MARTINGALE CONVERGENCE THEOREMS FOR SEQUENCES OF STONE ALGEBRAS

by J. D. MAITLAND WRIGHT

(Received 12 January, 1968)

1. Introduction. A vector lattice W is boundedly complete when each subset $\{a_j: j \in J\}$ of W which is bounded above by an element of W has a least upper bound in W. The least upper bound of $\{a_j: j \in J\}$ is denoted by $\bigvee_{j \in J} a_j$ and the greatest lower bound by $\bigwedge_{j \in J} a_j$ whenever these exist.

Let C(S) be the algebra of real valued continuous functions on a compact Hausdorff space S. Stone [4] shows that the vector lattice C(S) is boundedly complete if and only if the closure of each open subset of S is open; in this event we call C(S) a Stone algebra. For example, if (X, \mathcal{B}, μ) is a probability space, then $L^{\infty}(X, \mathcal{B}, \mu)$ is a Stone algebra satisfying the countable chain condition.

Let $\{a_n\}$ (n = 1, 2, ...) be a bounded sequence in a Stone algebra \mathcal{S} ; then

$$\bigvee_{n=1}^{\infty} \bigwedge_{r=n}^{\infty} a_r \leq \bigwedge_{n=1}^{\infty} \bigvee_{r=n}^{\infty} a_r.$$

When these two terms are equal we define LIM a_n to be their common value and say the sequence is order convergent with order limit LIM a_n . In the special case where \mathcal{S} is of the form $L^{\infty}(X,\mathcal{B},\mu)$ and μ is a probability measure, if a sequence $\{b_n\}$ $(n=1,2,\ldots)$ has order limit b, then the sequence $\{b_n\}$ $(n=1,2,\ldots)$ converges to b in the L^1 -topology (L^{∞} is the dual of L^1). But Floyd [3] gives an example of a Stone algebra \mathcal{S} such that there is no Hausdorff vector topology for \mathcal{S} in which each bounded monotone increasing sequence converges to its least upper bound.

We shall postpone all further definitions till §2. In [7] we investigated Moy averaging operators on Stone algebras satisfying the countable chain condition. In this paper we consider a monotone increasing sequence $\{\mathscr{A}_n\}$ $(n=1,2,\ldots)$ of Stone subalgebras of a Stone algebra \mathscr{A}_{∞} such that the smallest Stone subalgebra containing $\bigcup_{n=1}^{\infty} \mathscr{A}_n$ is \mathscr{A}_{∞} . Let \mathscr{A}_{∞} satisfy the countable chain condition and let $T_0: \mathscr{A}_{\infty} \to \mathscr{A}_1$ be a Moy operator satisfying certain conditions. Then we show that there exists a sequence $\{T_n\}$ $(n=1,2,\ldots)$ of Moy operators on \mathscr{A}_{∞} such that:

- (i) T_n is a projection of \mathscr{A}_{∞} onto \mathscr{A}_n for $n \geq 1$.
- (ii) $T_r T_n = T_r \text{ for } 0 \le r < n.$
- (iii) If b is a positive element of \mathcal{A}_{∞} and $T_n b = 0$ then b = 0.
- (iv) For each $z \in \mathcal{A}_{\infty}$ the order limit LIM $T_n z$ exists and LIM $T_n z = z$.

This result is a Corollary of Theorem 2.

Theorem 1 is a convergence theorem for a sequence of generalized conditional expectations with respect to a modular Stone algebra valued measure. For conditional expectations with respect to real valued measures such results are known in probability theory as martingale

theorems; see Doob [2]. Theorem 1 was suggested by the classical work of Sparre Andersen and Jessen in [1]. The key step in generalizing their result to Stone algebra valued measures is Lemma 1.

In a later publication I intend to discuss applications of the results of this paper to Boolean algebras.

The work of this paper depends essentially on that of [6]. This is because in [7] we used the results of [6] to establish the existence, under certain conditions, of generalized conditional expectations.

- **2.** Convergence theorems. Throughout this paper (X, \mathcal{B}) is a measurable space and C(S) is a Stone algebra. Stone algebra valued measures were defined in [5]. We require ρ to be a finite C(S)-valued measure on (X, \mathcal{B}) ; that is, ρ is to be a map of \mathcal{B} into C(S) such that
 - (i) $\rho E \ge 0$ for each $E \in \mathcal{B}$;
 - (ii) if $\{E_i\}$ (j = 1, 2, ...) is a pairwise disjoint family of sets in \mathcal{B} then

$$\rho \bigcup_{j=1}^{\infty} E_j = \bigvee_{n=1}^{\infty} \sum_{j=1}^{n} \rho E_j.$$

A Stone algebra \mathcal{S} satisfies the countable chain condition when each bounded subset of \mathcal{S} contains a countable subset such that the two sets have the same least upper bound. This condition on \mathcal{S} is equivalent (see Proposition 3.2 of [6]) to the Boolean algebra of idempotent elements of \mathcal{S} satisfying the countable chain condition. From now onward we require C(S) to satisfy the countable chain condition.

We defined L^p -spaces with respect to Stone algebras in [6], and it follows from Proposition 3.3 that $L^{\infty}(X, \mathcal{B}, \rho)$ is a Stone algebra satisfying the countable chain condition because C(S) satisfies this condition.

We require the existence of an algebra homomorphism $\pi: C(S) \to L^{\infty}(X, \mathcal{B}, \rho)$ such that

$$\int_X \pi(a) f d\rho = a \int_X f d\rho \quad \text{for each} \quad f \in \mathcal{L}^1(X, \mathcal{B}, \rho).$$

Then ρ is a modular measure with respect to π , as defined in [6]. Close connections between modular measures and averaging operators were exhibited in [7].

Let $\mathscr S$ be a Stone algebra and $\mathscr U$ a subalgebra. $\mathscr U$ is a Stone subalgebra of $\mathscr S$, if the least upper bound, in $\mathscr S$, of each upper bounded subset of $\mathscr U$ is in $\mathscr U$; i.e. $\mathscr U$ is a Stone algebra and a bounded subset of $\mathscr U$ has the same least upper bound in $\mathscr S$ and $\mathscr U$.

Let T be a linear operator on a Stone algebra \mathscr{S} . T is an averaging operator if T(fTg) = (Tf)(Tg) for each f and g in \mathscr{S} . T is a Moy averaging operator when T is a positive averaging operator and, if $\{f_n\}$ (n = 1, 2, ...) is a monotone increasing sequence in \mathscr{S} which

is bounded above, then $T\bigvee_{n=1}^{\infty}f_n=\bigvee_{n=1}^{\infty}Tf_n$. For any operator T on \mathcal{S} let

$$\mathscr{E}(T) = \big\{ a \in \mathscr{S} : aTb = Tab \quad \text{for all} \quad b \in \mathscr{S} \big\}.$$

When T is an averaging operator the range of T is a subset of $\mathscr{E}(T)$. It is shown in [7] that when T is a Moy operator and \mathscr{S} satisfies the countable chain condition then $\mathscr{E}(T)$ is a Stone subalgebra of \mathscr{S} .

When \mathscr{B}_1 is a Boolean σ -subalgebra of \mathscr{B} and ρ_1 is the restriction of ρ to \mathscr{B}_1 then $L^{\infty}(X, \mathscr{B}_1, \rho_1)$ can be identified with a Stone subalgebra of $L^{\infty}(X, \mathscr{B}, \rho)$. If $\pi[C(S)]$ is a subalgebra of $L^{\infty}(X, \mathscr{B}_1, \rho_1)$, then for each $f \in \mathscr{L}^1(X, \mathscr{B}, \rho)$ we can find a \mathscr{B}_1 -measureable function $f_1 \in \mathscr{L}^1(X, \mathscr{B}_1, \rho_1)$ such that

$$\int_{E} f d\rho = \int_{E} f_{1} d\rho_{1} \quad \text{for each } E \in \mathcal{B}_{1}.$$

This is Lemma 2.1 of [7].

DEFINITION 1. Let \mathcal{B}_1 be a σ -subalgebra of \mathcal{B} such that $\pi[C(S)] \subset L^{\infty}(X, \mathcal{B}_1, \rho_1)$. The conditional expectation of \mathcal{B}_1 with respect to ρ is the map $C: L^1(X, \mathcal{B}, \rho) \to L^1(X, \mathcal{B}_1, \rho_1)$ such that for each $[f]_{\rho} \in L^1(X, \mathcal{B}, \rho)$ we have $C[f]_{\rho} = [f_1]_{\rho}$, where

$$\int_{E} f d\rho = \int_{E} f_{1} d\rho \quad \text{for each } E \in \mathcal{B}_{1}.$$

The generalized conditional expectation operator C, defined above, is a positive linear map of $L^1(X, \mathcal{B}, \rho)$ onto $L^1(X, \mathcal{B}_1, \rho_1)$ such that $C^2 = C$. The restriction of C to $L^{\infty}(X, \mathcal{B}, \rho)$ is a Moy averaging operator whose range is $L^{\infty}(X, \mathcal{B}_1, \rho_1)$.

LEMMA 1. Let \mathscr{W} be a Boolean subalgebra of \mathscr{B} such that \mathscr{B} is the smallest σ -algebra of subsets of X containing \mathscr{W} . Let $f \in \mathscr{L}^1(X, \mathscr{B}, \rho)$ be such that $\int_E f d\rho \geq 0$ for each $E \in \mathscr{W}$. Then $\int_E f d\rho \geq 0$ for each $E \in \mathscr{B}$.

Proof. Let $\mathcal{U} = \left\{ E \in \mathcal{B} : \int_{E} f d\rho \ge 0 \right\}$; then by hypothesis $\mathcal{W} \subset \mathcal{U}$. An argument using Zorn's lemma shows that there is a maximal Boolean algebra \mathcal{M} such that $\mathcal{W} \subset \mathcal{M} \subset \mathcal{U}$.

Let $\mathcal{M}^* = \{E \subset X : \chi_E = \lim \chi_{E_n}, \text{ where each } E_n \in \mathcal{M}\}$, so that $\mathcal{M} \subset \mathcal{M}^*$. If $A \in \mathcal{M}^*$ and $B \in \mathcal{M}^*$ then $A \cap B$ and X - A are in \mathcal{M}^* . Hence \mathcal{M}^* is a Boolean algebra containing \mathcal{M} .

Let $E \in \mathcal{M}^*$; then $\chi_E = \lim \chi_{E_n}$, where $E_n \in \mathcal{M}$ for each n. Then, by the analogue for Stone algebra valued measures of the Dominated Convergence Theorem established in [5], we have

$$\int_{E} f d\rho = \int_{X} f \chi_{E} d\rho = \text{LIM} \int_{X} f \chi_{E_{n}} d\rho = \text{LIM} \int_{E_{n}} f d\rho.$$

Thus $\int_E f d\rho \ge 0$ and so $\mathcal{M}^* \subset \mathcal{U}$. It now follows from the maximality of \mathcal{M} that $\mathcal{M} = \mathcal{M}^*$. Thus \mathcal{M} is a Boolean σ -algebra containing \mathcal{W} and thus $\mathcal{M} = \mathcal{U} = \mathcal{B}$.

THEOREM 1. Suppose that ρ is a finite C(S)-valued measure on the measurable space (X,\mathcal{B}) and suppose that ρ is modular with respect to π . Let $\{\mathcal{B}_n\}$ $(n=1,2,\ldots)$ be a monotone increasing sequence of σ -subalgebras of \mathcal{B} such that \mathcal{B} is the smallest σ -subalgebra of \mathcal{B} containing $\bigcup_{n=1}^{\infty} \mathcal{B}_n$. Further, let $\pi[C(S)]$ be a subalgebra of $L^{\infty}(X,\mathcal{B}_1,\rho)$. For each n let T_n be the

generalized conditional expectation of \mathcal{B}_n with respect to ρ . Let $f \in \mathcal{L}^1(X, \mathcal{B}, \rho)$ and let $f_n \in L^1(X, \mathcal{B}_n, \rho)$ be such that $[f_n]_{\rho} = T_n[f]_{\rho}$ for each n. Then $\lim f_n(x) = f(x)$ almost everywhere with respect to ρ .

Proof. The set $F = \{x \in X : \underline{\lim} f_n(x) < f(x)\}$ is the countable union of all sets of the form $F_{\alpha,\beta} = \{x \in X : \lim f_n(x) \le \alpha < \beta \le f(x)\},$

where α and β are rational and $\alpha < \beta$. Assume that $\rho F \neq 0$; then $\rho F_{\lambda,\mu} \neq 0$ for some rational numbers λ and μ , $\lambda < \mu$.

Let $L_{\lambda} = \{x \in X : \lim f_n(x) \le \lambda\}$ and, for each natural number n, let

$$H_n = \left\{ x \in X : \inf_{r > n} f_r(x) < \lambda + \frac{1}{n} \right\}.$$

Let

$$H_{n,1} = \left\{ x \in X : f_{n+1}(x) < \lambda + \frac{1}{n} \right\}$$

and, for $q \ge 2$,

$$H_{n,q} = \left\{ x \in X : \min \left\{ f_r(x) : n < r < n+q \right\} \ge \lambda + \frac{1}{n} \text{ and } f_{n+q}(x) < \lambda + \frac{1}{n} \right\}.$$

Since f_{n+q} is \mathscr{B}_{n+q} -measurable, $H_{n,q} \in \mathscr{B}_{n+q}$. Also $\{H_{n,q}\}$ $(q=1,2,\ldots)$ is a pairwise disjoint family such that $H_n = \bigcup_{q=1}^{\infty} H_{n,q}$. We also have $L_{\lambda} = \bigcap_{n=1}^{\infty} H_n$.

Choose $A \in \bigcup_{1}^{\infty} \mathscr{B}_{n}$, so that $A \in \mathscr{B}_{N}$ for some N. Then $H_{n,q} \cap A \in \mathscr{B}_{n+q}$ for $n \geq N$ and $q \geq 1$. By Proposition 3.3 of [6]

$$\int_{A} f \chi_{H_n} d\rho = \text{LIM} \int_{A} \sum_{q=1}^{r} f \chi_{H_{n,q}} d\rho.$$

From the definition of T_{n+q} and f_{n+q} we have, for $n \ge N$,

$$\int_{A} f \chi_{H_{n,q}} d\rho = \int_{A \cap H_{n,q}} f_{n+q} d\rho$$

$$\leq \left(\lambda + \frac{1}{n}\right) \int_{A} \chi_{H_{n,q}} d\rho.$$

So

$$\int_{A} f \chi_{H_n} d\rho \leq \left(\lambda + \frac{1}{n}\right) \int_{A} \chi_{H_n} d\rho \quad \text{for} \quad n \geq N.$$

Thus

$$\int_{A} \left(\lambda + \frac{1}{n} \right) \chi_{H_n} - f \chi_{H_n} d\rho \ge 0 \quad \text{for} \quad n \ge N.$$

But $\lim_{n} \chi_{H_n} = \chi_{L_{\lambda}}$ and so

$$\lim_{n} \left(\lambda + \frac{1}{n} \right) \chi_{H_n} - f \chi_{H_n} = (\lambda - f) \chi_{L_{\lambda}}.$$

So, by Proposition 3.5 of [6],

$$\int_{A} (\lambda - f) \chi_{L_{\lambda}} d\rho \ge 0 \quad \text{for each} \quad A \in \bigcup_{n=1}^{\infty} \mathcal{B}_{n}.$$

We observe that $\bigcup_{n=1}^{\infty} \mathscr{B}_n$ is a Boolean subalgebra of \mathscr{B} and, by hypothesis, \mathscr{B} is the σ -algebra generated by $\bigcup_{n=1}^{\infty} \mathscr{B}_n$. It now follows from Lemma 1 that

$$\int_{A} (\lambda - f) \chi_{L_{\lambda}} d\rho \ge 0 \quad \text{for each} \quad A \in \mathcal{B}.$$

We replace A by $F_{\lambda,\mu}$ in the above inequality and since $F_{\lambda,\mu} \subset L_{\lambda}$, obtain

$$\lambda \rho F_{\lambda,\mu} \ge \int_{F_{\lambda,\mu}} f d\rho \ge \mu \rho F_{\lambda,\mu}.$$

Since $\mu > \lambda$ this implies that $F_{\lambda,\mu} = 0$. This is a contradiction; so the assumption $\rho F \neq 0$ must be false. Thus $f(x) \leq \lim_{n \to \infty} f_n(x)$ for almost all x.

Applying this result to -f we obtain $f(x) \ge \overline{\lim} f_n(x)$ for almost all x.

So $\lim_{n \to \infty} f_n$ exists and equals f almost everywhere with respect to ρ .

We now strip away the measure theory of Theorem 1 and obtain the following abstract martingale theorem.

THEOREM 2. Let $\{\mathscr{A}_n\}$ $(n=1,2,\ldots)$ be an increasing sequence of Stone subalgebras of a Stone algebra \mathscr{A}_{∞} such that the smallest Stone subalgebra containing $\bigcup_{n=1}^{\infty}\mathscr{A}_n$ is the whole of \mathscr{A}_{∞} . Let \mathscr{A}_0 be a Stone algebra satisfying the countable chain condition and $\pi:\mathscr{A}_0\to\mathscr{A}_1$ an algebra homomorphism. Let $T_0:\mathscr{A}_{\infty}\to\mathscr{A}_0$ be a positive linear map such that:

- (i) If $b \ge 0$ and $T_0 b = 0$ then b = 0.
- (ii) $T_0(\pi(a)z) = aT_0 z$ for each $z \in \mathcal{A}_{\infty}$ and each $a \in \mathcal{A}_0$.
- (iii) If $\{z_n\}$ (n = 1, 2, ...) is a bounded monotone increasing sequence of positive elements of \mathcal{A}_{∞} then

$$T_0\left(\bigvee_{n=1}^{\infty} z_n\right) = \bigvee_{n=1}^{\infty} T_0 z_n.$$

Then there exists a sequence of Moy operators $\{T_n\}$ (n = 1, 2, ...) such that:

- (i) T_n is a projection of \mathscr{A}_{∞} onto \mathscr{A}_n for each $n \ge 1$.
- (ii) If $b \ge 0$ and $T_n b = 0$ then b = 0.
- (iii) $T_r T_n = T_r \text{ for } 0 \le r < n$.
- (iv) For each $z \in \mathcal{A}_{\infty}$ the order limit LIM $T_n z$ exists and LIM $T_n z = z$.

Proof. Let $\mathscr{A}_{\infty} \cong C(E)$, the ring of continuous functions on an extremally disconnected compact Hausdorff space E. For each Borel set A in E there is a unique idempotent k(A)

in C(E) which differs from χ_A only on a meagre Borel set. We recall from [5] that k is a C(E)-valued measure, the map $f \to \int_E f dk$ is an algebra homomorphism of $B^\infty(E)$ (the bounded Borel functions on E) onto C(E) and the kernel of this homomorphism is the set of Borel functions vanishing outside a meagre Borel set.

Let *m* be defined on the Borel sets of *E* by $mB = T_0(kB)$. Then *m* is a (finite) \mathcal{A}_0 -valued measure on the Borel sets of *E* and for each $f \in B^{\infty}(E)$ we have

$$\int_{E} f dm = T_{0} \left(\int_{E} f dk \right).$$

Let B be any Borel set of E; then mB = 0 if and only if kB = 0, that is, if and only if B is meagre. Thus

$$L^{\infty}(E,m) \cong C(E) \cong \mathscr{A}_{\infty}$$
.

For each $a \in \mathcal{A}_0$ and $f \in B^{\infty}(E)$ we have

$$\int_{E} \pi(a) f dm = T_{0} \left(\int_{E} \pi(a) f dk \right) = T_{0} \left(\pi(a) \int_{E} f dk \right).$$

But, by hypothesis,

$$T_0\left(\pi(a)\int_E f dk\right) = aT_0\int_E f dk = a\int_E f dm.$$

Thus m is a modular \mathcal{A}_0 -valued measure with respect to π .

Let \mathscr{B}_n be the collection of all Borel sets B of E such that $kB \in \mathscr{A}_n$. Then $L^{\infty}(E, \mathscr{B}_n, m) \cong \mathscr{A}_n$ for each $n \geq 1$. Let \mathscr{B}_{∞} be the smallest σ -subalgebra of the Borel sets of E which contains $\bigcup_{n=1}^{\infty} \mathscr{B}_n$. Thus $L^{\infty}(E, \mathscr{B}_{\infty}, m)$ is a Stone subalgebra of $L^{\infty}(E, m) \cong \mathscr{A}_{\infty}$ and contains each of the algebras \mathscr{A}_n $(n = 1, 2, \ldots)$. Thus $L^{\infty}(E, \mathscr{B}_{\infty}, m) \cong \mathscr{A}_{\infty} \cong L^{\infty}(E, m)$, although \mathscr{B}_{∞} may not contain all the Borel sets of E.

Since $\pi[\mathscr{A}_0] \subset \mathscr{A}_n$ for $n \geq 1$ and m is an \mathscr{A}_0 -valued measure, which is modular with respect to π , there exists a generalized conditional expectation operator T_n mapping \mathscr{A}_{∞} onto \mathscr{A}_n . Thus T_n is a projection of \mathscr{A}_{∞} onto \mathscr{A}_n ; if b is a positive element of \mathscr{A}_{∞} and $T_n b = 0$, then b = 0; T_n is the unique linear operator from \mathscr{A}_{∞} into \mathscr{A}_n such that for each idempotent $e \in \mathscr{A}_n$ and each $z \in \mathscr{A}_{\infty}$ we have $T_0(eT_n z) = T_0(ez)$. Let $1 \leq r < n$ and let e be an idempotent of \mathscr{A}_n and $z \in \mathscr{A}_{\infty}$; then $T_0(eT_n T_n z) = T_0(eT_n z) = T_0($

It remains to show that, if $z \in \mathcal{A}_{\infty}$, then the order limit LIM $T_n z$ exists and equals z. Let us identify \mathcal{A}_{∞} with C(E) so that z and each $T_n z$ $(n \ge 1)$ are continuous functions in C(E). We have from Theorem 1 that there exists a Borel set B such that mB = 0 and $\lim_{n \to \infty} (T_n z)(t)$ exists and equals z(t) for each $t \in E - B$. The sequence $\{T_n z\}$ (n = 1, 2, ...) is uniformly bounded because each T_n is a positive operator and $T_n 1 = 1$. Since mB = 0 only if kB = 0, we have, by the analogue of the Dominated Convergence Theorem proved in [5], that

LIM
$$\int_E T_n z dk$$
 exists and equals $\int_E z dk$.

Thus LIM $T_n z$ exists and equals z.

COROLLARY. Let $\{\mathscr{A}_n\}$ $(n=1,2,\ldots)$ be an increasing sequence of Stone subalgebras of a Stone algebra \mathscr{A}_{∞} such that the smallest Stone subalgebra containing $\bigcup_{n=1}^{\infty}\mathscr{A}_n$ is the whole of \mathscr{A}_{∞} . Let \mathscr{A}_{∞} satisfy the countable chain condition. Let T_0 be a Moy operator on \mathscr{A}_{∞} whose range is a subset of \mathscr{A}_1 , and is such that if b is a positive element of \mathscr{A}_{∞} and T_0 b = 0 then b = 0. Then there exists a sequence of Moy operators $\{T_n\}$, $n=1,2,\ldots$, such that:

- (i) T_n is a projection of \mathscr{A}_{∞} onto \mathscr{A}_n for $n \ge 1$.
- (ii) If b is a positive element of \mathcal{A}_{∞} and $T_n b = 0$ then b = 0.
- (iii) $T_r = T_r T_n$ for $0 \le r < n$.
- (iv) For each $z \in \mathcal{A}_{\infty}$ the order limit LIM $T_n z$ exists and LIM $T_n z = z$.

Proof. Since \mathcal{A}_{∞} satisfies the countable chain condition, we have that

$$\mathscr{E}(T_0) = \{ a \in \mathscr{A}_{\infty} : aTb = Tab \text{ for all } b \in \mathscr{A}_{\infty} \}$$

is a Stone subalgebra of \mathscr{A}_{∞} . Let \mathscr{A}_0 be the smallest Stone subalgebra of \mathscr{A}_{∞} containing the range of T_0 . Thus $\mathscr{A}_0 \subset \mathscr{A}_1$ and $\mathscr{A}_0 \subset \mathscr{E}(T_0)$. Let $\pi : \mathscr{A}_0 \to \mathscr{A}_{\infty}$ be the natural embedding. Then $T_0 \pi(a)z = aT_0 z$ for each $a \in \mathscr{A}_0$ and each $z \in \mathscr{A}_{\infty}$. The corollary now follows from Theorem 2.

These methods can be adapted to prove analogous convergence theorems, where instead of $\{\mathscr{A}_n\}$ (n = 1, 2, ...) being monotone increasing it is monotone decreasing and

$$\pi[\mathscr{A}_0] \subset \bigcap_{n=1}^{\infty} \mathscr{A}_n = \mathscr{A}_{\infty}.$$

In Theorem 1 we required the measure ρ to be modular so as to ensure the existence of the generalized conditional expectations T_n . We observe that we can dispense with the hypothesis that ρ is modular if we know that the conditional expectation T_1 of \mathcal{B}_1 with respect to ρ exists. This is because T_1 may be regarded as an $L^{\infty}(X,\mathcal{B}_1,\rho)$ -valued modular measure and so there is a conditional expectation T_n of \mathcal{B}_n with respect to T_1 for each n. A straightforward computation shows that T_n is the conditional expectation of \mathcal{B}_n with respect to ρ . The proof, in Theorem 1, that $\{T_n f\}$ $(n = 1, 2, \ldots)$ converges almost everywhere to f depends only on the existence of the conditional expectations T_n and not on the modularity of ρ .

REFERENCES

- 1. E. Sparre Andersen and B. Jessen, Some limit theorems on set functions, *Mat.-Fys. Medd. Danske Vid. Selsk.* 25 (1948), No. 5.
 - 2. J. L. Doob, Stochastic processes (Wiley, New York, 1953).
- 3. E. F. Floyd, Boolean algebras with pathological order topologies, *Pacific J. Math.* 5 (1955), 687-689.
 - 4. M. H. Stone, Boundedness properties in function lattices, Canad. J. Math. 1 (1949), 176-186.
- 5. J. D. Maitland Wright, Stone algebra valued measures and integrals, Proc. London Math. Soc.; to appear
- 6. J. D. Maitland Wright, A Radon-Nikodym theorem for Stone algebra valued measures, *Trans. Amer. Math. Soc.*; to appear.
- 7. J. D. Maitland Wright, Applications to averaging operators of the theory of Stone algebra valued measure, Quart. J. Math. Oxford Ser. (2) 19 (1968), 321-331.

ST. CATHERINE'S COLLEGE OXFORD