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A note on preimage entropy
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Abstract. Cheng and Newhouse (Ergod. Th. & Dynam. Sys. 25 (2005), 1091-1113) proved
a variational principle for topological preimage entropy Apre (f):

hpre(f) = sup hpre,u(f)~
HeM(X,f)

Unfortunately, we show in this note that this variational principle is not true.
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1. Introduction

Let (X, f) be a topological dynamical system (t.d.s. for short), that is, (X, d) is a
compact metric space and f : X — X is a continuous self-map. Preimage entropies were
introduced and studied by Langevin and Przytycki [6], Hurley [5], Nitecki and Przytycki
[7], and Fiebig, Fiebig and Nitecki [3]. These quantities give relevant information of how
‘non-invertible’ a system is. Among these entropy-like invariants, there are two kinds of
pointwise preimage entropies:

1
hw (f) = lir% lim sup — log sup s(n, €, f " (x)),
€e—

n—oo N xeX

1
hp(f) = sup lim lim sup — log s(n, €, f " (x)),
n

xeX €20 n—oo

where s(n, €, Z) (or s(n, €, Z, f)) denotes the largest cardinality of any (n, €)-separated
set of Z C X. An important question is: can one introduce the counterpart of 4, (f) or
hp(f) from the measure-theoretic point of view, and obtain a variational principle relating
them?
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The first progress on this research was made by Cheng and Newhouse [1]. They defined

a new notion of topological preimage entropy:
1
hpre (f) = limO limsup — log sup s(n,e€, f*k(x)).
€e—

n—oo N xeXk>n

On the measure-theoretic side, they defined a corresponding measure-theoretic preimage
entropy:

hpre (f) = sup hpre (f5 ),
o
where « ranges over all finite partitions of X,

. 1 o
ipre,u(f ) = hyu(f, @|B7) = lim sup ~ Hy, (o hB87),

n—oo

and B~ is the infinite past o-algebra (1), f "B related to the Borel o-algebra B. In
addition, they stated a variational principle:

hpre (f) = sup  fpre,u (f), (L.1)
neM(X,f)

where M (X, f) denotes the set of all f-invariant Borel probability measures on X.

Recently, Wu and Zhu [9] developed a variational principle for 4,,(f) under the
condition of uniform separation of preimages. They introduced a new version of pointwise
metric preimage entropy:

hm,,u(f) = Sup hm,ﬂ(fv a)’

where o ranges over all finite partitions of X and

. 1 n— —n
i (f e0) = lim sup — H, (ery " "B).

n—oo

For f with uniform separation of preimages, the authors [9] established the following
variational principle relating A, (f) and h,, (f):

hm(f) = sup hm,u(f)
neM(X,f)

In fact, it was shown in [10, Proposition 3.1] that

R (f) = hpreu (f)  forany p e M(X, f).

For related definitions of topological and measure-theoretic entropies, we refer to the books
(2, 4, 8].
In this note, we shall give an example to show that

hpre(f) > sup hpre,u(f)~
neM(X,f)

So the variational principle in equation (1.1) is not true.
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2. Main result
In this section, we will state and prove our main result.

LEMMA 2.1. Let A = {0, 1, 2} and endow AN*N with the product topology of the discrete

topology on A. Denote by [+ ANN — ANN whe loft shift map on rows; that is,

(fx)m,i = Xm,i+1 form,i € N.

For each array x = (Xy.i)m.i>0, denote by io(x) the minimal i > 0 such that xo; = 0. If
such an i does not exist, then we set ig(x) = 0o. Let X C ANXN consist of arrays such that:

(1) foralli > ip(x) and all m > 0, we have xp, ; = 0;
(2) forall 0 <i <ig(x) and all m > 0, we have xp,; € {1,2} and if both m > 1 and
i > 1, then x;y; = Xpp—1,—1-

Forthe t.d.s (X, f), we have hpe(f) > log 2 and hpre,;, (f) = 0 for any p € M(X, f).

Proof. For0 < n < oo, let A, denote the set of points x € X with ig(x) = n and 0 denote
the array consisting of just zeros. Then we have the following observations.
(1) Ao = {0} and the element 0 has infinitely many preimages.
(2) Anyelementx € X \ A has exactly one preimage.
(3) (A, f) is an invertible subsystem.

Let €9 > 0 be so small that x, y € X with xo0 # yo,0 implies d(x, y) > €p. Note that if
we just observe the zero-row of f~"(0), we will see elements starting with any block of
any length 0 < k < n over 1, 2 (followed by zeros). So we have

s(n, €0, f (0))>sz ol

Hence,

hpre(f) = lim lim sup — log sup s(n, e, f_k(x))

€e~>0 psoo N xeX,k>n
1
> lim sup — log s(n, g, £ "(0))
n—oo N

> log 2.

Now we pass to evaluating the measure-theoretic preimage entropy. Notice that for each
0 < n < oo, the set A, is visited by any orbit at most once implying that . (A,) = O for any
u € M(X, f). So, any invariant measure y is supported by Ag U A. Fix u € M(X, f).
Without loss of generality, we may assume that (Ag) > 0 and (As) > 0. Consider the
conditional measures

pag () = PEOAD gy (= MDA
M Ay HAs

Itis easy to verify that both 1 4, and 4, are invariantand u = w(Ag)pa, + U (Aco) Ay -
By the affinity of measurable conditional entropy (see, for example, [2, Theorem 2.5.1],
[1, Theorem 2.3] or [9, Proposition 2.12]), we have
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hpreu (f) = (A0 hpreus, (f) + 1(Aoo) hpre gy, (f)

=< //«(AO)huAO )+ M(Aoo)hpre,quo @)
=0. =

By Lemma 2.1, we can get our main result.
THEOREM 2.2. There exists a t.d.s. (X, f) such that
0= sup  Jprep(f) <log2 < hpe(f).
nEM(X.[)

Thus, the Cheng—Newhouse variational principle in equation (1.1) fails.

3. Another definition of preimage entropy
In [1], the authors show that /e (f) can also be defined as

hpre(f) = lim lim sup l log sup s(n,e, f*kx). 3.1
€20 psoo N xeX k>1
This result is based on their variational principle in equation (1.1). Now we shall give a
topological proof of equation (3.1). In fact, it is a consequence of the following result.
For Z C X, let r(n, €, Z) denote the smallest cardinality of any (n, €)-spanning set of
Z C X. Itis clear that the above topological notions of entropies defined by separated sets
can also be defined by spanning sets.

THEOREM 3.1. Let f : X — X be a continuous map. Then,

1
hpre (f) = lim lim sup — log sup s(n, €, Py)
€e—>0 p—so0 N xeX

1
= lim lim sup — log sup r(n, €, Py),

€20 nsoo N xeX
where
Po=|Jf7fx
j=0

Proof. Fixy e X,n e Nandk > n.If f*y # @, then pick x € f~*y. So,
rne, fEy) =rn, e, fRfE) <r(n,e, P,

which implies

1
hpre(f) < lim lim sup — log sup r(n, €, Py).
€e>0 posoo N xeX

Next, we show the remaining inequality. Fix s > hpe(f). For any € > 0, there exists
N € N such that

r(n,e, f*x) < e

forallx € X,n > N and k > n.
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Fix x € X,n > N. For k > n, let Ex C X be an (n, €)-spanning set of f_kka with
#E, =r(n, €, f’kka) < ¢e*". Let K(X) be the space of non-empty closed subsets of X
equipped with the Hausdorff metric. Then we have E; € K(X). As X is compact, K (X) is
also compact. So there exists a subsequence {k;};>1 such that Ex, — E(j — 00). Then
we have #E < %"

We claim that

P, c | Buz. 26).

zeE

To see this, pick y € Py. Then there exists J > n such that for any j > J, one has

y e f_k-/'fkfx C U B, (z, €).

ZEEkj
Furthermore, we can pick zx; € Ex; to get
dn(y, zkj) <€ forall j > J.

Without loss of generality, we assume that lim;_, oo Zk; = Z. Then it is easy to see that
z € E and

dn(ys Z) < €.

So the claim is true. Hence, we have r(n, 2¢, P,) < #E < ¢, from which one can get

1
lim lim sup — log sup r(n, €, Py) < s.
e—>0 psoco0 N xeX

By the choice of s, we obtain the reversed inequality. O
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