\alpha}^{e} P$ is Morita equivalent to $A_{\infty} \rtimes_{\beta} G$. We cite the proof of [14, Theorem 2.1] to sketch the construction of A_{∞} and the definition of β .

For $p \in P$, define $A_p := A$. For $p, q \in P$ with $p \leq q$, define $\alpha_{p,q} : A_p \to A_q$ to be $\alpha_{qp^{-1}}$. Then, $\{(A_p, \alpha_{p,q}) : p, q \in P, p \leq q\}$ is an inductive system. Let $A_{\infty} := \lim_{p} (A_p, \alpha_{p,q})$, let $\alpha^p : A_p \to A_{\infty}$ be the natural unital embedding for all $p \in P$ and let $\beta : G \to \operatorname{Aut}(A_{\infty})$ be the homomorphism satisfying $\beta_{p_0} \circ \alpha^{pp_0} = \alpha^p$ for all $p_0, p \in P$.

For $p \in P$, denote by $f_p : X \to X$ the unique surjective continuous map induced from α_p and set $X_p := X$. For $p, q \in P$ with $p \leq q$, denote by $f_{q,p} : X_q \to X_p$ the unique surjective continuous map induced from $\alpha_{p,q}$. Since $\alpha_{p,q} = \alpha_{qp^{-1}}$, we have $f_{q,p} = f_{qp^{-1}}$. Then, $\{(X_p, f_{q,p}) : p, q \in P, p \leq q\}$ is an inverse system. Set

$$X_{\infty} := \left\{ (x_p)_{p \in P} \in \prod_{p \in P} X_p : f_{q,p}(x_q) = x_p \text{ for all } p \le q \right\},$$
(2.1)

which is the inverse limit of the inverse system. By [1, Example II.8.2.2(i)], $A_{\infty} \cong C(X_{\infty})$. For $p \in P$, denote by $f^p : X_{\infty} \to X_p$ the unique projection induced from α^p . Then, $f_{q,p} \circ f^q = f^p$ for all $p, q \in P, p \leq q$. For $p, p_0 \in P, f \in C(X_{\infty})$, denote by $\gamma_{p_0} : X_{\infty} \to X_{\infty}$ the unique homeomorphism such that $\beta_{p_0}(f) = f \circ \gamma_{p_0}^{-1}$.

From this construction, (X_{∞}, G, γ) is a dynamical system with $C(X_{\infty}) \rtimes_{\gamma} G \cong A_{\infty} \rtimes_{\beta} G$. Hence, $A \rtimes_{\alpha}^{e} P$ is Morita equivalent to $C(X_{\infty}) \rtimes_{\gamma} G$.

NOTATION 2.3. We give an explicit description of X_{∞} and the action of G on X_{∞} given in Theorem 2.2. We start with the definition of X_{∞} in (2.1). Then, for $p_0, p, q \in P$ with $q \ge p_0, p$, and for $(x_p)_{p \in P} \in X_{\infty}$, we have

$$(p_0 \cdot (x_p))(p) = x_{pp_0}, \quad (p_0^{-1} \cdot (x_p))(p) = f_{q,p}(x_{qp_0^{-1}}).$$

In particular, when G is abelian, we have a simpler form of the group action given by

$$\frac{p_0}{q_0} \cdot (x_p) = (f_{q_0}(x_{pp_0})).$$

Our goal is to apply Theorem 2.2 to characterise the primitive ideal space of the semigroup crossed product $C^*(R_+) \rtimes R^{\times}$ of an integral domain. Since R^{\times} is abelian, we will need the following version of Williams' theorem.

DEFINITION 2.4. Let *G* be an abelian group, let *X* be a locally compact Hausdorff space and let $\alpha : G \to \text{Homeo}(X)$ be a homomorphism. For $x, y \in X$, define $x \sim y$ if $\overline{G \cdot x} = \overline{G \cdot y}$. Then, ~ is an equivalence relation on *X*. For $x \in X$, define $[x] := \overline{G \cdot x}$, called the *quasi-orbit* of *x*. The quotient space Q(X/G) by the relation ~ is called the *quasi-orbit space*. For $x \in X$, define $G_x := \{g \in G : g \cdot x = x\}$, called the *isotropy group* (or *stability group*) at *x*. For $([x], \phi), ([y], \psi) \in Q(X/G) \times \widehat{G}$, define $([x], \phi) \approx ([y], \psi)$ if [x] = [y] and $\phi|_{G_x} = \psi|_{G_x}$. Then, \approx is an equivalence relation on $Q(X/G) \times \widehat{G}$.

THEOREM 2.5 [16, Theorem 1.1]. Let G be an abelian group, let X be a locally compact Hausdorff space and let $\alpha : G \to \text{Homeo}(X)$ be a homomorphism. Then, $\text{Prim}(C_0(X) \rtimes_{\alpha} G) \cong (Q(X/G) \times \widehat{G}) / \approx$.

3. Primitive ideal structure of $C^*(R_+) \rtimes R^{\times}$

In this section, we characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product $C^*(R_+) \rtimes R^{\times}$ under certain conditions.

NOTATION 3.1. Let *R* be an integral domain. Denote by *Q* the field of fractions of *R*, by R_+ the additive group (R, +), by $\widehat{R_+}$ the dual group of R_+ , by R^{\times} the multiplicative semigroup $(R \setminus \{0\}, \cdot)$, by Q^{\times} the enveloping group $(Q \setminus \{0\}, \cdot)$ of R^{\times} , by $\{u_r\}_{r \in R_+}$ the family of unitaries generating $C^*(R_+)$ and by $\alpha : R^{\times} \to \text{End}(C^*(R_+))$ the homomorphism such that $\alpha_p(u_r) = u_{pr}$ for all $p \in R^{\times}$, $r \in R_+$. Observe that for any $p \in R^{\times}$, α_p is unital and injective, and the map $f_p : \widehat{R_+} \to \widehat{R_+}, \phi \mapsto \phi(p \cdot)$ is the unique surjective continuous map induced from α_p . Denote by

[4]

$$X_{\infty}(R) := \Big\{ \phi = (\phi_p)_{p \in R^{\times}} \in \prod_{p \in R^{\times}} \widehat{R_+} : \phi_q \Big(\frac{q}{p} \cdot \Big) = \phi_p, \text{ whenever } p \mid q \Big\}.$$

Then, $(p_0/q_0) \cdot (\phi_p) = (\phi_{pp_0}(q_0 \cdot)).$

LEMMA 3.2. Let *R* be an integral domain. Fix $(\phi_p)_{p \in R^{\times}} \in X_{\infty}(R)$. If $(\phi_p)_{p \in R^{\times}} \neq (1)_{p \in R^{\times}}$, then $Q_{\phi}^{\times} = \{1_R\}$. If $(\phi_p)_{p \in R^{\times}} = (1)_{p \in R^{\times}}$, then $Q_{\phi}^{\times} = Q^{\times}$.

PROOF. To prove the first statement, suppose for a contradiction that there exists $p_0/q_0 \in Q^{\times}$ with $p_0/q_0 \neq 1$ and such that $(p_0/q_0) \cdot \phi = \phi$. Since $(\phi_p)_{p \in R^{\times}} \neq (1)_{p \in R^{\times}}$, there exists $p_1 \in R^{\times}$ such that $\phi_{p_1} \neq 1$. Then, $\phi_p = \phi_{pp_0}(q_0 \cdot)$ for any $p \in R^{\times}$. Since $\phi_{pp_0}(p_0 \cdot) = \phi_p$ for any $p \in R^{\times}$, we deduce that $\phi_{pp_0}(p_0 \cdot) = \phi_{pp_0}(q_0 \cdot)$ for all $p \in R^{\times}$. So $\phi_{pp_0}((p_0 - q_0) \cdot) = 1$ for any $p \in R^{\times}$. Hence, $\phi_{pp_0}((p_0 - q_0)p_0 \cdot) = 1$ for any $p \in R^{\times}$. When $p = p_1(p_0 - q_0)$, we get $\phi_{p_1} = \phi_{p_1(p_0 - q_0)p_0}(((p_0 - q_0)p_0 \cdot)) = 1$, which is a contradiction. Therefore, $Q_{\phi}^{\times} = \{1_R\}$.

To prove the second statement, suppose that $(\phi_p)_{p \in R^{\times}} = (1)_{p \in R^{\times}}$. For $p_0/q_0 \in Q^{\times}$, we have $(p_0/q_0) \cdot (1)_{p \in R^{\times}} = (p_0/q_0) \cdot (\phi_p)_{p \in R^{\times}} = (\phi_{pp_0}(q_0))_{p \in R^{\times}} = (1)_{p \in R^{\times}}$. So $Q_{\phi}^{\times} = Q^{\times}$.

LEMMA 3.3. Let *R* be an integral domain. Suppose that for $\epsilon > 0$, $(1)_{p \in R^{\times}} \neq (\phi_p)_{p \in R^{\times}} \in X_{\infty}(R)$, $\pi \in \widehat{R_+}$, $P \in R^{\times}$ and $r_1, r_2, \ldots, r_n \in R_+$, there exist $p, q \in R^{\times}$ with $P \mid p$ such that $|\phi_p(qr_i) - \pi(r_i)| < \epsilon, i = 1, 2, \ldots, n$. Then, $Q(X_{\infty}(R)/Q^{\times})$ consists of only two points with the only nontrivial closed subset $\{[(1)_{p \in R^{\times}}]\}$.

PROOF. Since $\overline{Q^{\times} \cdot (1)_{p \in \mathbb{R}^{\times}}} = \overline{(1)_{p \in \mathbb{R}^{\times}}} = (1)_{p \in \mathbb{R}^{\times}}$, we have $[(\phi_p)_{p \in \mathbb{R}^{\times}}] \neq [(1)_{p \in \mathbb{R}^{\times}}]$ whenever $(1)_{p \in \mathbb{R}^{\times}} \neq (\phi_p)_{p \in \mathbb{R}^{\times}} \in X_{\infty}(\mathbb{R})$.

Fix $(\phi_p)_{p \in \mathbb{R}^{\times}}, (\psi_p)_{p \in \mathbb{R}^{\times}} \in X_{\infty}(\mathbb{R})$ such that $(\phi_p)_{p \in \mathbb{R}^{\times}}, (\psi_p)_{p \in \mathbb{R}^{\times}} \neq (1)_{p \in \mathbb{R}^{\times}}$. We aim to show that $[(\phi_p)_{p \in \mathbb{R}^{\times}}] = [(\psi_p)_{p \in \mathbb{R}^{\times}}]$. It suffices to show that $(\psi_p)_{p \in \mathbb{R}^{\times}} \in \overline{Q^{\times} \cdot (\phi_p)_{p \in \mathbb{R}^{\times}}}$ since $(\phi_p)_{p \in \mathbb{R}^{\times}} \in \overline{Q^{\times} \cdot (\psi_p)_{p \in \mathbb{R}^{\times}}}$ follows from the same argument. Fix $\epsilon > 0$, $p_1, p_2, \ldots, p_n \in \mathbb{R}^{\times}$ and $r_1, r_2, \ldots, r_n \in \mathbb{R}$. By the condition imposed in the lemma, there exist $p_0, q_0 \in \mathbb{R}^{\times}$ such that

$$|\phi_{p_1p_2\cdots p_np_0}(q_0p_1\cdots p_{i-1}p_{i+1}\cdots p_nr_j) - \psi_{p_1p_2\cdots p_n}(p_1\cdots p_{i-1}p_{i+1}\cdots p_nr_j)| < \epsilon$$

 $\begin{array}{l} \text{for} \quad 1 \leq i,j \leq n. \quad \text{So} \quad |\phi_{p_ip_0}(q_0r_j) - \psi_{p_i}(r_j)| < \epsilon \quad \text{for} \quad 1 \leq i,j \leq n. \quad \text{Hence,} \quad (\psi_p)_{p \in R^{\times}} \in \overline{Q^{\times} \cdot (\phi_p)_{p \in R^{\times}}}. \\ \hline Q^{\times} \cdot (\phi_p)_{p \in R^{\times}}. \quad \text{Therefore,} \quad [(\phi_p)_{p \in R^{\times}}] = [(\psi_p)_{p \in R^{\times}}]. \end{array}$

We conclude that $Q(X_{\infty}(R)/Q^{\times})$ consists of only two points. For any $(1)_{p \in R^{\times}} \neq (\phi_p)_{p \in R^{\times}} \in X_{\infty}(R), \overline{Q^{\times} \cdot (\phi_p)_{p \in R^{\times}}} = X_{\infty}(R) \setminus \{(1)_{p \in R^{\times}}\}$ is open but not closed. Finally, we deduce that $\{[(1)_{p \in R^{\times}}]\}$ is the only nontrivial closed subset of $Q(X_{\infty}(R)/Q^{\times})$.

THEOREM 3.4. Let *R* be an integral domain satisfying the condition of Lemma 3.3. Take an arbitrary element $(\phi_p)_{p \in \mathbb{R}^{\times}} \in X_{\infty}(\mathbb{R})$ with $(1)_{p \in \mathbb{R}^{\times}} \neq (\phi_p)_{p \in \mathbb{R}^{\times}}$. Then, we have $\operatorname{Prim}(C^*(\mathbb{R}_+) \rtimes \mathbb{R}^{\times}) \cong \{[(\phi_p)_{p \in \mathbb{R}^{\times}}]\} \amalg \{[(1)_{p \in \mathbb{R}^{\times}}]\} \times \widehat{Q^{\times}}, \text{ and the open sets of } \operatorname{Prim}(C^*(\mathbb{R}_+) \rtimes \mathbb{R}^{\times}) \operatorname{comprise} \{[(\phi_p)_{p \in \mathbb{R}^{\times}}]\} \amalg \{[(1)_{p \in \mathbb{R}^{\times}}]\} \times N, \text{ where } N \text{ is an open subset } of \widehat{Q^{\times}}.$ **PROOF.** By Theorem 2.2, $(C^*(R_+) \rtimes R^{\times})$ is Morita equivalent to $C(X_{\infty}(R)) \rtimes Q^{\times}$. So $\operatorname{Prim}(C^*(R_+) \rtimes R^{\times}) \cong \operatorname{Prim}(C(X_{\infty}(R)) \rtimes Q^{\times})$. By Theorem 2.5 and Lemma 3.3, $\operatorname{Prim}(C(X_{\infty}(R)) \rtimes Q^{\times}) \cong \{[(\phi_p)_{p \in R^{\times}}], [(1)_{p \in R^{\times}}]\} \times \widehat{Q^{\times}} / \approx$. By Lemma 3.2, $Q^{\times}_{(\phi_p)_{p \in R^{\times}}} = \{1_R\}$ and $Q^{\times}_{(1)_{p \in R^{\times}}} = Q^{\times}$. So, $\operatorname{Prim}(C(X_{\infty}(R)) \rtimes Q^{\times}) \cong \{[(\phi_p)_{p \in R^{\times}}]\} \amalg \{[(1)_{p \in R^{\times}}]\} \times \widehat{Q^{\times}}$. Hence, $\operatorname{Prim}(C^*(R_+) \rtimes R^{\times}) \cong \{[(\phi_p)_{p \in R^{\times}}]\} \amalg \{[(1)_{p \in R^{\times}}]\} \times \widehat{Q^{\times}}$, and the open sets of $\operatorname{Prim}(C^*(R_+) \rtimes R^{\times})$ are $\{[(\phi_p)_{p \in R^{\times}}]\} \amalg \{[(1)_{p \in R^{\times}}]\} \times N$, where N is an open subset of $\widehat{Q^{\times}}$.

EXAMPLE 3.5. Let $R = \mathbb{Z}$. Then, $\widehat{R_+} = \mathbb{T}$. Fix $\epsilon > 0$, $(1)_{p \in \mathbb{Z}^{\times}} \neq (\phi_p)_{p \in \mathbb{Z}^{\times}} \in X_{\infty}(\mathbb{Z})$, $\pi \in \mathbb{T}, P \in \mathbb{Z}^{\times}$ and $r_1, r_2, \ldots, r_n \in \mathbb{Z}_+$. Take an arbitrary $p_0 \in \mathbb{Z}^{\times}$ such that $P \mid p_0$ and let $\phi_{p_0} = e^{2\pi i \theta}$ for some $\theta \in (0, 1)$.

Case 1: θ *is rational.* Then, $\phi_{p_0}^{\mathbb{Z}} = \{e^{2\pi i k/n}\}_{k=0}^{n-1}$ for some $n \ge 1$. Since $\phi_{pp_0}^p = \phi_{p_0}$ for any $p \ge 1$, we get $\phi_{pp_0}^{\mathbb{Z}} = \{e^{2\pi i k/p_1}\}_{k=0}^{pn-1}$. Choose $p_1 \ge 1$ such that $|e^{2\pi i/p_1n} - 1| < \epsilon / \sum_{i=1}^n |r_i|$. Then, there exists $q_0 \in \mathbb{Z}^{\times}$ such that $|\phi_{p_1p_0}^{q_0} - \pi| < \epsilon / \sum_{i=1}^n |r_i|$.

Case 2: θ *is irrational.* Then, by the properties of an irrational rotation, $\{\phi_{p_0}^z\}_{z\in\mathbb{Z}}$ is a dense subset of \mathbb{T} . So, there exists $q_0 \in \mathbb{Z}^{\times}$ such that $|\phi_{p_0}^{q_0} - \pi| < \epsilon / \sum_{i=1}^{n} |r_i|$.

In both cases, there exist $p, q \in \mathbb{Z}^{\times}$ with $P \mid p$ such that $|\phi_p^q - \pi| < \epsilon / \sum_{i=1}^n |r_i|$. For $1 \le i \le n$, we may assume that $r_i \ge 0$ and we calculate that

$$\begin{split} |\phi_p(qr_i) - \pi(r_i)| &= |\phi_p^{qr_i} - \pi^{r_i}| = |\phi_p^q - \pi| \left| \sum_{j=0}^{r_i-1} \phi_p^{q(r_i-1-j)} \pi^j \right| \le |\phi_p^q - \pi| \sum_{j=0}^{r_i-1} |\phi_p^{q(r_i-1-j)} \pi^j| \\ &< \epsilon r_i \Big/ \sum_{i=1}^n |r_i| < \epsilon. \end{split}$$

So, \mathbb{Z} satisfies the condition of Lemma 3.3.

EXAMPLE 3.6. Let $R = \mathbb{Z}[\sqrt{-3}]$. Then, $\mathbb{Z}[\sqrt{-3}]_+ \cong \mathbb{Z}^2$ and $\mathbb{Z}[\sqrt{-3}]_+ \cong \mathbb{T}^2$. Fix $\epsilon > 0$, $((1,1))_{p \in R^{\times}} \neq ((a_p, b_p))_{p \in R^{\times}} \in X_{\infty}(\mathbb{Z}[\sqrt{-3}])$, $(\pi, \rho) \in \mathbb{T}^2$, $P \in R^{\times}$ and $r_i + s_i \sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]_+$ for i = 1, 2..., n. Take an arbitrary $P \mid p_0 \in R^{\times}$ such that $(a_{p_0}, b_{p_0}) \neq (1, 1)$. There exist $p, q = q_1 + q_2 \sqrt{-3} \in R^{\times}$ with $P \mid p$ such that $|a_p^{q_1} b_p^{q_2} - \pi|, |a_p^{-3q_2} b_p^{q_1} - \rho| < \epsilon / \sum_{i=1}^n (|r_i| + |s_i|)$. For $1 \le i \le n$, we may assume that $r_i \ge 0$ and we estimate

$$\begin{split} |(a_p, b_p)(q(r_i + s_i\sqrt{-3})) - (\pi, \rho)(r_i + s_i\sqrt{-3})| \\ &= |(a_p^{q_1}b_p^{q_2})^{r_i}(a_p^{-3q_2}b_p^{q_1})^{s_i} - \pi^{r_i}\rho^{s_i}| \\ &= |((a_p^{q_1}b_p^{q_2})^{r_i} - \pi^{r_i})(a_p^{-3q_2}b_p^{q_1})^{s_i} + \pi^{r_i}((a_p^{-3q_2}b_p^{q_1})^{s_i} - \rho^{s_i})| \\ &\leq |(a_p^{q_1}b_p^{q_2})^{r_i} - \pi^{r_i}| + |(a_p^{-3q_2}b_p^{q_1})^{s_i} - \rho^{s_i}| \\ &< \frac{\epsilon|r_i|}{\sum_{i=1}^n |r_i| + |s_i|} + \frac{\epsilon|s_i|}{\sum_{i=1}^n |r_i| + |s_i|} \leq \epsilon. \end{split}$$

So, $\mathbb{Z}[\sqrt{-3}]$ satisfies the condition of Lemma 3.3.

By a similar argument to this example, we conclude that any (concrete) order of a number field satisfies the condition of Lemma 3.3. (For the background about number fields, one may refer to [22].)

Appendix. The relationship between $C^*(R_+) \rtimes R^{\times}$ and semigroup C^* -algebras

In this appendix, we show that $C^*(R_+) \rtimes R^{\times}$ is an extension of the boundary quotient of the opposite semigroup of the ax + b-semigroup of the ring and that when the ring is a GCD domain, $C^*(R_+) \rtimes R^{\times}$ is isomorphic to the boundary quotient of the opposite semigroup of the ax + b-semigroup of the ring.

DEFINITION A.1 ([15, Section 2], [19, Definition 2.13]). Let *P* be a semigroup, *A* be a unital *C*^{*}-algebra and $\alpha : P \to \text{End}(A)$ be a semigroup homomorphism such that α_p is injective for all $p \in P$. Define the *semigroup crossed product* $A \rtimes_{\alpha} P$ to be the universal unital *C*^{*}-algebra generated by the image of a unital homomorphism $i_A : A \to A \rtimes_{\alpha} P$ and a semigroup homomorphism $i_P : P \to \text{Isom}(A \rtimes_{\alpha} P)$ satisfying the following conditions:

- (1) $i_P(p)i_A(a)i_P(p)^* = i_A(\alpha_p(a))$ for all $p \in P, a \in A$;
- (2) for any unital C^* -algebra B, unital homomorphism $j_A : A \to B$ and semigroup homomorphism $j_P : P \to \text{Isom}(B)$ satisfying $j_P(p)j_A(a)j_P(p)^* = j_A(\alpha_P(a))$, there exists a unique unital homomorphism $\Phi : A \rtimes_{\alpha} P \to B$ such that $\Phi \circ i_A = j_A$ and $\Phi \circ i_P = j_P$.

REMARK A.2. We have $i_A(1_A) = i_P(1_P) =$ the unit of $A \rtimes_{\alpha} P$.

If α_p is unital for all $p \in P$, then $i_P(p)$ is a unitary for any $p \in P$. To see this, we calculate that $i_P(p)i_P(p)^* = i_P(p)i_A(1_A)i_P(p)^* = i_A(\alpha_p(1_A)) = i_A(1_A)$.

NOTATION A.3 [3, 19]. Let *P* be a semigroup. For $p \in P$, we also denote by *p* the left multiplication map $q \mapsto pq$. The set of *constructible right ideals* is defined to be

$$\mathcal{J}(P) := \{ p_1^{-1} q_1 \cdots p_n^{-1} q_n P : n \ge 1, p_1, q_1, \dots, p_n, q_n \in P \} \cup \{ \emptyset \}.$$

A finite subset $F \subset \mathcal{J}(P)$ is called a *foundation set* if for any nonempty $X \in \mathcal{J}(P)$, there exists $Y \in F$ such that $X \cap Y \neq \emptyset$.

DEFINITION A.4 ([3, Remark 5.5], [19, Definition 2.2]). Let *P* be a semigroup. Define the *full semigroup* C^* -algebra $C^*(P)$ of *P* to be the universal unital C^* -algebra generated by a family of isometries $\{v_p\}_{p \in P}$ and a family of projections $\{e_X\}_{X \in \mathcal{J}(P)}$ satisfying the following relations:

- (1) $v_p v_q = v_{pq}$ for all $p, q \in P$;
- (2) $v_p e_X v_p^* = e_{pX}$ for all $p \in P, X \in \mathcal{J}(P)$;
- (3) $e_{\emptyset} = 0$ and $e_P = 1$;
- (4) $e_X e_Y = e_{X \cap Y}$ for all $X, Y \in \mathcal{J}(P)$.

Define the *boundary quotient* Q(P) of $C^*(P)$ to be the universal unital C^* -algebra generated by a family of isometries $\{v_p\}_{p \in P}$ and a family of projections $\{e_X\}_{X \in \mathcal{J}(P)}$ satisfying conditions (1)–(4) and $\prod_{X \in F} (1 - e_X) = 0$ for any foundation set $F \subset \mathcal{J}(P)$.

DEFINITION A.5 ([3, Definition 2.1], [23, Definition 2.17]). Let *P* be a semigroup. Then, *P* is said to be *right* LCM (or to satisfy the *Clifford condition*) if the intersection of two principal right ideals is either empty or a principal right ideal.

NOTATION A.6. Let *P* be a semigroup. Denote by P^{op} the opposite semigroup of *P*. Let *R* be an integral domain. Denote by $R_+ \rtimes R^{\times}$ the ax + b-semigroup of *R*. Denote by \times the multiplication of $(R_+ \rtimes R^{\times})^{\text{op}}$, that is, $(r_1, p_1) \times (r_2, p_2) = (r_2, p_2)(r_1, p_1) = (r_2 + p_2r_1, p_1p_2)$.

REMARK A.7. Let *R* be an integral domain. We claim that any nonempty element of $\mathcal{J}((R_+ \rtimes R^{\times})^{\text{op}})$ is a foundation set of $(R_+ \rtimes R^{\times})^{\text{op}}$. To see this, for any $(r_1, p_1), (r_2, p_2) \in (R_+ \rtimes R^{\times})^{\text{op}}$, we compute

$$(r_1, p_1) \times (p_1 r_2, p_2) = (p_1 r_2, p_2)(r_1, p_1) = (p_1 r_2 + p_2 r_1, p_1 p_2)$$

= $(p_2 r_1, p_1)(r_2, p_2) = (r_2, p_2) \times (p_2 r_1, p_1).$

THEOREM A.8. Let *R* be an integral domain. Then, the crossed product $C^*(R_+) \rtimes R^{\times}$ is an extension of $Q((R_+ \rtimes R^{\times})^{\text{op}})$. Moreover, if *R* is a GCD domain (see [7]), then we have $C^*(R_+) \rtimes R^{\times} \cong Q((R_+ \rtimes R^{\times})^{\text{op}})$.

PROOF. Denote by $i_A : C^*(R_+) \to C^*(R_+) \rtimes R^{\times}$ and $i_P : R^{\times} \to \text{Isom}(C^*(R_+) \rtimes R^{\times})$ the canonical homomorphisms generating $C^*(R_+) \rtimes R^{\times}$. Let $\{v_{(r,p)} : (r,p) \in (R_+ \rtimes R^{\times})^{\text{op}}\}$ be the family of isometries and $\{e_X : X \in \mathcal{J}((R_+ \rtimes R^{\times})^{\text{op}})\}$ be the family of projections generating $Q((R_+ \rtimes R^{\times})^{\text{op}})$.

For any $(r, p) \in (R_+ \rtimes R^{\times})^{\text{op}}$, note that $1 - v_{(r,p)}v_{(r,p)}^* = 1 - e_{(r,p)\times(R_+ \rtimes R^{\times})^{\text{op}}} = 0$ because $\{(r, p) \times (R_+ \rtimes R^{\times})^{\text{op}}\}$ is a foundation set. So each $v_{(r,p)}$ is a unitary.

For $r \in R_+$, define $U_r := v_{(r,1)}$. For any $r, s \in R_+$,

$$U_r U_s = v_{(r,1)} v_{(s,1)} = v_{(s,1)(r,1)} = v_{(r+s,1)} = v_{(r,1)(s,1)} = v_{(s,1)} v_{(r,1)} = U_s U_r,$$

so $j_A : C^*(R_+) \to Q((R_+ \rtimes R^{\times})^{\text{op}}), u_r \mapsto v_{(r,1)}$ is a homomorphism by the universal property of $C^*(R_+)$. For $p \in R^{\times}$, define $j_P(p) := v^*_{(0,p)}$. For any $p, q \in R^{\times}$,

$$j_P(p)j_P(q) = v^*_{(0,p)}v^*_{(0,q)} = (v_{(0,q)}v_{(0,p)})^* = (v_{(0,p)(0,q)})^* = v^*_{(0,pq)} = j_P(pq),$$

so $j_P : \mathbb{R}^{\times} \to \text{Isom}(\mathbb{Q}((\mathbb{R}_+ \rtimes \mathbb{R}^{\times})^{\text{op}}))$ is a semigroup homomorphism. For any $p \in \mathbb{R}^{\times}$, $r \in \mathbb{R}_+$, we compute

$$j_P(p)j_A(u_r)j_P(p)^* = v_{(0,p)}^*v_{(r,1)}v_{(0,p)} = v_{(0,p)}^*v_{(pr,p)} = v_{(pr,1)} = j_A(u_{pr}) = j_A(\alpha_p(u_r)).$$

By the universal property of $C^*(R_+) \rtimes R^{\times}$, there exists a unique homomorphism $\Phi : C^*(R_+) \rtimes R^{\times} \to Q((R_+ \rtimes R^{\times})^{\text{op}})$ such that $\Phi \circ i_A = j_A$ and $\Phi \circ i_P = j_P$. Since $v_{(r,p)} = v_{(0,p)}v_{(r,1)}$ for any $(r, p) \in (R_+ \rtimes R^{\times})^{\text{op}}$, we see that Φ is surjective. So, $C^*(R_+) \rtimes R^{\times}$ is an extension of $Q((R_+ \rtimes R^{\times})^{\text{op}})$.

Now, we assume that R is a GCD domain. By [23, Proposition 2.23], R^{\times} is right LCM. For $(r_1, p_1), (r_2, p_2) \in (R_+ \rtimes R^{\times})^{\text{op}}$, suppose that $p_1 R^{\times} \cap p_2 R^{\times} = p R^{\times}$ for some $p \in R^{\times}$. We claim that

$$(r_1, p_1) \times (R_+ \rtimes R^{\times})^{\operatorname{op}} \cap (r_2, p_2) \times (R_+ \rtimes R^{\times})^{\operatorname{op}} = (0, p) \times (R_+ \rtimes R^{\times})^{\operatorname{op}}.$$

Indeed, for any $(s_1, q_1), (s_2, q_2) \in (R_+ \rtimes R^{\times})^{\text{op}}$, if $(r_1, p_1) \times (s_1, q_1) = (r_2, p_2) \times (s_2, q_2)$, then $(r_1, p_1) \times (s_1, q_1) = (r_2, p_2) \times (s_2, q_2) = (0, p) \times (s_1 + q_1 r_1, q_1 p_1 / p)$. Conversely, for any $(s, q) \in (R_+ \rtimes R^{\times})^{\text{op}}$,

$$(0, p) \times (s, q) = (r_1, p_1) \times \left(s - \frac{pqr_1}{p_1}, \frac{pq}{p_1}\right) = (r_2, p_2) \times \left(s - \frac{pqr_2}{p_2}, \frac{pq}{p_2}\right)$$

This proves the claim. Hence, $(R_+ \rtimes R^{\times})^{\text{op}}$ is right LCM as well.

Since $(R_+ \rtimes R^{\times})^{\text{op}}$ is right LCM, it follows from [24, Lemma 3.4] that $Q((R_+ \rtimes R^{\times})^{op})$ is the universal unital C^{*}-algebra generated by a family of unitaries $\{v_{(r,p)} : (r,p) \in (R_+ \rtimes R^{\times})^{\text{op}}\}$ satisfying the conditions:

- (1) $v_{(r_1,p_1)}v_{(r_2,p_2)} = v_{(r_1,p_1)\times(r_2,p_2)};$
- (2) $v_{(r_1,p_1)}^* v_{(r_2,p_2)} = v_{(s_1,q_1)} v_{(s_2,q_2)}^*$, whenever $(r_1, p_1) \times (s_1, q_1) = (r_2, p_2) \times (s_2, q_2)$ and $(r_1, p_1) \times (R_+ \rtimes R^{\times})^{\operatorname{op}} \cap (r_2, p_2) \times (R_+ \rtimes R^{\times})^{\operatorname{op}} = (r_1, p_1) \times (s_1, q_1) \times (R_+ \rtimes R^{\times})^{\operatorname{op}}.$

For $(r, p) \in (\mathbb{R}_+ \rtimes \mathbb{R}^{\times})^{\text{op}}$, define $V_{(r,p)} := i_P(p)^* i_A(u_r)$. Finally, we check that $\{V_{(r,p)}\}$ satisfies the above two conditions. For any $(r_1, p_1), (r_2, p_2) \in (R_+ \rtimes R^{\times})^{\text{op}}$,

$$\begin{aligned} V_{(r_1,p_1)}V_{(r_2,p_2)} &= i_P(p_1)^*i_A(u_{r_1})i_P(p_2)^*i_A(u_{r_2}) = i_P(p_1)^*i_P(p_2)^*i_A(\alpha_{p_2}(u_{r_1}))i_A(u_{r_2}) \\ &= (i_P(p_2)i_P(p_1))^*i_A(u_{p_2r_1})i_A(u_{r_2}) = i_P(p_1p_2)^*i_A(u_{r_2+p_2r_1}) \\ &= V_{(r_2+p_2r_1,p_1p_2)} = V_{(r_1,p_1)\times(r_2,p_2)}. \end{aligned}$$

.

For $(r_1, p_1), (r_2, p_2) \in (R_+ \rtimes R^{\times})^{\text{op}}$, suppose that $p_1 R^{\times} \cap p_2 R^{\times} = p R^{\times}$ for some $p \in \mathbb{R}^{\times}$. By the above claim, $(r_1, p_1) \times (\mathbb{R}_+ \rtimes \mathbb{R}^{\times})^{\text{op}} \cap (r_2, p_2) \times (\mathbb{R}_+ \rtimes \mathbb{R}^{\times})^{\text{op}} =$ $(0, p) \times (R_+ \rtimes R^{\times})^{\text{op}}$. It is not hard to see that $(r_1, p_1) \times (-pr_1/p_1, p/p_1) = (r_2, p_2) \times (-pr_1/p_1, p/p_2) = (r_2, p_2) \times (-pr_1/p_1, p/p_2) = (r_2, p_2) \times (-pr_1/p_1, p/p_2) = (r_2, p_2) \times (-pr_2/p_2) \times (-pr_2/p_2) = (r_2, p_2) \times (-pr_2/p_2) \times (-pr_2/p_2) = (r_2, p_2) \times (-pr_2/p_2) \times (-pr_2/p_2) \times (-pr_2/p_2) = (r_2, p_2) \times (-pr_2/p_2) \times (-pr_2/p_2) \times (-pr_2/p_2) = (r_2, p_2) \times (-pr_2/p_2) \times (-pr_2/p_2) = (r_2, p_2) \times (-pr_2/p_2) \times (-pr_2/p_2) = (r_2/p_2) = (r_2/p_2) \times (-pr_2/p_2) = (r_2/p_2) = (r_2/p_$ $(-pr_2/p_2, p/p_2) = (0, p)$. So,

$$\begin{aligned} V_{(r_1,p_1)}^* V_{(r_2,p_2)} &= i_A(u_{-r_1})i_P(p_1)i_P(p_2)^*i_A(u_{r_2}) = i_A(u_{-r_1})i_P\left(\frac{p}{p_1}\right)^*i_P\left(\frac{p}{p_2}\right)i_A(u_{r_2}) \\ &= i_P\left(\frac{p}{p_1}\right)^*i_A(u_{-pr_1/p_1})i_A(u_{pr_2/p_2})i_P\left(\frac{p}{p_2}\right) \\ &= V_{(-pr_1/p_1,p/p_1)}V_{(-pr_2/p_2,p/p_2)}^*.\end{aligned}$$

By the universal property of $Q((R_+ \rtimes R^{\times})^{op})$, there exists a homomorphism $\Psi: Q((R_+ \rtimes R^{\times})^{\operatorname{op}}) \to C^*(R_+) \rtimes R^{\times}$ such that $\Psi(v_{(r,p)}) = i_P(p)^* i_A(u_r)$. Since

$$\begin{split} \Phi \circ \Psi(v_{(r,p)}) &= \Phi(i_P(p)^* i_A(u_r)) = j_P(p)^* j_A(u_r) = v_{(0,p)} v_{(r,1)} = v_{(r,p)}, \\ \Psi \circ \Phi(i_A(u_r)) &= \Psi(j_A(u_r)) = \Psi(v_{(r,1)}) = i_A(u_r), \end{split}$$

$$\Psi \circ \Phi(i_P(p)) = \Psi(j_P(p)) = \Psi(v_{(0,p)})^* = i_P(p),$$

we conclude that $C^*(R_+) \rtimes R^{\times} \cong Q((R_+ \rtimes R^{\times})^{\text{op}}).$

Acknowledgement

The first author thanks the second author for his encouragement and patient supervision.

References

- [1] B. Blackadar, Operator Algebras, Theory of C*-Algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III (Springer-Verlag, Berlin, 2006).
- [2] J. B. Bost and A. Connes, 'Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory', *Selecta Math. (N.S.)* **1** (1995), 411–457.
- [3] N. Brownlowe, J. Ramagge, D. Robertson and M. F. Whittaker, 'Zappa–Szép products of semigroups and their C*-algebras', J. Funct. Anal. 266 (2014), 3937–3967.
- [4] C. Bruce, Y. Kubota and T. Takeishi, 'Groupoid homology and K-theory for algebraic actions from number theory', Preprint, 2024, arXiv:2407.01952.
- [5] C. Bruce and X. Li, 'Algebraic actions II. Groupoid rigidity', Preprint, 2023, arXiv:2301.04459.
- [6] C. Bruce and X. Li, 'Algebraic actions I. C*-algebras and groupoids', J. Funct. Anal. 286 (2024), Article no. 110263.
- [7] S. T. Chapman and S. Glaz, *Non-Noetherian Commutative Ring Theory* (Kluwer Academic Publishers, Dordrecht, 2000).
- [8] J. Cuntz, 'C*-algebras associated with the ax + b-semigroup over N', in: K-theory and Noncommutative Geometry, EMS Series of Congress Reports (eds. G. Cortiñas, J. Cuntz, M. Karoubi, R. Nest and C. A. Weibel) (European Mathematical Society, Zürich, 2008), 201–215.
- J. Cuntz, C. Deninger and M. Laca, 'C*-algebras of Toeplitz type associated with algebraic number fields', *Math. Ann.* 355 (2013), 1383–1423.
- [10] J. Cuntz, S. Echterhoff and X. Li, 'On the K-theory of crossed products by automorphic semigroup actions', Q. J. Math. 64 (2013), 747–784.
- [11] J. Cuntz and X. Li, 'The regular C*-algebra of an integral domain', in: *Quanta of Maths: Conference in Honor of Alain Connes*, Clay Mathematics Proceedings, 11 (eds. E. Blanchard, D. Ellwood, M. Khalkhali, M. Marcolli, H. Moscovici and S. Popa) (American Mathematical Society, Providence, RI, 2010), 149–170.
- [12] I. Hirshberg, 'On C*-algebras associated to certain endomorphisms of discrete groups', New York J. Math. 8 (2002), 99–109.
- [13] S. Kaliszewski, T. Omland and J. Quigg, 'Cuntz–Li algebras from *a*-adic numbers', *Rev. Roumaine Math. Pures Appl.* 59 (2014), 331–370.
- [14] M. Laca, 'From endomorphisms to automorphisms and back: dilations and full corners', J. Lond. Math. Soc. (2) 61 (2000), 893–904.
- [15] M. Laca and I. Raeburn, 'Semigroup crossed products and the Toeplitz algebras of nonabelian groups', J. Funct. Anal. 139 (1996), 415–440.
- [16] M. Laca and I. Raeburn, 'The ideal structure of the Hecke C*-algebra of Bost and Connes', Math. Ann. 318 (2000), 433–451.
- [17] N. S. Larsen and X. Li, 'The 2-adic ring C*-algebra of the integers and its representations', J. Funct. Anal. 262 (2012), 1392–1426.
- [18] X. Li, 'Ring C*-algebras', Math. Ann. 348 (2010), 859–898.
- [19] X. Li, 'Semigroup C*-algebras and amenability of semigroups', J. Funct. Anal. 262 (2012), 4302–4340.
- [20] X. Li, 'Semigroup C*-algebras of ax + b-semigroups', Trans. Amer. Math. Soc. 368 (2016), 4417–4437.
- [21] X. Li and M. D. Norling, 'Independent resolutions for totally disconnected dynamical systems. II. C*-algebraic case', J. Operator Theory 75 (2016), 163–193.
- [22] J. Neukirch, Algebraic Number Theory (Springer-Verlag, Berlin, 1999).

- [23] M. D. Norling, 'Inverse semigroup C*-algebras associated with left cancellative semigroups', Proc. Edinb. Math. Soc. (2) 57 (2014), 533–564.
- [24] C. Starling, 'Boundary quotients of C*-algebras of right LCM semigroups', J. Funct. Anal. 268 (2015), 3326–3356.

XIAOHUI CHEN, Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, PR China e-mail: xiaohui20720@126.com

HUI LI, Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, PR China e-mail: lihui8605@hotmail.com, 50902471@ncepu.edu.cn

10