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1. Introduction. A vector lattice W is boundedly complete when each subset {a;:jeJ} of
W which is bounded above by an element of W has a least upper bound in W. The least
upper bound of {a;:jeJ} is denoted by V a; and the greatest lower bound by A a; when-

jeJ jeJ
ever these exist. ’ ’

Let C(S) be the algebra of real valued continuous functions on a compact Hausdorff
space S. Stone [4] shows that the vector lattice C(S) is boundedly complete if and only if
the closure of each open subset of S is open; in this event we call C(S) a Stone algebra. For
example, if (X, 8, p) is a probability space, then L*(X, &, u) is a Stone algebra satisfying the
countable chain condition.

Let {a,} (n=1,2,...) be a bounded sequence in a Stone algebra &; then

o 0 «Q o

V Aa, £ A Va,

n=1r=n n=1r=n
When these two terms are equal we define LIM g, to be their common value and say the
sequence is order convergent with order limit LIM a,. In the special case where & is of the
form L*(X, %, p) and p is a probability measure, if a sequence {b,} (n=1,2,...) has order
limit b, then the sequence {b,} (n = 1,2,...) converges to b in the L'-topology (L* is the dual
of L'). But Floyd [3] gives an example of a Stone algebra & such that there is no Hausdorff
vector topology for & in which each bounded monotone increasing sequence converges to its
least upper bound.

We shall postpone all further definitions till §2. In [7] we investigated Moy averaging
operators on Stone algebras satisfying the countable chain condition. In this paper we
consider a monotone increasing sequence {&/,} (n=1,2,...) of Stone subalgebras of a

Stone algebra &/, such that the smallest Stone subalgebra containing U oA, is . Let A,
n=1

satisfy the countable chain condition and let T,:s/, -/, be a Moy operator satisfying
certain conditions. Then we show that there exists a sequence {T,} (n=1,2,...) of Moy
operators on &/, such that:
(i) T, is a projection of o/ , onto o, for n = 1.

(i) T,T,=T,for0<r<n.

(iii) If b is a positive element of o/, and T,b =0 then b = 0.

(iv) For each zest , the order limit LIM T, z exists and LIM T, z = z.

This result is a Corollary of Theorem 2.

Theorem 1 is a convergence theorem for a sequence of generalized conditional expectations
with respect to a modular Stone algebra valued measure. For conditional expectations with
respect to real valued measures such results are known in probability theory as martingale
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theorems; see Doob [2]. Theorem 1 was suggested by the classical work of Sparre Andersen
and Jessen in [1]. The key step in generalizing their result to Stone algebra valued measures
is Lemma 1.

In a later publication I intend to discuss apphcatlons of the results of this paper to Boolean
algebras.

The work of this paper depends essentially on that of [6]. This is because in [7] we used
the results of [6] to establish the existence, under certain conditions, of generalized conditional
expectations.

2. Convergence theorems. Throughout this paper (X, #) is a measurable space and C(S)
is a Stone algebra. Stone algebra valued measures were defined in [5]. We require p to be a
finite C(S)-valued measure on (X, #); that is, p is to be a map of & into C(S) such that

(i) pE = 0 for each Ee %,

(i) if {E;} (j=1,2,...)is a pairwise disjoint family of sets in & then

p U E;=V ¥ pE,.
j=1 n=1j=1

A Stone algebra & satisfies the countable chain condition when each bounded subset of &
contains a countable subset such that the two sets have the same least upper bound. This
condition on & is equivalent (see Proposition 3.2 of [6]) to the Boolean algebra of idempotent
elements of & satisfying the countable chain condition. From now onward we require C(S)
to satisfy the countable chain condition.

We defined LP-spaces with respect to Stone algebras in [6], and it follows from Proposition
3.3 that L®(X, %, p) is a Stone algebra satisfying the countable chain condition because C(S)
satisfies this condition.

We require the existence of an algebra homomorphism #: C(S) - L® (X, 4, p) such that

Jn(a)fdp=affdp for each fe2Y(X,%,p).
X X

Then p is a modular measure with respect to =, as defined in [6]. Close connections between
modular measures and averaging operators were exhibited in [7].

Let & be a Stone algebra and % a subalgebra. % is a Stone subalgebra of &, if the least
upper bound, in &, of each upper bounded subset of % is in %; i.e. % is a Stone algebra and
a bounded subset of % has the same least upper bound in & and %.

Let T be a linear operator on a Stone algebra &. T is an averaging operator if
T(fTg) = (Tf)Tg) for each fand g in &. T is a Moy averaging operator when T is a positive
averaging operator and, if { fu} (n=1,2,...) is a monotone increasing sequence in & which

is bounded above, then T V fu= V Tf,. For any operator T on & let

n=1 n=1

&(T)={ae&:aTb=Tab forall be¥}.

When T is an averaging operator the range of T is a subset of &(T). It is shown in [7] that
when T is a Moy operator and & satisfies the countable chain condition then &(T) is a Stone
subalgebra of &.
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When 4, is a Boolean o-subalgebra of # and p, is the restriction of p to %, then
L®(X,%,,p,) can be identified with a Stone subalgebra of L*(X, %, p). If n[C(S)] is a sub-
algebra of L*(X, %,, p,), then for each fe £'(X, &, p) we can find a #,-measureable function
fre LY (X,%,,p,) such that

Ifdp = J‘fl dp, foreachEe4,.
E E

This is Lemma 2.1 of [7].

DEFINITION 1. Let £, be a o-subalgebra of # such that n[C(S)] = L*(X,%,,p,)- The
conditional expectation of B, with respect to p is the map C:L(X, %, p) - L'(X, 8,, p,) such
that for each [f],€ L'(X, #, p) we have C[f], = [f,],, where

'[fdp=ff1dp for each Ec 3,.
E E

The generalized conditional expectation operator C, defined above, is a positive linear
map of L'(X, %@, p) onto L'(X, &,, p,) such that C* = C. The restriction of C to L*(X, 4, p)
is a Moy averaging operator whose range is L*(X, 4,, p,).

- LemmA 1. Let W be a Boolean subalgebra of # such that % is the smallest o-algebra of
subsets of X containing W". Let fe L (X, B, p) be such that '[ fdp 20 for each Ec%'. Then
E

fdp = 0 for each Ec %.
E

Proof. Let% = {E e.%:f fdp = 0} ; then by hypothesis #~ < %. An argument using
E

Zorn’s lemma shows that there is a maximal Boolean algebra .# such that # < # <= %.

Let #* = {E c X:y; = limyg,, where each E,e.#}, so that # = .#*. 1If Ae.#/* and
Be#* then AnB and X— A are in #*. Hence #* is a Boolean algebra containing .#.

Let Ec#*; then yp = lim x; , where E,e.# for each n. Then, by the analogue for Stone
algebra valued measures of the Dominated Convergence Theorem established in [5], we have

jfdp=j fxEdp=LIMJ fxsndp=LIMj fdp.
E X X

En

Thus J fdp =20and so #£* = 9. It now follows from the maximality of # that # =.#*.
E
Thus / is a Boolean o-algebra containing ¥ and thus # = % = 4.

THEOREM 1. Suppose that p is a finite C(S)-valued measure on the measurable space
(X, B) and suppose that p is modular with respect to =. Let {#,} (n=1,2,...) be a monotone
increasing sequence of o-subalgebras of & such that B is the smallest o-subalgebra of # con-

taining \ ) B,. Further, let n[C(S)] be a subalgebra of L*(X,®,,p). For each n let T, be the

n=1
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80
generalized conditional expectation of %, with respect to p. Let fe LY (X,B,p) and let

fre L' (X, B, p) besuchthat [f,], = T,[f], for eachn. Then limf,(x) = f(x) almost every-

where with respect to p.
Proof. The set F={xeX:limf,(x) < f(x)} is the countable union of all sets of the form
Fop={xeX:limf(x) Sa < f S f()},

where « and f are rational and a< 8. Assume that pF # 0; then pF, , # 0 for some rational

numbers A and p, 1 < p.
Let L, ={xeX:limf,(x) < A} and, for each natural number #, let

H,,={xeX : inf f(x) <l+l}.
n

r>n

Let
1
H,,= {xeX D fur1() < l+;}

and, for ¢ = 2,
1 1
H, = {xeX:min {fix)in<r<n+gq}2 A+,—1 and f,,,(x) < l+;}.

Since f,., is %,,,measurable, H, €®,,,. Also {H,,} (g=1,2,...) is a pairwise

disjoint family such that H, = () H,,. We also have L, = [\ H,.
q=1 n=1
Choose Ae U 4, so that A€ By for some N. Then H, nAe%,,,fornzNandg21
1
By Proposition 3.3 of [6]
fin,dp = LIMJ Y. fru, dp.

A Ag=1

LY

From the definition of T, , and f,,, we have, for n 2 N,

"
Stn,,dp = f Jatqdp
A AnHy q

So
Thus

1
J‘<,1+;>x,,n—fx,,"dpgo for n=N.
A

But limyy = x., and so
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) 1
lim (1"‘ ;) X, —Stn, = A=xe,
So, by Proposition 3.5 of [6],

I (A=f)xL,dp =0 foreach Ael|) 4,
A

n=1

We observe that | ] 4, is a Boolean subalgebra of # and, by hypothesis, # is the o-
n=1

algebra generated by |} 4,. It now follows from Lemma 1 that
n=1

J(l—f)xLAdpgo foreach AeZ.
A

We replace 4 by F; , in the above inequality and since F; , = L;, obtain

ApF, 2 | fdp 2 ppF,,.
Fau

Since > A this implies that F, , = 0. This is a contradiction; so the assumption pF # 0
must be false. Thus f(x) < lim f,(x) for almost all x.

Applying this result to —f we obtain f(x) = lim J+(x) for almost all x.

So limf, exists and equals f almost everywhere with respect to p.

We now strip away the measure theory of Theorem 1 and obtain the following abstract
martingale theorem.

THEOREM 2. Let {&Z,} (n = 1,2,...)be an increasing sequence of Stone subalgebras of a Stone
algebra oA , such that the smallest Stone subalgebra containing \ ) o, is the whole of of ,,. Let
n=1

oo be a Stone algebra satisfying the countable chain condition and n:9 y — o, an algebra
homomorphism. Let Ty:of ,, — o, be a positive linear map such that:
() Ifbz=0and Tob =0 thenb = 0.
(i) To(n(a)z) = aT,z for each ze A, and each ac s .
(iti) If {z,} (n=1,2,...) is a bounded monotone increasing sequence of positive elements
of &, then

To( V Zn) = V TOZ,,.
n=1 n=1

Then there exists a sequence of Moy operators {T,} (n=1,2,...) such that:

(i) T, is a projection of o ., onto A, for each n > 1.

(i) Ifb=0and T,b =0 then b= 0.

(iii) T,T,=T,for0<r <n.

(iv) For each zesd , the order limit LIM T, z exists and LIM T,z = z,

Proof. Let o, = C(E), the ring of continuous functions on an extremally disconnected
compact Hausdorff space E. For each Borel set 4 in E there is a unique idempotent k(4)

https://doi.org/10.1017/50017089500000586 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500000586

82 J. D. MAITLAND WRIGHT

in C(E) which differs from y,onlyonameagre Borelset. Werecallfrom [S]thatkisa C(E)-valued

measure, the map f —’J fdk is an algebra homomorphism of B®(E) (the bounded Borel
E

functions on E) onto C(E) and the kernel of this homomorphism is the set of Borel functions

vanishing outside a meagre Borel set.
Let m be defined on the Borel sets of E by mB = To(kB). Then m is a (finite) o 4-valued
measure on the Borel sets of E and for each fe B*(F) we have

Jom = | g).

Let B be any Borel set of E; then mB = 0 if and only if kB = 0, that is, if and only if B

is meagre. Thus
PEmyx C(E)x A .

For each ae s/, and fe B°(E) we have

J.E n(a)fdm = To(J;; n(a)fdk) =T, <7r(a) J;fdk).
T, (n(a) J fdk) - aTOJ fdk = aj fdm.
E E E

Thus m is a modular & y-valued measure with respect to 7.
Let 4, be the collection of all Borel sets B of EsuchthatkBes/,. Then L®(E, &, m)= &/,
for each n > 1. Let &, be the smallest o-subalgebra of the Borel sets of E which contains

But, by hypothesis,

U #,. Thus L*(E, %, m)is a Stone subalgebra of L*(E,m) =~ &, and contains each of the
n=1

algebras &/, (n=1,2,...). Thus L®(E, B, m) = o, = L®(E,m), although #_ may not
contain all the Borel sets of E.

Since n[sofy] € o, for n= 1 and m is an of-valued measure, which is modular with
respect to =, there exists a generalized conditional expectation operator T, mapping &, onto
&f,. Thus T, is a projection of &, onto «,; if b is a positive element of &/, and T,b =0,
then b = 0; T, is the unique linear operator from &, into &, such that for each idempotent
ecsf, and each zeof , we have To(eT,z) = To(ez). Let 1 S r <nand let e be an idempotent
of o, and zesf ; then Ty(eT,T,z) = Ty(eT,z) = Ty(ez),and so T, T, = T,.

It remains to show that, if zes/, then the order limit LIM T, z exists and equals z. Let
us identify &/, with C(E) so that z and each T,z (n = 1) are continuous functions in C(E).
We have from Theorem 1 that there exists a Borel set B such that mB =0 and lim (7, z)(¢)
exists and equals z(r) for each te E—B. The sequence {7,z} (n=1,2,...) is uniformly
bounded because each T, is a positive operator and T,1 =1. Since mB =0 only if kB=0,
we have, by the analogue of the Dominated Convergence Theorem proved in [5], that

LIMJ T,zdk exists and equals J zdk.
E E

Thus LIM T,z exists and equals z.
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CoROLLARY. Let {&,} (n=1,2,...) be an increasing sequence of Stone subalgebras of a
0

Stone algebra of ,, such that the smallest Stone subalgebra containing \ | o, is the whole of
n=1

oA . Let o, satisfy the countable chain condition. Let T, be a Moy operator on s/ , whose
range is a subset of o |, and is such that if b is a positive element of o ., and Ty b = 0 then b = 0.
Then there exists a sequence of Moy operators {T,}, n=1,2,..., such that:
(i) T, is a projection of o , onto &, for n = 1.

(i) If b is a positive element of of ., and T,b =0 then b = 0.

Gii) T,=T,T,for0=r <n.

(iv) For each ze s , the order limit LIM T, z exists and LIM T,z = z.

Proof. Since &, satisfies the countable chain condition, we have that

8(To) ={aed o:aTb =Tab forall bedt ,}

is a Stone subalgebra of &/ . Let o/ be the smallest Stone subalgebra of &/, containing the
range of Ty. Thus &, < o, and &, = (T,). Let n:e/y - o, be the natural embedding.
Then T, n(a)z = aT,z for each aesf/, and each zes/,,. The corollary now follows from
Theorem 2.

These methods can be adapted to prove analogous convergence theorems, where instead
of {«,} (n=1,2,...) being monotone increasing it is monotone decreasing and

o] < 01 Ay =o .

In Theorem ! we required the measure p to be modular so as to ensure the existence
of the generalized conditional expectations 7,. We observe that we can dispense with the
hypothesis that p is modular if we know that the conditional expectation T, of #, with respect
to p exists. This is because T, may be regarded as an L*(X, 8, p)-valued modular measure
and so there is a conditional expectation T, of %, with respect to T, for each n. A straight-
forward computation shows that T, is the conditional expectation of %, with respect to p.
The proof, in Theorem 1, that {7,f} (n = 1,2,...) converges almost everywhere to f depends
only on the existence of the conditional expectations T, and not on the modularity of p.
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