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Abstract
The purpose of this paper is twofold. The first part is to introduce relative-j2

U, Jensen-j2
U and (p, w)-Jensen-j2

U

divergence measures and then examine their properties. In addition, we also explore possible connections between
these divergence measures and Jensen–Shannon entropy measure. In the second part, we introduce (p, [)-mixture
model and then show it to be an optimal solution to three different optimization problems based on j2

U divergence
measure. We further study the relative-j2

U divergence measure for escort and arithmetic mixture densities. We
also provide some results associated with relative-j2

U divergence measure of mixed reliability systems. Finally, to
demonstrate the usefulness of the Jensen-j2

U divergence measure, we apply it to a real example in image processing
and present some numerical results. Our findings in this regard show that the Jensen-j2

U is an effective criteria for
quantifying the similarity between two images.

1. Introduction

Information theory is one of the most important branches of science and engineering and has attracted
significant attention of numerous researchers over the past seven decades. In information theory, sev-
eral information-theoretic divergence measures between two probabilistic models have been introduced
and then used in many fields including information theory, statistics, engineering and physics. Among
the most important information, divergence measures are the Kullback–Leibler and chi-square diver-
gence measures. These two information quantities have found many key applications in information
theory, economics, statistics, physics and electrical engineering. In the literature, some extensions of
Kullback–Leibler and chi-square divergence measures have appeared during the last three decades. For
pertinent details, one may refer to [5, 7, 11, 18].

The chi-square divergence has several extensions, such as the symmetric chi-square, triangular
divergence, generalized chi-square and Balakrishnan and Sanghvi divergence measures. Each of these
measures has its own properties and applications in different fields.

In this work, we first consider chi-square (j2) and generalized chi-square (j2
U) divergence measures

and then propose relative-j2
U and two Jensen versions of j2

U (Jensen-j2
U and (p, w)-Jensen-j2

U) diver-
gence measure. We further examine a possible connection between the proposed information measures
and also discuss some potential applications of them.

The proposed relative-j2
U, Dk

U ( f : g) divergence, provides a measure of the difference between two
probability distributions, f and g, that is weighted by the density function k(x). The weight density
function k(x) allows the divergence to be tailored to specific features and characteristics of the data, for
the two models that are being compared.
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The parameter U controls the sensitivity of the divergence to differences between f and g. For exam-
ple, when U = 1, the divergence reduces to the L2 distance, which measures the difference between f
and g in terms of their squared deviations. When U = 0, the divergence measure reduces to half of the
chi-square divergence measure. The weight density function k(x) can be chosen to emphasize or de-
emphasize certain regions of the data. For example, a weight function that down-weighs the tails of
the distributions could be used to make the divergence more robust to outliers. Alternatively, a weight
function that emphasizes a particular region of the data could be used to highlight differences in that
region of the data.

Overall, the choice of U and the weight density function k(x) can be tailored to suit the specific
characteristics and features of the data for the two models that are being compared, allowing for greater
sensitivity and flexibility in the comparison process, and the Dk

U ( f : g) measure has potential uses in
various fields, as listed below:

• Statistics: It can be used in goodness-of-fit tests and model selection criteria, for example, chi-square
divergence (U = 0) is commonly used in contingency table analysis.

• Machine learning: The proposed divergence measure can be used as a divergence measure in machine
learning algorithms, such as clustering, classification and anomaly detection.

• Information theory: The proposed divergence can be used to measure the difference between proba-
bility distributions and to quantify the amount of information gained or lost in a data compression or
transmission process.

• Signal processing: Dk
U ( f : g) divergence measure can be used to compare the strength signals in

signal processing applications.
• Image processing: The proposed Dk

U ( f : g) divergence measure can be used to compare image
histograms and textures in image processing applications.

One of the main motivations behind the development of Dk
U ( f : g) divergence is that it encompasses

several popular divergence measures as special cases, including the symmetric chi-square, triangular
divergence, generalized chi-square, and Balakrishnan and Sanghvi divergence measures. This property
makes the Dk

U ( f : g) divergence measure a versatile tool for comparing probability distributions in a
variety of fields and facilitates the integration of different divergence measures into a unified framework.

Furthermore, it should also be noted that the proposed Jensen-j2
U and (p, w)-Jensen-j2

U divergence
measures are extensions of Dk

U ( f : g) measure based on a convex combination. These extensions allow
for the incorporation of additional divergence measures into the framework, further increasing the flex-
ibility and applicability of the method. By combining different divergence measures in a convex form,
these Jensen-type divergence measures can provide a more comprehensive and nuanced comparison of
probability distributions.

In addition, in this paper, we also establish a new generalized mixture density and specifically show
that the proposed model provides optimal information under three different optimization problems asso-
ciated with j2

U divergence measure. Moreover, some results on these information measures and their
connections to other well-known information measures are also provided.

First, a diversity measure between two density functions f and g on common support X , known as
chi-square divergence, is defined as

j2( f : g) =
∫
X

( f (x) − g(x))2

f (x) dx. (1.1)

Similarly, we can define j2(g : f ).
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A generalized version of j2 divergence measure, denoted by j2
U, between two densities f and g, for

U ≥ 0, considered by [5], is defined as

j2
U ( f : g) = U + 1

2

∫
X

(
f (x) − g(x)

)2

f 1−U (x)
dx. (1.2)

Balakrishnan and Sanghvi [4] introduced another version of the chi-square divergence in Eq. (1.1) as

j2
BS( f : g) =

∫
X

(
f (x) − g(x)
f (x) + g(x)

)2
f (x) dx = Ef

[
f (X) − g(X)
f (X) + g(X)

]2
, (1.3)

where E denotes expectation taken with respect to density f on support X , assuming it exists. This
information measure is known as Balakrishnan–Sanghvi divergence measure.

Moreover, a symmetric version of chi-square divergence measure of the form

j2
T ( f : g) =

∫
X

(
f (x) − g(x)

)2

f (x) + g(x) dx = 8Eh

[
f (X) − g(X)
f (X) + g(X)

]2
(1.4)

has been introduced by [12]. Here, E denotes expectation under mixture density h(x) = f (x)+g(x)
2 . The

divergence measure in Eq. (1.4) is known as triangular divergence measure. Throughout this paper, we
will suppress X in the integration with respect to X, unless a distinction becomes necessary.

The rest of this paper is organized as follows. In Section 2, we first examine the connection between
j2
U divergence measure and q-Fisher information measure. Here, based on the j2

U divergence measure,
we introduce a relative-j2

U divergence measure, which includes other well-known versions of chi-square
divergence as special cases. We propose Jensen-j2

U divergence measure in Section 3. We then show
that Jensen-j2

U divergence is a mixture of the proposed relative-j2
U divergence measures. Further, we

show that a lower bound for Jensen-j2
U divergence can be given by Jensen–Shannon entropy mea-

sure. In Section 4, we first introduce (p, w)-Jensen-j2
U divergence measure and then discuss some of

its properties. Next, the relative-j2
U divergence measure of escort and arithmetic densities are studied

in Section 5. We then introduce (p, [)-mixture density in Section 6 and show that this mixture distri-
bution involves optimal information under three different optimization problems associated with j2

U

divergence measure. In Section 7, we study the relative-j2
U divergence measure of order statistics and

mixed reliability systems. Next, in Section 8, we use a real example in image processing and present
some numerical results in this regard in terms of Jensen-j2

U divergence measure. We specifically show
that this divergence could serve as an useful measure of similarity between two images. Finally, we
make some concluding remarks in Section 9.

2. Relative-62
" divergence measure and connection between 62

" divergence measure and
q-Fisher information

In this section, we first show that the j2
U divergence measure in Eq. (1.2) has a close connection to

q−Fisher information of mixing parameter of a given arithmetic mixture distribution. Next, we introduce
a relative-j2

U divergence measure and show that it includes some of the well-known chi-square-type
divergence measures as special cases.
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2.1. Connection between j2
U divergence measure and q-Fisher information

The q-Fisher information of a density function f\ about parameter \, defined by [14], is given by

Iq (\) =
∫ (

m logq f\ (x)
m\

)2

f\ (x) dx, (2.1)

where logq (x) is the q-logarithmic function defined as

logq (x) =
xq − 1

q
(
x ∈ <, q ≠ 0

)
(2.2)

for more details, see [9, 15, 23]. Then, we have the following result.

Theorem 2.1. Let f1 and f2 be two density functions. Then, the q-information measure of mixing
parameter p in the two-component mixture model

fp(x) = pf1(x) + (1 − p)f2(x), p ∈ (0, 1), (2.3)

is given by

Iq (p) =
8

2q + 1
M 1

2

(
j2

2q ( fp, f1), j2
2q ( fp, f2)

)
,

where M 1
2
(., .) is the power mean with exponent 1

2 , defined as M 1
2
(x, y) =

(
x

1
2
2 + y

1
2

2

)2
for positive x

and y.

Proof. From the mixture model in Eq. (2.3), we readily see that

f1(x) − f2(x) =
f1(x) − fp(x)

1 − p
=

fp(x) − f2(x)
p

. (2.4)

Now, from the definition of q-Fisher information measure in Eq. (2.1), we find

Iq (p) =
∫ (

f1(x) − f2(x)
)2

f 1−2q
p (x)

dx =


2

(1+2q) (1−p)2 j
2
2q ( fp : f ), f = f1,

2
(1+2q)p2 j

2
2q ( fp : f ), f = f2,

(2.5)

which readily yields

Iq (p) =
2

1 + 2q

(√
j2

2q ( fp : f1) +
√
j2

2q ( fp : f2)
)2

=
8

1 + 2q

(
1
2

√
j2

2q ( fp : f1) +
1
2

√
j2

2q ( fp : f2)
)2

=
8

1 + 2q
M 1

2

(
j2

2q ( fp : f1), j2
2q ( fp : f2)

)
,

as required. �
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2.2. Relative-j2
U divergence measure

In this subsection, we introduce a relative-j2
U divergence measure and show that it includes some of

the well-known chi-square-type divergence measures as special cases. Further, we show that the special
case of the proposed measure, when U = 0, is connected to the variance of density ratios.

Definition 2.2. Let f and g be two density functions on support X . Then, a relative version of j2
U

divergence measure between f and g with respect to density function k on support X , denoted by R-j2
U,

for U ≥ 0, is defined as

Dk
U ( f : g) = 1 + U

2

∫
X

(
f (x) − g(x)

)2

k1−U (x)
dx, (2.6)

provided the involved integral exists. In addition, the special case of R-j2
U divergence measure, when

U = 0, is of the form

Dk

U=0( f : g) = 1
2

∫
X

(
f (x) − g(x)

)2

k(x) dx. (2.7)

Moreover, it is useful to note that Dk
U ( f : g) reduces to j2

U ( f : g) when k = f . It is easily seen
from Eq. (2.6) that R-j2

U divergence measure can be expressed based on two expectations under densities
f and g to be

Dk
U ( f : g) =

1 + U

2

∫
X

(
f (x) − g(x)

)2

k1−U (x)
dx

=
1 + U

2
Ef

(
f (X) − g(X)
k1−U (X)

)
+ 1 + U

2
Eg

(
g(X) − f (X)
k1−U (X)

)
.

From the definition of Dk
U ( f : g), the weight density function, k(x), can be utilized to assign varying

degrees of importance to different regions of the dataset. For instance, a weight function that places less
emphasis on extreme values can be employed to make the divergence measure more robust to outliers.
On the other hand, a weight function that highlights a specific region of the data can be used to detect
dissimilarities within that region of the data.

In general, Dk
U ( f : g) divergence provides a flexible and powerful framework for assessing the

differences between probability distributions in a wide range of applications. The parameters U and
k(x) can be adjusted to suit the specific characteristics and features of the data for the two models that
are being compared, offering greater sensitivity and flexibility in the comparison process.

Remark 2.3.

(i) If U = 1, then Dk

U=1( f : g) = L2( f : g) =
∫ (

f (x) − g(x)
)2dx.

(ii) If k(x) = f (x), then Dk

U=0( f : g) = j2
0 ( f , g) = j2 ( f ,g)

2 .
(iii) If k(x) = g(x), then Dk

U=0( f : g) = j2
0 (g, f ) = j2 (g, f )

2 .
(iv) If k(x) = pf (x) + (1 − p)g(x), then Dk

U=0( f : g) = 1
2(1−p)2 j

2 (k : f
)
= 1

2p2 j
2(k : g).

(v) If k(x) = f (x)+g(x)
2 , then Dk

U=0( f : g) = j2
T ( f : g), where j2

T ( f : g) is the triangular divergence
defined in Eq. (1.4).

(vi) If k(x) =
f (x)+g(x)

2 , then Dk

U=0( f : g) = j2
BS( f : g) + j2

BS(g : f ), where DBS( f : g) is the
Balakrishnan–Sanghvi divergence measure defined in Eq. (1.3).
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Theorem 2.4. Let k be a density function. Then, Dk

U=0( f : g) divergence measure in Eq. (2.7) can be
expressed as

Dk

U=0( f : g) =

Vark
(

f (X )
k (X )

)
+ Vark

(
g(X )
k (X )

)
2

− Ek

(
f (X)g(X)
k2(X)

)
+ 1. (2.8)

Proof. From the definition of Dk

U=0( f : g), we have

2Dk

U=0( f : g) =

∫
f 2(x)
k(x) dx −

(∫
f (x)dx

)2

+
∫

g2 (x)
k(x) dx −

(∫
g(x)dx

)2
− 2

∫
f (x)g(x)
k(x) dx + 2

= Vark
(

f (X)
k(X)

)
+ Vark

(
g(X)
k(X)

)
− 2Ek

(
f (X)g(X)
k2(X)

)
+ 2,

as required. �

3. Jensen-62
" divergence measure

In this section, we first introduce Jensen-j2
U divergence measure and then establish some of its

properties.
In fact, the Jensen-j2

U divergence measure is an expansion of Dk
U ( f : g) that is established based on

a convex combination. This extension allows for the incorporation of additional divergence measures
into the framework, further increasing the flexibility and applicability of the method.

Definition 3.1. Let X1, X2 and Y be random variables with density functions f1, f2 and k, respectively,
Then, the Jensen-j2

U (J-j2
U) divergence measure, for p ∈ (0, 1), is defined as

J k
U

(
f1, f2; P

)
= pj2

U (k : f1) + (1 − p)j2
U (k : f2) − j2

U

(
k : pf1 + (1 − p)f2

)
. (3.1)

Lemma 3.2. The J-j2
U divergence measure in Eq. (3.1) is non-negative.

Proof. As q(x) = x2 is a convex function, by using Jensen’s inequality, we readily find

2
1 + U

J k
U

(
f1, f2; P

)
= p

∫ (
f1(x) − k(x)

)2

k1−U (x)
dx + (1 − p)

∫ (
f2(x) − k(x)

)2

k1−U (x)
dx

−
∫ (

pf1(x) + (1 − p)f2(x) − k(x)
)2

k1−U (x)
dx

= p
∫ f 2

1 (x)
k1−U (x)

dx + (1 − p)
∫ f 2

2 (x)
k1−U (x)

dx −
∫ (

pf1(x) + (1 − p)f2(x)
)2

k1−U (x)
dx,

≥ 0,

where the last expression follows from the fact that(
pf1(x) + (1 − p)f2(x)

)2 ≤ pf 2
1 (x) + (1 − p)f 2

2 (x).
�
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Theorem 3.3. A representation for J k

U=0
(
f1, f2; P

)
, based on variance of the ratio of densities, is

given by

J k

U=0
(
f1, f2; P

)
=

1
2

{
p Vark

(
f1(X)
k(X)

)
+ (1 − p)Vark

(
f2(X)
k(X)

)
− Vark

(
pf1(X) + (1 − p)f2(X)

k(X)

)}
.

Proof. From the definition of J k

U=0
(
f1, f2; P

)
, we have

2J k

U=0
(
f1, f2; P

)
= p

∫ (
f1(x) − k(x)

)2

k(x) dx + (1 − p)
∫ (

f2(x) − k(x)
)2

k(x) dx

−
∫ (

pf1(x) + (1 − p)f2(x) − k(x)
)2

k(x) dx

= p
∫ f 2

1 (x)
k(x) dx + (1 − p)

∫ f 2
2 (x)
k(x) dx −

∫ (
pf1(x) + (1 − p)f2 (x)

)2

k(x) dx

= p

{∫ f 2
1 (x)
k(x) dx − 1

}
+ (1 − p)

{∫ f 2
2 (x)
k(x) dx − 1

}
−

{∫ (
pf1(x) + (1 − p)f2 (x)

)2

k(x) dx − 1

}
= p Vark

(
f1(X)
k(X)

)
+ (1 − p)Vark

(
f2(X)
k(X)

)
− Vark

(
pf1(X) + (1 − p)f2(X)

k(X)

)
,

as required. �

Theorem 3.4. Let the random variables X1 and X2 have density functions f1 and f2, respectively. Then,
J k

U

(
f1, f2; P

)
measure is a mixture of R-j2

U divergence measures of the form

J k
U

(
f1, f2; P

)
= pDk

U ( f1 : fT ) + (1 − p)Dk
U ( f2 : fT ),

where Dk
U ( fi : fT ) is the divergence measure in Eq. (2.6), with fT = pf1 + (1 − p)f2 being the

two-component mixture density.

Proof. With fT = pf1 + (1 − p)f2, we first find

2
1 + U

J k
U

(
f1, f2; P

)
= p

∫ (
f1(x) − k(x)

)2

k1−U (x)
dx + (1 − p)

∫ (
f2(x) − k(x)

)2

k1−U (x)
dx

−
∫ (

pf1(x) + (1 − p)f2(x) − k(x)
)2

k1−U (x)
dx

= p
∫ f 2

1 (x)
k1−U (x)

dx + (1 − p)
∫ f 2

2 (x)
k1−U (x)

dx −
∫ (

pf1(x) + (1 − p)f2(x)
)2

k1−U (x)
dx.

On the other hand, with k = pDk
U ( f1 : fT ) + (1 − p)Dk

U ( f2 : fT ), we also have

2
1 + U

k = p
∫ (

f1(x) − fT (x)
)2

k1−U (x)
dx + (1 − p)

∫ (
f2(x) − fT (x)

)2

k1−U (x)
dx
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= p
∫ f 2

1 (x)
k1−U (x)

dx − 2p
∫

f1(x)fT (x)
k1−U (x)

dx + p
∫ f 2

T (x)
k1−U (x)

dx

+(1 − p)
∫ f 2

2 (x)
k1−U (x)

dx − 2(1 − p)
∫

f2(x)fT (x)
k1−U (x)

dx + (1 − p)
∫ f 2

T (x)
k1−U (x)

dx

= p
∫ f 2

1 (x)
k1−U (x)

dx + (1 − p)
∫ f 2

2 (x)
k1−U (x)

dx − 2
∫ f 2

T (x)
k1−U (x)

dx +
∫ f 2

T (x)
k1−U (x)

dx

= p
∫ f 2

1 (x)
k1−U (x)

dx + (1 − p)
∫ f 2

2 (x)
k1−U (x)

dx −
∫ f 2

T (x)
k1−U (x)

dx,

which establishes the required result. �

Theorem 3.5. A connection between J k

U=0
(
f1, f2; P

)
with k =

f1+f2
2 and Balakrishnan–Sanghvi

divergence measure is given by

J k

U=0
(
f1, f2; P

)
= p

{
j2

BS( f1 : fT ) + j2
BS( fT : f1)

}
+ (1 − p)

{
j2

BS( f2 : fT ) + j2
BS( fT : f2)

}
,

where fT = pf1 + (1 − p)f2 is the two-component mixture density.

Proof. With fT = pf1 + (1 − p)f2 and from Part (vi) of Remark 2.3 and Theorem 3.4, we have

J k

U=0
(
f1, f2; P

)
= pDk

U=0( f1 : fT ) + (1 − p)Dk

U=0( f2 : fT )
= p

{
j2

BS( f1 : fT ) + j2
BS( fT : f1)

}
+ (1 − p)

{
j2

BS( f2 : fT ) + j2
BS( fT : f2)

}
,

as required. �

Theorem 3.6. We have

−1
2

m2

mp2J
k
U

(
f1, f2; P

)
= Dk

U ( f1 : f2). (3.2)

Proof. From the definition J k
U

(
f1, f2; P

)
in Eq. (3.1) and making use of the dominated convergence

theorem, we have

−1
2

m2

mp2J
k
U

(
f1, f2; P

)
= −1 + U

4
m

mp

(∫ (
f1(x) − k(x)

)2

k1−U (x)
dx +

∫ (
f2(x) − k(x)

)2

k1−U (x)
dx

)
+1 + U

2
m

mp

(∫ (
f1(x) − f2(x)

) pf1(x) + (1 − p)f2(x) − k(x)
k1−U (x)

dx
)

=
1 + U

2

∫ (
f1(x) − f2(x)

)2

k1−U (x)
dx

= Dk
U ( f1 : f2),

as required. �

We now extend the definition of Jensen-j2
U divergence measure in Eq. (3.1) to the case of n+ 1

random variables. Let X1, . . . , Xn and Y be random variables with density functions f1, . . . , fn and k,
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respectively, and p1, . . . , pn be non-negative real numbers such that
∑n

i=1 pi = 1. Then, the Jensen-j2
U

measure is defined as

J k
U

(
f1, . . . , fn; P

)
=

n∑
i=1

pij
2
U (k : fi) − j2

U

(
k :

n∑
i=1

pifi

)
. (3.3)

The special case of Jensen-j2
U divergence measure, when U = 0, has the representation

J k

U=0
(
f1, . . . , fn; P

)
=

1
2

n∑
i=1

pij
2(k : fi) −

1
2
j2

(
k :

n∑
i=1

pifi

)
=

1
2

n∑
i=1

piVark
(

fi (X)
k(X)

)
− 1

2
Vark

(∑n
i=1 pifi (X)
k(X)

)
.

Corollary 3.7. The J k
U

(
f1, . . . , fn; P

)
measure in Eq. (3.3) is a mixture of Dk

U measures in Eq. (2.6) of
the form

J k
U

(
f1, . . . , fn; P

)
=

n∑
i=1

piD
k
U ( fi : fT ).

Theorem 3.8. The J k
U

(
f1, . . . , fn; P

)
measure in Eq. (3.3) is a mixture of Dk

U measures in Eq. (2.6) of
the form

J k
U

(
f1, . . . , fn; P

)
= 2

n∑
i=1

n∑
j=1

pipjD
k
U ( fi : fj).

Proof. From Corollary 3.7 and making use of the identity ([21], pp. 95–96)

n∑
i=1

wi
(
xi − x̄w

)2
=

1
2

n∑
i=1

n∑
j=1

wiwj
(
xi − xj

)2, x̄w =

n∑
i=1

wixi,
n∑

i=1
wi = 1,

we obtain

J k
U

(
f1, . . . , fn; P

)
=

n∑
i=1

piD
k
U ( fi : fT )

=
1 + U

2

n∑
i=1

pi

∫ (
fi (x) −

∑n
j=1 pjfj (x)

)2

k1−U (x)
dx

=
(1 + U)

4

n∑
i=1

n∑
j=1

pipj

∫ (
fi (x) − fj (x)

)2

k1−U (x)
dx

=
1
2

n∑
i=1

n∑
j=1

pipjD
k
U ( fi : fj),

as required. �
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Theorem 3.9. Let fi ≥ k1−U

2 , i = 1, . . . , n. Then, a lower bound for J k
U

(
f1, . . . , fn; P

)
is given by

J k
U

(
f1, . . . , fn; P

)
≥ 1 + U

4
JSP( f1, . . . , fn),

where JSP( f1, . . . , fn) is the Jensen–Shannon entropy; see [13].

Proof. From the assumption, Theorem 3.8 and by making use of the identity

n∑
i=1

wi
(
xi − x̄w

)2
=

1
2

n∑
i=1

n∑
j=1

wiwj
(
xi − xj

)2,

and then setting wi = pi, wj = pj, xi = fi (x), xj = fj (x) and x̄w =
∑n

i=1 pifi (x) , we find

2
1 + U

J k
U

(
f1, . . . , fn; P

)
=

n∑
i=1

pi

∫ (
fi (x) −

∑n
j=1 pjfj (x)

)2

k1−U (x)
dx

=
1
2

n∑
i=1

n∑
j=1

pipj

∫ (
fi (x) − fj (x)

)2

k1−U (x)
dx

=
1
2

n∑
i=1

n∑
j=1

pipj

∫ (
fi (x) − fj (x)

)2

fi (x)
fi (x)

k1−U (x)
dx

≥ 1
2

n∑
i=1

n∑
j=1

pipj

∫ (
fi (x) − fj (x)

)2

fi (x)
dx

≥ 1
2

n∑
i=1

n∑
j=1

pipj

∫
fi (x) log

(
fi (x)
fj (x)

)
dx

=
1
2

n∑
i=1

n∑
j=1

pipjKL( fi : fj)

≥ 1
2

JSP( f1, . . . , fn),

where the second inequality follows from the fact that log(x) < x − 1, x > 0, and the last inequality
follows from [3]. �

4. ( p, w)-Jensen-62
" divergence measure

In this section, we first review the definition of (p, w)-Jensen–Shannon divergence measure. Then, we
introduce (p, w)-Jensen-j2

U divergence measure in a way similar to (p, w)-Jensen–Shannon divergence.
Furthermore, we establish some results for this extended divergence measure. Let f and g be two density
functions. Then, the Kullback–Leibler divergence between f and g is defined as

KL( f , g) =
∫

f (x) log
(
f (x)
g(x)

)
dx,

where log denotes the natural logarithm. The (p, w)-Jensen–Shannon divergence between two density
functions f 1 and f 2, for U and p ∈ (0, 1), is defined as

JS(p,w) ( f1, f2) = H
(
(1 − s̄)f1 + s̄f2

)
− wH

(
(1 − p)f1 + pf2

)
− (1 − w)H

(
pf1 + (1 − p)f2

)
https://doi.org/10.1017/S0269964823000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000189


Probability in the Engineering and Informational Sciences 413

= wKL ((1 − p)f1 + pf2 : (1 − s̄)f1 + s̄f2)
+(1 − w)KL (pf1 + (1 − p)f2 : (1 − s̄)f1 + s̄f2) ,

where s̄ = wp + (1 − w) (1 − p). For more details, one may refer to [16, 17].

Definition 4.1. Let X1, X2 and Y be random variables with density functions f1, f2 and k, respectively,
Then, the (p, w)-Jensen-j2

U divergence measure, for w and p ∈ (0, 1), is defined as

J k
U

(
f1, f2; P, w

)
= wj2

U

(
k : (1 − p)f1 + pf2

)
+ (1 − w)j2

U

(
k : pf1 + (1 − p)f2

)
−j2

U

(
k : (1 − s̄)f1 + s̄f2

)
,

where s̄ = wp + (1 − w) (1 − p).

Theorem 4.2. Let the random variables X1 and X2 have density functions f1 and f2, respectively. Then,
J k

U

(
f1, f2; P, w

)
is a mixture of relative measures in Eq. (2.6) of the form

J k
U

(
f1, f2; P, w

)
= wDk

U

(
(1 − p)f1 + pf2 : f T

s̄

)
+ (1 − w)Dk

U

(
pf1 + (1 − p)f2 : f T

s̄

)
, (3.3)

with f T
s̄ = (1 − s̄)f1 + s̄f2 is the two-component mixture density.

Proof. With f T
s̄ = (1 − s̄)f1 + s̄f2, we find

2
1 + U

J k
U

(
f1, f2; P, w

)
= w

∫ (
(1 − p)f1(x) + pf2(x) − k(x)

)2

k1−U (x)
dx + (1 − w)

∫ (
pf1(x) + (1 − p)f2(x) − k(x)

)2

k1−U (x)
dx

−
∫ (

(1 − s̄)f1(x) + s̄f2(x) − k(x)
)2

k1−U (x)
dx

= w
∫ (

(1 − p)f1(x) + pf2(x)
)2(x)

k1−U (x)
dx + (1 − w)

∫ (
pf1(x) + (1 − p)f2(x)

)2(x)
k1−U (x)

dx

−
∫ (

(1 − s̄)f1(x) + s̄f2(x)
)2

k1−U (x)
dx.

On the other hand, letting

1 + U

2
k = wDk

U

(
(1 − p)f1 + pf2 : f T

s̄

)
+ (1 − w)Dk

U

(
pf1 + (1 − p)f2 : f T

s̄

)
and using the fact that

f T
s̄ (x) = (1 − s̄)f1 (x) + s̄f2(x)

=
(
1 − (wp + (1 − w) (1 − p))

)
f1(x) + (wp + (1 − w) (1 − p))f2(x)

= w
(
(1 − p)f1(x) + pf2 (x)

)
+ (1 − w)

(
pf1(x) + (1 − p)f2(x)

)
,

we find

k = w
∫ (

(1 − p)f1(x) + pf2(x) − f T
s̄ (x)

)2

k1−U (x)
dx + (1 − w)

∫ (
pf1(x) + (1 − p)f2(x) − f T

s̄ (x)
)2

k1−U (x)
dx
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= w
∫ (

(1 − p)f1(x) + pf2(x)
)2(x)

k1−U (x)
dx − 2w

∫ (
(1 − p)f1(x) + pf2(x)

)
f T
s̄ (x)

k1−U (x)
dx +

∫ (
f T
s̄ (x)

)2

k1−U (x)
dx

+(1 − w)
∫ (

(pf1(x) + (1 − p)f2(x)
)2(x)

k1−U (x)
dx − 2(1 − w)

∫ (
pf1(x) + (1 − p)f2(x)

)
f T
s̄ (x)

k1−U (x)
dx

= w
∫ (

(1 − p)f1(x) + pf2(x)
)2(x)

k1−U (x)
dx + (1 − w)

∫ (
(pf1(x) + (1 − p)f2(x)

)2(x)
k1−U (x)

dx

+
∫ (

f T
s̄ (x)

)2

k1−U (x)
dx.

Now, from the above results, we have

J k
U

(
f1, f2; P, w

)
=

1 + U

2
k = wDk

U

(
(1 − p)f1 + pf2 : f T

s̄

)
+ (1 − w)Dk

U

(
pf1 + (1 − p)f2 : f T

s̄

)
,

which establishes the required result. �

From Definitions 3.1 and 4.1, we readily have the following Corollary.

Corollary 4.3. A connection between J k
U

(
f1, f2; P, w

)
and J k

U

(
f1, f2; w

)
measures is given by

J k
U

(
f1, f2; P, w

)
= J k

U

(
(1 − p)f1 + pf2 : pf1 + (1 − p)f2; w

)
.

Theorem 4.4. We have

(i)

−1
2

m2

mw2J
k
U

(
f1, f2; P, w

)
= Dk

U ((1 − p)f1 + pf2 : pf1 + (1 − p)f2) ;

(ii)

−1
2

m2

mp2J
k
U

(
f1, f2; P, w

)
= Dk

U ((1 − w)f1 + wf2 : wf1 + (1 − w)f2) − Dk
U

(
f1 : f2

)
.

Proof. From Theorem 3.6 and Corollary 4.3, we have

−1
2

m2

mw2J
k
U

(
f1, f2; P, w

)
=

−1
2

m2

mw2J
k
U ((1 − p)f1 + pf2, pf2 + (1 − p)f1, w)

= Dk
U ((1 − p)f1 + pf2 : pf1 + (1 − p)f2) ,

which proves Part (i). From Corollary 4.3 and using the facts that

f T
s̄ (x) = w

(
(1 − p)f1(x) + pf2(x)

)
+ (1 − w)

(
pf1(x) + (1 − p)f2(x)

)
and

(1 − w)f1(x) + wf2 (x) −
(
wf1(x) + (1 − w)f2(x)

)
= w( f2(x) − f1(x)) + (1 − w) ( f1(x) − f2(x)),

we find

https://doi.org/10.1017/S0269964823000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000189


Probability in the Engineering and Informational Sciences 415

−1
2

m2

mp2J
k
U

(
f1, f2; P, w

)
=

−1
2

m2

mp2J
k
U ((1 − p)f1 + pf2, pf1 + (1 − p)f2; w)

= −w
U + 1

4
m2

mp2

∫ (
(1 − p)f1(x) + pf2(x) − k(x)

)2

k1−U (x)
dx

−(1 − w)U + 1
4

m2

mp2

∫ (
pf1(x) + (1 − p)f2(x) − k(x)

)2

k1−U (x)
dx

+U + 1
4

m2

mp2

∫ (
f T
s̄ (x) − k(x)

)2

k1−U (x)
dx

=
U + 1

2

∫ (w( f2(x) − f1(x)) + (1 − w) ( f1(x) − f2(x)))2

k1−U (x)
dx

−U + 1
2

∫ (
f2(x) − f1(x)

)2

k1−U (x)
dx

=
U + 1

2

∫ (
(1 − w)f1(x) + wf2(x) −

(
wf1(x) + (1 − w)f2(x)

) )2

k1−U (x)
dx

−U + 1
2

∫ (
f2(x) − f1(x)

)2

k1−U (x)
dx

= Dk
U ((1 − w)f1 + wf2 : wf1 + (1 − w)f2) − Dk

U

(
f1 : f2

)
,

which proves Part (ii). Hence, the theorem. �

5. D7
" divergence measure of escort and arithmetic mixture densities

In this section, we examine Dk
U divergence measure of escort and arithmetic mixture densities.

5.1. Dk
U divergence measure of escort and generalized escort densities

The escort distribution is a key concept in nonextensive statistical mechanics and coding theory and
is closely associated with Tsallis and Rényi entropy measures. Bercher [6] studied some connections
between coding theory and the measure of complexity in nonextensive statistical mechanics in terms of
escort distributions.

Let f be a density function. Then, the escort density with order [ > 0, associated with f, is defined as

f[ (x) =
f [ (x)∫
f [ (x)dx

. (5.1)

Theorem 5.1. Let f and g be two density functions and fU be the escort density corresponding to f.
Then, for 0 ≤ [ ≤ 1 and k(x) = f[ (x), we have

Dk
U ( f : g) = 1 + U

1 + V
G1−U

[ ( f )j2
V ( f : g), (5.2)
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where V = 1 − [(1 − U) and G[ ( f ) is the information generating function of density f with order [

defined as

G[ ( f ) =
∫

f [ (x)dx. (5.3)

Proof. From the definition of Dk
U ( f : g) and the assumption that k(x) = f[ (x), we have

Dk
U ( f : g) =

1 + U

2

∫ (
f (x) − g(x)

)2

f 1−U
[ (x)

dx

=
1 + U

2

(∫
f [ (x)dx

)1−U ∫ (
f (x) − g(x)

)2

f [ (1−U) (x)
dx

=
1 + U

2
G1−U

[ ( f )
∫ (

f (x) − g(x)
)2

f [ (1−U) (x)
dx

=
1 + U

1 + V
G1−U

[ ( f )j2
V ( f : g),

where V = 1 − [(1 − U), as desired.
Next, let f and g be two density functions. Then, the generalized escort density, for 1 > [ > 0, is

defined as

h[ (x) =
f [ (x)g1−[ (x)∫
f [ (x)g1−[ (x)dx

. (5.4)

Let k(x) = h[ (x). We then have

2Dk

U=0 ( f : g) =

∫ (
f (x) − g(x)

)2

h[ (x)
dx =

∫ (
f (x) − g(x)

)2

f [ (x)g1−[ (x)∫
f [ (x)g1−[ (x)dx

dx

=

(∫
f [ (x)g1−[ (x)dx

) ∫ (
f (x) − g(x)

)2

f [ (x)g1−[ (x)
dx

= R[ ( f : g)
∫ (

f (x) − g(x)
)2

f [ (x)g1−[ (x)
dx, (5.5)

where R[ ( f : g) is the relative information-generating function between density functions f and g
defined as

R[ ( f : g) =
∫

f [ (x)g1−[ (x)dx. (5.6)

�

Theorem 5.2. A lower bound for Dk

U=0( f : g) in Eq. (5.5) is given by

Dk

U=0( f : g) ≥
R[ ( f , g)
2(1 − [)2 j

2 ( f[ : f ),

where f[ = [f + (1 − [)g is the two-component mixture density, j2(. : .) is the chi-square divergence,
and R[ ( f : g) is as defined in Eq. (5.6).
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Proof. From the definition of Dk
U ( f : g) and the assumption that

k(x) = h[ (x) =
f [ (x)g1−[ (x)∫
f [ (x)g1−[ (x)dx

,

for 0 ≤ [ ≤ 1, and using the geometric mean-arithmetic mean inequality between densities f and g
given by

f [ (x)g1−[ (x) ≤ [f (x) + (1 − [)g(x),

and the fact that g(x) − f (x) = 1
1−[

( f[ (x) − f (x)), we obtain

2Dk

U=0( f : g) =

∫ (
f (x) − g(x)

)2

h[ (x)
dx

=

(∫
f [ (x)g1−[ (x)dx

) ∫ (
f (x) − g(x)

)2

f [ (x)g1−[ (x)
dx

= R[ ( f : g)
∫ (

f (x) − g(x)
)2

f [ (x)g1−[ (x)
dx

≥ R[ ( f : g)
∫ (

f (x) − g(x)
)2

[f (x) + (1 − [)g(x) dx

=
R[ ( f : g)
(1 − [)2

∫ (
f[ (x) − f (x)

)2

f[ (x)
dx

=
R[ ( f : g)
(1 − [)2 j2( f[ : f ),

as required. �

5.2. Dk
U divergence measure between two arithmetic mixture densities

In this subsection, we study Dk
U divergence measure between two arithmetic mixture densities. Consider

two mixture density functions fm (x) =
∑n

i=1 pifi (x) and gm (x) =
∑n

i=1 pigi (x). Then, we have

Dk
U ( fm : gm) =

1 + U

2

∫ (
fm (x) − gm (x)

)2

k1−U (x)
dx =

1 + U

2

∫ (∑n
i=1 pifi (x) −

∑n
i=1 pigi (x)

)2

k1−U (x)
dx

=
1 + U

2

∫ (∑n
i=1 pi

(
fi (x) − gi (x)

) )2

k1−U (x)
dx

=
1 + U

2

∫ 
n∑

i=1
p2

i

(
fi (x) − gi (x)

)2

k1−U (x)
+ 2

n∑
i=1

n∑
j=1

i<j

pipj

(
fi (x) − gi (x)

) (
fj (x) − gj (x)

)
k1−U (x)

 dx

=
1 + U

2

n∑
i=1

p2
i

∫ (
fi (x) − gi (x)

)2

k1−U (x)
dx

+(1 + U)
n∑

i=1

n∑
j=1

i<j

pipj

∫ (
fi (x) − gi (x)

) (
fj (x) − gj (x)

)
k1−U (x)

dx
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=
1 + U

2

n∑
i=1

p2
i Dk

U ( fi : gi) + (1 + U)
n∑

i=1

n∑
j=1

i<j

pipj

∫ (
fi (x) − gi (x)

) (
fj (x) − gj (x)

)
k1−U (x)

dx.

Theorem 5.3. Let f1, . . . , fn be n density functions. Now, consider the probability mixing vector
P = (p1, . . . , pn) and its corresponding negation probability vector

P̄ = (p̄1, . . . , p̄n) =
(
1 − p1

n − 1
, . . . ,

1 − pn

n − 1

)
.

Then, we have the lower bound for Dk

U=0 as

Dk

U=0

(
n∑

i=1
pifi :

n∑
i=1

p̄ifi

)
≥ 1

2

n∑
i=1

(
npi − 1
n − 1

)2 (
KL( fi : k) + 1

)
+ L,

where L =
∑n

i=1
∑n

j=1
i<j

(npi−1) (npj−1)
(n−1)2

∫ fi (x)fj (x)
k2 (x) dx. For more details about negation probability, see [22].

Proof. From the definition of Dk

U=0 divergence measure between mixture densities
∑n

i=1 pi fi and∑n
i=1 p̄ifi and upon setting

L =

n∑
i=1

n∑
j=1

i<j

(npi − 1)(npj − 1)
(n − 1)2

∫ fi (x)fj (x)
k2(x)

dx,

we find

Dk

U=0

( n∑
i=1

pifi :
n∑

i=1
p̄ifi

)
=

1
2

∫ (∑n
i=1 pifi (x) −

∑n
i=1 p̄ifi (x)

)2

k(x) dx

=
1
2

n∑
i=1

(
npi − 1
n − 1

)2 ∫ f 2
i (x)dx
k(x) dx + L

=
1
2

n∑
i=1

(
npi − 1
n − 1

)2 (
j2( fi : k) + 1

)
+ L

≥ 1
2

n∑
i=1

(
npi − 1
n − 1

)2
(KL( fi : k) + 1) + L,

where the last inequality follows from the inequality between Kullback–Leibler and chi-square diver-
gence measures. This proves the required result. �

6. Optimal information under 62
" divergence measure

In this section, we first introduce (p, [)-mixture density as a generalization of arithmetic and harmonic
mixture densities. Then, we examine optimal information property of (p, [)-mixture density. To follow
this, we consider optimization problem for j2

U divergence under three types of constraints. For more
details about optimal information properties of some mixture distributions (arithmetic, geometric and
U−mixture distributions), one may refer to [2] and the references therein.
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6.1. (p, [)-mixture density

Definition 6.1. Let f0 and f1 be two density functions. Then, a generalized mixture density, called the
(p, [)-mixture density, is defined as

fm (x) =
pf [0 (x) + (1 − p)f [1 (x)

pf [−1
0 (x) + (1 − p)f [−1

1 (x)

(∫ pf [0 (x) + (1 − p)f [1 (x)
pf [−1

0 (x) + (1 − p)f [−1
1 (x)

dx

)−1

.

The (p, [)-mixture density provides arithmetic and harmonic mixture densities as special cases:

(i) If p= 0, then fm (x) = f1(x).
(ii) If p= 1, then fm (x) = f0(x).
(iii) If [ = 1, then fm (x) = pf0(x) + (1 − p)f1(x) is the arithmetic mixture density.

(iv) If [ = 0, then fm (x) =
(

p
f0 (x)

+ 1−p
f1 (x)

)−1∫ (
p

f0 (x)
+ 1−p

f1 (x)

)−1
dx

is the harmonic mixture density.

6.2. Optimal information property of (p, [)-mixture density

Theorem 6.2. Let f, f0 and f1 be three density functions. Then, the solution to the optimization problem

min
f

j2
U (f0 : f ) subject to j2

U (f1 : f ) = [,
∫

f (x)dx = 1 (6.1)

is the (p, [)-mixture density with [ = U and mixing parameter p = 1
1+_0

, and _0 > 0 is the Lagrangian
multiplier.

Proof. We use the Lagrangian multiplier technique for finding the solution of the optimization problem
in Eq. (6.1). Thus, we have

L(f ,_0,_1) =
1 + U

2

∫ (f (x) − f0(x))2

f 1−U
0 (x)

dx + 1 + U

2
_0

∫ (f (x) − f1(x))2

f 1−U
1 (x)

dx + _1

∫
f (x)dx.

Now, differentiating with respect to f, we obtain

m

mf
L(f ,_0,_1) = (1 + U) f (x) − f0(x)

f 1−U
0 (x)

+ (1 + U)_0
f (x) − f1(x)

f 1−U
1 (x)

+ _1. (6.2)

Setting Eq. (6.2) to zero, we get the optimal density function to be

f (x) =
pf U0 (x) + (1 − p)f U1 (x)

pf U−1
0 (x) + (1 − p)f U−1

1 (x)

(∫ pf U0 (x) + (1 − p)f U1 (x)
pf U−1

0 (x) + (1 − p)f U−1
1 (x)

dx

)−1

,

where p = 1
1+_0

, as required. �
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Theorem 6.3. Let f, f0 and f1 be three density functions. Then, the solution to the optimization problem,

min
f
{wj2

U (f0 : f ) + (1 − w)j2
U (f1 : f )} subject to

∫
f (x)dx = 1, 0 ≤ w ≤ 1, (6.3)

is the (p, [)-mixture density with mixing parameter p=w.

Proof. Making use of the Lagrangian multiplier technique in the same way as in Theorem 6.1, the
required result is obtained. �

Theorem 6.4. Let f, f0 and f1 be three density functions and TU (X) = f (X )
f 1−U
1 (X ) . Then, the solution to the

optimization problem,

min
f

j2
U (f0 : f ) subject to Ef (TU (X)) = [,

∫
f (x)dx = 1, (6.4)

is the (p, [)-mixture density with mixing parameter p = 1
1+_0

and _0 > 0 is the Lagrangian multiplier.

Proof. Making use of the Lagrangian multiplier technique in the same way as in Theorem 6.1, the
required result is obtained.

Now, we extend Theorem 6.2 to the case of n+ 2 density functions. �

Theorem 6.5. Let f, f0, . . . , fn be n+ 2 density functions. Then, the solution to the optimization problem,

min
f

j2
U (f0 : f ) subject to j2

U (fi : f ) = [i, i = 1, . . . , n,
∫

f (x)dx = 1, (6.5)

is the extended (p, [)-mixture density with [ = U and mixing parameters pi =
_i

1+∑n−1
i=0 _i

and _i > 0,
i = 0, . . . , n, is the Lagrangian multiplier.

Proof. We use the Lagrangian multiplier technique for finding the solution to the optimization problem
in Eq. (6.5). Thus, we have

L(f ,_0, . . . ,_n) =
1 + U

2

∫ (f (x) − f0(x))2

f 1−U
0 (x)

dx +
n−1∑
i=0

_i (1 + U)
2

∫ (f (x) − fi+1(x))2

f 1−U
i+1 (x)

dx

+_n

∫
f (x)dx.

Now, differentiating with respect to f, we obtain

m

mf
L(f ,_0, . . . ,_n) = (1 + U) f (x) − f0

f 1−U
0

+ (1 + U)
n−1∑
i=0

_i
f (x) − fi+1

f 1−U
i+1

+ _n. (6.6)

Setting Eq. (6.6) to zero, we get the optimal density function to be

f (x) = k
(1 − ∑n

i=1 pi)f U0 (x) + ∑n
i=1 pif Ui (x)

(1 − ∑n
i=1 pi)f U−1

0 (x) + ∑n
i=1 pif U−1

i (x)
,
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where

k =

∫ (
(1 − ∑n

i=1 pi)f U0 (x) + ∑n
i=1 pif Ui (x)

(1 − ∑n
i=1 pi)f U−1

0 (x) + ∑n
i=1 pif U−1

i (x)

)−1

dx

and pi =
_i

1+∑n−1
i=0 _i

, as required. �

7. Relative-62
" divergence measure of mixed reliability systems

Consider a system with component lifetimes X1, . . . , Xn, which are independent and identically dis-
tributed (i.i.d.) with a common lifetime cumulative distribution function (c.d.f.) F and a probability
density function (p.d.f.) f. Then, the system lifetime T = q(X1, . . . , Xn), where q is referred to as the
system’s structure function, is connected to signature vector s = (s1, . . . , sn) through

si = P(T = Xi:n) =
ni

n!
, i = 1, . . . , n,

where X1:n, . . . , Xn:n are the order statistics of component lifetimes and ni is the number of ways
that component lifetimes can be arranged such that T = q(X1, . . . , Xn) = Xi:n; for more details,
see [20]. Then, the reliability function of T can be expressed as a mixture of reliability functions of
Xi:n, i = 1, . . . , n, as

F̄T (t) =
n∑

i=1
siF̄i:n (t).

Consequently, the corresponding p.d.f. of T is

fT (t) =
n∑

i=1
sifi:n (t), (7.1)

where fi:n is the p.d.f. of Xi:n, given by

fi:n(x) =
n!

(i − 1)!(n − i)! f (x)F
i−1(x) (1 − F (x))n−i;

see [1].

7.1. Dk
U measure for order statistics

Suppose X1, . . . , Xn are i.i.d. variables from an absolutely continuous c.d.f. F and p.d.f. f, and
X1:n, . . . , Xn:n are the corresponding order statistics.

Theorem 7.1. The Dk
U divergence measure between densities fi:n and f is given by

Dk
U ( fi:n : f ) = 1 + U

2

∫ 1

0

f (F−1(u))
k1−U

(
F−1(u)

) ( fU (u) − fUi:n (u)
)2du, (7.2)

where the random variables U and Ui:n are uniform and Beta(i, n − i + 1) random variables on (0, 1)
with density functions fU and fUi:n , respectively.
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Proof. By using the definition of Dk
U divergence measure and the transformation u = F (x), we obtain

Dk
U ( fi:n : f ) =

1 + U

2

∫ ∞

0

(
fi:n(x) − f (x)

)2

k1−U (x)
dx

=
1 + U

2

∫ 1

0

f (F−1(u))
k1−U

(
F−1(u)

) (
1 − n!

(i − 1)!(n − i)!u
i−1(1 − u)n−i

)2
du

=
1 + U

2

∫ 1

0

f (F−1(u))
k1−U

(
F−1(u)

) ( fU (u) − fUi:n (u)
)2du,

as required. �

Corollary 7.2. From Theorem 7.1, we readily deduce the following:

(i) If k(x) = f (x), then

Dk
U ( fi:n : f ) = j2

U ( fU : fUi:n).

(ii) If k(x) = fi:n(x), then

Dk
U ( fi:n : f ) = j2

U ( fUi:n : fU).

From Corollary 7.2, it is immediately seen that under the imposed assumptions, Dk
U ( fi:n : f )

divergence is free of the baseline distribution.

Theorem 7.3. The Dk
U divergence measure between two density functions fi:n and fj:n is

given by

Dk
U ( fi:n : fj:n) =

1 + U

2

∫ 1

0

f ( f −1(u))
k1−U

(
f −1(u)

) ( fUi:n (u) − fUj:n (u)
)2du. (7.3)

Proof. By using the definition of Dk
U divergence measure and the transformation u = F (x) in the same

way as in the proof of Theorem 7.1, the required result is obtained.
In the special case when k(x) = fi:n(x), we find that

Dk
U ( fi:n : fj:n) = j2

U ( fUi:n : fUj:n). (7.4)
�

7.2. Dk
U measure for mixed systems

In this section, we examine the Dk
U divergence measure associated with mixed reliability systems.

Theorem 7.4. If k(x) = fi:n(x), then the Dk
U ( fT : fi:n) divergence measure is given by

Dk
U ( fT : fi:n) = j2

U

(
fUi:n :

n∑
i=1

sifUi:n

)
. (7.5)
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Proof. From the assumption that k(x) = fi:n(x) and the definition of Dk
U ( fT : fi:n) measure, and making

use of the transformation u = F (x), we have

Dk
U ( fT : fi:n) =

1 + U

2

∫ ∞

0

( ∑n
j=1 Ujfj:n(x) − fi:n(x)

)2

f 1−U
i:n (x)

dx

=
1 + U

2

∫ 1

0

( ∑n
j=1 sjfUj:n (u) − fUi:n (u)

)2

f 1−U
Ui:n

(u)
du

= j2
U

(
fUi:n :

n∑
i=1

sjfUj:n

)
,

as required. �

Theorem 7.5. Let T1 and T2 be the lifetimes of two mixed systems with signatures s and s′ consisting
of n i.i.d. components having common c.d.f. F and p.d.f. f. Then, if k(x) = f (x), we have

Dk
U ( fT1 : fT2) =

1 + U

2

∫ 1

0

(
n∑

i=1
fUi:n (u)

(
si − s′i

))2

f U (F−1 (u))du,

where fUi:n (u) is the p.d.f. of a beta distribution with parameters i and n − i + 1.

Proof. From the assumption made and use of the transformation u = F (x), we have

Dk
U ( fT1 : fT2) =

1 + U

2

∫ ∞

0

( ∑n
i=1 sifi:n(x) −

∑n
i=1 s′i fi:n(x)

)2

f 1−U (x)
dx

=
1 + U

2

∫ 1

0

(
n∑

i=1
sifUi:n (u) −

n∑
i=1

s′i fUi:n (u)
)2

f U (F−1(u))du

=
1 + U

2

∫ 1

0

(
n∑

i=1
fUi:n (u)

(
si − s′i

))2

f U (F−1(u))du,

as required. �

8. Application to image processing

In this section, we present an application of Jensen-j2
U measure in the framework of image quality

assessment. For pertinent details about image quality assessment, see [10].
Figure 1 shows the original lake image that includes 512×512 cells, and the level of the color gray of

each cell assumes a value in the interval [0, 1] (0 for black and 1 for white). It depicts the image labeled
as X and three adjusted versions of it labeled as Y (= X+0.3) (increasing brightness), Z (=

√
2 × X) (with

increased contrast and gamma correction) and W (=
√

X) (gamma corrected). For pertinent details, see
EBImage package in R software [19].

The extracted histograms with the corresponding empirical densities for images X, Y, Z and W are
plotted in Figure 2.

We can see from Figures 1 and 2 that the highest degree of similarity is first related to W and then
to Y, whereas Z has the highest degree of divergence from the original image X.
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Figure 1. The original lake image and its three adjusted versions. Image X (top-left corner), Image Y
(top-right corner), Image Z (bottom-left corner) and Image W (bottom-left corner).

Figure 2. The histograms and the corresponding empirical densities for lake image (X) and its three
adjusted versions (Y, Z and W).

8.1. Nonparametric estimation of the Jensen-j2
U divergence measure

Let f 1, f 2 and k be probability density functions. Suppose we draw independent and identically dis-
tributed random samples from each of these distributions, obtaining samples of sizes n1, n2 and
nk , respectively. Denote the resulting samples by X (1)

1 , . . . , X (1)
n1 for f 1, X (2)

1 , . . . , X (2)
n2 for f 2 and

Xk

1 , . . . , Xk
nk

for k.
To estimate the underlying probability density functions f 1, f 2 and k using kernel density estimation,

we can use the following functions:
Let f̂1(x) be the kernel density estimate of f 1, based on the sample X (1)

1 , . . . , X (1)
n1 . Then, we have
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Table 1. The Jensen-j2
U divergence measure between each pair of adjusted images with respected to

the original image for the choices U = 0.5, 1.5 and p= 0.5

Measure Jensen-j2
0.5 Jensen-j2

1.5(
Y , Z ‖ X

)
0.016992 0.000058(

Y , W ‖ X
)

0.0337651 0.000071(
Z, W ‖ X

)
0.0562018 0.000117

f̂1(x) =
1

n1h1

n∑
i=1

K

(
x − X (1)

i
h1

)
.

where K (·) is a kernel function, typically chosen to be a symmetric probability density function, and
h1 is a bandwidth parameter that controls the smoothness of the estimate.

Similarly, let f̂2(x) be the kernel density estimate for f 2, based on the sample X (2)
1 , . . . , X (2)

n2 . Then,
we can write

f̂2(x) =
1

n2h2

n2∑
i=1

K

(
x − X (2)

i
h2

)
,

where h2 is a bandwidth parameter for the kernel density estimate of f2. Finally, let k̂(x) be the kernel
density estimate for k, based on the sample xk1 , . . . , xknk

. Then, we have

k̂(x) = 1
nkhk

nk∑
i=1

K

(
x − Xk

i
hk

)
,

where hk is a bandwidth parameter for the kernel density estimate of k.
For more details, see [8].
Using these estimates based on Gaussian kernel, K (u) = 1√

2c
e− u2

2 , we can compute the integrated
nonparametric estimate of the Jensen-j2

U measure, for 0 < p < 1, as

Ĵ k
U

(
f1, f2; P

)
= pj2

U (k̂ : f̂1) + (1 − p)j2
U (k̂ : f̂2) − j2

U

(
k̂ : pf̂1 + (1 − p) f̂2

)
.

We have computed the Jensen-j2
U information measure for each pair of adjusted images with respect

to the original lake image, and these are presented in Table 1. The results demonstrate that the Jensen-j2
U

divergence is an effective measure of similarity between each pair of adjusted images and the reference
original image. Specifically, the Jensen-j2

U divergence highlights the high degree of similarity between
images Y and Z with respect to the original image (X). Furthermore, the results in Table 1 indicate
that the comparison of images Z and W with respect to the reference image X results in low similarity.
Therefore, the Jensen-j2

U information measure can be considered as an efficient criteria for comparing
the similarity between each pair of adjusted images with respect to the reference image.

9. Concluding remarks

In this paper, by considering the j2
U divergence measure, we have proposed relative-j2

U, Jensen-j2
U

and (p, w)-Jensen-j2
U divergence measures. We have first shown that the j2

U divergence measure has
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a close relationship with q-Fisher information of mixing parameter of an arithmetic mixture distri-
bution. We have then shown that the proposed relative-j2

U divergence measure includes some other
well-known versions of chi-square divergence such as the usual chi-square (j2), generalized-j2 (j2

U),
triangular and Balakrishnan–Sanghavi divergence measures all as special cases. We have shown that the
Jensen-j2

U divergence is a mixture of relative-j2
U divergence measures. A lower bound for Jensen-j2

U

divergence has been obtained in terms of Jensen–Shannon entropy measure. We have also introduced
(p, w)-Jensen-j2

U divergence measure and have then established some of its properties. Further, we have
studied the relative-j2

U divergence measure of escort and arithmetic mixture densities. Next, we have
introduced (p, [)-mixture density, which includes arithmetic-mixture and harmonic-mixture densities
as special cases. Interestingly, we have shown that the proposed mixture density possesses optimal
information under three different optimization problems associated with the j2

U divergence measure.
We have also provided a discussion about the relative-j2

U divergence measure of order statistics and
mixed reliability systems. Finally, we have described an application of the Jensen-j2

U measure in image
processing.

In summary, in this paper, some extensions of the chi-square divergence measure such as
the relative-j2

U, Dk
U, Jensen-j2

U and (p, w)-Jensen-j2
U divergence measures have been proposed.

Particularly, it has been shown that the relative-j2
U divergence measure includes the well-known diver-

gence measures, such as L2, j2, triangular, symmetric j2, j2
U and Balakrishnan–Sanghvi divergence

measures, all as special cases, and provides a flexible and powerful divergence measure for comparing
probability distributions in a wide rage of problems. The choice of U and the weight function k(x) can
be tailored to suit the specific characteristics and the features of the data for the models that are being
compared, allowing for greater sensitivity and flexibility in the comparison process.

Furthermore, the proposed Jensen-j2
U and (p, w)-Jensen-j2

U divergence measures are extensions of
Dk

U ( f : g) that are based on a convex combination. These extensions allow for the incorporation of
additional divergence measures into the framework, further increasing the flexibility and applicability
of the method.

There are, of course, several areas of the proposed information measures that require more study
with regard to its theoretical as well as experimental analysis. Additionally, with the incorporation of the
idea of relative-j2

U divergence and Jensen-j2
U divergence measures, there is an opportunity to broaden

and explore the discrete and cumulative versions of the established divergence measures, utilizing the
properties of convexity or concavity. It will also be of great interest to study cumulative versions of
these measures, and we plan to do this in our future work. Finally, there is also a potential to extend the
idea to relative Fisher information measure. We are currently working on these problems and hope to
report the findings in a future paper.
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