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Abstract. Cheng and Newhouse (Ergod. Th. & Dynam. Sys. 25 (2005), 1091–1113) proved
a variational principle for topological preimage entropy hpre(f ):

hpre(f ) = sup
μ∈M(X,f )

hpre,μ(f ).

Unfortunately, we show in this note that this variational principle is not true.
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1. Introduction
Let (X, f ) be a topological dynamical system (t.d.s. for short), that is, (X, d) is a
compact metric space and f : X → X is a continuous self-map. Preimage entropies were
introduced and studied by Langevin and Przytycki [6], Hurley [5], Nitecki and Przytycki
[7], and Fiebig, Fiebig and Nitecki [3]. These quantities give relevant information of how
‘non-invertible’ a system is. Among these entropy-like invariants, there are two kinds of
pointwise preimage entropies:

hm(f ) = lim
ε→0

lim sup
n→∞

1
n

log sup
x∈X

s(n, ε, f −n(x)),

hp(f ) = sup
x∈X

lim
ε→0

lim sup
n→∞

1
n

log s(n, ε, f −n(x)),

where s(n, ε, Z) (or s(n, ε, Z, f )) denotes the largest cardinality of any (n, ε)-separated
set of Z ⊂ X. An important question is: can one introduce the counterpart of hm(f ) or
hp(f ) from the measure-theoretic point of view, and obtain a variational principle relating
them?
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The first progress on this research was made by Cheng and Newhouse [1]. They defined
a new notion of topological preimage entropy:

hpre(f ) = lim
ε→0

lim sup
n→∞

1
n

log sup
x∈X,k≥n

s(n, ε, f −k(x)).

On the measure-theoretic side, they defined a corresponding measure-theoretic preimage
entropy:

hpre,μ(f ) = sup
α

hpre,μ(f , α),

where α ranges over all finite partitions of X,

hpre,μ(f , α) = hμ(f , α|B−) = lim sup
n→∞

1
n
Hμ(αn−1

0 |B−),

and B− is the infinite past σ -algebra
⋂

n≥0 f −nB related to the Borel σ -algebra B. In
addition, they stated a variational principle:

hpre(f ) = sup
μ∈M(X,f )

hpre,μ(f ), (1.1)

where M(X, f ) denotes the set of all f -invariant Borel probability measures on X.
Recently, Wu and Zhu [9] developed a variational principle for hm(f ) under the

condition of uniform separation of preimages. They introduced a new version of pointwise
metric preimage entropy:

hm,μ(f ) = sup
α

hm,μ(f , α),

where α ranges over all finite partitions of X and

hm,μ(f , α) = lim sup
n→∞

1
n
Hμ(αn−1

0 |f −nB).

For f with uniform separation of preimages, the authors [9] established the following
variational principle relating hm,μ(f ) and hm(f ):

hm(f ) = sup
μ∈M(X,f )

hm,μ(f ).

In fact, it was shown in [10, Proposition 3.1] that

hm,μ(f ) = hpre,μ(f ) for any μ ∈ M(X, f ).

For related definitions of topological and measure-theoretic entropies, we refer to the books
[2, 4, 8].

In this note, we shall give an example to show that

hpre(f ) > sup
μ∈M(X,f )

hpre,μ(f ).

So the variational principle in equation (1.1) is not true.
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2. Main result
In this section, we will state and prove our main result.

LEMMA 2.1. Let A = {0, 1, 2} and endow AN×N with the product topology of the discrete
topology on A. Denote by f : AN×N → AN×N the left shift map on rows; that is,

(f x)m,i = xm,i+1 for m, i ∈ N.

For each array x = (xm,i )m,i≥0, denote by i0(x) the minimal i ≥ 0 such that x0,i = 0. If
such an i does not exist, then we set i0(x) = ∞. Let X ⊂ AN×N consist of arrays such that:
(1) for all i ≥ i0(x) and all m ≥ 0, we have xm,i = 0;
(2) for all 0 ≤ i < i0(x) and all m ≥ 0, we have xm,i ∈ {1, 2} and if both m ≥ 1 and

i ≥ 1, then xm,i = xm−1,i−1.
For the t.d.s (X, f ), we have hpre(f ) ≥ log 2 and hpre,μ(f ) = 0 for any μ ∈ M(X, f ).

Proof. For 0 ≤ n ≤ ∞, let An denote the set of points x ∈ X with i0(x) = n and 0 denote
the array consisting of just zeros. Then we have the following observations.
(1) A0 = {0} and the element 0 has infinitely many preimages.
(2) Any element x ∈ X \ A0 has exactly one preimage.
(3) (A∞, f ) is an invertible subsystem.

Let ε0 > 0 be so small that x, y ∈ X with x0,0 �= y0,0 implies d(x, y) ≥ ε0. Note that if
we just observe the zero-row of f −n(0), we will see elements starting with any block of
any length 0 ≤ k ≤ n over 1, 2 (followed by zeros). So we have

s(n, ε0, f −n(0)) ≥
n∑

k=0

2k = 2n+1 − 1.

Hence,

hpre(f ) = lim
ε→0

lim sup
n→∞

1
n

log sup
x∈X,k≥n

s(n, ε, f −k(x))

≥ lim sup
n→∞

1
n

log s(n, ε0, f −n(0))

≥ log 2.

Now we pass to evaluating the measure-theoretic preimage entropy. Notice that for each
0 < n < ∞, the set An is visited by any orbit at most once implying that μ(An) = 0 for any
μ ∈ M(X, f ). So, any invariant measure μ is supported by A0 ∪ A∞. Fix μ ∈ M(X, f ).
Without loss of generality, we may assume that μ(A0) > 0 and μ(A∞) > 0. Consider the
conditional measures

μA0(·) = μ(· ∩ A0)

μA0

and μA∞(·) = μ(· ∩ A∞)

μA∞
.

It is easy to verify that both μA0 and μA∞ are invariant and μ = μ(A0)μA0 + μ(A∞)μA∞ .
By the affinity of measurable conditional entropy (see, for example, [2, Theorem 2.5.1],
[1, Theorem 2.3] or [9, Proposition 2.12]), we have
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hpre,μ(f ) = μ(A0)hpre,μA0
(f ) + μ(A∞)hpre,μA∞ (f )

≤ μ(A0)hμA0
(f ) + μ(A∞)hpre,μA∞ (f )

= 0.

By Lemma 2.1, we can get our main result.

THEOREM 2.2. There exists a t.d.s. (X, f ) such that

0 = sup
μ∈M(X,f )

hpre,μ(f ) < log 2 ≤ hpre(f ).

Thus, the Cheng–Newhouse variational principle in equation (1.1) fails.

3. Another definition of preimage entropy
In [1], the authors show that hpre(f ) can also be defined as

hpre(f ) = lim
ε→0

lim sup
n→∞

1
n

log sup
x∈X,k≥1

s(n, ε, f −kx). (3.1)

This result is based on their variational principle in equation (1.1). Now we shall give a
topological proof of equation (3.1). In fact, it is a consequence of the following result.

For Z ⊂ X, let r(n, ε, Z) denote the smallest cardinality of any (n, ε)-spanning set of
Z ⊂ X. It is clear that the above topological notions of entropies defined by separated sets
can also be defined by spanning sets.

THEOREM 3.1. Let f : X → X be a continuous map. Then,

hpre(f ) = lim
ε→0

lim sup
n→∞

1
n

log sup
x∈X

s(n, ε, Px)

= lim
ε→0

lim sup
n→∞

1
n

log sup
x∈X

r(n, ε, Px),

where

Px =
⋃

j≥0

f −j f j x.

Proof. Fix y ∈ X, n ∈ N and k ≥ n. If f −ky �= ∅, then pick x ∈ f −ky. So,

r(n, ε, f −ky) = r(n, ε, f −kf kx) ≤ r(n, ε, Px),

which implies

hpre(f ) ≤ lim
ε→0

lim sup
n→∞

1
n

log sup
x∈X

r(n, ε, Px).

Next, we show the remaining inequality. Fix s > hpre(f ). For any ε > 0, there exists
N ∈ N such that

r(n, ε, f −kx) ≤ esn

for all x ∈ X, n ≥ N and k ≥ n.
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Fix x ∈ X, n ≥ N . For k ≥ n, let Ek ⊂ X be an (n, ε)-spanning set of f −kf kx with
#Ek = r(n, ε, f −kf kx) ≤ esn. Let K(X) be the space of non-empty closed subsets of X
equipped with the Hausdorff metric. Then we have Ek ∈ K(X). As X is compact, K(X) is
also compact. So there exists a subsequence {kj }j≥1 such that Ekj

→ E(j → ∞). Then
we have #E ≤ esn.

We claim that

Px ⊂
⋃

z∈E

Bn(z, 2ε).

To see this, pick y ∈ Px . Then there exists J ≥ n such that for any j ≥ J , one has

y ∈ f −kj f kj x ⊂
⋃

z∈Ekj

Bn(z, ε).

Furthermore, we can pick zkj
∈ Ekj

to get

dn(y, zkj
) < ε for all j ≥ J .

Without loss of generality, we assume that limj→∞ zkj
= z. Then it is easy to see that

z ∈ E and

dn(y, z) ≤ ε.

So the claim is true. Hence, we have r(n, 2ε, Px) ≤ #E ≤ esn, from which one can get

lim
ε→0

lim sup
n→∞

1
n

log sup
x∈X

r(n, ε, Px) ≤ s.

By the choice of s, we obtain the reversed inequality.
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