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1. Introduction. A vector lattice W is boundedly complete when each subset {ay.jeJ} of
W which is bounded above by an element of W has a least upper bound in W. The least
upper bound of {aj-.jeJ} is denoted by V a,- and the greatest lower bound by A a, when-

ever these exist.
Let C(S) be the algebra of real valued continuous functions on a compact Hausdorff

space S. Stone [4] shows that the vector lattice C(S) is boundedly complete if and only if
the closure of each open subset of 5 is open; in this event we call C(S) a Stone algebra. For
example, if (X, 38, n) is a probability space, then U°{X, 38, \i) is a Stone algebra satisfying the
countable chain condition.

Let {an} (n = 1,2,...) be a bounded sequence in a Stone algebra Sf; then
00 00 00 00

V Aar:g A Var.
n = 1 r — n n~1r=n

When these two terms are equal we define LIMan to be their common value and say the
sequence is order convergent with order limit LIM an. In the special case where Sf is of the
form Lx{X,38,n) and fi is a probability measure, if a sequence {bn} (n= 1,2,...) has order
limit b, then the sequence {bn} (n = 1,2,...) converges to b in the L^topology (L00 is the dual
of Z,1). But Floyd [3] gives an example of a Stone algebra Sf such that there is no Hausdorff
vector topology for Sf in which each bounded monotone increasing sequence converges to its
least upper bound.

We shall postpone all further definitions till §2. In [7] we investigated Moy averaging
operators on Stone algebras satisfying the countable chain condition. In this paper we
consider a monotone increasing sequence {sfn} (n = 1,2,...) of Stone subalgebras of a

00

Stone algebra sin such that the smallest Stone subalgebra containing \J s/n is s/K. Let s/x
n = l

satisfy the countable chain condition and let TQ:s^a>-^sJl be a Moy operator satisfying
certain conditions. Then we show that there exists a sequence {Tn} (n= 1,2,...) of Moy
operators on s/K such that:

(i) Tn is a projection of' si'n onto si„ for n ̂  1.
(ii) J , Tn = Trfor 0^r<n.
(iii) If b is a positive element of si ^ and Tnb = 0 then b = 0.
(iv) For each zesix the order limit LIM Tnz exists and LIM Tnz = z.
This result is a Corollary of Theorem 2.
Theorem 1 is a convergence theorem for a sequence of generalized conditional expectations

with respect to a modular Stone algebra valued measure. For conditional expectations with
respect to real valued measures such results are known in probability theory as martingale
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theorems; see Doob [2]. Theorem 1 was suggested by the classical work of Sparre Andersen
and Jessen in [1]. The key step in generalizing their result to Stone algebra valued measures
is Lemma 1.

In a later publication I intend to discuss applications of the results of this paper to Boolean
algebras.

The work of this paper depends essentially on that of [6]. This is because in [7] we used
the results of [6] to establish the existence, under certain conditions, of generalized conditional
expectations.

2. Convergence theorems. Throughout this paper (X, 28) is a measurable space and C(S)
is a Stone algebra. Stone algebra valued measures were defined in [5]. We require p to be a
finite C(S)-valued measure on {X, 38); that is, p is to be a map of 38 into C(5) such that

(i) p.E ̂  0 for each .Ee^1;
(ii) if {Ej} (_/ = 1,2,...) is a pairwise disjoint family of sets in 3S then

oo oo n

P U EJ = V £

A Stone algebra Sf satisfies the countable chain condition when each bounded subset of Sf
contains a countable subset such that the two sets have the same least upper bound. This
condition on Sf is equivalent (see Proposition 3.2 of [6]) to the Boolean algebra of idempotent
elements of Sf satisfying the countable chain condition. From now onward we require C{S)
to satisfy the countable chain condition.

We defined ZAspaces with respect to Stone algebras in [6], and it follows from Proposition
3.3 that U°{X,38,p) is a Stone algebra satisfying the countable chain condition because C(S)
satisfies this condition.

We require the existence of an algebra homomorphism n: C(S) -> I™ (X, 38, p) such that

n{a)fdp = a\ fdp for each fe&\X,38,p).
Jx Jx

Then p is a modular measure with respect to n, as defined in [6]. Close connections between
modular measures and averaging operators were exhibited in [7].

Let Sf be a Stone algebra and "U a subalgebra. ^U is a Stone subalgebra of Sf, if the least
upper bound, in Sf, of each upper bounded subset of ^l is in ty.; i.e. °U is a Stone algebra and
a bounded subset of °U has the same least upper bound in Sf and "U.

Let T be a linear operator on a Stone algebra Sf. T is an averaging operator if
T{fTg) = (Tf)(Tg) for each/and g in Sf. T is a Moy averaging operator when T is a positive
averaging operator and, if {/„} (n = 1,2,...) is a monotone increasing sequence in Sf which

00 00

is bounded above, then T V /„ = V Tfn. For any operator T on Sf let
n = l n = l

${T) ={aey-.aTb = Tab for all b e Sf}.

When T is an averaging operator the range of T is a subset of &(T). It is shown in [7] that
when T is a Moy operator and Sf satisfies the countable chain condition then S(T) is a Stone
subalgebra of Sf.
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When 2Bt is a Boolean a-subalgebra of 28 and pt is the restriction of p to 28^ then
U°(X, 3Supx) can be identified with a Stone subalgebra of LK{X, SS, p). If n[C(S)] is a sub-
algebra of La'(X,281,p1), then for each/e S£l{X,28,p) we can find a ^-measureable function
/ t e Se\X, MuPt) such that

for each

This is Lemma 2.1 of [7].

DEFINITION 1. Lei ^ be a a-subalgebra of 28 such that n[C(S)] c L^iX^^pJ. The
conditional expectation of2Sl with respect to p is the map C:Ll{X, 28, p)->Li(X, 28 up^) such
that for each [f]peL\X,2$,p) we have C[f]p = [/•,]„, where

J>-J> dp for each

The generalized conditional expectation operator C, defined above, is a positive linear
map of L\X,28,p) onto Ll(X, 2Supi) such that C2 = C. The restriction of C to Lm(X,28,p)
is a Moy averaging operator whose range is LK(X,^1,p1).

LEMMA 1. Let iV be a Boolean subalgebra of SB such that $8 is the smallest a-algebra of

subsets of X containing iV. Let fe t?l(X, 28, p) be such that fdp ^ 0 for each Ee W. Then
h1fdp ^0for each Ee2S.

E

Proof. Let °U = \Ee28: fdp ^ oi; then by hypothesis iV c °U. An argument using
I JE J

Zorn's lemma shows that there is a maximal Boolean algebra Jt such that W c l CL°U.

Let M* = {E <= X:%E = limx^. where each EnsJ£}, so that M <=J/*. If AsJi* and
BeJl* then ^4n5 and Z-^4 are in Jl*. Hence ̂ //* is a Boolean algebra containing Jt.

Let EeM*; then XE = lim^E,,, where En&Jl for each «. Then, by the analogue for Stone
algebra valued measures of the Dominated Convergence Theorem established in [5], we have

\fdp=\ fxEdp = LIM I fXEndp = LIM | fdp.
JE JX JX jEn

Thus fdp ^ 0 and so Jt* c <%. It now follows from the maximality of Jt that Jt =Jf*.
JE

Thus Jt is a Boolean a-algebra containing iV and thus Jt = tft = 28.

THEOREM 1. Suppose that p is a finite C(S)-valued measure on the measurable space
(X, 28) and suppose that p is modular with respect to n. Let {&§„} (n — 1,2,...) be a monotone
increasing sequence of a-subalgebras of 28 such that 0§ is the smallest a-subalgebra of 2$ con-

00

taming [j 2§n. Further, let n[C(S)] be a subalgebra ofL*(X,28up). For each n let Tn be the
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generalized conditional expectation of SSn with respect to p. Let ft££l(X,38,p') and let
fne Ll (X, »„ p) be such that [/„]„ = Tn[f]p for each n. Then lim/,,(x) = / (x ) almost every-
where with respect to p.

Proof. The set F = {x e X: lim/n(x) </(x)} is the countable union of all sets of the form

F,,, = {xeX: lim/n(x) g a < fi g / (x )} ,

where a and /? are rational and a < /?. Assume that pF^Q; then pFXft ^ 0 for some rational
numbers A and //, A < n.

Let Lx = {x e A": lim/n(x) g A} and, for each natural number n, let

Hn=lxeX : inf/r(x) < A-t

Let

and, for q 2: 2,

n + q } ^ A + - and /n +,(x) < A + -

Since /„+, is ^n+,-measurable, //„,,£$„+,. Also {//„,,} (^ = 1,2,...) is a pairwise
00 00

disjoint family such that Hn = \J Hnq. We also have Lx = f\ Hn.
q=l ' n = l

oo

Choose Ae[jSSn, so that A B3SN for some N. Then HnqnAe@n+q for n ^ AT and ? ^ 1.
i

By Proposition 3.3 of [6]

[M JAq=l

From the definition of Tn+q and/ n + 9 we have, for n}zN,

fXHn,,dp= fn+q
JA JAnHni,

dp

So

^JXHJP^U+^JIXHJP for n^N.

Thus

IK
But lim Xnn = XtA

 a n d s o
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/ 1\

So, by Proposition 3.5 of [6],

f °°
(A —/)XL* dp^O for each A e \J 8Sn.

JA 11=1

00
We observe that \J SSn is a Boolean subalgebra of ^ and, by hypothesis, 38 is the a-

n = l
oo

algebra generated by [j 3Sn. It now follows from Lemma 1 that

(X—f)xLxdp^.O for each Ae8S.
I A

We replace A by FXtll in the above inequality and since FXfl c Lx, obtain

I

Since jt > A this implies that FXtll = 0. This is a contradiction; so the assumption pF# 0
must be false. Thus/(x) g lim/n(x) for almost all x.

Applying this result to - / w e obtain/(*) ^ \imfn(x) for almost all JC.
So lim/n exists and equals/almost everywhere with respect to p.
We now strip away the measure theory of Theorem 1 and obtain the following abstract

martingale theorem.

THEOREM 2. Let {sin} (n = 1,2,...) be an increasing sequence of Stone subalgebras of a Stone
oo

algebra s^x such that the smallest Stone subalgebra containing \J s/n is the whole of $4'„. Let
n = l

s/0 be a Stone algebra satisfying the countable chain condition and n:st0->st\ an algebra
homomorphism. Let To: s/m -* s#0 be a positive linear map such that:

(i) Ifb^O and Tob = 0 then b = 0.
(ii) T0(n(a)z) = aT0zfor each zejrfx and each aes/0.
(iii) If {zn} (n = 1,2,...) is a bounded monotone increasing sequence of positive elements

then

, n = l
*„ = VT0

Then there exists a sequence of Moy operators {Tn} (n= 1,2,...) such that:
(i) Tn is a projection of' s$'„ onto sin for each n ̂  1.
(ii) Ifb ^ 0 and Tnb = 0 then 6 = 0.

(iii) Tr Tn=Trfor0^r< n.
(iv) For each zesf^ the order limit LIM Tnz exists and LIM Tnz = z.

Proof. Let s^x = C(E), the ring of continuous functions on an extremally disconnected
compact Hausdorff space E. For each Borel set A in E there is a unique idempotent k(A)
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in C(£) which differs from gorily on a meagre Borel set. We recall from [5] that k is a C(£)- valued

measure, the map /-> fdk is an algebra homomorphism of BCC(E) (the bounded Borel
JE

functions on £) onto C(E) and the kernel of this homomorphism is the set of Borel functions
vanishing outside a meagre Borel set.

Let m be defined on the Borel sets of E by mB = T0(kB). Then m is a (finite) .s/0-valued
measure on the Borel sets of E and for each/el?00^) we have

Let B be any Borel set of £; then mB = 0 if and only if kB — 0, that is, if and only if B
is meagre. Thus

For each aestf0 and feB^iE) we have

f n{a)fdm = Tof | n(a)fdk\ = T0L(a) \ fdk\

(a) I fdk\ = aT0 f fdk = a f /dm.
But, by hypothesis,

Thus m is a modular ^0-valued measure with respect to n.
Let 39 „ be the collection of all Borel sets B of £ such that kBesfn. Then U°(E, 33n,m)^. s/tt

for each n ^ 1. Let 08K be the smallest <7-subalgebra of the Borel sets of £ which contains
00

[j 3Sn. Thus U°{E, SS«,, m) is a Stone subalgebra of L°°(£, m) = sfx and contains each of the
n = 1

algebras sin (n = 1,2,...). Thus L^E^^m) s - s ^ S Lx(E,m), although ^ may not
contain all the Borel sets of £.

Since n[sf0] c jj/n for n ^ 1 and m is an ^/0-value<i measure, which is modular with
respect to n, there exists a generalized conditional expectation operator Tn mapping s/x onto
sin. Thus Tn is a projection of jrfx onto .s/n; if 6 is a positive element of s4'«, and TnZ> = 0,
then 6 = 0; Tn is the unique linear operator from s/^ into sin such that for each idempotent
ees/n and each zes/^ we have ro(ernz) = T0(ez). Let 1 ^ r < n and let e be an idempotent
of s/r and zerfB; then ro(eTr Tnz) = T0{eTnz) = ro(ez), and so r r Tn = Tr.

It remains to show that, if zejrfx, then the order limit LIM Tnz exists and equals z. Let
us identify sfK with C(£) so that z and each Tnz (« ^ 1) are continuous functions in C(£).
We have from Theorem 1 that there exists a Borel set B such that mB = 0 and lim(T'nz)(/)
exists and equals z(t) for each teE—B. The sequence {Tnz} (« = 1,2,...) is uniformly
bounded because each Tn is a positive operator and Tn 1 = 1. Since m5 = 0 only if kB = 0,
we have, by the analogue of the Dominated Convergence Theorem proved in [5], that

f f
LIM Tnzdk exists and equals zdk.

j£ JE
Thus LIM Tnz exists and equals z.
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COROLLARY. Let {&?„} (n = 1,2,...) be an increasing sequence of Stone subalgebras of a
CO

Stone algebra si M such that the smallest Stone subalgebra containing \J s/n is the whole of
n = l

sim. Let si'm satisfy the countable chain condition. Let To be a Moy operator on si'm whose
range is a subset ofsilt and is such that ifb is a positive element of si K and TQb = 0 then b = 0.
Then there exists a sequence of Moy operators {Ta}, n = 1,2,..., such that:

(i) Tn is a projection of si ^ onto sin for n ̂  1.
(ii) If b is a positive element of si „ and Tnb = 0 then b = 0.

(iii) Tr=TrTnfor0^r<n.
(iv) For each zes/x the order limit LIM Tnz exists and LIM Tnz = z.
Proof. Since si ^ satisfies the countable chain condition, we have that

S(T0) = {aesin:aTb = Tab for all besi^}
is a Stone subalgebra of si'„. Let si0 be the smallest Stone subalgebra of six containing the
range of To. Thus si0 a si\ and si0 <=. fi(T0). Let n:si0 -* si'„ be the natural embedding.
Then Ton(a)z = aToz for each aesi0 and each zesi^. The corollary now follows from
Theorem 2.

These methods can be adapted to prove analogous convergence theorems, where instead
of {sin} (n = 1,2,...) being monotone increasing it is monotone decreasing and

00

t [ j ^o ] c n •S/«=-E/=O-
n = l

In Theorem 1 we required the measure p to be modular so as to ensure the existence
of the generalized conditional expectations Tn. We observe that we can dispense with the
hypothesis that p is modular if we know that the conditional expectation 7\ of 331 with respect
to p exists. This is because Ti may be regarded as an U°{X, $)u p)-valued modular measure
and so there is a conditional expectation Tn of 3Sn with respect to 7\ for each n. A straight-
forward computation shows that Tn is the conditional expectation of 2SH with respect to p.
The proof, in Theorem 1, that {Tnf} (n = 1,2,...) converges almost everywhere to/depends
only on the existence of the conditional expectations Tn and not on the modularity of p.
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