
CHAPTER 1

Quantum Field Theory Basics

Introduction

This chapter is devoted to basic aspects of quantum field theory, ranging from the foundations to
perturbation theory and renormalization, and is limited to the canonical formalism (functional
methods are treated in Chapter 2) and to the traditional workflow (Lagrangian → Feynman rules→ time-ordered products of fields → scattering amplitudes) for the calculation of scattering
amplitudes (the spinor-helicity formalism and on-shell recursion are considered in Chapter
4). The problems of this chapter deal with questions in scalar field theory and quantum
electrodynamics, while non-Abelian gauge theories are discussed in Chapter 3.

Non-interacting Field Theory

A non-interacting field theory may be defined by a quadratic Lagrangian. In the simplest case
of a scalar field theory, it reads

L ≡
∫
d3x

{
1
2

(
∂μφ

)(
∂μφ) − 1

2
m2φ2

}
. (1.1)

Such a Lagrangian defines a dynamical system with infinitely many degrees of freedom, corre-
sponding to the values taken by φ(x) at every point x of space. The momentum canonically
conjugate to φ(x) is given by

Π(x) ≡ ∂L

∂(∂0φ(x))
= ∂0φ(x), (1.2)

which leads to the Hamiltonian

H ≡
∫
d3x Π(x)∂0φ(x) − L =

∫
d3x

{
1
2
Π2 + 1

2

(∇φ
)2

+ 1
2
m2φ2

}
. (1.3)
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2 1 QUANTUM FIELD THEORY BASICS

From the Hamiltonian or Lagrangian, one obtains the equation of motion of the field, which in
the present example reads(

�x +m2
)
φ(x) = 0, (1.4)

known as the Klein–Gordon equation. Generic real solutions of this linear equation are
superpositions of plane waves:

φ(x) =

∫
d3k

(2π)32Ek

{
α∗
k e

−ik·x + αk e
ik·x

}
, (1.5)

where Ek ≡
√

p2 +m2 is the dispersion relation associated with the wave equation (1.4),
and αk is a function of momentum that depends on the boundary conditions imposed on the
solution.

Canonical quantization consists in promoting the coefficients αk, α
∗
k into annihilation and

creation operators ak, a
†
k that obey the following commutation relations:[

ap, a
†
q

] ≡ (2π)32Ep δ(p− q). (1.6)

The normalization in Eqs. (1.5) and (1.6) is chosen so that
[
H, a

†
p

]
= Epa

†
p and

[
H, ap

]
=

−Epap, which means that a†
p increases the energy of the system by Ep while ap decreases it

by the same amount. As a consequence, this setup describes a collection of non-interacting
particles. The commutation relation (1.6) implies the following equal-time commutation
relation between the field operator and its conjugate momentum:[

φ(x), Π(y)
]

=
x0=y0

i δ(x− y), (1.7)

which one may view as the quantum version of the classical Poisson bracket between a
coordinate and its conjugate momentum.

Interacting Field Theory and Interaction Representation

Interactions are introduced via terms of degree higher than two in the Lagrangian:

L ≡
∫
d3x

{
1
2

(
∂μφ

)(
∂μφ) − 1

2
m2φ2︸ ︷︷ ︸

L0, non-interacting theory

−V(φ)︸ ︷︷ ︸
interactions

}
. (1.8)

(In order to have a causal theory, the potential V(φ) must be a local function of the field φ(x);
see Problem 4.) In the presence of interactions, the Klein–Gordon equation of motion becomes(

�x +m2
)
φ(x) + V ′(φ(x)) = 0. (1.9)

Since the degree of V(φ) is higher than two, this equation is non-linear, which induces a mixing
between the Fourier modes of the field and prevents writing its solutions as superpositions of
plane waves.

By assuming that the interactions are turned off at large times, x0 → ±∞, we may
define free fields φin and φout that coincide with the interacting field φ of the Heisenberg
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INTRODUCTION 3

representation, respectively when x0 → −∞ and x0 → +∞. For instance, φ and φin are
related by

φ(x) = U(−∞, x0)φin(x)U(x0,−∞),

U(t2, t1) ≡ T exp
(
−i

∫ t2
t1

dx0d3x V(φin(x))

)
. (1.10)

In this representation, the time dependence of the field φ(x) is split into a trivial one that comes
from the free field φin and the time evolution operator U that depends on the interactions.
Since they are free fields obeying Eq. (1.4), φin and φout can be written as superpositions of
plane waves, with coefficients ap,in, a

†
p,in and ap,out, a

†
p,out, respectively. These two sets of

creation and annihilation operators define two towers of Fock states, i.e., states with a definite
particle content at x0 = −∞ and x0 = +∞, respectively.

Lehmann–Symanzik–Zimmermann Reduction Formulas

Experimentally measurable quantities, such as cross-sections, may be related to correlation
functions of the field operator as follows. An intermediate step involves the transition ampli-
tudes between in and out states,〈

q1 · · ·qnout
∣∣p1 · · ·pmin

〉 ≡ (2π)4δ
(∑

i

pi −
∑
j

qj

)
T(q1···n|p1···m), (1.11)

in terms of which a cross-section in the center of momentum frame is given by

σ12→1···n
∣∣∣ center of

momentum
=

1

4
√
s |p1|

∫
dΓn(p1,2)

∣∣∣T(q1,··· ,n|p1,2)
∣∣∣2, (1.12)

with dΓn(p1,2) ≡
∏
j

d3qj

(2π)32Eqj

(2π)4δ
(
p1 + p2 −

∑
j

qj

)
, s ≡ (p1 + p2)

2.

In turn, the transition amplitudes from in to out states are expressed in terms of expectation
values of time-ordered products of field operators by the Lehmann–Symanzik–Zimmermann
(LSZ) reduction formulas:〈

q1 · · ·qn out
∣∣p1 · · ·pm in

〉
=

im+n

Z
m+n
2

∫ m∏
i=1

d4xj e
−ipi·xi (�xi +m2)

×
∫ n∏

j=1

d4yj e
iqj·yj (�yj +m2)

〈
0out

∣∣Tφ(x1) · · ·φ(xm)φ(y1) · · ·φ(yn)
∣∣0in

〉
, (1.13)

where Z is the wavefunction renormalization factor.

Generating Functional, Feynman Propagator

The calculation of expectation values of time-ordered products of field operators is usually
organized by encapsulating them in a generating functional〈

0out
∣∣Tφ(x1) · · ·φ(xn)

∣∣0in
〉
=

δnZ[j]

iδj(x1) · · · iδj(xn)
∣∣∣∣
j≡0

, (1.14)
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4 1 QUANTUM FIELD THEORY BASICS

with Z[j] ≡ 〈
0out

∣∣T exp i
∫
d4x j(x)φ(x)

∣∣0in
〉

(1.15)

= exp

(
− i

∫
d4x V

(
δ

iδj(x)

)) 〈
0in
∣∣T exp i

∫
d4x j(x)φin(x)

∣∣0in
〉

︸ ︷︷ ︸
Z0[j], non-interacting theory

.

(1.16)

The last factor, the generating functional of the non-interacting theory, is a Gaussian in the
auxiliary source j:

Z0[j] = exp

(
−

1

2

∫
d4xd4y j(x)j(y)G0

F
(x, y)

)
, (1.17)

where G0
F
(x, y) is the free Feynman propagator, which can be expressed in various equivalent

ways:

G0
F
(x, y) =

〈
0in
∣∣Tφin(x)φin(y)

∣∣0in
〉

(1.18)

=

∫
d3p

(2π)32Ep

(
θ(x0 − y0) e−ip·(x−y) + θ(y0 − x0) e+ip·(x−y)

)
, (1.19)

G0
F
(p) =

i

p2 −m2 + i0+
. (1.20)

Feynman Rules of Scalar Field Theory

The effect of interactions can be calculated order-by-order by expanding the first exponential in
Eq. (1.16). The successive terms of this expansion are obtained from a diagrammatic expansion,
where each diagram is converted into a formula by means of Feynman rules. Below we list
these rules in momentum space, for a scalar field theory:

1. Draw all the graphs with as many external lines as field operators in the correlation
function, and a number of vertices equal to the desired order. The vertices allowed in
these graphs must have valences equal to the degrees of the terms in V(φ). Graphs with
multiple connected components need not be considered in the calculation of scattering
amplitudes.

2. A 4-momentum k is assigned to each internal line of the graph, and the associated
Feynman rule is a free propagator G0

F
(k):

p

=
i

p2 −m2 + i0+
.

No propagator should be assigned to the external lines of a graph when calculating a
scattering amplitude (because of the factors �+m2 in the reduction formulas).

3. For an interaction λ
n!φ

n, each vertex of valence n brings a factor −iλ(2π)4δ
(∑

i ki
)
,

where the ki are the momenta incoming into this vertex:

= −iλ.
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INTRODUCTION 5

3. All the internal momenta that are not constrained by the delta functions at the vertices
should be integrated over with a measure d4k/(2π)4. In a connected graph with n

I

internal lines and n
V

vertices, there are n
L
= n

I
− n

V
+ 1 of them, which is also the

number of loops in the graph.

4. Each graph must be weighted by a symmetry factor, defined as the inverse of the
order of the discrete symmetry group of the graph (assuming interaction terms properly
symmetrized, as in V(φ) = φn/n!).

Dimensional Regularization

The momentum integrals that correspond to loops in Feynman diagrams may be divergent at
large momentum. Convergence may be assessed from the superficial degree of divergence
of a graph, ω(G) ≡ 4n

L
− 2n

I
for a graph with n

L
loops and n

I
internal lines in a scalar

field theory with quartic coupling in four spacetime dimensions: the graph G is convergent
if ω(G) < 0 and the superficial degree of divergence of all its subgraphs is negative as well.
In order to safely manipulate possibly divergent loop integrals, the first step is to introduce a
regularization, i.e., a modification of the Feynman rules such that all loop integrals become
well defined. Many regularization methods are possible: Pauli–Villars subtraction, lattice
discretization, momentum cutoff, dimensional regularization.

Dimensional regularization, based on the observation that loop integrals calculated in an
arbitrary number D of dimensions have an analytical continuation which is well defined at all
D’s except a discrete set of values, is particularly adapted to analytical calculations. With this
regularization scheme, some common (Euclidean) loop integrals are given by

∫
dDk

E

(2π)D
1

(k2
E
+ Δ)n

=
Δ

D
2
−n

(4π)
D
2

Γ
(
n− D

2

)
Γ
(
n
) ,

∫
dDk

E

(2π)D
kμ

E
kν

E

(k2
E
+ Δ)n

=
gμν

2

Δ
D
2
+1−n

(4π)
D
2

Γ
(
n− 1− D

2

)
Γ
(
n
) ,

∫
dDk

E

(2π)D
kμ

E
kν

E
kρ

E
kσ

E

(k2
E
+ Δ)n

=
gμνgρσ + gμρgνσ + gμσgνρ

4

Δ
D
2
+2−n

(4π)
D
2

Γ
(
n− 2− D

2

)
Γ
(
n
) ,

∫
dDk

E

(2π)D
kμ1

E
· · · kμ2n+1

E

(k2
E
+ Δ)n

= 0. (1.21)

The first of these equations is obtained by integration in D-dimensional spherical coordinates,
and the subsequent equations follow from Lorentz invariance.

Renormalization

The list of correlation functions that exhibit ultraviolet divergences can be obtained from
the superficial degree of divergence ω(G) (except in situations where a symmetry produces
cancellations that cannot be anticipated by power counting). For a scalar field theory with a
quartic coupling, one has ω(G) = 4 − n

E
+ (D − 4)n

L
in D spacetime dimensions, where
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6 1 QUANTUM FIELD THEORY BASICS

n
E

is the number of external points and n
L

the number of loops. The Weinberg convergence
theorem states that a graph is ultraviolet convergent if and only if the superficial degree of
divergence of the graph, and of any of its subgraphs, is negative.

In D = 4 spacetime dimensions, ω(G) is negative for all correlation functions with
n

E
> 4 points, implying that only a finite number of correlation functions have intrinsic

divergences. Moreover, these divergent correlation functions are the expectation values of the
operators already present in the Lagrangian, (∂μφ)2, φ2, φ4. The divergences that appear in
these functions can be subtracted order-by-order via a redefinition of their coefficients in the
Lagrangian, i.e., Z (this one is usually not explicit in the bare Lagrangian because it is set to
1), m2 and λ, respectively. Such a quantum field theory is called renormalizable.

In D > 4 dimensions, ω(G) increases with the number of loops at fixed n
E
. This

implies that any correlation function exhibits intrinsic ultraviolet divergences beyond a certain
loop order. Removing these divergences would require that one adds arbitrarily many new
terms in the Lagrangian, reducing considerably the predictive power of such a theory (but
it may nevertheless be of some use in an effective sense, at low loop orders). It is called
non-renormalizable.

When D < 4, the superficial degree of divergence of any correlation function eventually
becomes negative after a certain loop order. These theories have a finite number of ultraviolet
divergent Feynman graphs, whose calculation is sufficient to determined the renormalized
Lagrangian once and for all. These theories are called super-renormalizable.

For general interactions in arbitrary dimensions, the above criteria can be expressed in
terms of the mass dimension of the prefactor that accompanies the operator in the Lagrangian.
The corresponding operator is renormalizable if the mass dimension of its coupling constant is
zero, non-renormalizable if this dimension is negative, super-renormalizable if it is positive.

Renormalization Group

In a renormalized quantum field theory, one may still freely choose the renormalization scale
μ at which the conditions that define the parameters of the renormalized Lagrangian (masses,
couplings, etc.) are imposed. Physical results should not depend on this scale. The dependence
of various renormalized quantities with respect to μ is controlled by the Callan–Symanzik
equations, also known as renormalization group equations. For the renormalized n-point
correlation function Gn, this equation reads(

μ∂μ + β∂λ + γmm∂m︸ ︷︷ ︸
≡ Dμ

+nγ
)
Gn = 0, (1.22)

with γ ≡ 1

2

∂ ln(Z)
∂ ln(μ)

, β ≡ ∂ λ

∂ ln(μ)
, γm ≡ ∂ ln(m)

∂ ln(μ)
(1.23)

(γ is called an anomalous dimension, and β is the β function). Physical quantities are invariant
under the action of Dμ, i.e., under the simultaneous change of the scale μ and of the parameters
Z, λ,m as prescribed by the above differential equations (the solutions λ(μ) and m(μ) are
called the running coupling and running mass, respectively). The curves (Z(μ), λ(μ),m(μ))
in the parameter space of the renormalized theory, along which physical quantities are invariant,
define a vector field called the renormalization flow.

From the Callan–Symanzik equation satisfied by the propagator, (Dμ + 2γ)G2 = 0, one
obtains the corresponding flow equations for the pole mass m

P
(defined from the value of p2
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INTRODUCTION 7

at the pole of the propagator) and for the residue Z at the pole:

Dμ mP
= 0, (Dμ + 2γ)Z = 0. (1.24)

Thus, a n-point scattering amplitude An ∼ Z−n/2Gn also satisfies DμAn = 0. Amputated
correlation functions Γn ≡ (G2)

−nGn obey (Dμ − nγ)Γn = 0.

Spin-1/2 Fields

The representation of the Lorentz algebra of lowest even dimension is defined by the generators
Mμν

1/2
≡ i

4

[
γμ, γν

]
, where the γμ are the Dirac 4× 4 matrices, which obey

{
γμ, γν

}
= 2 gμν.

Under a Lorentz transformation Λ ≡ exp
(
− i

2
ωμνM

μν
)
, a Dirac spinor is a four-component

field that transforms as

ψ(x) → exp
(
− i

2
ωμνM

μν
1/2

)
ψ(Λ−1x). (1.25)

In the absence of interactions, such a field obeys the – Lorentz invariant – Dirac equation,(
iγμ∂μ −m

)
ψ = 0, (1.26)

which can be obtained as the equation of motion that results from the following Lagrangian:

L = ψ
(
iγμ∂μ −m

)
ψ, with ψ ≡ ψ†γ0. (1.27)

The canonical quantization of a free spinor (i.e., a solution of the Dirac equation (1.26))
consists in replacing its Fourier coefficients by creation and annihilation operators:

ψ(x) ≡
∑
s=±

∫
d3p

(2π)32Ep

{
d†
spvs(p)e

+ip·x + bspus(p)e
−ip·x

}
. (1.28)

Since ψ is not Hermitian, the two operators in this decomposition need not be mutual conjugates
(except in the special case of Majorana fermions). The spinors us, vs are a basis of free spinors
in momentum space defined by(

γμpμ −m
)
us(p) = 0,

(
γμpμ +m

)
vs(p) = 0, (1.29)

u†
r(p)us(p) = 2Epδrs, v†r(p)vs(p) = 2Epδrs. (1.30)

For the Hamiltonian of this system to have a well-defined ground state, these creation and
annihilation operators must obey anti-commutation relations. The non-zero ones read

{dsp, d
†
s ′p ′} = {bsp, b

†
s ′p ′} = (2π)32Epδss ′δ(p− p ′), (1.31)

or, equivalently,

{ψα(x), ψ
†
β(y)} =

x0=y0
δαβδ(x− y). (1.32)
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8 1 QUANTUM FIELD THEORY BASICS

The Dirac Lagrangian has a U(1) symmetry, ψ → e−iαψ, which by Noether’s theorem leads
to a conserved current Jμ ≡ ψγμψ and conserved charge

Q ≡
∫
d3x J0 =

∑
s=±

∫
d3p

(2π)32Ep

(
b†
spbsp − d†

spdsp

)
. (1.33)

Spin-1 Fields

A vector field Aμ(x) is a four-component field that transforms as Aμ(x) → Λμ
ν A

ν(Λ−1x)
under a Lorentz transformation Λ. The simplest such (massless) field is the electromagnetic
field, whose Lagrangian reads

L = − 1
4
FμνF

μν, with Fμν ≡ ∂μAν − ∂νAμ. (1.34)

The corresponding equation of motion, ∂μFμν = 0, has several remarkable properties:

• Gauge invariance: for any function θ, Aμ − ∂μθ is a solution if Aμ is a solution.

• The field A0 is not dynamical, but given by a constraint from the spatial components Ai.

• Only the transverse (i.e., transverse to the momentum ki in Fourier space) components
of Ai are constrained by the equation of motion.

The unphysical redundancy due to gauge invariance is removed by imposing a gauge condition
– e.g., ∂μAμ=0 (Lorenz gauge), ∂iAi=0 (Coulomb gauge), A0=0 (temporal gauge) – leaving
only two independent dynamical solutions per Fourier mode. The quantization of the vector
field Aμ amounts to replacing the coefficients in its Fourier decomposition by creation and
annihilation operators:

Aμ(x) ≡
∑
λ=1,2

∫
d3p

(2π)32|p|

{
a
†
λpε

μ∗
λ (p) eip·x + aλpε

μ
λ(p) e

−ip·x
}
, (1.35)

with the canonical commutation relation
[
aλp, a

†
λ ′p ′

]
= (2π)32|p|δλλ ′δ(p− p ′) and where

the objects εμλ(p) are polarization vectors that encode the Lorentz indices of a vector field of
polarization λ and momentum p. The polarization vectors may depend on the choice of gauge
condition, but always satisfy pμε

μ
λ(p) = 0.

Quantum Electrodynamics

The conserved charge of the Dirac fermions can be interpreted as an electrical charge. In-
teractions between these fermions and photons are introduced by minimal coupling, i.e., by
requesting that the modified Dirac Lagrangian is invariant under spacetime-dependent U(1)

transformations, ψ(x) → e−ieθ(x)ψ(x). This is achieved by replacing the ordinary derivative
by a covariant derivative, Dμ ≡ ∂μ − ieAμ. Perturbation theory in QED has the following
Feynman rules:

p

=
i(/p+m)

p2 −m2 + i0+

p

μ ν =
i Cμν(p)

p2 + i0+

μ

= −i e γμ
fermion

loop
= (minus sign)
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INTRODUCTION 9

The numerator Cμν in the photon propagator depends on the gauge fixing (for instance,
Cμν = −gμν in Feynman gauge).

Ward–Takahashi Identity

A crucial property of QED amplitudes with external photons is the Ward–Takahashi identity,
namely

pμ Γ
μ···(p, . . . ) = 0, (1.36)

where Γμ···(p, . . . ) is an amplitude amputated of its external propagators, containing a photon
of momentum p with Lorentz index μ. The dots represent the other external lines, either
photons or charged particles. The conditions of validity of this identity, which follows from
the conservation of the electrical current, are the following:

• All the external lines corresponding to charged particles must be on-shell, and contracted
in the appropriate spinors if they are fermions.

• The gauge fixing condition must be linear in the gauge potential, in order not to have
three- and four-photon vertices.

The Ward–Takahashi identity plays a crucial role in ensuring that QED scattering amplitudes
are gauge invariant, and that they fulfill the requirements of unitarity despite the presence of
non-physical photon polarization in certain gauges.

Unitarity, the Optical Theorem and Cutkosky’s Cutting Rules

The time evolution operator from x0 = −∞ to x0 = +∞ (also called the S-matrix) is unitary,
SS† = 1. Writing it as S ≡ 1+ iT to separate the interactions, this implies the optical theorem:

Im
〈
αin

∣∣T ∣∣αin
〉
=

1

2

∑
states β

∣∣〈αin
∣∣T ∣∣βin

〉∣∣2.
This relation implies that the total probability of scattering from the state α to any state β (with
at least one interaction) equals twice the imaginary part of the forward scattering amplitude
α → α. In perturbation theory, the imaginary part of a transition amplitude Γ can be obtained
by means of Cutkosky’s cutting rules:

Im Γ =
1

2

∑
cuts γ

[
Γ
]
γ
,

where a cut is a fictitious line that divides the graph into two subgraphs, with at least one
external leg on each side of the cut. A cut graph

[
Γ
]
γ

is calculated with the following rules:

• Left of the cut: use the propagator G0
++(p) =

i
p2−m2+i0+

and the vertex −iλ,

• Right of the cut: use the propagator G0
−−(p) =

−i
p2−m2−i0+

and the vertex +iλ,

• The propagators traversing the cut should be G0
+−(p) = 2π θ(−p0)δ(p2).
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About the Problems of this Chapter

• Problem 1 establishes a crucial relationship between the field operators φ (Heisenberg
representation) and φin (interaction representation), namely that the former obeys the
interacting equation of motion if the latter obeys the free Klein–Gordon equation.

• In Problem 2, we derive an explicit form of the elements of the little group for massless
particles. This is then used in Problem 9 in order to show that, in a theory with massless
spin-1 bosons, the Lorentz invariance of scattering amplitudes implies a property that
may be viewed as a weak form of the Ward–Takahashi identity. This observation, due to
Weinberg, is extended to gravity in Problem 10.

• Problem 3 establishes some formal relationships between various expressions for the
time evolution operator and the S-matrix. Then, Problem 4 shows that the expression
for the S-matrix as the time-ordered exponential of a local interaction term is to a large
extent a consequence of causality.

• In Problem 5, we derive a set of conditions, known as the Landau equations, for a given
loop integral to have infrared or collinear singularities. An explicit multi-loop integration
is studied in Problem 6, which provides another point of view on these conditions.

• Problem 7 establishes Weinberg’s convergence theorem in the simple case of scalar
field theory, a crucial result in the discussion of renormalization since it clarifies the
role of the superficial degree of divergence in assessing whether a particular diagram is
ultraviolet divergent.

• The electron anomalous magnetic moment is calculated at one loop in Problem 8. This
is a classic QED calculation of great historical importance, which has now been pushed
to five loops and provides one of the most precise agreements between theory and
experiment in all of physics.

• Problem 11 derives the Lee–Nauenberg theorem, an important result about soft and
collinear singularities which states that such divergences are removed by summing
transition probabilities over degenerate states, thereby providing a link between the
finiteness of a quantity and its practical measurability.

• In Problem 12, we discuss the external classical field approximation, thanks to which a
heavy charged object may be replaced by its classical Coulomb field.

• Problems 13 and 14 are devoted to a derivation of the Low–Burnett–Kroll theorem,
a result that states that the emission probability of a soft photon is proportional to the
probability of the underlying hard process, at the first two orders in the energy of the
emitted photon.

• Coherent states are introduced in Problem 15 and their main properties established.
They will be discussed further in Problems 20, 21 and 22.

• Problems 16 and 17 study the running coupling in a scalar field theory with two fields,
and in a QCD-like theory at two-loop order.
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1 RELATIONSHIP BETWEEN THE EQUATIONS OF MOTION OF φ AND φin 11

1. Relationship between the Equations of Motion of φ and φin Recall that the field
operators in the Heisenberg representation (φ) and in the interaction representation (φin) are
related by

φ(x) = U(−∞, x0)φin(x)U(x0,−∞). (1.37)

The goal of the problem is to show that, if V(φ) is the interaction potential, this implies the
following relationship between the left-hand sides of their respective equations of motion:

(�+m2)φ(x) + V ′(φ(x)) = U(−∞, x0)
[
(�+m2)φin(x)

]
U(x0,−∞),

provided that U(t2, t1) ≡ T exp−i
∫t2
t1
d4xV(φin(x)). This is an important consistency check,

since it implies that φin is a free field while φ evolves as prescribed by the self-interaction
term in the Lagrangian.

1.a Apply a derivative ∂μ to (1.37). Note that spatial derivatives do not act on the U’s. In par-

ticular, show that ∂0
[
U(−∞, x0)φin(x)U(x0,−∞)

]
= U(−∞, x0)Πin(x)U(x0,−∞).

How did the terms coming from the time derivative of the U’s cancel?

1.b Apply a second time derivative to this result, to obtain

∂20

[
U(−∞, x0)φin(x)U(x0,−∞)

]
= U(−∞, x0)

[
∂20φin(x) − i

∫
d3y

[
Πin(x), V(φin(x

0,y))
]]
U(x0,−∞).

1.c Calculate the commutator on the right-hand side (one may prove that if [A,B] is an
object that commutes with all other operators, then [A, f(B)] = f ′(B) [A,B]).

1.a Let us start from

φ(x) = U(−∞, x0)φin(x)U(x0,−∞).

Since the evolution operators depend only on time, we have trivially

(−∇2 +m2)φ(x) = U(−∞, x0)
[
(−∇2 +m2)φin(x)

]
U(x0,−∞),

and the main difficulty is to deal with the time derivatives. The first time derivative reads

∂0φ(x) =
[
∂0U(−∞, x0)

]
φin(x)U(x0,−∞) +U(−∞, x0)φin(x)

[
∂0U(x0,−∞)

]
+U(−∞, x0)

[
∂0φin(x)

]
U(x0,−∞)

= iU(−∞, x0)
[
φin(x), I(x

0)
]
U(x0,−∞)

+U(−∞, x0)
[
∂0φin(x)

]
U(x0,−∞),

where we denote I(x0) ≡ −
∫
d3x V(φin(x

0, x)). The first line contains an equal-time
commutator of φin with some functional of φin, which is zero, leaving only the non-vanishing
term of the second line.

https://doi.org/10.1017/9781108976688.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108976688.004


12 1 QUANTUM FIELD THEORY BASICS

1.b A second differentiation with respect to time gives

∂20φ(x) = iU(−∞, x0)
[
∂0φin(x), I(x

0)
]
U(x0,−∞)

+U(−∞, x0)
[
∂20φin(x)

]
U(x0,−∞).

1.c The commutator in the first line is an equal-time commutator between the canonical
momentum ∂0φin and a functional of the field φin. In order to evaluate it, we need the following
result:

[A, f(B)] = [A,B] f ′(B) , valid when [[A,B], B] = 0.

This can be shown by using the Taylor series of f(B), by first showing by recursion that
[A,Bn] = n[A,B]Bn−1. Then, we can write

i
[
∂0φin(x), I(x

0)
]
= −i

∫
d3y

[
∂0φin(x), V(φin(x

0,y))
]

= −i

∫
d3y

[
∂0φin(x), φin(x

0,y)
]︸ ︷︷ ︸

−iδ(x−y)

V ′(φin(x
0,y))

= −V ′(φin(x)).

Now, using U(−∞, x0)V ′(φin(x))U(x0,−∞) = V ′(φ(x)), we get

(�+m2)φ(x) − L ′(φ(x)) = U(−∞, x0)
[
(�+m2)φin(x)

]
U(x0,−∞).

Therefore, the left-hand sides of the equations of motion for the Heisenberg representation
(interacting) field φ and for the interaction representation (free) field φin are related by a
unitary transformation identical to the formula that relates the field operators themselves.

2. Little-Group Elements for Massless Particles The little group is the subgroup of the
Lorentz group that leaves a fixed reference vector qμ invariant. In this problem, we derive a
particularly convenient explicit form of the elements of the little group in the case where qμ is
the light-like vector qμ ≡ (ω, 0, 0,ω).

2.a First, show that an infinitesimal little-group transformation of this kind can be written as
follows:

R ≈ 1− iθ J3 + iα1 B
1 + iα2 B

2,

with three generators J3, B1, B2 (the first one being the generator of rotations about the
third direction of space) that one should determine explicitly. Check also that they satisfy
the following commutation relations (after an appropriate normalization):[

J3, Bi
]
= iεij B

j,
[
B1, B2

]
= 0.
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2 LITTLE-GROUP ELEMENTS FOR MASSLESS PARTICLES 13

2.b Show that any finite element R of the massless little group can be written as

Rμ
ν =

⎛⎜⎜⎜⎝
1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎞⎟⎟⎟⎠×

⎛⎜⎜⎜⎝
1+

β2
1
+β2

2

2
β1 β2 −

β2
1
+β2

2

2
β1 1 0 −β1

β2 0 1 −β2
β2
1
+β2

2

2
β1 β2 1−

β2
1
+β2

2

2

⎞⎟⎟⎟⎠.

Hint: use the exact Baker–Campbell–Hausdorff formula:

ln
(
eiXeiY

)
= i X+ i

∫ 1
0

dt F
(
et ad

Y ead
X

)
Y,

where ad
X
(Y) ≡ −i

[
X, Y

]
and F(z) ≡ ln(z)

z− 1
,

in order to exponentiate the infinitesimal form.

2.a This question is not difficult to solve by “brute force,” i.e., by looking for the most
general little-group transformation

Rμ
ν ≡ δμν +ωμ

ν

such that ωμ
νq

ν = 0 for all values of the index μ, with the additional constraint that ωμν =
0 is antisymmetric (so we have a legitimate infinitesimal Lorentz transformation). If we
parameterize

ωμν ≡
⎛⎝ 0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

⎞⎠,

the condition that qν ≡ (ω, 0, 0,ω) is invariant is equivalent to

c = 0, a = e, b = f,

implying that there is a three-parameter family of ωμ
ν’s that fulfill all the requirements:

ωμ
ν = θ

⎛⎝0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞⎠+ α1

⎛⎝0 1 0 0
1 0 0 −1
0 0 0 0
0 1 0 0

⎞⎠+ α2

⎛⎝0 0 1 0
0 0 0 0
1 0 0 −1
0 0 1 0

⎞⎠
= −i θ

(
M12︸︷︷︸
J3

)μ
ν + i α1

(
M10 −M13︸ ︷︷ ︸

≡ B1

)μ
ν + i α2

(
M20 −M23︸ ︷︷ ︸

≡ B2

)μ
ν.

(The identification in the second line follows from ωμν = − i
2
ωαβ

(
Mαβ

)
μν

, valid for the
spin-1 representation of the Lorentz algebra, where (Mαβ)μν = i(δαμδ

β
ν − δανδ

β
μ).) Note

that the first term corresponds to rotations about the x3 axis, which trivially leaves invariant
any vector whose only non-zero spatial component is along the third direction.
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14 1 QUANTUM FIELD THEORY BASICS

The announced commutation relations can be checked by an explicit evaluation of the
corresponding matrix products. Alternatively, they can also be obtained from

J3 = M12, B1 = M10 −M13, B2 = M20 −M23,

and by using the defining commutation relation of the Lorentz algebra,[
Mμν,Mρσ

]
= i(gνρMμσ − gμρMνσ) − i(gνσMμρ − gμσMνρ).

2.b Given the infinitesimal form of little-group transformations for massless particles de-
rived above, any finite little-group transformation R can be obtained by exponentiating the
inifinitesimal ones:

R ≡ ei(−θJ
3+α1B

1+α2B
2).

Note first that the factor on the left of the proposed formula is nothing but the rotation e−iθJ
3
,

i.e., a rotation by an angle θ about the x3 axis, which affects only the coordinates 1, 2:

(
e−iθJ

3)μ
ν =

⎛⎝1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎞⎠.

Thus, the form proposed in the statement of the problem suggests that R may also be written as

R = e−iθJ
3

ei(β1B
1+β2B

2).

Our ansatz for the form of the second factor is based on the case θ = 0 (in this case, we
should of course have βi = αi, but this is not necessarily true for θ �= 0). Verifying that
the two expressions for R are equivalent could in principle be performed by calculating both
expressions and equating them in order to find the relationship between the coefficients α1,2

and β1,2, but this is rather challenging.
A much more efficient method is to use the exact form of the Baker–Campbell–Hausdorff

formula, recalled in the statement of the problem. In the present case, the commutation
relations among J3, B1, B2 lead to

ad−θJ3(βiB
i) = −θβiεijB

j, e
ad

−θJ3 βiB
i = βi

(
e−θε

)
ij
Bj, adβiBi(Bj) = 0,

and the Baker–Campbell–Hausdorff formula gives

ln
(
e−iθJ

3

eiβiB
i)

= −iθJ3 − iβi

[ θε

e−θε − 1

]
ij
Bj.

Using the fact that εijεjk = −δik, we have

e−θε − 1 = cos θ− 1− ε sin θ,

ln
(
e−iθJ

3

eiβiB
i)

= −iθJ3 − i θβi

[
ε(cosθ− 1− ε sin θ)−1

]
ij︸ ︷︷ ︸

−αj

Bj.

This formula shows that ei(−θJ
3+αiB

i) = e−iθJ
3
eiβiB

i
with the following relationship between

the coefficients α1,2 and β1,2:

βi = θ−1
(

sin θ+ ε(1− cos θ)
)
ij
αj.

(Note that βi = αi when θ → 0, as expected trivially in this limit.)
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3 S-MATRIX IN TERMS OF φin AND φout 15

In order to calculate the factor eiβiB
i
, one should first note that eiβiB

i
= eiβ1B

1
eiβ2B

2

since B1 and B2 commute. Using the explicit representations of B1,2, simple algebra shows
that

(
(iB1)2

)μ
ν =

(
(iB2)2

)μ
ν =

⎛⎝1 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 −1

⎞⎠ ,

and (
(iB1)n

)μ
ν =

(
(iB2)n

)μ
ν = 0 for n ≥ 3.

Therefore, we have

(
eiβ1B

1)μ
ν =

(
1+ iβ1B

1 + 1
2
β2
1(iB

1)2
)μ

ν =

⎛⎜⎜⎝
1+

β2
1

2
β1 0 −

β2
1

2
β1 1 0 −β1

0 0 1 0
β2
1

2
β1 0 1−

β2
1

2

⎞⎟⎟⎠ ,

(
eiβ2B

2)μ
ν =

(
1+ iβ2B

2 + 1
2
β2
2(iB

2)2
)μ

ν =

⎛⎜⎜⎝
1+

β2
2

2
0 β2 −

β2
2

2
0 1 0 0
β2 0 1 −β2
β2
2

2
0 β2 1−

β2
2

2

⎞⎟⎟⎠ ,

and finally

(
eiβiB

i)μ
ν =

⎛⎜⎜⎝
1+

β2
1
+β2

2

2
β1 β2 −

β2
1
+β2

2

2
β1 1 0 −β1

β2 0 1 −β2
β2
1
+β2

2

2
β1 β2 1−

β2
1
+β2

2

2

⎞⎟⎟⎠ ,

which establishes the announced result.

3. S-matrix in Terms of φin and φout Given an interaction Lagrangian L
I
, the field

operators in the Heisenberg representation (φ) and in the interaction representation (φin) are
related by means of a time evolution operator

Uin(t2, t1) ≡ T exp
(
i

∫ t2
t1

d4xL
I

(
φin(x)

))
expressed in terms of the free field φin (we have added a subscript in to this evolution operator,
in order to recall that it is defined in terms of φin, since we are about to introduce its counterpart
defined in terms of φout). Likewise, we define a similar evolution operator in terms of φout, the
field operator in the interaction picture that coincides with the Heisenberg picture at x0 = +∞:

Uout(t2, t1) ≡ T exp
(
i

∫ t2
t1

d4xL
I

(
φout(x)

))
.
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16 1 QUANTUM FIELD THEORY BASICS

3.a Show that Uin(+∞,−∞) = Uout(+∞,−∞). In other words, the S-matrix (i.e., the
time evolution operator over the entire time range) does not depend on whether it is
defined in terms φin or φout.

3.b Are Uin and Uout identical in general? Find the relationship between the two.

3.c Show that the S-matrix is also given by S = Uin(x
0,−∞)Uout(+∞, x0), for any inter-

mediate time x0. Note that, on the surface, this expression does not seem to be properly
time-ordered. Why is it nevertheless a correct formula?

3.a Recall the relationship between the interacting field φ and the free field φin of the
interaction representation:

φ(x) = Uin(−∞, x0)φin(x)Uin(x
0,−∞),

Uin(t2, t1) ≡ T exp
(
i

∫ t2
t1

d4x L
I

(
φin(x)

))
. (1.38)

(Since we shall shortly write the analogous relationship with φout, it is important to have a
subscript in on the evolution operator to avoid confusion, since it depends on φin.) By taking
the limit x0 → +∞ in this equation, and using the fact that in this limit the interacting field
becomes identical to the free field φout, we obtain a first relationship between φin and φout:

φout(x) =
x0→+∞

Uin(−∞,+∞)φin(x)Uin(+∞,−∞).

Strictly speaking, this limiting procedure gives a relationship between the two fields only for
large x0. Then, we use the fact that two fields obeying the same equation of motion (here,
φin and φout both obey the Klein–Gordon equation) and identical in some region of time are
equal at all times (this argument relies on the uniqueness of the solutions of the Klein–Gordon
equation, if their value and that of their first time derivative are prescribed at some time).
Therefore, the above equation is in fact valid at all times.

Note that the right-hand side of this equation depends only on φin, but in a completely
non-linear and non-local fashion because of the evolution operators. Another noteworthy aspect
of this equation is that, despite the fact that both φin and φout are free fields, the relationship
between the two involves the interactions.

The easiest way to invert the relationship between φin and φout is to write the analogue of
(1.38) for the free field φout:

φ(x) = Uout(+∞, x0)φout(x)Uout(x
0,+∞),

Uout(t2, t1) ≡ T exp
(
i

∫ t2
t1

d4x L
I

(
φout(x)

))
. (1.39)

Taking the limit x0 → −∞ in this equation leads to a second form of the formula that relates
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4 CONSTRAINTS ON THE S-MATRIX FROM CAUSALITY 17

φin and φout:

φin(x) = Uout(+∞,−∞)φout(x)Uout(−∞,+∞),

or, equivalently,

φout(x) = Uout(−∞,+∞)φin(x)Uout(+∞,−∞).

In order for the two relations we have obtained to be consistent, we must have

Uin(+∞,−∞) = Uout(+∞,−∞).

Therefore, the evolution operators over the entire time range are identical, regardless of whether
they are constructed with the fields φin or φout. For this combination of time arguments, we
may drop the subscripts in/out on the evolution operators.

3.b But it is important to realize that this property is not true for arbitrary time intervals. By
requesting that (1.38) and (1.39) give the same interacting field φ, we must have

Uin(−∞, x0)φin(x)Uin(x
0,−∞)

= Uout(+∞, x0)φout(x)Uout(x
0,+∞)

= Uout(+∞, x0)U(−∞,+∞)φin(x)U(+∞,−∞)Uout(x
0,+∞),

implying that in general we have

Uin(x
0,−∞) = U(+∞,−∞)Uout(x

0,+∞). (1.40)

Writing Uin(x
0,−∞) = Uin(x

0, y0)Uin(y
0,−∞) and using the same identity with x0 replaced

by y0, we obtain

Uout(x
0, y0) = U(−∞,+∞)Uin(x

0, y0)U(+∞,−∞).

(This relation could also have been obtained from the definition of Uout, by performing its
Taylor expansion in powers of φout, replacing every occurrence of φout by its expression in
terms of φin, and at the end repackaging the series to obtain a Uin.)

3.c By multiplying (1.40) on the right by the inverse of Uout(x
0,+∞), we obtain another

formula for the full evolution operator,

U(+∞,−∞) = Uin(x
0,−∞)Uout(+∞, x0),

which is rather counterintuitive since the order of the operators on the right-hand side may
(wrongly) suggest that it is inconsistent with the time ordering. The resolution of this paradox is
that U(+∞,−∞) is time-ordered when expressed entirely in terms of φin or entirely in terms
of φout; but the right-hand side of the above formula mixes φin and φout, and the relationship
between φin and φout is non-local in time, which obscures the actual time ordering of the
operators.
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18 1 QUANTUM FIELD THEORY BASICS

4. Constraints on the S-matrix from Causality The goal of this problem is to derive
general constraints on the S-matrix from causality. To that end, let us assume that the coupling
constant λ that controls the interactions is a function of spacetime, λ(x). With this modification,
the S-matrix becomes a functional S[λ].

4.a Consider two regions of spacetime, Ω1 and Ω2, such that Ω2 lies in the future light-cone
of Ω1, and denote by λ1,2(x) the coupling function restricted to these domains (we
assume it is zero outside of Ω1 ∪Ω2). Show that S[λ1 + λ2] = S[λ2]S[λ1].

4.b Generalize this result to the more general situation where Ω1 and Ω2 are simply sepa-
rated by a locally space-like surface.

4.c Consider now the case where the separation between any pair of points of Ω1 and Ω2 is
space-like. Show that

[
S[λ1], S[λ2]

]
= 0.

4.d If two coupling functions λ and λ ′ coincide for x0 ≤ y0, show that S[λ ′]S†[λ] does not
depend on the behavior of the coupling at times ≤ y0. By considering an infinitesimal
variation of the coupling function, show that

δ

δλ(y)

(
δS[λ]

δλ(x)
S†[λ]

)
= 0 if y is not in the future light-cone of x.

4.e Solve the constraints of causality and unitarity to obtain the form of S[λ] up to O(λ2).

4.a Let us consider two regions Ω1 and Ω2 of spacetime, as shown in Figure 1.1. Thus, for
any pair of points x1 ∈ Ω1, x2 ∈ Ω2, we have x02 > x01 and (x1 − x2)

2 > 0. We assume that
interactions exist only in Ω1 ∪Ω2 and are zero elsewhere, and we denote by λ1,2 the coupling
functions in these two domains. The coupling function over the entire spacetime is thus

λ(x) = λ1(x) + λ2(x),

and the full S-matrix is S[λ1 + λ2]. Recall that the S-matrix is the operator that connects the in
states at x0 = −∞ and the out states at x0 = +∞:〈

αout
∣∣ = 〈

αin
∣∣Sin[λ1 + λ2].

For the time being, it is safer to add a subscript in on the S-matrix in order to indicate that it is
expressed in terms of the field operator φin. Given the relative configuration of the domains
Ω1 and Ω2, we could also construct another version of the interaction representation, where
the fields coincide with the Heisenberg representation ones at some intermediate time located
between Ω1 and Ω2. Let us call intermediate this representation, and φinter the corresponding
free field operator. We have〈

αinter
∣∣ = 〈

αin
∣∣Sin[λ1],

〈
αout

∣∣ = 〈
αinter

∣∣Sinter[λ2].

Thus, we obtain

Sin[λ1 + λ2] = Sin[λ1]Sinter[λ2].

Note that this equation is subject to the same paradox regarding the ordering of the operators
as in the last equation in Problem 3: the seemingly unnatural ordering between Sin[λ1] and
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Ω1

Ω2

intermediate time

in

out

Figure 1.1 Domains Ω1 and Ω2, with Ω2 under the causal influence of Ω1.

Ω1

Ω2

intermediate

space-like surface

in

out

Figure 1.2 Domains Ω1,2, such that Ω2 does not causally influence Ω1.

Sinter[λ2] is due to the fact that the latter is implicitly expressed in terms of the field φinter while
the former depends on the field φin. Using exactly the same manipulations as in Problem 3,
we can rewrite this expression solely in terms of φin, which gives

Sinter[λ2] = Sout[λ2],

Sin[λ1 + λ2] = Sin[λ1]Sout[λ2],

Sin[λ1 + λ2] = Sin[λ2]Sin[λ1].

From now on, we implicitly assume that all S-matrix operators are expressed in terms of φin,
and we suppress the subscript in.

4.b In words, the previous setup could be described by saying that Ω2 is under the influence
of Ω1. A much more general situation would be to simply request that Ω2 does not influence
Ω1. This is achieved by dividing spacetime with a hyper-surface Σ located between the
domains Ω1 and Ω2, provided that this surface is locally space-like (i.e., no signal can travel
from the surface towards the domain below it). This setup is shown in Figure 1.2. This ordering
of the domains Ω1 and Ω2 is sufficient to reproduce the preceding arguments, leading again to
S[λ1 + λ2] = S[λ2]S[λ1].

4.c Consider now the situation where the interval between any point in Ω1 and any point
in Ω2 is space-like, as illustrated in Figure 1.3 (left panel). Since it is possible to find an
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Ω2Ω1

interm
ediate

space-like surface

in

out

Ω2

Ω1

in

out

Ω2

Ω1

in

out

Figure 1.3 Left: domains Ω1 and Ω2 with mutual space-like separations. Center and right:
displacements of the domains under a Lorentz boost.

appropriate space-like surface separating the two domains, the previous result applies. But
now there is an ambiguity regarding which domain should be considered as being “before” the
other one. In fact, what is special about this kinematical configuration is that the time ordering
between the two domains can be altered by applying a Lorentz boost, as illustrated by the
second (β < 0) and third panels (β > 0) of Figure 1.3. In this case, because of this lack of
absolute time ordering between the two domains, the following two equations are both true:

S[λ1 + λ2] = S[λ1]S[λ2] and S[λ1 + λ2] = S[λ2]S[λ1],

which implies that
[
S[λ1], S[λ2]

]
= 0.

4.d Consider now two distinct coupling functions in the domain Ω2, namely λ2 and λ ′
2. Thus,

we have two realizations of the coupling function:

λ ≡ λ1 + λ2, λ ′ ≡ λ1 + λ ′
2.

For these two coupling functions, the S-matrix is given by

S[λ] = S[λ2]S[λ1], S[λ ′] = S[λ ′
2]S[λ1],

and we therefore have

S[λ ′]S†[λ] = S[λ ′
2]S[λ1]S

†[λ1]S†[λ2] = S[λ ′
2]S

†[λ2].

This combination is independent of the function λ1, i.e., independent of the behavior of the
coupling function in the portion of spacetime that cannot receive any causal influence from Ω2.
Let us now assume that the difference δλ ≡ λ ′

2 − λ2 is infinitesimal. To first order in δλ, we
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have

S[λ ′] = S[λ] +

∫
d4x δλ(x)

δS[λ]

δλ(x)
+ O(δλ2),

and

S[λ ′]S†[λ] = 1+

∫
d4x δλ(x)

δS[λ]

δλ(x)
S†[λ] + O(δλ2).

Since this should be independent of λ1 for any variation δλ, we must have

δS[λ]

δλ(x)
S†[λ] is independent of λ1 if Ω1 is not under the causal influence of x.

This condition can also be phrased as

δ

δλ(y)

(
δS[λ]

δλ(x)
S†[λ]

)
= 0 if y is not in the future light-cone of x. (1.41)

Note that the same identity would be true in a theory where the fields are coupled to some
external source Jext, if we replace λ by Jext, again thanks to causality.

4.e In order to see the consequences of this constraint on the S-matrix, let us write a formal
Taylor expansion of the functional S[λ]:

S[λ] = 1+

∫
d4x S1(x) λ(x) +

1

2

∫
d4xd4y S2(x, y) λ(x)λ(y) + · · · .

In this expansion, the objects S(x1, . . . , xn) are operator-valued symmetric functions of their
arguments. In addition to the constraint (1.41), the S-matrix must be unitary, and also satisfy[
S[λ1], S[λ2]

]
= 0 when the supports of λ1 and λ2 have purely space-like separations. The

last constraint implies that the coefficients Sn are multi-local operators (i.e., Sn(x1, . . . , xn)
depends only on the field operator and its derivatives at the points x1, . . . , xn) constructed with
the field operator and its derivatives (non-locality would lead to violations of this commutation
relation). In the first two orders, the unitarity of S implies that

S1(x) + S
†
1(x) = 0, S2(x, y) + S

†
2(x, y) + S

†
1(x)S1(y) + S

†
1(y)S1(x) = 0.

(In deriving the second equation, we must be careful to symmetrize the coefficient that
multiplies λ(x)λ(y) in the integrand of the second-order term.) These equations can be
rewritten as

S
†
1(x) = −S1(x), S2(x, y) + S

†
2(x, y) = S1(x)S1(y) + S1(y)S1(x).

Note that unitarity can only constrain the Hermitian part of the coefficients Sn, and does not
say anything about their anti-Hermitian part. To put constrains on the latter, we need to make
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use of (1.41). It is straightforward to check that

δ

δλ(y)

(
δS[λ]

δλ(x)
S†[λ]

)
= S2(x, y) + S1(x)S

†
1(y) + O(λ).

Therefore, at lowest order, (1.41) tells us that

S2(x, y) = −S1(x)S
†
1(y) = S1(x)S1(y) if y is not in the future light-cone of x.

Using the fact that S2(x, y) should be symmetric, we also have

S2(x, y) = S2(y, x) = S1(y)S1(x) if x is not in the future light-cone of y.

(Note that these two conditions on x, y are both satisfied if their separation is space-like. For
such a space-like separation, we could thus use either of the two formulas. This does not
lead to any contradiction, provided that S1(x) is a local function of the field operator and its
derivatives.) Therefore, the answer valid for any x, y can be written as

S2(x, y) = T (S1(x), S1(y)).

(One may check a posteriori that the unitarity constraint is satisfied.) Using the same constraints,
one could show by induction that the coefficient of order n, Sn(x1, . . . , xn), is the time-ordered
product of n factors S1. Therefore, we see that unitarity and causality provide an almost closed
form for the S-matrix,

S[λ] = T exp
( ∫

d4x S1(x)λ(x)
)
,

in which the only remaining unknown is the first coefficient S1(x). The latter can be related to
the interaction Lagrangian by considering a λ(x) which is non-zero in an infinitesimal region
of spacetime. Therefore, regardless of the microscopic details of a given theory – which control
the first coefficient S1 –, the general structure of the S-matrix is governed to a large extent by
the constraints provided by unitarity and causality.

5. Landau Equations for Soft and Collinear Singularities The goal of this problem is to
study the singularities that may occur in a Feynman integral due to vanishing denominators
(not to be confused with ultraviolet divergences, due to an integrand that decreases too slowly
at large momentum). Consider a Feynman integral with L loops and m denominators:

I({pi}) ≡
∫ L∏

j=1

dD�j

(2π)D
N({pi}, {�j})

(q2
1 −m2

1 + i0+) · · · (q2
m −m2

m + i0+)
.

In this integral, the pi are the external momenta, the �j the loop momenta, and the qr the
momenta of the propagators in the loops, i.e., linear combinations of loop momenta and
external momenta of the form qr ≡

∑L
j=1 εrj�j + Δr (where the coefficients εrj take values in

{−1, 0,+1} and the Δr depend only on the external momenta).
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5.a Use Feynman parameters xr to combine the m denominators into a single one, Dm.

5.b By considering the following elementary examples,∫+1
−1

dx

x+ i0+
,

∫+1
0

dx

x+ i0+
,

∫+1
−1

dx

(x+ i0+)(x− i0+)
,

explain why singularities occur only when a pole is located on the boundary of the
integration manifold, or when multiple poles “pinch” the integration manifold.

5.c Study the variations of D as a function of the loop momenta �j, and explain why the
zeroes of D must also be extrema of D in order to produce singularities.

5.d Now study the dependence with respect to the Feynman parameters and show that, for
each r, one must have either xr = 0 or q2

r = m2
r in order to have a singularity.

5.e Conclude that the conditions for a singularity are given by the Landau equations:

For each propagator r: xr(q2
r −m2

r) = 0; For each loop j:
m∑
r=1

εrjxrq
μ
r = 0.

5.f Determine the singularities of the one-loop
Feynman diagram shown on the right (assume
k2 = k

′2 = 0, (k + k ′)2 > 0 and all internal
particles are massless)

q
2

q
1
=�

q
3

k

k'

k+k'

5.a Consider a Feynman integral with L loops and m denominators. Generically, such an
integral may be written as

I({pi}) ≡
∫ L∏

j=1

dD�j

(2π)D
N({pi}, {�j})

(q2
1 −m2

1 + i0+) · · · (q2
m −m2

m + i0+)
,

where the pi are the momenta external to the loops and the �j are L independent loop momenta.
The momenta qr are the momenta carried by the various propagators along the loops. They are
all of the form

qr ≡
L∑

j=1

εrj�j + Δr,

where the coefficients εrj take values in {−1, 0,+1} (a propagator may belong to a loop or not,
and may be oriented in the same way as the loop momentum or in the opposite direction) and
where the Δr depend only on the external momenta (they are thus constants from the point
of view of evaluating the loop integrals). N({pi}, {�j}) is a numerator that comprises all the
momentum dependence that may arise, e.g., from three-gluon vertices in QCD or from the
Dirac traces if there are fermion loops. This factor plays no role in analyzing the singularities of
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the integral, except in those rare situations where a singularity due to a vanishing denominator
may be canceled by an accidental concomitant vanishing of the numerator.

The first step is to combine the m denominators into a single one thanks to Feynman
parameterization:

I({pi}) = Γ(m)

∫ L∏
j=1

dD�j

(2π)D

∫
xr≥0

m∏
r=1

dxr δ
(
1−

∑
r

xr
) N({pi}, {�j})(

D({qr}, {xr})+i0+
)m , (1.42)

D({qr}, {xr}) ≡
m∑
r=1

xr(q
2
r −m2

r).

5.b In this problem, we assume that the ultraviolet divergences have been properly disposed of
by some regularization, and we are chiefly interested in the possibility of additional singularities
that may arise from a vanishing denominator. Obviously, that the equation

D({qr}, {xr}) = 0

has solutions in the integration domain is a necessary condition for having such singularities.
But a zero of the denominator of the integrand does not always lead to a singularity in the
integral. In order to see this, let us consider the following toy examples:∫+1

−1

dx

x+ i0+
=

∫+1
−1

dx
(

P
(
1

x

)
− iπ δ(x)

)
= −iπ,

∫+1
0

dx

x+ i0+
= ∞,∫+1

−1

dx

(x+ i0+)(x− i0+)
= lim

ε→0+

∫+1
−1

dx

x2 + ε2
= ∞.

In the first example, the integral is finite despite the fact that denominator vanishes at x = 0,
because the integration contour is slightly shifted from the singularity by the presence of the
i0+. An infinite result would be obtained when it is impossible to shift the contour to avoid
the pole. In the second example, we cannot avoid the singularity because the pole occurs on
the boundary (here, at an endpoint) of the integration domain. In the third example, there are
two poles in the interior of the integration range, but these poles pinch the integration contour,
which prevents moving the contour to avoid the poles and also leads to an infinite result.

5.c Although the conditions of occurrence of a genuine singularity are the same, the situ-
ation we have to analyze is arguably more complex than these toy examples because of the
multivariate nature of the denominator. For a multi-dimension integral, the above condition is
that the poles of the integrand cannot be avoided by deforming the integration manifold. We
can make the following observations:

• Note first that the fact that D is raised to the m-th power in (1.42) is irrelevant for this
discussion: every zero of D leads to a pole of order m of the integrand, but this is
equivalent to having m poles all on the same side of the integration domain, so this
cannot produce a pinch.
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• For the L loop momenta �j, the integration domain is�DL. We may add to this domain
a point at infinity (assuming an ultraviolet regularization, the integrand goes to zero in
all directions at infinity), which leads to an integration domain topologically equivalent
to a DL-dimensional sphere S

DL
. This domain is boundaryless and therefore the only

possibility of singularities when integrating over the loop momenta is to have a pinch.

• For the Feynman parameters xr, the integration domain is a (m − 1)-dimensional
simplex,{

(x1, . . . , xm)
∣∣∣xr ≥ 0,

∑
r

xr = 1
}
,

i.e., a line segment for m = 2, a triangle for m = 3, a tetrahedron for m = 4, etc.
Clearly, this domain has a boundary and therefore endpoint singularities may occur.

Let us now study the behavior of the denominator D. This function is quadratic in the loop
momenta, and linear in the Feynman parameters. Note also that, after a Wick rotation of the
loop momenta, D is a negative definite quadratic form in the Euclidean loop momenta, at fixed
{xr} (this is obvious from the fact that the second-degree part of D is a sum of squares weighted
by the negative coefficients −xr). Therefore, when varying the loop momenta at fixed {xr}, the
denominator D has a maximum. We can distinguish the following cases:

• If max{�j}(D) < 0, the denominator is always non-zero and there is no singularity.

• If max{�j}(D) > 0, the denominator can vanish, but the zeroes are simple zeroes that
cannot pinch the integration manifold for the variables {�j}. The integral is also finite in
this case.

• The dangerous situation is when max{�j}(D) = 0, because the location of the maximum
is then a double zero (as in the third of the toy examples considered earlier) in all the �μj
variables.

Therefore, we are seeking zeroes of D that are also extrema of its dependence with respect to
all the loop momenta:

D = 0,
∂D

∂�
μ
j

= 0.

Note that these conditions are still not sufficient for a genuine singularity since we have only
discussed what happens at fixed {xr}, and we have not yet analyzed whether it may be avoided
by a deformation of the integration domain for the xr’s. This discussion can be divided into
two cases:

• First, note that if q2
r �= m2

r , a small variation of xr will change the value of D and move
the denominator away from zero. For xr in the interior of its allowed range, this means
that there is no actual singularity. The only exception is at xr = 0, since this is on the
boundary of the integration range.

• In contrast, when q2
r = m2

r , the denominator D is independent of xr, and a zero of D
persists at all values of xr.
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q
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Figure 1.4 One-loop example of application of the Landau equations.

5.d We now have all the information to give the conditions of occurrence of a singularity in
the Feynman integral I({pi}):

D = 0,
∂D

∂�
μ
j

= 0; for each r, either xr = 0 or q2
r = m2

r.

(Note that the last condition can be phrased as xr(q2
r − m2

r) = 0 for each r, which makes
the first one, D = 0, redundant.) These conditions are known as the Landau equations. By
explicitly evaluating the derivative of the denominator with respect to the loop momenta, these
conditions can be written as

for each propagator r: xr(q2
r −m2

r) = 0; for each loop j:
m∑
r=1

εrjxrq
μ
r = 0.

5.e Consider now the example of Figure 1.4. The corresponding Landau equations read

x1�
2 = x2(�+ k ′)2 = x3(�− k)2 = 0, x1�

μ + x2(�
μ + k

′μ) + x3(�
μ − kμ) = 0.

A first solution is obtained for

�2 = (�− k)2 = 0, x2 = 0, x1�
μ + x3(�

μ − kμ) = 0,

which (since we have assumed that k2 = 0) is equivalent to

�2 = k2 = � · k = 0, �μ =
x3

x1 + x3
kμ.

This type of singularity is called a collinear singularity, since it occurs when the loop momen-
tum is aligned with one of the external momenta. A similar type of singularity is obtained at
x3 = 0, i.e.,

�2 = k
′2 = � · k ′ = 0, �μ = −

x2

x1 + x2
k

′μ.

Another way to fulfill the Landau equations is to have �μ 
 kμ, k
′μ. In this limit, the first

three conditions are automatically satisfied, and the last one becomes x2k
′μ = x3k

μ. Since kμ

and k
′μ are a priori not collinear, this implies that x2 = x3 = 0. This last type of singularity

is called a soft or infrared singularity, since it occurs when all the components of the loop
momentum go to zero.
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Coleman–Norton Interpretation: A more intuitive physical interpretation of the Landau
equations was found by Coleman and Norton (see Coleman, S. and Norton, R. E. (1965),
Nuovo Cimento 38: 438). They propose to interpret a Feynman graph literally, as if the
graph represents a process in spacetime, with the vertices being the locations where some
instantaneous interactions happen. They further propose that the spacetime separation dx

μ
r

between two vertices is parallel to the momentum q
μ
r , and proportional to the Feynman

parameter xr:

dxμr = xrq
μ
r .

(The constant of proportionality could be different from 1, but should be the same for all
propagators. Its value is not important, as one may freely rescale the entire diagram without
affecting the Landau equations.) Based on this identification, one may make the following
observations:

• If a singularity happens at xr = 0, the spacetime separation is zero, and we may shrink
the corresponding propagator to a point. The resulting graph is called a reduced graph.
A similar reduction is possible if qμ

r = 0, in the case of a soft divergence.

• If xr �= 0, the Landau equations tell us that we should have q2
r = m2

r instead. Thus, in
this interpretation, the propagators of a reduced graph represent the on-shell propagation
of a particle between two interactions. In this case, we may also write

xr =
dx0r
q0
r

, dxμr = dx0r
q
μ
r

q0
r

, i.e.,
dx

μ
r

dx0r
=

q
μ
r

q0
r

= vμr ,

where vμr is the 4-velocity of an on-shell particle of momentum q
μ
r .

• The last of the Landau equations becomes∑
r

εrj dx
μ
r = 0, for every loop j.

This equation is consistent with dx
μ
r being a separation in spacetime, since adding these

separations along a closed loop should obviously give zero. This also implies that the
spacetime separation between two vertices does not depend on which path we follow on
the graph to connect them, as it should for this interpretation to make sense.

As an illustration, let us show the reduced diagrams for the three singularities we have found
for the triangle one-loop graph studied above:

�

�−k

k

k'

�

�+k'

k

k'

k

k'

In more complicated cases, where solving the Landau equations may be difficult, the Coleman–
Norton interpretation and the associated reduced diagrams can be used as guidance for identi-
fying the possible solutions. This is based on the fact that there is a one-to-one correspondence
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between the solutions of the Landau equations and the spacetime diagrams proposed by Cole-
man and Norton. For instance, in the case of the above example, we could use it as a way of
checking that there are no other solutions. Indeed, there could in principle be two additional
reduced diagrams:

k'

−k k

k'

�

k

k'

However, neither of them is kinematically allowed; the left graph would have two non-collinear
particles propagating along the same spacetime interval, and the right graph would have a
physical free particle making a closed loop.

6. Multi-loop Integration in D Dimensions Start from equation (1.42) in Problem 5, in
the special case where the numerator is trivial, i.e., N ≡ 1. Note that the denominator D is a
quadratic form in the components of the loop momenta, which we may arrange as follows:

D ≡ LtμAL
μ + LtμB

μ + Bt
μL

μ + C, Lμ ≡ (�μ1 , �
μ
2 , . . . , �

μ
L
).

6.a Perform explicitly the integration over the L loop momenta in D dimensions in order to
obtain

I({pi}) =
iLΓ(m− DL

2
)

(−4π)
DL
2

∫
xr≥0

m∏
r=1

dxr
δ
(
1−

∑
r xr

) (
detA)m−

(L+1)D
2(

C detA− Bt
μ C

t
A
Bμ︸ ︷︷ ︸

≡ Δ

+i0+
)m−

DL
2

,

where C
A

is the matrix of co-factors of A.

6.b Show that Δ = det

⎛⎜⎜⎜⎜⎜⎜⎝
A11 . . . A1L B

μ
1

A21 . . . A2L B
μ
2

...
...

...
AL1 . . . ALL B

μ
L

B1μ . . . BLμ C

⎞⎟⎟⎟⎟⎟⎟⎠ and is of degree two in each variable xr.
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6.a Using the notation of Problem 5, qr ≡
∑

j εrj�j+Δr, the denominator D can be rewritten
as

D =
∑
r

xr(q
2
r −m2

r)

=
∑
j,k

(∑
r

xrεrjεrk︸ ︷︷ ︸
≡ Ajk

)
�
μ
j �kμ + 2

∑
j

(∑
r

xrεrjΔ
μ
r︸ ︷︷ ︸

≡ B
μ
j

)
�jμ +

∑
r

xr(Δ
2
r −m2

r)︸ ︷︷ ︸
≡ C

= Ltμ ALμ + LtμB
μ + Bt

μL
μ + C.

In this expression, note that:

• A is a real symmetric L × L matrix, whose coefficients are linear in the Feynman
parameters xr and are independent of the external momenta. This matrix is positive
since zjAjkzk =

∑
r xr(

∑
j εrjzj)

2, and positive definite if all xr > 0 (depending on the
details of the Feynman graph under consideration, it can still be positive definite if some
– but not all – of the xr are zero).

• Bμ is a column vector with L components, linear in the Feynman parameters and linear
in the external momenta.

• C is linear in the Feynman parameters, and also contains the squared masses and Lorentz
invariant scalar products of external momenta.

Let us first rearrange the quadratic form D as follows:

D = Ltμ ALμ + LtμB
μ + Bt

μL
μ + C

= (Lμ +A−1Bμ)
t A︸︷︷︸
ΩtDΩ

(Lμ +A−1Bμ︸ ︷︷ ︸
Kμ

) + C− Bt
μ A

−1 Bμ

= (ΩKμ)
t D (ΩKμ) + C− Bt

μ A
−1 Bμ

= RμR
μ + C− Bt

μ A
−1 Bμ, with R

μ
j ≡ √

Djj (ΩK)μj .

The second line is the standard manipulation that eliminates the linear terms from the quadratic
form (the Jacobian is 1, since this is just a translation). In the third line, we used the fact that
the symmetric matrix Ajk (of size L× L) is diagonalizable by an orthogonal transformation
Ω (the Jacobian is also 1). In the last line, we have rescaled the various loop momenta in
order to absorb the diagonal elements of D. In the final form, we may view RμR

μ as the norm
of a unique vector with DL components (D being the dimension of spacetime). The overall
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Jacobian of this sequence of transformations is given by

dDLL =
(
detA

)−D/2 × dDLR.

Therefore, the integration over the loop momenta reads∫
dDLL

(2π)DL

1

Dm
=

1

(detA)D/2

∫
dDLR

(2π)DL

1(
RμRμ + C− Bt

μ A
−1 Bμ

)m
=

iL

(detA)D/2

∫
dDLR

E

(2π)DL

(−1)m(
R2

E
+ Bt

μ A
−1 Bμ − C

)m
=

(−1)m iL

(4π)
DL
2

Γ(m− DL
2
)

Γ(m)

(
Bt
μ A

−1 Bμ − C
)DL

2
−m

(detA)D/2
.

In the second line, we have applied a Wick rotation to the temporal components of the L loop
momenta, and the result of the last line is a standard integration in DL dimensions (see the
first of Eqs. (1.21)). Therefore, the expression for the L-loop integral is

I({pi}) =
(−1)miLΓ(m− DL

2
)

(4π)
DL
2

∫
xr≥0

m∏
r=1

dxr δ
(
1−

∑
r

xr
)

×
(
Bt
μ A

−1 Bμ − C− i0+
)DL

2
−m

(detA)D/2
.

(We have reinstated the i0+ prescription of Feynman propagators.) Using A−1 =
(
detA

)−1
Ct

A
,

where C
A

is the matrix of co-factors of A, we may rewrite this as

I({pi}) =
iLΓ(m− DL

2
)

(−4π)
DL
2

∫
xr≥0

m∏
r=1

dxr δ
(
1−

∑
r

xr
) (

detA)m−
(L+1)D

2(
C detA−Bt

μC
t
A
Bμ︸ ︷︷ ︸

≡ Δ

+i0+
)m−

DL
2

.

Written in this form, the fraction in the integrand is a rational function of the Feynman
parameters, with Δ ≡ C detA− Bt

μ C
t
A
Bμ a homogeneous polynomial of degree L+ 1 and

detA a polynomial of degree L.

6.b This expression for the loop integral can shed extra light on the discussion of singularities
in Problem 5, which led to the Landau equations. First, note that the determinant of A is zero
only in accidental situations, since in general D is a negative definite quadratic form of the
Euclidean loop momenta. Thus, the singularities in the above expression come from zeroes
in Δ. This quantity is precisely the maximum of the denominator D, viewed as a function of
the Euclidean loop momenta �μj . Therefore, we recover the fact that the singularities of I({pi})
may only occur when D has a vanishing maximum.

Recall now that C detA− Bt
μ C

t
A
Bμ = C detA− Bt

μ (detA)A−1 Bμ. Consider now the
linear equation AjkX

μ
k = B

μ
j (where μ is treated as a fixed parameter). Its solution may be
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written as

(detA) (A−1)jkB
μ
k = (detA)Xμ

j = det
(
A[1,j−1] B

μ A[j+1,L]

)
,

where the notation A[1,j−1] B
μ A[j+1,L] stands for the L× L matrix obtained with columns 1 to

j− 1 of A, the column vector Bμ, and columns j+ 1 to L of A. Therefore, we have

Δ = C detA− Bt
jμ det

(
A[1,j−1] B

μ A[j+1,L]

)
= C detA− Bt

jμ (−1)
L−j det

(
A[1,j−1]A[j+1,L] B

μ
)

= det

⎛⎜⎜⎜⎜⎜⎜⎝
A11 . . . A1L B

μ
1

A21 . . . A2L B
μ
2

...
...

...
AL1 . . . ALL B

μ
L

B1μ . . . BLμ C

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.43)

In the second line, we just need to count the number of column permutations necessary to
bring the column Bμ to the rightmost position. The last equality can be checked by expanding
the determinant on the right-hand side according to the minors of the last line. Observe now
that the function of x1, x2, . . . , xm obtained after integrating over the loop momenta does
not depend on how we labeled the loop momenta (possibly up to a permutation of the {xr}).
Therefore, let us assume that, for the internal propagator r = 1, we have made the choice

q
μ
1 = �

μ
1 , i.e., ε1j = δ1j, Δ

μ
1 = 0.

With this choice, we have

Ajk = x1δ1jδ1k +
∑
r≥2

xrεrjεrk, B
μ
j =

∑
r≥2

xrεrjΔ
μ
r ,

C = −m2
1x1 +

∑
r≥2

xr(Δ
2
r −m2

r).

In particular, the only coefficients that depend (linearly) on x1 are A11 and C. By expanding
the determinant in (1.43), we see that Δ is a quadratic function of x1 (with the other xr fixed).
Since our choice of setting q1 = �1 was arbitrary, we conclude that Δ is of degree two in every
variable xr (and overall homogeneous of degree L+ 1).

7. Weinberg Convergence Theorem The goal of this problem is to establish a criterion
for ultraviolet convergence for loop integrals in scalar field theories (this restriction simplifies
the problem a bit, since the integrands have a trivial numerator equal to one). This result,
known as Weinberg’s convergence theorem, states that a loop integral is ultraviolet convergent
if the superficial degree of divergence of the loop integral, and of any of its restrictions to
hyperplanes obtained by setting linear combinations of the loop momenta to constants, is
negative. To establish this, we consider general Euclidean integrals of the form

I
(
C, q,m

) ≡ ∫
d4�1 · · ·d4�m∏n

j=1

(
(Cji�i + qj)2 +m2

j

) ,
where Cji is an n×m constant matrix.
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7.a Why can one consider instead the simpler integrals

J(C) ≡
∫
D

d4�1 · · ·d4�m∏n
j=1(Cji�i)2

, D ≡ {
(�μ1 , . . . , �

μ
m)
∣∣1 ≤ (C�)2

}
,

that do not depend on the masses or on the external momenta?

7.b Show that I(C, q,m) is absolutely convergent if 4m− 2n < 0 and if the restriction of
this integral to any hyperplane of co-dimension 4 is also absolutely convergent.

Hint: define kj ≡ Cji�i and write the integral J(C) as a sum of terms Jj(C) in which the
squared norm k2j is the smallest among all the k2� ’s, then rescale all the k� �=j by |kj|. Show
that the integral Jj(C) factorizes into a one-dimensional integral whose convergence is
determined by power counting, and an integral over a subspace of co-dimension 4 of the
same type as the original integral.

7.c Show that an equivalent convergence criterion is that the superficial degree of divergence
of I(C, q,m), and of restrictions of I to any hyperplane defined by setting some linear
combinations of the momenta to constants, is negative.

7.a Since we are interested only in the ultraviolet convergence of this integral, the masses
mj and the shifts qj do not play any role at large momenta (even though they matter for the
convergence in the infrared and for the precise value of the integral). As far as ultraviolet
convergence is concerned, we may as well set these parameters to zero, but we need to cut
out a small region around �j = 0 in order to avoid infrared problems. Thus, we may consider
instead

J(C) ≡
∫
D

d4�1 · · ·d4�m∏n
j=1(Cji�i)2

, D ≡ {
(�μ1 , . . . , �

μ
m)
∣∣1 ≤ (C�)2

}
, (1.44)

which has exactly the same ultraviolet behavior as the original integral. (For technical reasons
that will become clear later, it turns out to be a bit simpler to remove a ball of radius unity in
the space of the variables kj ≡ Cji�j rather than �i.)

7.b Note that the first of the two conditions listed in the statement of the problem for the
ultraviolet convergence of this integral, namely 4m − 2n < 0, is nothing but the demand
that the superficial degree of divergence of this integral be negative. This is a necessary
condition because the integrand cannot decrease faster than ξ4m−2n when all the �i’s are
rescaled according to �i → ξ�i. The reason why this condition alone is insufficient to ensure
the convergence is that, depending on the matrix Cji, there could be directions in�4m along
which the decrease of the integrand is slower, for instance if one or more of the �i’s do not
appear in one of the kj’s. As we shall see, the second condition ensures that this problematic
situation does not occur.
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Then, we may write the integral J(C) as a sum of integrals Jj(C) in which the squared
norm k2j is the smallest among all the k2l ’s:

J(C) =

n∑
j=1

Jj(C), Jj(C) ≡
∫
Dj

d4�1 · · ·d4�m∏n
l=1 k

2
l

,

Dj ≡
{
(�μ1 , . . . , �

μ
m)
∣∣1 ≤ k2j ≤ · · ·}.

The next step is to perform a linear change of the integration variables, t ≡ A�, such that

detA = 1, t1 = kj.

In terms of the tμi , the integral Jj(C) may be rewritten as

Jj(C) =

∫
t2
1
≥1

d4t1

∫
U

d4t2 · · ·d4tm∏n
l=1(CliA

−1
ik tk)

2
, U ≡ {

(tμ2 , . . . , t
μ
n)
∣∣t21 ≤ (CA−1t)2

}
.

Then, we rescale t2, . . . , tn by the Euclidean norm of t1,

t
μ
i ≡ |t1| �

′μ
i

(
|t1| ≡

√
t21
)
,

which leads to the following form of the integral Jj(C):

Jj(C) =

∫
t2
1
≥1

d4t1 |t1|
4m−2n−4 ×

∫
U ′

d4� ′2 · · ·d4� ′m∏
l �=j(C

′
lk�

′
k)

2
, (1.45)

with C ′
lk ≡ CliA

−1
ik , U ′ ≡ {

(� ′μ2 , . . . , � ′μn )
∣∣1 ≤ (C ′� ′)2

}
.

In this form, it is clear that:

• The first integral on the right-hand side is absolutely convergent if 4m− 2n < 0.

• The second integral is of the form (1.44) with one less integration variable. Since the two
integrals on the right-hand side are independent, it must also be convergent for Jj(C) to
be finite.

This proves the announced convergence criterion.

7.c If we apply this criterion recursively, we get integrals of lower and lower dimensionality,
until the last step where the analogue of (1.45) contains only the first factor (this corresponds
to a one-loop integral). When we reach this point, we can conclude about the convergence
from power counting only. Thus, the convergence of the original integral is ensured if its
degree of divergence 4m− 2n, and the degree of divergence of all the sub-integrals obtained
by restricting the integration domain to hyperplanes of lower dimension, are negative. In this
form, the convergence criterion is known as Weinberg’s convergence theorem (note that here
we have studied a less general situation than in the original theorem, which also considers
the possibility of a polynomial of the integration variables in the numerator of the integrand).
Let us add a final remark: the criterion derived in this problem is a criterion for absolute
convergence. When it is not satisfied, it could still happen that the integral is nevertheless
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(weakly) convergent because of cancellations among various parts of the integration domain.
And of course, there could also be cancellations among the contributions of various Feynman
graphs. This is typically what happens in gauge theories, where the gauge symmetry can
induce cancellations among graphs that form a gauge invariant set (a single graph is usually
not gauge invariant).
Source: Hahn, Y. and Zimmermann, W. (1968), Commun Math Phys 10: 330.

8. Electron Anomalous Magnetic Moment Consider the amputated renormalized
photon–electron–positron vertex function Γ

μ
r (k, p, q) (with the convention that all momenta

are incoming).

8.a Using the Dirac equation, prove the following relationship:

(pμ − qμ)u(−q)u(p) = 2mu(−q)
[
γμ +

i

m
Mμν(p+ q)ν

]
u(p),

known as Gordon’s identity (with Mμν ≡ i
4
[γμ, γν]).

8.b Show that its contribution to electron scattering off an external field Aμ can be parame-
terized as follows:

Aμ(k)u(−q)Γμr (k, p, q)u(p)=erAμ(k)u(−q)
[
F1(k

2)γμ+i F2(k
2)
Mμνkν

mr

]
u(p).

Hint: the most general form of Γμr is

Γμr = C
μ
11+ C

μα
2 γα + C

μ
3γ5 + C

μα
4 γαγ5 + C

μαβ
5 Mαβ.

Then, use Lorentz invariance and the Ward–Takahashi identity to show that Cμ
1 ∝

(pμ − qμ), and then the Gordon identity to bring this term to the announced form. The
same reasoning can be used to bring the remaining four terms in Γ

μ
r to the announced

form.

8.c Approximate this formula for a constant magnetic field. In particular, for an electron at
rest in a homogeneous magnetic field B in the x3 direction, show that

Aμ(k)u(−q)Γμr (k, p, q)u(p) becomes
erB

mr

(
1+ F2(0)

)
u(0)M12u(0).

8.d Calculate the relevant parts of Γμr at one loop in order to show that F2(0) = α
2π

. (This
result led to one of the first experimental verifications of quantum electrodynamics.)
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8.a Let us rewrite the Poincaré algebra generator Mμν as follows:

Mμν =
i

4

(
γμγν − γνγμ

)
=

i

2

(
γμγν − gμν

)
=

i

2

(
gμν − γνγμ

)
.

Then, consider

u(−q)Mμν(pν + qν)u(p) =
i

2
u(−q)

(
γμγν − gμν

)
pνu(p)

+
i

2
u(−q)

(
gμν − γνγμ

)
qνu(p)

= imu(−q)γμu(p) −
i(pμ − qμ)

2
u(−q)u(p).

This relation, known as Gordon’s identity, can be rewritten as

(pμ − qμ)u(−q)u(p) = 2mu(−q)
[
γμ +

i

m
Mμν(p+ q)ν

]
u(p). (1.46)

8.b The object u(−q)Γμr u(p) is a radiative correction to an electromagnetic current. Since
the incoming and outgoing electrons are on-shell, it must satisfy the following Ward–Takahashi
identity:

kμ u(−q)Γμr (k, p, q)u(p) = 0.

Moreover, this identity must be satisfied even if the photon is off-shell, k2 �= 0. Obviously, the
right-hand side of the announced formula obeys this identity, after one uses the Dirac equation
and the antisymmetry of Mμν.

Let us now give a glimpse of how one would prove the converse, namely that this form is
the only possible one. The starting point is to note that Γμr is a 4× 4 matrix carrying a pair of
Dirac indices, which we may decompose on the basis

{
1, γα, γ5, γαγ5,Mαβ

}
:

Γμr = C
μ
11+ C

μα
2 γα + C

μ
3γ5 + C

μα
4 γαγ5 + C

μαβ
5 Mαβ.

Since these terms are linearly independent, they must fulfill the Ward–Takahashi identity
independently. From charge conjugation and parity symmetry, the term in γ5 should be zero,
C
μ
3 ≡ 0. The Lorentz indices of the remaining coefficients must be carried by the vectors p, q

(or k = −p− q), the metric tensor, and possibly the Levi–Civita symbol in the case of γαγ5,
with prefactors that depend only on Lorentz invariant quantities. In fact, all Lorentz invariant
quantities can be expressed in terms of the electron mass and the photon virtuality k2, since

p · q = k2 −m2, p · k = q · k = −k2

2
.

Consider for instance the coefficient Cμ
1 of the identity. It may be written as

C
μ
1 = C1a(k

2)pμ + C1b(k
2)kμ.

The Ward–Takahashi identity implies

0 = C1a k · p+ C1b k
2 = k2

(
C1b −

1
2
C1a

)
.

Therefore, this coefficient must have the following form:

C
μ
1 = C1b(k

2)
(
2pμ + kμ

)
= C1b(k

2) (pμ − qμ).

Thanks to the Gordon identity (1.46), this term of Γμr indeed has the general form quoted in the
statement of the problem. This turns out to be true for all the terms in this decomposition, as one
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may check by first writing the most general Lorentz structure allowed by the Ward–Takahashi
identity and then by using the Dirac equation to simplify the result after insertion between
u(−q) · · ·u(p).

8.c The coefficients F1(k2) and F2(k
2), called the form factors of the electron, describe the

properties of the cloud of photons and virtual pairs that surround the electron, as one varies
the virtuality k2 of the photon that probes the electron (in a sense, k2 plays the role of a the
resolution scale at which the photon probes this cloud). In the limit k2 → 0, the photon probes
this cloud on very large distance scales. Given its similarity with the bare vertex, the term
proportional to γμ encodes the electrical charge seen by the photon. On very large distance
scales, this must be the usual charge of the electron as we know it from atomic physics, which
means that F1(0) = 1. Let us now discuss the meaning of F2(0). Consider a constant external
magnetic field B in the x3 direction, corresponding to

A2(x) = Bx1, A2(k) = iB∂k1 , F12(x) = −F12(x) = B,

where Fμν is the field strength. When an electron at rest is embedded in this field, the dressed
coupling of the photon to the current reads (in the limit k → 0)

erBu(−p)
[
iγ2∂p1 + F2(0)

M12

mr

]
u(p)

∣∣∣
p=0

.

The derivative ∂p1 acting on a spinor of small momentum acts like the boost K1 in the direction
x1. More precisely, we have

u(−p)iγ2∂p1 u(p)
∣∣∣
p=0

= u(−p)iγ2 iK
1

mr
u(p)

∣∣∣
p=0

= −u(−p)iγ2 γ
1γ0

2mr
u(p)

∣∣∣
p=0

=
1

mr
u(−p)M12u(p)

∣∣∣
p=0

.

(The Dirac equation for zero momentum spinors reduces to γ0u(p) = u(p).) Therefore, the
above coupling becomes

erB

mr

(
1+ F2(0)

)
u(−p)M12u(p)

∣∣∣
p=0

.

The 1 in 1+ F2(0) encodes the bare coupling of the magnetic field to the electron, and F2(0) is
therefore a correction to this coupling.

8.d At one loop, the QED Feynman rules lead to the following expression for the vertex
function contracted between the spinors of the incoming and outgoing fermions:

u(−q)Γμ(k, p, q)u(p) = −i e3
∫

dD�

(2π)D
u(−q)γσ(/�−/q+m)γμ(/�+/p+m)γσu(p)

�2((�− q)2 −m2)((�+ p)2 −m2)

≡ −i e3
∫

dD�

(2π)D
Nμ

D
.

For the time being, we use dimensional regularization to make all intermediate expressions
finite, but we shall see shortly that the form factor F2 is ultraviolet finite. The denominators of
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the three propagators can be combined into a single one by introducing Feynman parameters:

1

ABC
= 2

∫ 1
0

dx1dx2dx3
δ(x1 + x2 + x3 − 1)

(x1A+ x2B+ x3C)3
.

In the situation of interest here, the resulting denominator reads

x1((�+ p)2 −m2) + x2((�− q)2 −m2) + x3 �
2

= L2 + x1(1− x1)p
2 + x2(1− x2)q

2 − (x1 + x2)m
2 + x1x2 p · q

= L2−(x1 + x2)
2m2 + x1x2k

2︸ ︷︷ ︸
≡−Δ

,

where we have defined L ≡ � + x1p − x2q and where in the final line we have assumed the
electrons to be on-shell (p2 = q2 = m2, k = −(p+ q)).

The next step is to express the numerator Nμ in terms of the new integration variable L:

Nμ = u(−q)γσ/Lγμ/Lγσu(p)

+ terms linear in L

+ u(−q)γσ(m− x1/p− (1− x2)/q)γ
μ(m+ (1− x1)/p+ x2/q)γσu(p). (1.47)

The terms linear in L can be dropped since the denominator is even in L. The combination of
Dirac matrices in the first line can be rewritten as

γσ/Lγμ/Lγσ =
(2−D)2

D
L2 γμ.

Since it is quadratic in L, this terms leads to a logarithmic ultraviolet divergence, but the
proportionality to γμ indicates that it contributes only to the form factor F1 (the ultraviolet
divergence in F1 leads to a renormalization of the electron electrical charge). Since our goal
is to evaluate F2, we can disregard this term from now on. The term on the last line of (1.47)
does not depend on L and therefore gives an ultraviolet finite integral over L, which implies
that we can perform the Dirac algebra for this term in D = 4. Using

γμγνγμ = −2 γν , γμγνγργμ = 4 gνρ , γμγνγργσγμ = −2 γσγργν

and the Dirac equations obeyed by the two spinors, a straightforward but somewhat tedious
calculation leads to

u(−q)γσ(m− x1/p− (1− x2)/q)γ
μ(m+ (1− x1)/p+ x2/q)γσu(p)

= 4m
(
u(−q)u(p)

) (
pμ−qμ

2
(x3 − x23) +

kμ

2
(x1 + x21 − x2 − x22)

)
+ 2

(
u(−q)γμu(p)

)(
m2(x23 + 2x3 − 1) − k2(x3 + x1x2)

)
.

The term of the last line, in u(−q)γμu(p), contributes only to F1 and can be ignored. In the
first line on the right-hand side, the term in kμ is odd under the exchange of x1 and x2, while
the denominator is even. Its integral over the Feynman parameters is therefore zero. Thus, we
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need only consider further the term in pμ − qμ, which can be rearranged thanks to the Gordon
identity (1.46):

u(−q)γσ(m− x1/p− (1− x2)/q)γ
μ(m+ (1− x1)/p+ x2/q)γσu(p)

=
i

m

(
u(−q)Mμνu(p)

)
kν(−4m

2)(x3 − x23)

+ terms in u(−q)γμu(p)

+ terms that integrate to zero.

By performing the integral over L (using a Wick rotation to have a Euclidean integration
momentum),∫

dDL

(2π)D
1

(L2 − Δ)3
= −i

ΔD/2−3

(4π)D/2

Γ
(
3− D

2

)
Γ(3)

=
D=4

−
i

32π2 Δ
,

and then by comparing the term in Mμν with the expression for the vertex function in terms of
the electron form factors, we obtain

F2(k
2) =

e2

4π2

∫ 1
0

dx1dx2dx3 δ(x1 + x2 + x3 − 1)
x3 − x23

(1− x3)2 − x1x2(k2/m2)
.

Noting that∫ 1
0

dx1dx2 δ(x1 + x2 + x3 − 1) = 1− x3,

we finally get

F2(0) =
e2

8π2
=

α

2π
.

This is the celebrated result obtained by Schwinger in 1948. As of 2019, the QED calculation
of this quantity has been pushed to order α5, allowing a comparison with experimental
measurements of the electron anomalous magnetic moment with an unprecedented accuracy.

9. Ward–Takahashi Identities and Lorentz Invariance The goal of this problem is to
discuss the relationship between the Lorentz invariance of scattering cross-sections involving
photons and the Ward–Takahashi identities obeyed by amplitudes with external photons. We
will see that the Ward–Takahashi identities imply the Lorentz invariance, but also that the
converse is true to some extent: namely a theory of massless spin-1 particles must obey at least
some weak form of Ward–Takahashi identities in order to be Lorentz invariant. To that end,
we consider an S-matrix element with an external photon, written as εμλ(p)Mμ(p, . . . ).

9.a What is the transformation law of Mμ(p, . . . ) under a Lorentz transformation Λ?
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9.b Show that, under the same Lorentz transformation, the polarization vectors satisfy

Λν
μεν±(Λp) = e∓iθε

μ
±(p) + terms in pμ,

where we use the basis of positive and negative helicities as the two physical polarizations.
Hint: show that the polarization vectors ε

μ
±(p) can be obtained from those of the

reference momentum qμ ≡ (ω, 0, 0,ω) by applying the Lorentz transformation L(p)
that maps qμ into pμ. Then, use the fact that R ≡ L−1(p)Λ−1L(Λp) belongs to the little
group, and the result of Problem 2.

9.c Show that∣∣∣εμ±(Λp)Mμ(Λp, . . . )
∣∣∣2 = ∣∣∣εμ±(p)Mμ(p, . . . )

∣∣∣2 + terms in pμMμ(p, . . . ).

Thus, the S-matrix element is Lorentz invariant up to a phase, provided that Mμ(p, . . . )
satisfies the Ward–Takahashi identity. Discuss whether the converse is true.

9.a The matrix element Mμ(p, . . . ) transforms covariantly under a Lorentz transformation,
i.e.,

Mμ(p, . . . ) =
[
Λ−1

]
μ
νMν(Λp, . . . ) = Λν

μMν(Λp, . . . ).

(Here, we are writing only the factor Λ that corresponds to the external line of momentum pμ;
there should be one extra such factor for each other external particle with non-zero spin.)

9.b In order to construct a basis of physical polarization vectors associated with the mo-
mentum pμ, let us start from the two helicity polarization vectors of the reference momentum
qμ ≡ (ω, 0, 0,ω),

ε
μ
±(q) ≡ 1√

2
(0, 1,±i, 0).

The polarization vectors of an arbitrary momentum pμ can then be obtained by applying the
spatial rotation R(p̂) that brings the axis 3 into the direction p̂:

ε
μ
±(p) =

[
R(p̂)

]μ
ν ε

ν
±(q). (1.48)

Let us introduce the Lorentz transformation L(p) that transforms the reference vector qμ into
the vector pμ. This transformation can be decomposed into a boost B3(p

0/ω) in the direction
3 that rescales the vector qμ so that it has the same temporal component as pμ, followed by the
rotation R(p̂) that rotates its spatial components into the correct orientation:

L(p) = R(p̂)B3(p
0/ω).

Note that the boost B3 does not affect the reference polarization vectors, since their only
non-zero components are in the directions 1, 2. Therefore, we also have

ε
μ
±(p) =

[
L(p)

]μ
ν ε

ν
±(q).

Recall now that, for any momentum pμ and Lorentz transformation Λ, R ≡ L−1(p)Λ−1L(Λp)
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is an element of the little group since it leaves the reference vector qμ invariant:

qμ −→
L(Λp)

(Λp)μ −→
Λ−1

pμ −→
L−1(p)

qμ.

Let us apply this transformation to the reference polarization vectors, which leads to[
Λ−1

]μ
ν

[
L(Λp)

]ν
ρ ε

ρ
±(q)︸ ︷︷ ︸

εν±(Λp)

=
[
L(p)

]μ
ν R

ν
ρ ε

ρ
±(q).

In order to evaluate the right-hand side, we use the explicit representation of little-group
elements obtained in Problem 2, which leads to

Rν
ρ ε

ρ
±(q) = e∓iθεν±(q) + β±qν,

where we denote β± ≡ (β1 ± iβ2)/(ω
√
2). Multiplying this equation on the left by [L(p)]μν,

we obtain[
Λ−1

]μ
ν ε

ν
±(Λp) = e∓iθ ε

μ
±(p) + β± pμ. (1.49)

This formula shows that the physical polarization vectors do not transform as Lorentz vectors:
they transform as 4-vectors only up to a phase and up to an additive term proportional to the
momentum.

9.c By multiplying Eqs. (1.48) and (1.49), we obtain(
e∓iθ ε

μ
±(p) + β± pμ

)
Mμ(p, . . . ) = Λν

μ [Λ
−1]μρ︸ ︷︷ ︸

δνρ

ε
ρ
±(Λp)Mν(Λp, . . . )

= ε
μ
±(Λp)Mμ(Λp, . . . ).

The right-hand side is simply the S-matrix element evaluated in a boosted frame. The first term
on the left-hand side is the same matrix element in the original frame, multiplied by a phase.
Thus, we have∣∣∣εμ±(Λp)Mμ(Λp, . . . )

∣∣∣2 = ∣∣∣εμ±(p)Mμ(p, . . . )
∣∣∣2 + terms in pμMμ(p, . . . ).

From this equation, we see immediately that the Ward–Takahashi identities (i.e., the fact that
the last term on the right-hand side is zero) imply the Lorentz invariance of squared matrix
elements with photons.

Let us now consider the converse. The Lorentz invariance of cross-sections requires that∣∣∣εμ±(Λp)Mμ(Λp, . . . )
∣∣∣2 = ∣∣∣εμ±(p)Mμ(p, . . . )

∣∣∣2,
which by the above identity implies that pμMμ(p, . . . ) = 0. This looks like the usual
Ward–Takahashi identity, except for an important restriction: all the other lines are on-shell
and contracted with physical polarizations if they are photons (while in the Ward–Takahashi
identities derived from current conservation, the photons do not need to be on-shell, nor do they
need to have physical polarizations). In other words, any theory of massless spin-1 particles
must satisfy a weak form of the Ward–Takahashi identities (in fact, identical to the non-Abelian
version of the Ward–Takahashi identity), in order for its physical predictions to be consistent
with Lorentz symmetry.
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Additional Note: In the limit of soft massless spin-1 particles, the eikonal approximation
leads to the following universal (i.e., independent of the spin of the emitters) form for the
amplitude for producing a photon of momentum k in addition to hard particles of momenta pi:

Mμ(k;p1, . . . , pn) = M(p1, . . . , pn)

n∑
i=1

ei p
μ
i

pi · k,

where the ei are the couplings of the spin-1 particles to the emitters (conventionally defined to
be all outgoing). In this limit, the condition kμM

μ = 0 is equivalent to
∑

i ei = 0. In other
words, the Lorentz invariance of scattering amplitudes implies that any soft massless spin-1
particle couples to other fields via a conserved charge. The limitation of this argument to soft
momenta (i.e., long-distance interactions) is easy to understand: a hard spin-1 would probe the
substructure of composite objects, instead of its total charge (this does not mean that the charge
is not conserved on these shorter-distance scales, but that we need to change our description of
the emitters to make it manifest).

10. Equivalence Principle and Lorentz Invariance Recall that the emission of a soft
photon of momentum kμ off a hard scattering amplitude M(p1, . . . , pn) is given by

Mμ(k;p1, . . . , pn) =
k→0

M(p1, . . . , pn)

n∑
i=1

ei p
μ
i

pi · k, (1.50)

where the pμi are the momenta of the hard external particles (with the convention that they are
all outgoing) and ei the electrical charge they carry.

10.a Generalize the formula (1.50) to the emission of a soft graviton in a hard scattering
process.

10.b Extend the arguments of Problem 9 to show that an S-matrix element with an external
soft graviton is Lorentz invariant up to a phase, provided that soft gravitons couple with
the same strength to all the other fields (i.e., provided that long-distance gravitational
interactions satisfy the equivalence principle).

10.a Since they have spin 2, gravitons carry two Lorentz indices. Moreover, since they are
massless, they have only two physical polarizations. It is possible to choose a gauge in which
their “polarization tensors” are obtained from two copies of the photon polarization vectors:

ε
μν
± (k) = ε

μ
±(k) ε

ν
±(k). (1.51)

The only information needed to generalize (1.50) is to recall that gravitons couple to the
energy–momentum tensor. Therefore, instead of a single factor pμ, the coupling of a soft
graviton should contain pμpν. The denominators in (1.50) are unchanged since they come
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from the propagators of the other external lines (fermions, scalars, etc.). Therefore, (1.50)
becomes

Mμν(k;p1, . . . , pn) =
k→0

M(p1, . . . , pn)

n∑
i=1

gi p
μ
i p

ν
i

pi · k , (1.52)

where gi is the strength of the coupling of a soft graviton to the particle on the i-th external
line.

10.b Thanks to Eq. (1.51) and the results of Problem 9, the Lorentz transform of the polar-
ization tensor of a graviton is given by[

Λ−1
]μ

ρ

[
Λ−1

]ν
σ ε

ρ
±(Λk)εσ±(Λk) = e∓2iθ ε

μ
±(k)ε

ν
±(k)

+ terms in kμεν±, εμ±kν or kμkν.

Then, the reasoning of Problem 9 indicates that S-matrix elements with external gravitons
are Lorentz invariant (up to a phase), provided that the corresponding amplitude satisfies the
following identities:

kμM
μν(k, . . . ) = kνM

μν(k, . . . ) = 0.

Specializing to the case where the graviton is soft and all other external lines are hard, we can
use (1.52), and this becomes

n∑
i=1

gip
ν
i = 0. (1.53)

This identity must be true for any allowed configuration of the momenta pi of the hard external
lines. Obviously, this holds if we have gi = const (the identity then follows from energy–
momentum conservation). This corresponds to the situation where soft gravitons couple to all
other fields with the same strength, i.e., to the equivalence principle. Thus, we have shown that
the equivalence principle implies the Lorentz invariance of cross-sections involving gravitons.

As in Problem 9, the converse is also true. Indeed, g = const is the only way to satisfy
(1.53) for all pi. Therefore, the Lorentz invariance of cross-sections with soft external gravitons
implies the equivalence principle for long-distance gravitational interactions. (Here, “long-
distance” should be understood as long compared to the other distance scales of the process,
but certainly short compared to the size of the Universe, since translation invariance does not
hold on such large scales.) This observation was first made by Weinberg (see Weinberg, S.
(1964), Phys Rev 135: 1049).

Higher Spins: This argument can be extended in order to exclude the possibility of inter-
acting higher-spin massless particles. For instance, for a spin-3 massless particle, Lorentz
invariance would imply

n∑
i=1

gi p
μ
i p

ν
i = 0.

One may check that the only way this can be true for all pi’s and all μ, ν is to have gi = 0.
(But interacting massive spin-3 particles fall out of the scope of this argument, and are in fact
allowed.)
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11. Lee–Nauenberg Theorem In quantum mechanics and quantum field theory, there exist
states that are practically undistinguishable (e.g., states that differ by features that are too dim to
be experimentally detected). Transition amplitudes with such initial or final states are in general
plagued by singularities. The goal of this problem is to discuss these pathologies in the simple
setting of quantum mechanics, and to show that they can be avoided by averaging transition
probabilities over all degenerate states. To that end, consider a Hamiltonian H = H0 + V
decomposed into a free Hamiltonian H0 and an interaction potential V . We recall that the
scattering matrix S can be written as

Sβα = δβα − 2π i δ(Eα − Eβ) Tβα,

with Tβα ≡ Vβα +

∫
dγ

VβγTγα

Eα − Eγ + i0+
, Vβα ≡ 〈

Ψ
(0)
β

∣∣V∣∣Ψ(0)
α

〉
,

where the Eα’s and
∣∣Ψ(0)

α

〉
’s are the eigenvalues and eigenstates of H0.

11.a Show that
(
Ωin

)
βα

≡ δβα +
Tβα

Eα−Eβ+i0+
is a unitary matrix. Hint: define

∣∣Ψα,in
〉 ≡∫

dγ
(
Ωt

in

)
αγ

∣∣Ψ(0)
γ

〉
and consider the matrix element

〈
Ψβ,in

∣∣V∣∣Ψα,in
〉
.

11.b Solve formally the equation for Tβα, to obtain

Tβα = Vβα +

+∞∑
n=1

∫
dγ1 · · ·dγn

VβγnVγnγn−1
· · ·Vγ1α

(Eα − Eγ1
+ i0+) · · · (Eα − Eγn + i0+)

.

11.c Denote by D(α) the set of states obtained from α by adding/removing ultrasoft particles,
by splitting collinearly hard massless particles or by recombining collinear particles,
i.e., the set of states that are undistinguishable from the state α. Explain why Tβα has
divergences if γ1, γ2, . . . , γi all belong to D(α) or if γi, γi+1, . . . , γn all belong to
D(β).

11.d Introduce Pα, Pβ, P3, the projectors on D(α),D(β) and on the rest of the Hilbert space,
respectively. Show that squared matrix elements of T become finite if they are summed
over all the states in D(α) and D(β), i.e.,

∑
a∈D(α),b∈D(β)

∣∣Tba∣∣2 < ∞.

Reminders on Scattering Theory in Quantum Mechanics: The setting of this study is the
formulation of scattering in quantum mechanics. Let us consider a Hamiltonian H, which we
decompose into a free Hamiltonian and an interaction potential:

H = H0 + V.

Denote by
∣∣Ψ(0)

α

〉
the eigenstates of the free Hamiltonian,
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H0

∣∣Ψ(0)
α

〉
= Eα

∣∣Ψ(0)
α

〉
,

and by
∣∣Ψα

〉
those of the full Hamiltonian,

H
∣∣Ψα

〉
= Eα

∣∣Ψα

〉
.

The eigenvalues of the free and interacting Hamiltonians are the same, provided we disregard
the formation of bound states that may happen with certain interactions, and provided the free
Hamiltonian is expressed in terms of the physical masses of the particles. The last equation
may be rewritten as

(Eα −H0)
∣∣Ψα

〉
= V

∣∣Ψα

〉
. (1.54)

Note that the operator Eα −H0 is not invertible, since
∣∣Ψ(0)

α

〉
lies in its kernel (as well as any

other state degenerate with it). Consider the following states:∣∣Ψα,in
〉 ≡ ∣∣Ψ(0)

α

〉
+
(
Eα −H0 + i0+

)−1
V
∣∣Ψα,in

〉
,∣∣Ψα,out

〉 ≡ ∣∣Ψ(0)
α

〉
+
(
Eα −H0 − i0+

)−1
V
∣∣Ψα,out

〉
.

These states are obviously solutions of (1.54). These states are time-independent (i.e., they are
states in the Heisenberg representation), but may look different to observers in different frames.
In particular, in a frame that differs by a translation by a time T , these states are multiplied by
e−iHT . Since they are energy eigenstates, the action of this operator is just a multiplication by
an irrelevant phase exp(−iEαT). But these phases have a non-trivial effect on superpositions
of states. Consider, for instance,∣∣Ψh,in

〉 ≡ ∫
dα h(α)

∣∣Ψα,in
〉

(the notation dα is a shorthand for the integration/summation measure over all the quantum
numbers of the particles in the state α, such as 3-momenta, spins, etc.), where h(α) is a smooth
function that spans a small range of energies Eα. Under such a translation in time, this state
becomes∣∣Ψh,in

〉 → ∣∣Ψh,in
〉
T
=

∫
dα h(α) e−iEαT

∣∣Ψα,in
〉

= e−iH0T
∣∣Ψ(0)

h

〉
+

∫
dαh(α) e−iEαT

(
Eα−H0+i0+

)−1
V
∣∣Ψα,in

〉
.

(1.55)

In the second term, we must close the contour for the integral over the energy Eα in the upper
half-plane in order to ensure its convergence if T < 0. Then, the theorem of residues gives
the integral in terms of the singularities of the integrand. Except for the denominator, the
other factors generically have their singularities at finite imaginary part, Im (Eα) > 0 (because
interactions typically lead to a finite lifetime for the particles), and their contribution vanishes
when T → −∞. The denominator leads to poles located at Eα = E∗ − i0+, i.e., below the real
axis, and therefore it does not contribute to the result. Thus, we have

e−iHT
∣∣Ψh,in

〉
=

T→−∞
e−iH0T

∣∣Ψ(0)
h

〉
, e−iHT

∣∣Ψh,out
〉

=
T→+∞

e−iH0T
∣∣Ψ(0)

h

〉
.

Note that, since the operators exp(−iHT) and exp(−iH0T) are unitary, the states
∣∣Ψh,in

〉
and∣∣Ψh,out

〉
are normalized like the states

∣∣Ψ(0)
h

〉
. Since this is true for any function h(α), the
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states
∣∣Ψα,in

〉
and

∣∣Ψα,out
〉

each form an orthonormal set of states. In other words, the in and
out states become identical to the eigenstates of the free Hamiltonian in frames translated by
a time T → −∞ or T → +∞, respectively. Thus, the physical interpretation of the (time-
independent) state

∣∣Ψα,in
〉

is that it encodes all the possible outcomes of an interacting system

initialized at T = −∞ in the free state
∣∣Ψ(0)

α

〉
. Likewise,

∣∣Ψα,out
〉

encodes all the possible

histories that lead to the free state
∣∣Ψ(0)

α

〉
at T = +∞. Therefore, the transition amplitude from

a state α to a state β should be defined as

Sβα ≡ 〈
Ψβ,out

∣∣Ψα,in
〉
.

Note that the definition of the state
∣∣Ψα,in

〉
can be rewritten as

∣∣Ψα,in
〉
=

∫
dβ

(
δβα +

Tβα

Eα − Eβ + i0+︸ ︷︷ ︸
≡ Ωβα

) ∣∣Ψ(0)
β

〉
, with Tβα ≡ 〈

Ψ
(0)
β

∣∣V∣∣Ψα,in
〉

(δβα is the combination of delta functions and Kronecker symbols such that
∫
dβ f(β)δβα =

f(α)). Inserting the definition of
∣∣Ψα,in

〉
in Tβα, we obtain an integral equation for T :

Tβα = Vβα +

∫
dγ

VβγTγα

Eα − Eγ + i0+
=

∫
dγ Vβγ Ωγα, (1.56)

with Vβα ≡ 〈
Ψ
(0)
β

∣∣V∣∣Ψ(0)
α

〉
. This equation, known as the Lipmann–Schwinger equation, shows

how the matrix elements of T are obtained from the matrix elements of the interaction potential
in the free basis.

11.a Given the above discussion, we have∣∣Ψα,in
〉

=
T→−∞

eiHT e−iH0T
∣∣Ψ(0)

α

〉
,

which implies that Ωβα = limT→−∞
〈
Ψ
(0)
β

∣∣eiHT e−iH0T
∣∣Ψ(0)

α

〉
. In this form, we see immedi-

ately that the Ωβα’s are the matrix elements of a unitary operator.

Alternatively, we can reach the same conclusion using only the information provided in
the statement of the problem. For this, it is convenient to write

Ω ≡ 1+ Δ, Tβα = (Eα − Eβ + i0+)Δβα,∣∣Ψα,in
〉
=
∣∣Ψ(0)

α

〉
+

∫
dγΔt

αγ

∣∣Ψ(0)
γ

〉
(Δt

αγ ≡ Δγα).

Given the integral equation that relates Vβα and Tβα and the definition of
∣∣Ψα,in

〉
, we have also

Tβα =
〈
Ψ
(0)
β

∣∣V∣∣Ψα,in
〉
.

Then, the matrix element
〈
Ψβ,in

∣∣V∣∣Ψα,in
〉

can be written in two ways, depending on whether
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we expand the state on the left or the state on the right:

〈
Ψβ,in

∣∣V∣∣Ψα,in
〉
=
〈
Ψ
(0)
β

∣∣V∣∣Ψα,in
〉︸ ︷︷ ︸

Tβα

+

∫
dγΔ

†
βγ

〈
Ψ
(0)
γ

∣∣V∣∣Ψα,in
〉︸ ︷︷ ︸

Tγα

=
〈
Ψβ,in

∣∣V∣∣Ψ(0)
α

〉︸ ︷︷ ︸
T∗
αβ

+

∫
dγ

〈
Ψβ,in

∣∣V∣∣Ψ(0)
γ

〉︸ ︷︷ ︸
T∗
γβ

=T†
βγ

Δγα.

Equating these two expressions for the matrix element leads to

T∗
αβ − Tβα =

∫
dγ

(
Δ
†
βγTγα − T

†
βγΔγα

)
= (Eα − Eβ + i0+)

∫
dγ Δ

†
βγΔγα,

i.e., Δ+ Δ† + Δ†Δ = 0. From this relationship, we conclude that Ω = 1+ Δ is unitary.

S-matrix: The matrix element Sβα can also be expressed in terms of Tβα. In order to obtain
this relationship, let us start again from (1.55), but this time we take the limit T → +∞. Since
T > 0, we must close the integration contour in the lower half-plane. In the limit T → +∞,
the only term that survives when we apply the theorem of residues comes from the zero in the
denominator, and we get

∣∣Ψh,in
〉
T

=
T→+∞

e−iH0T
∣∣Ψ(0)

h

〉
− 2πi

∫
dαdβ h(α) e−iEβT δ(Eα − Eβ) Tβα

∣∣Ψ(0)
β

〉
=

T→+∞

∫
dαdβ h(α) e−iEβT

(
δβα − 2π i δ(Eα − Eβ) Tβα

) ∣∣Ψ(0)
β

〉
.

Alternatively, we can also write

∣∣Ψh,in
〉
T
=

∫
dα h(α) e−iEαT

∣∣Ψα,in
〉

=

∫
dα h(α) e−iEαT

∫
dβ

∣∣Ψβ,out
〉 〈

Ψβ,out
∣∣Ψα,in

〉︸ ︷︷ ︸
Sβα

=
T→+∞

∫
dαdβ h(α) e−iEβT Sβα

∣∣Ψ(0)
β

〉
.

(In the last line, we also used the fact that Sβα is proportional to a delta function of energy
conservation to change Eα into Eβ in the exponential.) By comparing the two formulas, we
conclude that

Sβα = δβα − 2π i δ(Eα − Eβ) Tβα.
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11.b The Lipmann–Schwinger equation (1.56) can be solved iteratively, leading to the
following series in powers of the interaction potential:

Tβα = Vβα +

+∞∑
n=1

∫
dγ1 · · ·dγn

VβγnVγnγn−1
· · ·Vγ1α

(Eα − Eγ1
+ i0+) · · · (Eα − Eγn + i0+)

.

The physical interpretation of this expression is that the system starts in the state α and evolves
to the state β, undergoing a sequence of interactions that take it through the intermediate states
γ1, γ2, . . . , γn.

11.c In this formula, the matrix elements of V are regular, and the only potential singularities
come from the poles in the other factors under the integral. However, these poles do not always
lead to a divergence in the result. This can be seen, for instance, in the following two toy
examples:

+1∫
−1

dx

x+ i0+
= −iπ,

+1∫
0

dx

x+ i0+
= ∞.

In these examples, we see that in order to lead to a divergence, the pole should be at one of
the endpoints of the integration domain; otherwise we may deform the integration contour
to completely avoid the pole. Another configuration leading to an unavoidable divergence is
when the integrand has a pair of poles “pinching” the integration contour so that it cannot be
deformed.

Two states α and γ may accidentally have the same energy when one varies the momentum
of a particle. However, when varying the state γ, these accidental degeneracies occur in the
middle of the allowed domain of the variables that parameterize γ. The corresponding pole in
(Eα − Eγ + i0+)−1 is therefore avoidable by deforming the integration contour, and this does
not lead to a divergence.

The state γ also has the same energy as α if it differs from α by one or more ultrasoft
particles. In this situation, the resulting pole in (Eα − Eγ + i0+)−1 occurs when the energy of
these extra particles goes to zero, which is on the boundary of the integration domain for γ,
and therefore produces an actual divergence in the result. Another situation where γ has the
same energy as α is when a hard massless particle in one of the two states is replaced in the
other state by two or more collinear particles with the same total momentum. This case also
leads to a divergence, because the pole is reached on the boundary of the angular integration
domain.

In order to keep track of these two problematic situations, let us denote by D(α) the set
of states that are degenerate with α, excluding the accidental degeneracies. Consider now the
sequence of states

α → γ1 → · · · → γi−1 → γi → γi+1 → · · · → γn → β.

Each state γi in this sequence is related to the preceding and following states by an elementary
interaction V . Obviously, in order to produce a pole, the state γi must have the same energy as
α. But for this pole to lead to a divergence, a stronger condition should be satisfied: the pole
must occur on the boundary of the integration domain of γi, which is made of the states in
D(γi−1) or in D(γi+1).
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Assume for instance that γi ∈ D(γi−1), and has the same energy as α. But this implies
that γi−1 also has the same energy as α, which happens on a harmless zero measure subset of
the phase-space of γi−1 unless γi−1 itself belongs to the degeneracy set of γi−2, D(γi−2). By
repeating this inductive argument, we see that this divergence occurs only if all of γ1, γ2, . . . , γi

belong to D(α). If instead we make the assumption that γi ∈ D(γi+1), then it is the entire
chain γi, γi+1, . . . , γn that must be in D(β) in order to have a divergence. This result is
consistent with the well-known fact that infrared divergences happen when soft photons are
attached to the external legs of a hard process, but not when one attaches the soft photon to a
hard internal line of a graph. The same is true of the divergences due to collinear splittings.

11.d We assume now that the initial and final states are not degenerate, i.e., that D(α) and
D(β) do not overlap. Then, we introduce projectors Pα, Pβ and P3 that project respectively on
D(α), on D(β) and on the remaining portion of the Hilbert space. Since the union of these
sets is the complete Hilbert space, the sum of these projectors is the identity

Pα + Pβ + P3 = 1.

Moreover, we assume that the volume of D(α) and D(β) is very small (this is controlled by
what is experimentally meant by “soft” or “collinear”) compared to the rest, implying that we
may neglect these states except when they produce a divergence. In terms of these projectors,
the matrix element Tβα can be written as

Tβα =

+∞∑
n=0

[
V

(
Pα + Pβ + P3

Eα −H0 + i0+
V

)n]
βα

.

This formula is still exact. The next step is to expand this expression, and to drop Pα and Pβ
unless they occur in configurations that produce a divergence. Thus we keep the Pα’s if they
form an uninterrupted chain on the right of the product, and the Pβ’s if they form a chain on
the left of the product:

Tβα =
sing.

+∞∑
r,s,n=0

[(
V

Pβ

Eα−H0+i0+

)s

V

(
P3

Eα−H0+i0+
V

)n(
Pα

Eα−H0+i0+
V

)r]
βα

,

which can be written compactly as

Tβα =
(
U

†
β,out T3 Uα,in

)
βα

, with T3 ≡ V

+∞∑
n=0

(
P3

Eα −H0 + i0+
V

)n

,

and

Uα,in ≡
+∞∑
r=0

(
Pα

Eα −H0 + i0+
V

)r

, Uβ,out ≡
+∞∑
s=0

(
Pβ

Eα −H0 − i0+
V

)s

.

The factors Uα,in and Uβ,out contain divergences, while the factor T3 is divergence-free.

Note now that the operator Uα,in is the restriction to the subspace D(α) of the operator Ω
that we introduced just above (1.56), and that we have shown to be unitary. Therefore, Uα,in is
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also unitary if restricted to D(α), which means that

Uα,in Pα U
†
α,in = Pα, Uβ,out Pβ U

†
β,out = Pβ.

(We have also written an analogous relationship for Uβ,out.) Then, summing the squared matrix
elements over all the states degenerate with α and β, we obtain∑

a∈D(α),b∈D(β)

∣∣Tba∣∣2 = ∑
a∈D(α),b∈D(β)

(
U

†
β,out T3 Uα,in

)
ba

(
U

†
α,in T

†
3 Uβ,out

)
ab

= tr
(
Uβ,out Pβ U

†
β,out T3 Uα,in Pα U

†
α,in T

†
3

)
= tr

(
Pβ T3 Pα T

†
3

)
=

∑
a∈D(α),b∈D(β)

∣∣(T3)ba∣∣2,
which is a finite quantity since it contains only the finite operator T3. In the second line, we
have rewritten the sum over the states in D(α) and D(β) in the form of a trace by introducing
the appropriate projectors, and we have used the cyclic invariance of the trace to reorder the
factors.

This result, established by Lee and Nauenberg, shows that finite cross-sections are obtained
provided one sums over all the initial and final degenerate states. This is rather natural
in quantum mechanics since all these states are undistinguishable in practice, given the
unavoidable limited resolutions (in energy and in angle) of any detector.

12. Classical External Field Approximation The goal of this problem is to study the
scattering between an electron of charge −e and a large atomic nucleus of charge Ze, and to
show that, in the limit of a recoilless nucleus at rest, the nucleus can be approximated by its
classical Coulomb potential.

12.a Why are multiple scatterings important at large Z?

12.b We are interested in the limit where the momentum exchanges ki are soft. Why is this
the relevant limit for a scattering at large impact parameter? How can we simplify the
treatment of the nucleus in this limit?

12.c Express the lower part A
μσ1

···μσn

ss ′ (P, P ′; {kσi
}) of the graph shown below (surrounded

by a box) in this limit, for an arbitrary number of exchanged photons.

k
1

k
2 k

3
k
4

k
5

k
6

1 2 3 4 5 6

σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

P P'

Perform the sum explicitly over all the permutations σ of the attachments of the photons
to the nucleus, in order to obtain∑

σ∈Sn

A
μσ1

···μσn

ss ′ (P, P ′; {kσi
})

≈
ki
P

2 EP δss ′ (2π)
3δ
(
P+

∑
ki − P ′)∏

i

2π (−iZe)Pμi δ(P · ki).
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12.d Show that when the nucleus is at rest, the scattering amplitude of an electron off the
nucleus can be obtained by replacing the nucleus by its classical Coulomb potential.

12.a Each photon exchanged between the electron and the nucleus can potentially bring a
factor Ze2. Despite the smallness of the fine-structure constant (α ∼ 137−1), a large Z can
lead to significant multi-photon effects. Here, we must mention an important limitation to this
power counting: the coupling of the photon to the nucleus gives a factor Ze only if the photon
sees coherently the entire electrical charge of the nucleus. In other words, the wavelength
of the photon should be large enough so that it cannot resolve the more elementary charged
constituents contained inside the nucleus (protons, or quarks at an even smaller distance scale).
Given that the size of a nucleus is of the order of 10 fm, the momentum of the exchanged
photon should not exceed 20 MeV in order to benefit from this enhancement.

12.b If we denote by x and y the spacetime coordinates at the endpoints of a photon
propagator, the momentum k carried by this photon is Fourier conjugate to the difference x−y.
In the case of the photons exchanged between the electron and the nucleus propagators, this
difference is related to the impact parameter of the scattering. Thus, a small momentum carried
by the exchanged photons is equivalent to a large impact parameter.

In fact, the criterion that the photon momentum is small enough for the photon to couple
coherently with the entire nucleus is equivalent to having an impact parameter larger than the
size of the nucleus. In other words, the electron should pass outside of the nucleus. In this
limit, the photon sees only a point-like charge Ze instead of a complicated arrangement of
quarks. Moreover, in this limit, the photon momenta (� 20 MeV) are much smaller than the
mass of the nucleus, implying that the nucleus suffers a negligible recoil in the scattering.

12.c Using the QED Feynman rules, and the approximation of a point-like nucleus, the lower
part of the graph shown in the figure can be written as

A
μσ1

···μσn

ss ′ (P, P ′; {kσi
}) ≡ (2π)4δ

(
P +

n∑
i=1

ki − P ′) us ′(P
′)

×
[
(−iZeγμσn ) · · · i(/P + /kσ1

+ /kσ2
+M)

(P+kσ1
+kσ2

)2−M2+i0+

× (−iZeγμσ2 )
i(/P + /kσ1

+M)

(P+kσ1
)2−M2+i0+

(−iZeγμσ1 )
]
us(P).

Note a limitation of our treatment here, since the above formula assumes that the target has
spin 1/2 (although our final result will in fact be valid for arbitrary spin). Using the fact that
P2 = M2 and the fact that the exchanged photons are soft, the intermediate propagators can be
approximated as

i(/P + /kσ1
+ · · ·+ /kσi

+M)

(P + kσ1
+ · · ·+ kσi

)2 −M2 + i0+
≈ i

∑
si=± usi(P)usi(P)

2P · (kσ1
+ · · ·+ kσi

) + i0+
.

Note also that us ′(P
′) ≈ us ′(P), ur(P)γ

μus(P) = 2 δrsP
μ and
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P ′0 − P0 −
∑

i
k0i ≈

√
M2 + P2 + 2P ·

∑
i
ki − EP −

∑
i

k0i ≈ −
P ·∑i ki

EP
.

Therefore, we have

A
μσ1

···μσn

ss ′ (P, P ′; {kσi
}) =

ki
P
2 EP δss ′ (−iZe)

n Pμ1Pμ2 · · ·Pμn

× (2π)4δ
(
P+

∑
ki − P ′)δ(P ·

∑
ki
)

× i

P · kσ1
+ i0+

i

P · (kσ1
+ kσ2

) + i0+
· · ·

× i

P · (kσ1
+ · · ·+ kσn−1

) + i0+
.

The next step is to perform the sum over all the permutations σ ∈ Sn. One may get a hint
about the answer by considering the case n = 2, where there are only two permutations:

2πδ
(
P · (k1 + k2)

) ( i

P · k1 + i0+
+

i

P · k2 + i0+

)
= 2πδ

(
P · (k1 + k2)

) ( i

P · k1 + i0+
+

i

−P · k1 + i0+

)
= 2πδ

(
P · (k1 + k2)

)
2πδ

(
P · k1

)
= 2πδ

(
P · k1

)
2πδ

(
P · k2

)
.

This can be generalized to any n, by starting from the trivial identity

∑
σ∈Sn

θ(tσ1
− tσ2

) θ(tσ2
− tσ3

) · · · θ(tσn−1
− tσn) = 1.

Then, we multiply it by
∏n

i=1 exp
(
i(P · ki)ti

)
and integrate over all the ti’s. This leads

immediately to

2π δ
(
P ·
∑

ki
)∑
σ∈Sn

i

P · kσ1
+ i0+

· · · i

P · (kσ1
+· · ·+kσn−1

) + i0+
=

n∏
i=1

2π δ(P · ki).

Therefore, we obtain∑
σ∈Sn

A
μσ1

···μσn

ss ′ (P, P ′; {kσi
})

≈
ki
P

2 EP δss ′ (2π)
3δ
(
P+

∑
i
ki − P ′)∏

i

2π (−iZe)Pμi δ(P · ki),

(1.57)

where the only remaining entanglement among the photon momenta is the delta function of
momentum conservation.

https://doi.org/10.1017/9781108976688.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108976688.004


52 1 QUANTUM FIELD THEORY BASICS

12.d In order to go further with the interpretation of this formula, one should recall that
with our conventions a state

∣∣P, s〉 represents a beam of particles of momentum P and spin
s, with a uniform density of 2EP particles per unit volume, rather than a single particle. (The
delta function of momentum conservation in (1.57) is consistent with this: indeed, momentum
conservation is equivalent to invariance under spatial translations, which is only possible for
states that are themselves translation invariant.) It is easy to construct a normalizable state that
represents a single particle, by a linear superposition such as

∣∣Ψ〉 ≡ ∑
s

∫
d3P

(2π)3
eiP·X0√
2Ep

Ψs(P)
∣∣P, s〉.

Indeed, one may check that

〈
Ψ
∣∣Ψ〉 = 1 provided that

∑
s

∫
d3P

(2π)3
∣∣Ψs(P)

∣∣2 = 1.

In the definition of the state
∣∣Ψ〉, the coordinate X0 may be viewed as the “center” of the

object represented by this state. (For instance, if the momentum-space wavefunction Ψs(P)
is a Gaussian, the wavefunction of the state in the coordinate representation is a Gaussian
centered at X0.) The analogue of (1.57) for the state

∣∣Ψ〉 is

Aμ1···μn(Ψ; {ki})

≡
∑
s,s ′

∫
d3Pd3P ′

(2π)6
ei(P−P ′)·X0√

4EPEP ′
Ψs(P)Ψ

∗
s ′(P

′)
∑
σ∈Sn

A
μσ1

···μσn

ss ′ (P, P ′; {kσi
})

≈
ki
P

∑
s

∫
d3P

(2π)3
Ψs(P)Ψ

∗
s ′(P)

∏
i

2π (−iZe)Pμi e−iki·X0 δ(P · ki),

where we have used P ≈ P ′ whenever possible. Let us now attach the n photon propagators
to the Lorentz indices of this expression:

Mν1···νn(Ψ; {ki}) ≡ Aμ1···μn(Ψ; {ki})

n∏
i=1

−i gμi

νi

k2i + i0+

=
ki
P

∑
s

∫
d3P

(2π)3
Ψs(P)Ψ

∗
s ′(P)

∏
i

2π δ(P · ki) −ZeP
νi e−iki·X0

k2i + i0+
.

(Note that the result does not depend on the gauge used to express the photon propagators,
because they are contracted into Pμi and we have P · ki = 0.) Assume now that the nucleus
described by the state

∣∣Ψ〉 is at rest. In other words, the wavefunction Ψs(P) is a narrow peak
centered at P = 0, with a support such that the typical P is much smaller than the mass M. In
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this static limit, we have

2π δ(P · ki)Pνi ≈ 2π δ(Mk0i )Mδνi
0 = 2π δ(k0i ) δ

νi
0,

and

Mν1···νn(Ψ; {ki}) =
ki�P

static

∑
s

∫
d3P

(2π)3
Ψs(P)Ψ

∗
s ′(P)︸ ︷︷ ︸

= 1

∏
i

2π δ(k0i )
−Ze δνi

0 e
−iki·X0

k2i + i0+

=
∏
i

2π δ(k0i )
Ze δνi

0 e
−iki·X0

k2
i − i0+

.

The interpretation of this expression is more transparent in coordinate space, after a Fourier
transformation:

Mν1···νn(Ψ; {xi}) ≡
∫ n∏

i=1

d4ki

(2π)4
e−iki·xi Mν1···νn(Ψ; {ki}) ≈

∏
i

δνi
0

Ze

4π |xi − X0|︸ ︷︷ ︸
≡ A

νi
Ψ

(xi)

.

In this formula, each factor is nothing but the Coulomb potential produced at xi by a point-like
electrical charge Ze located at X0. Therefore, in this limit, the scattering of an electron off the
target Ψ is equivalent to a scattering off an external classical field. One would have obtained
the same answer simply by adding the Coulomb potential Aμ

Ψ(x) into the covariant derivative:

Dμ = ∂μ − ieAμ → ∂μ − ie (Aμ +A
μ
Ψ).

This approximation is known as the external field approximation or Weizsäcker–Williams
approximation. Its derivation shows unambiguously that the term of order n in this external
field is equivalent to summing over Feynman graphs with n exchanged photons, summed over
all the ways of permuting the attachments of the photons. Thus, the (single) term of order n
in the expansion in powers of the external field contains the contributions from n! Feynman
diagrams:

1 2 3 4 5 6

A
μ

Ψ(x)

≈
∑
σ∈Sn

k
1

k
2 k

3
k
4

k
5

k
6

1 2 3 4 5 6

σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

Ψ Ψ

.

13. Subleading Soft Radiation in Scalar QED The goal of this problem and the next one
is to study the first correction to the formula that gives the amplitude for the emission of a soft
photon off a hard process. In the present problem, we consider the simpler case where the
charged particles are scalar; the result is generalized to spin-1/2 charges in Problem 14.
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13.a Show that the formula (1.50) in the statement of Problem 10, which describes the
emission of a soft photon of momentum k from an amplitude with hard spin-1/2 charged
particles of momenta pi, is unchanged when the charged particles are scalar, i.e.,

Mμ(k;p1, . . . , pn) = M(p1, . . . , pn)

n∑
i=1

ei p
μ
i

pi · k + O(k0).

We recall that, at this order in k, the only contributions are obtained when the soft photon
is attached to an external line of the hard process.

13.b Our goal is now to calculate the first subleading correction in k to this formula, in order
to obtain the following improved result:

Mμ(k;p1, . . . , pn) =

n∑
i=1

ei

pi · k
(
p
μ
i − i kν J

μν
i

)
M(p1, . . . , pn) + O(k1),

where Jμνi ≡ i
(
p
μ
i

∂
∂piν

− pνi
∂

∂piμ

)
is the angular momentum operator. Hints: consider

more accurately the insertions of the photon on the external lines. Then, note that there
is also a term where the photon is attached to an inner line, but that the leading piece of
this contribution is fully constrained by the Ward–Takahashi identities.

13.a Consider an amplitude M(p1, . . . , pn) in scalar QED, with all external particles hard.
The emission of a soft photon of momentum k off this amplitude is dominated by Feynman
graphs where the soft photon is attached to one of the external lines (the analysis of the
denominators is the same in scalar and in spinor QED). The only change comes from the
coupling of the photon to a scalar line: the Feynman rule for attaching a photon of momentum
k and Lorentz index μ to a scalar of momentum p and charge e is a factor −ie(2p + k)μ.
Therefore, when attaching a soft photon to an outgoing scalar particle of momentum p, the
amplitude is modified by a factor

−ie (2p+ k)μ
i

(p+ k)2 −m2
≈

k→0

e pμ

p · k.

(All the momenta are defined to be outgoing.) Note that here e is the coupling constant as
it appears in the definition of the covariant derivative, Dμ ≡ ∂μ − ieAμ. In the case of an
outgoing scalar, this parameter is also the electrical charge that flows outwards. But consider
now an outgoing antiscalar of momentum p. In this case, the amplitude is modified by a factor

−ie (−2p− k)μ
i

(p+ k)2 −m2
≈

k→0

−e pμ

p · k ,

which differs by a sign from the case of an outgoing scalar. It is possible to make the subsequent
formulas look more uniform if we introduce for each external line the corresponding outwards
flowing electrical charge, denoted e. The relationship between this charge and the coupling
constant e is simply
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• Outgoing scalar: e = e

• Outgoing antiscalar: e = −e

• Incoming scalar: e = −e

• Incoming antiscalar: e = e.

In terms of this outgoing electrical charge, the modification factor for the emission of a soft
photon is epμ/p · k for any kind of external line (in this respect, scalar QED is therefore
identical to spinor QED).

Summing over all the charged external lines, we thus obtain

Mμ(k;p1, . . . , pn) ≈
k
pi

M(p1, . . . , pn)

n∑
i=1

ei p
μ
i

pi · k, (1.58)

where the sum runs over all the charged external lines of the hard process. The first neglected
terms in this formula are of order zero in kμ. Recall that, with the conventions used in this
problem, conservation of momentum and conservation of electrical charge in the hard process
read

n∑
i=1

p
μ
i = 0,

n∑
i=1

ei = 0.

13.b Our task is now to determine the first subleading correction to (1.58), i.e., the next term
in the formal expansion in powers of k/pi. In order to calculate this correction, we need two
things:

i. Improve the approximation made when the soft photon is attached to a charged external
line of the hard process, so that it remains accurate at least up to the next order in k.

ii. Consider graphs where the soft photon is attached to an internal line of the hard process.

Let us start with i. Without doing any approximation, the attachment of a soft on-shell (i.e.,
k2 = 0) photon to an outgoing scalar line leads to

n∑
i=1

ei
(2pi + k)μ

(pi + k)2 −m2
i

M(. . . , pi + k, . . . ) =

n∑
i=1

ei
(2pi + k)μ

2pi · k M(. . . , pi + k, . . . ).

Note that this will simplify further when we contract the Lorentz index μ of the soft photon
with a physical polarization vector, since kμελμ(k) = 0. This contraction will get rid of
the term in kμ, leaving the same eikonal factor pμi /(pi · k) as in (1.58). Anticipating this
contraction, the only difference from (1.58) is that the hard amplitude must be evaluated at
pi + k instead of pi when the i-th line emits the soft photon. This is true for all the possible
types of external scalar lines (incoming/outgoing, scalar/antiscalar).

Now consider ii, i.e., the contributions where the soft photon comes from the interior of the
hard process. As we shall show, these extra contributions are constrained by gauge invariance,
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and these constraints are sufficient to determine the dominant terms in these contributions. Let
us write the total amplitude as follows:

Mμ(k;p1, . . . , pn) =

n∑
i=1

ei
(2pi + k)μ

2pi · k M(. . . , pi + k, . . . )︸ ︷︷ ︸
photon attached to external lines

+ Nμ(k;p1, . . . , pn)︸ ︷︷ ︸
photon attached to an internal line

.

An important point is that the two terms are in general not gauge invariant separately, but their
sum is. In particular, the full amplitude must obey the following Ward–Takahashi identity:

0 = kμM
μ(k;p1, . . . , pn)

=

n∑
i=1

ei M(. . . , pi + k, . . . ) + kμN
μ(k;p1, . . . , pn). (1.59)

(We have used the fact that the photon is on-shell, k2 = 0, in order to simplify the first term.)
Note that the term Nμ is not singular when k → 0, since the leading k−1 behavior of the
amplitude is entirely contained in the first term. Thus, the expansion of Nμ in powers of k
starts with a constant, followed by a term linear in k, etc.:

Nμ(k;p1, . . . , pn) = N
μ
0 (p1, . . . , pn) + kνN

μν
1 (p1, . . . , pn) + · · · .

We can similarly expand the quantity M(. . . , pi + k, . . . ):

M(. . . , pi + k, . . . ) = M(p1, . . . , pn) + kμ
∂

∂piμ
M(p1, . . . , pn) + · · · .

The next step is to investigate the consequence of the Ward–Takahashi identity (1.59) order-by-
order in k. At order k−1, only the term in M contributes, and the Ward–Takahashi identity is
trivially satisfied thanks to charge conservation in the hard process. At the next order (k0), the
Ward–Takahashi identity reads

0 =

n∑
i=1

ei kμ
∂

∂piμ
M(p1, . . . , pn) + kμN

μ
0 (p1, . . . , pn).

Therefore, we have

N
μ
0 (p1, . . . , pn) = −

n∑
i=1

ei
∂

∂piμ
M(p1, . . . , pn) +Gμ(p1, . . . , pn),

where Gμ is a term that fulfills the Ward–Takahashi identity by itself, kμGμ = 0. But note
that such a Gμ would have to be independent of the photon momentum k, and yet satisfy this
identity for any k. The only possibility is therefore Gμ(p1, . . . , pn) = 0. Thus, the leading
term in Nμ is in fact fully determined by gauge invariance, and we have

ελμ(k)M
μ(k;p1, . . . , pn)

=

n∑
i=1

ei

(
pi · ελ(k)
pi · k︸ ︷︷ ︸
O(k−1)

+
(pi · ελ(k)

pi · k kν−ελν(k)
)

︸ ︷︷ ︸
O(k0)

∂

∂piν

)
M(p1, . . . , pn)+O(k1).

Quite remarkably, it is not just the leading term, but also the first subleading correction in the
photon momentum, that we can write in this factorized form (provided we allow derivatives
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with respect to the pi in the formula). The first non-factorizable term occurs only two orders
down, with a suppression (k/pi)

2 relative to the leading term. Note that the above expression
can be written in a somewhat more symmetric way:

ελμ(k)M
μ(k;p1, . . . , pn)

=

n∑
i=1

ei p
μ
i

pi · k
(
ελμ(k) +

(
ελμ(k)kν − kμελν(k)

) ∂

∂piν

)
M(p1, . . . , pn) + O(k1).

Note also that(
ελμ(k)kν − kμελν(k)︸ ︷︷ ︸

antisymmetric in (μ, ν)

)
p
μ
i

∂

∂piν
=

ελμ(k)kν − kμελν(k)

2

(
p
μ
i

∂

∂piν
− pνi

∂

∂piμ

)

= −i ελμ(k)kν

(
i p

μ
i

∂

∂piν
− i pνi

∂

∂piμ︸ ︷︷ ︸
angular momentum op. Jμν

i

)
.

Therefore, a very compact way of writing the amplitude for soft emission is

ελμ(k)M
μ(k;p1, . . . , pn)

= ελμ(k)

n∑
i=1

ei

pi · k
(
p
μ
i − i kν J

μν
i

)
M(p1, . . . , pn) + O(k1).

This result was first derived by Low (Low, F. (1958), Phys Rev 110: 974). It has been
subsequently extended to Dirac fermions by Burnett and Kroll (see Problem 14), and it is now
known as the Low–Burnett–Kroll theorem.

A consequence of this factorization is that, if a hard process is forbidden because of some
conflicting quantum numbers, emitting a soft photon will not resolve the conflict (this is true in
the first two orders in an expansion in the soft photon energy). For instance, if some decay is
forbidden by charge parity (e.g., via Furry’s theorem), one may naively think that emitting an
extra photon – no matter how soft – lifts the obstruction since the charge parity of a photon is
−1. Moreover, since extra soft photons have a probability of order one of being emitted, thanks
to the terms in k−1, this extra emission would not lead to a suppressed decay rate, implying
that charge parity is in practice not conserved, at odds with experimental evidence. But the
above result tells us that this conclusion is not true: it is only via the terms of order k1 that the
extra photon stands a chance of lifting the obstruction, and therefore it cannot be soft (thus,
emitting it truly brings a suppression factor ∼ α). For this reason, another way this theorem is
sometimes phrased is by saying that “soft photons do not carry quantum numbers.”

14. Low–Burnett–Kroll Theorem In this problem, we extend the result of Problem 13 to
the case of QED with spin-1/2 charges. As we shall see, the generalization requires that one
sum the squared amplitude over the spins of the particles in the hard process, and the resulting
formula reads∑

spins

∣∣∣ελμ(k)Mμ
∣∣∣2 = n∑

i,j=1

eiej(pi · ελ)
(pi · k)(pj · k)

(
pj · ελ − i ελμkνJ

μν
j

)∑
spins

∣∣M∣∣2 + O(k0).

This result implies that corrections to a hard process by the emission of an extra soft photon are
in general of order α(Λ/k)2 relative to the hard process, where Λ is the hard scale. (However,
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the divergence that would arise when integrating over the energy of the soft photon is canceled
when one also includes virtual corrections with a soft photon in a loop.) More importantly, this
formula also shows that, when a hard process is forbidden by charge parity, emitting an extra
soft photon is not sufficient to lift the obstruction despite the fact that the extra photon flips
the charge parity, at least up to a relative order α(Λ/k)0. For this reason, this result is often
phrased by saying that “soft photons do not carry quantum numbers.”

14.a Adapt the QED Feynman rules to the convention where all the external momenta in the
amplitude M are defined to be outgoing.

14.b Consider an outgoing fermion of momentum pi, spin si and charge ei in the hard
amplitude, and single out the corresponding external spinor by writing M ≡ usi(pi)Asi .
Show that attaching a soft photon to this external line can be done by the substitution

usi(pi)Asi → ei usi(pi)
p
μ
i + p

μ
i kν∂

ν
pi

+ 1
2
γμ/k

pi · k Asi + O(k).

Determine the substitution rules for attaching a soft photon to all the other types of
external lines.

14.c Use the Ward–Takahashi identity to determine the term where the soft photon is attached
to an internal line of the hard process. Write the total amplitude as

Mμ(k;p1, . . . , pn) =
∑
i

ei
p
μ
i − ikν

[
J
μν
i

]
A,B

pi · k M(p1, . . . , pn) + Eμ + O(k1),

Eμ ≡
∑

i∈{u,v}

{
usi(pi)

vsi(−pi)

}
eiγ

μ/k

2pi · k Asi +
∑

i∈{u,v}
Bsi

ei/kγ
μ

2pi · k

{
usi(−pi)

vsi(pi)

}
,

where the subscript A,B on the angular momentum operators Jμν indicates that they
should not act on the external spinors contained in the hard amplitude M.

14.d Square this amplitude and sum over the spins of the hard external fermions in order to
prove the announced formula.

14.a In order to provide an easy connection with Problem 13, we use a convention in which
all the momenta are outgoing. In spinor quantum electrodynamics, this implies somewhat
unusual assignments for the arguments of the spinors that represent the external fermions, and
the Dirac equations they satisfy are also modified:

Feynman rule Dirac equation

Outgoing fermion us(p) u(p)(/p−m) = 0

Outgoing anti-fermion vs(p) (/p+m)v(p) = 0

Incoming fermion us(−p) (/p+m)u(−p) = 0

Incoming anti-fermion vs(−p) v(−p)(/p−m) = 0
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14.b Consider an amplitude M(p1, . . . , pn) with n hard external fermions or anti-fermions.
When an extra soft photon is emitted in this process, the leading contributions come from
Feynman diagrams where the extra photon is attached to one of these external lines. However,
since we now want to calculate the next-to-leading contribution (in an expansion in powers
of the photon momentum k), the calculation of the attachments of the photon to the external
lines must be refined. Since we have to consider in turn every external line, it is convenient
to write the hard amplitude in a factorized form that highlights the spinor corresponding to a
given external line. Depending on the type of external line under consideration, we write

M ≡ usi(pi) Asi ≡ vsi(−pi) Asi ≡ Bsi usi(−pi) ≡ Bsi vsi(pi).

(In these expressions, there is no sum on the index i.) Let us start with the case of an outgoing
fermion of momentum pi. Attaching the soft photon of momentum k to this line gives a
contribution that corresponds to the following substitution:

usi(pi)Asi(. . . , pi, . . . )

→ usi(pi) e γ
μ /pi +m+ /k

2 pi · k Asi(. . . , pi + k, . . . )

=
e

pi · k usi(pi)
{
p
μ
i + p

μ
i kν∂

ν
pi

+ 1
2
γμ/k

}
Asi(. . . , pi, . . . ) + O(k).

In the second line, the denominator has been simplified thanks to the assumption that the
external fermion as well as the photon are on-shell. In the last line, we have used the Dirac
equation and we have expanded the function Asi(. . . , pi + k, . . . ) in order to extract the linear
order in k. As in Problem 13, e denotes the coupling constant that enters in the definition of
the covariant derivative, which is equal to the charge of a fermion and is opposite to that of an
anti-fermion.

Consider now a soft photon attached to an outgoing anti-fermion of momentum pi. This
leads to

Bsi(. . . , pi, . . . ) vsi(pi)

→ Bsi(. . . , pi + k, . . . )
−/pi +m− /k

2 pi · k eγμ vsi(pi)

= Bsi(. . . , pi, . . . )
{
p
μ
i + p

μ
i kν

←
∂

ν
pi

+ 1
2
/kγμ

}
vsi(pi)

−e

pi · k + O(k).

Two remarks are in order about this formula. First, note that the derivative with respect to pi
acts on the left, as indicated by an arrow. Second, in the eikonal factor −e/pi ·k, the numerator
−e is nothing but the electrical charge flowing outwards. In order to further uniformize the
notation, it is convenient to express everything in terms of the outgoing electrical charge e,
whose relationship with e depends on the type of external line under consideration:

• Outgoing fermion: e = e

• Outgoing anti-fermion: e = −e

• Incoming fermion: e = −e

• Incoming anti-fermion: e = e.

https://doi.org/10.1017/9781108976688.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108976688.004


60 1 QUANTUM FIELD THEORY BASICS

With these conventions, it is easy to work out the remaining two cases (incoming fermions
and anti-fermions). All the rules for attaching a soft photon, up to terms of order k, to the four
types of external fermions lines can be summarized by{

usi(pi)

vsi(−pi)

}
Asi → ei

{
usi(pi)

vsi(−pi)

}
p
μ
i + p

μ
i kν

→
∂ ν

pi
+ 1

2
γμ/k

pi · k Asi ,

Bsi

{
usi(−pi)

vsi(pi)

} → eiBsi

p
μ
i + p

μ
i kν

←
∂ ν

pi
+ 1

2
/kγμ

pi · k

{
usi(−pi)

vsi(pi)

}
.

Recall also that with outgoing momenta and electrical charges, the conservation laws in the
hard process take the following simple forms:∑

i

p
μ
i = 0,

∑
i

ei = 0.

14.c The amplitude for the emission of an extra soft photon can be split into a term where
the photon is attached to one of the external lines of the hard process and a term where the
photon is attached to an internal line:

Mμ(k;p1, . . . , pn) ≡ M
μ
ext(k;p1, . . . , pn) +M

μ
inner(k;p1, . . . , pn).

The first term is obtained by summing the results of the preceding section over all the external
lines:

M
μ
ext(k;p1, . . . , pn) =

∑
i∈{u,v}

ei

{
usi(pi)

vsi(−pi)

}
p
μ
i + p

μ
i kν

→
∂ ν

pi
+ 1

2
γμ/k

pi · k Asi

+
∑

i∈{u,v}
eiBsi

p
μ
i + p

μ
i kν

←
∂ ν

pi
+ 1

2
/kγμ

pi · k

{
usi(−pi)

vsi(pi)

}
,

where the first line contains the contributions from outgoing fermions and incoming anti-
fermions, and the second line that of incoming fermions and outgoing anti-fermions (in each
case, one should choose the appropriate spinor from the two listed). The above expression can
also be rearranged as follows:

M
μ
ext(k;p1, . . . , pn) =

(∑
i

ei
p
μ
i + p

μ
i kν∂

ν
pi

∣∣
A,B

pi · k

)
M(p1, . . . , pn)

+
∑

i∈{u,v}

{
usi(pi)

vsi(−pi)

}
ei
2
γμ/k

pi · k Asi +
∑

i∈{u,v}
Bsi

ei
2
/kγμ

pi · k

{
usi(−pi)

vsi(pi)

}
,

where the subscript A,B added to the derivative with respect to pi in the first line indicates
that it does not act on the spinors associated with the external lines in the hard amplitude M.

We now need to determine the term M
μ
inner where the photon is attached to an inner line of

the hard process. This term starts at order k0, and therefore, to the accuracy of the expansion
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considered here, it is independent of k. As in the scalar QED case, this term can be constrained
by requesting that the full amplitude obey the Ward–Takahashi identity when we contract it
with the photon momentum kμ. Note that the terms in /k vanish identically in this contraction
since /k/k = k2 = 0. Using the fact that the total outgoing charge in the hard process is zero,
the Ward–Takahashi identity gives

M
μ
inner(p1, . . . , pn) = −

(∑
i

ei
∂

∂piμ

∣∣∣∣
A,B

)
M(p1, . . . , pn).

(A priori, we could add to this expression a term Gμ such that kμGμ = 0. But since Gμ should
be independent of k, the only way to satisfy this for all kμ is to have Gμ ≡ 0.)

When we combine this term with M
μ
ext, the terms with derivatives with respect to the

external momenta pi can be arranged into angular momentum operators Jμνi ≡ −i(pμi ∂piν −
pν∂piμ). This gives

Mμ(k;p1, . . . , pn) =
∑
i

ei
p
μ
i − ikν

[
J
μν
i

]
A,B

pi · k M(p1, . . . , pn) + Eμ + O(k1),

Eμ ≡
∑

i∈{u,v}

{
usi(pi)

vsi(−pi)

}
eiγ

μ/k

2pi · k Asi +
∑

i∈{u,v}
Bsi

ei/kγ
μ

2pi · k

{
usi(−pi)

vsi(pi)

}
.

The first term is identical to the scalar case, except for the fact that the angular momentum
operators do not act on the external spinors (as indicated by the subscript A,B). Another
difference from the scalar QED case is that the second term, Eμ, does not vanish when
contracted with a physical polarization vector.

14.d It turns out that, after squaring this amplitude and summing over the spins of the external
hard fermions, the terms in Eμ provide the missing terms to enlarge the scope of the action of
the angular momentum operators to the full hard amplitude. In order to be consistent with the
accuracy to which we have determined Mμ, we should keep only terms of order k−2 and k−1

in its square, since the higher orders would be incomplete. At this order, the squared amplitude
reads

∑
spins

∣∣∣ελμ(k)Mμ
∣∣∣2 = ∑

i,j

eiej(pi · ελ)
(pi · k)(pj · k)

(
(pj · ελ) − i ελμkν

[
J
μν
j

]
A,B

)
︸ ︷︷ ︸

O(k−2) ⊕ O(k−1)

∑
spins

∣∣M∣∣2

+
∑
i

ei(pi · ελ)
pi · k

∑
spins

(
M∗ελμEμ +MελμE

μ∗
)

︸ ︷︷ ︸
O(k−1)

. (1.60)

Note that in the first line, the derivatives contained in the angular momentum operators act on
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the two factors of
∣∣M∣∣2 = M∗M. In order to calculate the term of the second line, note that

∑
spins

(
M∗ελμEμ +MελμE

μ∗
)
=

∑
j∈{u,v}

ejAsj

{
/pj +m

−/pj −m

}
/ε/k+ /k/ε

{
/pj +m

−/pj −m

}
2pj · k Asj

+
∑

j∈{u,v}
ejBsj

{
−/pj +m
/pj −m

}
/ε/k+ /k/ε

{
−/pj +m
/pj −m

}
2pj · k Bsj .

Using the fact that k · ε = 0, we have

(/p±m)/ε/k+ /k/ε(/p±m)

2p · k =
(p · ε)/k− (p · k)/ε

p · k
=

1

p · k
(
− iεμkν

[
Jμνp

])
(/p±m).

The remarkable feature of this result is that it takes the form of an angular momentum operator
acting on spin sums such as

∑
s us(p)us(p) = /p+m. Thanks to this formula, the terms in

the second line of (1.60) are precisely what is needed in order to lift the restrictions on the
action of the angular momentum operators in the terms of the first line, allowing us to write
the complete answer up to (and including) the order k−1 in a much more compact fashion:

∑
spins

∣∣∣ελμ(k)Mμ
∣∣∣2 = ∑

i,j

eiej(pi · ελ)
(pi · k)(pj · k)

(
(pj · ελ) − i ελμkνJ

μν
j

)∑
spins

∣∣M∣∣2.
This formula, obtained by Burnett and Kroll (Burnett, T. and Kroll, N. M. (1968), Phys Rev
Lett 20: 86), generalizes Low’s theorem (established in Problem 13) to the case of hard charged
external particles of spin 1/2. And the main consequence is the same: if some unpolarized
hard process is forbidden by charge parity, emitting extra soft photons is not sufficient to make
it possible. (The emission of an extra photon may make this process possible via terms of order
O(k0), but these terms are not enhanced by inverse powers of the photon energy. )

15. Coherent States in Quantum Field Theory In quantum mechanics, coherent states
are defined as eigenstates of the annihilation operators. In a certain sense, they are the closest
analogues to classical states where the position and momentum are both well defined. The
goal of this problem is to generalize the concept of coherent state to a non-interacting scalar
quantum field theory, starting from the following definition:

∣∣χin
〉 ≡ Nχ exp

{∫
d3k

(2π)32Ek
χ(k)a†

k,in

} ∣∣0in
〉
,

where χ(k) is a function of 3-momentum and Nχ a normalization constant.

15.a Check that this state is an eigenstate of ak,in.
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15.b Determine the prefactor Nχ so that
〈
χin
∣∣χin

〉
= 1. Hint: introduce the operator

Tχ ≡ exp
∫

d3k

(2π)32Ek

(
χ(k)a†

k,in − χ∗(k)ak,in
)

and write it in normal-ordered form.

15.c Show that |χin
〉

is the ground state of a free scalar field theory with a shifted field:

φ(x) → φ(x) −

∫
d3k

(2π)32Ek

(
χ∗(k)eik·x + χ(k)e−ik·x

)
.

15.d Consider two coherent states
∣∣χ, ϑin

〉
, with χ(k), ϑ(k) ∝ δ(k), and calculate

〈
ϑin
∣∣χin

〉
.

15.a Let us denote

Eχ ≡
∫

d3k

(2π)32Ek
χ(k)a†

k,in.

The commutation relation between creation and annihilation operators leads to[
ak,in, Eχ

]
= χ(k),

[
ak,in, f(Eχ)

]
= χ(k) f ′(Eχ).

This implies

ak,in
∣∣χin

〉
= Nχ ak,ine

Eχ
∣∣0in

〉
= Nχ

[
ak,in, e

Eχ
] ∣∣0in

〉
= Nχ χ(k) e

Eχ
∣∣0in

〉
= χ(k)

∣∣χin
〉
.

Thus, coherent states are eigenstates of the annihilation operators.

15.b Consider now the following operator:

Tχ ≡ exp
∫

d3k

(2π)32Ek

(
χ(k)a†

k,in − χ∗(k)ak,in
)
.

First, it is trivial to check that T †
χ = T−χ = T−1

χ . (Therefore, Tχ is unitary.) Then, by using the
Baker–Campbell–Hausdorff formula, we can put this operator in normal-ordered form:

Tχ = exp
(
−

1

2

∫
d3k

(2π)32Ek

∣∣χ(k)∣∣2) exp
( ∫ d3k

(2π)32Ek
χ(k)a†

k,in

)
× exp

(
−

∫
d3k

(2π)32Ek
χ∗(k)ak,in

)
.

From this expression, we see that
∣∣χin

〉 ∝ Tχ
∣∣0in

〉
. Since Tχ is unitary, this implies that the

normalization
〈
χin
∣∣χin

〉
= 1 is obtained by choosing precisely

∣∣χin
〉
= Tχ

∣∣0in
〉
, from which

we read the value of the normalization prefactor Nχ:

Nχ = exp
(
−

1

2

∫
d3k

(2π)32Ek

∣∣χ(k)∣∣2).
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15.c If H0 denotes the Hamiltonian of a free theory, let us now define Hχ ≡ TχH0T
†
χ . Note

first that Hχ is Hermitian. Then, we have

Hχ

∣∣χin
〉
= TχH0 T

†
χTχ︸︷︷︸
= 1

∣∣0in
〉
= 0.

Thus, the coherent state is the ground state of the modified Hamiltonian Hχ.
Using the commutation relations[

ak,in, Tχ
]
= χ(k) Tχ,

[
a
†
k,in, Tχ

]
= χ∗(k) Tχ,

we obtain

Tχak,inT
†
χ = ak,in − χ(k), Tχa

†
k,inT

†
χ = a

†
k,in − χ∗(k),

and the modified Hamiltonian is more explicitly given by

Hχ =

∫
d3k

(2π)32Ek
Ek

(
a
†
k,in − χ∗(k)

)(
ak,in − χ(k)

)
.

(We have discarded the zero-point energy term, since it is not modified by the action of
Tχ · · · T †

χ .) Recalling the formulas that relate a free field operator and the creation and annihila-
tion operators, we see that this is the Hamiltonian of a free theory with a shifted field:

φ(x) → φ(x) −Φχ(x), Φχ(x) ≡
∫

d3k

(2π)32Ek

(
χ∗(k)eik·x + χ(k)e−ik·x

)
.

(Note that Φχ(x) is an ordinary real-valued function, not an operator.)

15.d Consider two such coherent states,
∣∣χin

〉
,
∣∣ϑin

〉
, in the special case where their defining

functions only have support at k = 0: χ(k) ≡ (2π)3χ0δ(k), ϑ(k) ≡ (2π)3ϑ0δ(k) (we assume
χ0, ϑ0 ∈ �). The overlap of these two states is given by

〈
ϑin
∣∣χin

〉
= exp

(
−

1

2

∫
d3k

(2π)32Ek

[∣∣χ(k)∣∣2 + ∣∣ϑ(k)∣∣2])
× 〈

0in
∣∣ exp

( ∫ d3k

(2π)32Ek
ϑ∗(k)ak,in

)
exp

( ∫ d3k

(2π)32Ek
χ(k)a†

k,in

)∣∣0in
〉

= exp
(
−

1

2

∫
d3k

(2π)32Ek

(∣∣χ(k) − ϑ(k)
∣∣2 + χ∗(k)ϑ(k) − ϑ∗(k)χ(k)

))
= exp

(
−

V |χ0 − ϑ0|
2

4m

)
.

Therefore, spatially homogeneous coherent states (i.e., ground states of quadratic theories
shifted by a uniform field) have an exponentially suppressed overlap, and the argument of
the exponential is proportional to the volume. Thus, pairs of coherent states of this type are
mutually orthogonal if the volume is infinite.
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16. Running Couplings in a Two-Field Scalar Field Theory The purpose of this problem
is to study at one loop the scale dependence of the coupling in a scalar field theory with quartic
coupling, first with a single field and then with two coupled fields. In the latter case, we show
that the theory evolves towards a U(1) symmetry at large distance.

16.a Draw the graphs that contribute to the β function at lowest order (i.e., one-loop) in a
scalar field theory with λ

4!φ
4 interaction. Why don’t we need to consider self-energy

graphs at this order?

16.b Calculate the relevant part of these graphs in dimensional regularization, at the renor-
malization point where the Mandelstam variables are set to s = t = u = −μ2. Write
their sum as 3

2
λ2L(μ), where L(μ) is a quantity that should be made explicit. From this,

check that the β function is β = 3λ2/(4π)2.

16.c Next, we consider a theory with two scalar fields φ1 and φ2, with the following La-
grangian:

L ≡ 1
2
(∂μφ1)(∂

μφ1) +
1
2
(∂μφ2)(∂

μφ2) −
λ
4! (φ

4
1 + φ4

2) −
2ρ
4!φ

2
1φ

2
2.

(Note that this theory has a U(1) invariance in the (φ1,φ2) plane when λ = ρ.) What
are the free Feynman propagators for the fields φ1 and φ2 (in momentum space)? What
are the vertices in this theory and the corresponding Feynman rules?

16.d Draw the graphs that give, at lowest order, the β function that controls the scale depen-
dence of the coupling constant λ. Show that the relevant part of these graphs is given by(
3
2
λ2 + 1

6
ρ2
)
L(μ), where L(μ) is the quantity obtained in question 16.b. Check that this

β function is βλ = (3λ2 + ρ2/3)/(4π)2.

16.e Repeat question 16.d for the β function that controls the scale dependence of the coupling
constant ρ. Check that it is βρ = (2λρ+ 4ρ2/3)/(4π)2.

16.f Derive the renormalization group equation for the ratio ρ/λ. What are the fixed points
of this equation? Is ρ/λ = 1 an attractive fixed point in the ultraviolet? in the infrared?

16.a The calculation of the β function requires the coupling counterterm δλ and the wave-
function renormalization counterterm δz. δλ is obtained from the one-loop corrections to the
vertex function (i.e., the four-point function in the case of the φ4 theory):

1

2

3

4

1

3

2

4

1

4

3

2

(Note that there are three ways of attaching the four external lines to the loop.) δz comes
from the momentum dependence of the self-energy. But in the φ4 theory, the self-energy is a
constant at one loop, and therefore one has δz = 0 at this order.
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16.b We need to calculate only one of the above graphs, since the renormalization point we
have chosen is symmetric under the exchange of the channels s, t, u. Moreover, since only
the ultraviolet divergent part is necessary, we do not need to keep the mass in the propagators.
With this in mind, let us consider the first graph. Its contribution to the amputated correlation
function Γ4 reads (we use dimensional regularization, with d = 4− 2ε):

Γ
(1)
4 (p1,2,3,4) = iμ2ε (−iλ)

2

2

∫
ddk

(2π)d
i

k2
i

(k+ p1 + p2)2

= i
λ2μ2ε

2

1∫
0

dx

∫
ddk

(2π)d
1

(k2 − Δ)2
= −

λ2μ2ε

2

1∫
0

dx

∫
ddk

E

(2π)d
1

(k2
E
+ Δ)2

= −
λ2μ2ε

2

1∫
0

dx
Δd/2−2

(4π)d/2
Γ(2− d

2
)

Γ(2)
,

with Δ ≡ −x(1 − x)(p1 + p2)
2 = x(1 − x)μ2. The x dependence of the integrand is of the

form (x(1− x))ε and therefore this integral produces a result of the form 1+ O(ε). Since we
are only interested in the ultraviolet divergent part, only the 1 is needed. Thus, we can write

Γ
(1)
4 (p1,2,3,4) = −

λ2

2(4π)2ε

μ2ε

μ2ε
.

Since the renormalization point is symmetric in the s, t, u channels, the above result is simply
multiplied by 3 when we include all the graphs:

Γ
(1+2+3)
4 (p1,2,3,4) =

3λ2

2
L(μ), with L(μ) ≡ −

1

(4π)2ε

μ2ε

μ2ε
.

In this notation, the prefactor 3
2

is the number of graphs times their symmetry factor, the factor
λ2 is the contribution from the two vertices, and L(μ) is the value of the loop integral. The
counterterm that removes this divergence is

δλ = −
3λ2

2
L(μ),

which leads to the following β function:

β = − lim
ε→0

μ∂μ δλ =
3λ2

(4π)2
.

16.c Consider now an extension of this theory that has two scalar fields φ1 and φ2, with the
following Lagrangian:

L ≡ 1
2
(∂μφ1)(∂

μφ1) +
1
2
(∂μφ2)(∂

μφ2) −
λ
4! (φ

4
1 + φ4

2) −
2ρ
4!φ

2
1φ

2
2.

The two propagators of this theory have identical expressions:

=
i

p2 + i0+
, =

i

p2 + i0+
.

(Even though the propagators are the same, it is important to use different symbols for the
two fields in the diagrams, since there will be various vertices, depending on which fields are
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attached to them.) This theory has only quartic vertices, φ4
1, φ4

2 and φ2
1φ

2
2:

= −iλ, = −iλ, = −i
ρ

3
.

For the first two vertices, this is just the Feynman rule for the vertex of the standard φ4 theory,
when the interaction term in the Lagrangian is normalized as λ

4!φ
4. For the third vertex, the

Feynman rule is obtained as

−i
2ρ

4!︸︷︷︸
coeff. in L

×2!× 2! = −i
ρ

3
,

where the first factor 2! corresponds to the two ways of attaching the fields φ1φ1 to the two
solid lines of the vertex, and the second factor 2! counts the number of ways of attaching the
fields φ2φ2 to the two dotted lines of the vertex.

16.d In order to determine the β function that controls the scale dependence of the coupling
λ, it is sufficient to calculate at one loop the four-point function with only external fields of
type 1. The corresponding graphs are:

1

2

3

4

1

3

2

4

1

4

3

2

1

2

3

4

1

3

2

4

1

4

3

2

The values of the loops do not depend on the type of field running in them since we neglect
masses in this calculation, and are therefore given by the same function L(μ) in all six graphs.
We just need to count the graphs and their symmetry factors ( 1

2
in all cases), and assign them

the appropriate vertices to find the correct four-point function:

Γ4(p1,2,3,4) =
(3
2
λ2 +

3

2

(
ρ
3

)2)
L(μ) =

(3λ2
2

+
ρ2

6

)
L(μ).

Since L(μ) is already known, we do not need any new calculation in order to obtain the β
function in this case. It is sufficient to appropriately adjust the prefactor, to obtain

βλ =
3λ2 + ρ2

3

(4π)2
.

16.e To obtain the β function that drives the evolution of ρ, we need to consider the 4-point
function with two external fields φ1 and two external fields φ2. To be definite, let us assume
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0 1 3

IR attractor

ρ/λ

μ∂μ(ρ/λ)

Figure 1.5 The β function that controls the running of the ratio ρ/λ. The arrows indicate the
direction of the flow towards long distances.

that the legs 1, 2 carry the field φ1 and the legs 3, 4 are attached to a field φ2. Thus, the
one-loop graphs that contribute to this function are the following:

1

2

3

4

1

2

3

4

1

4

2

3

1

3

2

4

We can directly write the corresponding expression for the four-point function in terms of the
integral L(μ):

Γ4(p1,2,3,4) =
(2
2
λρ
3
+ 2

(
ρ
3

)2)
L(μ).

(The first two graphs have a symmetry factor 1
2
, while the remaining two have a symmetry

factor 1.) From this, we directly obtain the following β function:

βρ = 3×
2λρ
3

+ 4ρ2

9

(4π)2
=

2λρ+ 4ρ2

3

(4π)2
.

(On the right-hand side, the prefactor 3 is due to the fact that the four-point function we have
calculated is a correction to ρ/3, and must therefore be multiplied by 3 in order to obtain a
correction to ρ itself.)

16.f From the above results, we have

μ∂μλ = βλ, μ∂μρ = βρ,

μ∂μ

(ρ
λ

)
=

βρ

λ
−

ρβλ

λ2
= −

ρ

3

(3− 4ρ
λ
+ ρ2

λ2

(4π)2

)
= −

ρ

3(4π)2
(
ρ
λ
− 1

)(
ρ
λ
− 3

)
.

From the factorized form of the right-hand side in the preceding equation, the fixed points are
ρ

λ
= 0, 1, 3.

To decide whether they are attractive or repulsive, we just need to determine the sign of the
right-hand side of this equation in the various intervals between the fixed points. Figure 1.5
shows that ρ/λ = 1 is an attractive fixed point in the infrared (and repulsive in the ultraviolet).
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17. Solution of the Running Equation at Two Loops Consider a theory, such as
QCD, in which the β function has the following perturbative expansion up to two loops:
β(g) = β0g

3 + β1g
5 + O(g7), with β0 < 0. Show that the scale dependence of the coupling

is given by

g(μ2) = −
1

β0 ln
(
μ2

Λ2

)
(
1+

β1

β2
0

ln ln
(
μ2

Λ2

)
ln
(
μ2

Λ2

) )
+ O

(
ln−2

(
μ2

Λ2

))
.

Hint: recall that Λ is defined as the infrared scale where the coupling constant becomes infinite.

Given the β function, the coupling constant evolves according to μ∂μg = β. This can be
turned into a differential equation for the scale dependence of g2:

μ
∂g2

∂μ
= 2β0g

4
(
1+ β1

β0︸︷︷︸
≡ b ∼ g2

g2
)
,

which can be rewritten as

dg2

g4(1+ bg2)
= β0

dμ2

μ2
.

To be definite, we integrate this differential equation between a coupling g2(μ2) at the scale
μ2 and a coupling g2(Λ2) = ∞ at the scale Λ2. In other words, we define Λ to be the scale at
which the running coupling becomes infinite. Note that this scale always exists if β0, β1 < 0,
as is the case in QCD when the number of quark flavors is not too large (see Problem 47). In
the following integral, it is legitimate to integrate up to g2 = ∞ since the denominator 1+bg2

does not vanish if b > 0. We get∫+∞

g2(μ2)

dg2

g4(1+ bg2)
= β0

∫Λ2

μ2

dμ2

μ2
= −β0 ln

(
μ2

Λ2

)
.

In order to evaluate the integral on the left-hand side, we use∫+∞

g2(μ2)

dg2

g4(1+ bg2︸︷︷︸
x

)
= b

∫+∞

bg2(μ2)

dx

x2(1+ x)
=

1

g2(μ2)
+ b ln

( bg2(μ2)

1+ bg2(μ2)

)
.

Therefore, we have

1

g2(μ2)
+ b ln

( bg2(μ2)

1+ bg2(μ2)

)
= −β0 ln

(
μ2

Λ2

)
.

Now, we must invert this equation in order to express g2(μ2) in terms of the logarithm that
appears on the right-hand side. Unfortunately, this cannot be done in closed form, and we must
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perform some kind of expansion. Let us denote by g20(μ
2) the solution obtained when keeping

only the one-loop β function,

g20(μ
2) = −

1

β0 ln
(
μ2

Λ2

) ,
and then write the full g2 as

g2(μ2) = g20(μ
2) + g21(μ

2).

When solving for g21, we may replace g2 by g20 in the term in b ln(·) because this term is
formally of higher order. Therefore, we have

1

g20(μ
2)

(
1−

g21(μ
2)

g20(μ
2)

+ · · ·
)
≈ −β0 �− b ln

( bg20(μ
2)

1+ bg20(μ
2)

)
,

where we denote � ≡ ln
(
μ2

Λ2

)
for compactness. This leads to

g21(μ
2) ≈ bg40(μ

2) ln
( bg20(μ

2)

1+ bg20(μ
2)

)
= −

β1

β3
0�

2

(
ln(�) + ln

(β2
0

β1
+ �−1

)︸ ︷︷ ︸
const +O(�−1)

)

= −
β1 ln(�)
β3
0�

2
+ O(�−2).

Therefore, we have

g(μ2) = −
1

β0 ln
(
μ2

Λ2

)
(
1+

β1

β2
0

ln ln
(
μ2

Λ2

)
ln
(
μ2

Λ2

) )
+ O

(
ln−2

(
μ2

Λ2

))
.
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