
This chapter contains Gaussian optics and employs a matrix formalism to describe 
optical image formation through light rays. In optics, a ray is an idealized model 
of light. However, in a subsequent chapter (Chapter 3, Section 3.5), we will also 
see that a matrix formalism can also be used to describe, for example, a Gaussian 
laser beam under diffraction through the wave optics approach. The advantage of the 
matrix formalism is that any ray can be tracked during its propagation through the 
optical system by successive matrix multiplications, which can be easily programmed 
on a computer. This is a powerful technique and is widely used in the design of optical 
elements. In the chapter, some of the important concepts in resolution, depth of focus, 
and depth of field are also considered based on the ray approach.

1.1 Gaussian Optics

Gaussian optics, named after Carl Friedrich Gauss, is a technique in geometrical optics 
that describes the behavior of light rays in optical systems under the paraxial approxi-
mation. We take the optical axis to be along the z-axis, which is the general direction 
in which the rays travel, and our discussion is confined to those rays that lie in the x–z 
plane and that are close to the optical axis. In other words, only rays whose angular 
deviation from the optical axis is small are considered. These rays are called paraxial 
rays. Hence, the sine and tangent of the angles may be approximated by the angles 
themselves, that is, sin tan .q q q» »  Indeed, the mathematical treatment is simplified 
greatly because of the linearization process involved. For example, a linearized form 
of Snell’s law of refraction, n ni t1 2sin sinf f= , is n ni t1 2f f= . Figure 1.1-1 shows ray 
refraction for Snell’s law. fi and ft are the angles of incidence and refraction, respec-
tively, which are measured from the normal, ON, to the interface POQ between Media 
1 and 2. Media 1 and 2 are characterized by the constant refractive indices, n1 and 
n2 , respectively. In the figure, we also illustrate the law of reflection, that is, f fi r= , 
where fr is the angle of reflection. Note that the incident ray, the refracted ray, and the 
reflected ray all lie in the same plane of incidence.

Consider the propagation of a paraxial ray through an optical system as shown in 
Figure 1.1-2. A ray at a given z-plane may be specified by its height x from the optical 
axis and by its launching angle q. The convention for the angle is that q is measured in 
radians and is anticlockwise positive from the z-axis. The quantities ,x q( ) represent the 
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2 Gaussian Optics and Uncertainty Principle

coordinates of the ray for a given z-plane. However, instead of specifying the angle the 
ray makes with the z-axis, another convention is used. We replace the angle q by the 
corresponding v n= q, where n is the refractive index of the medium in which the ray 
is traveling. As we will see later, the use of this convention ensures that all the matrices 
involved are positive unimodular. A unimodular matrix is a real square matrix with 
determinant +1 or −1, and a positive unimodular matrix has determinant +1.

To clarify the discussion, we let a ray pass through the input plane with the input 
ray coordinates ( , ).x v n1 1 1 1= q  After the ray passes through the optical system, we 
denote the output ray coordinates ( , )x v n2 2 2 2= q  on the output plane. In the parax-
ial approximation, the corresponding output quantities are linearly dependent on the 
input quantities. In other words, the output quantities can be expressed in terms of 
the weighted sum of the input quantities (known as the principle of superposition) as 
follows:

Figure 1.1-1 Geometry for Snell’s law and law of reflection

Figure 1.1-2 Ray propagating in an optical system
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31.1 Gaussian Optics

x Ax Bv v Cx Dv2 1 1 2 1 1= + = +and ,

where A, B,C, and D are the weight factors. We can cast the above equations into a 
matrix form as
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.  (1.1-1)

The ABCD matrix in Eq. (1.1-1) is called the ray transfer matrix, or the system matrix 
S, if it is represented by the multiplication of ray transfer matrices. In what follows, 
we shall derive several important ray transfer matrices.

1.1.1 Ray Transfer Matrices

 Translation Matrix
A ray travels in a homogenous medium of refractive index n in a straight line (see 
Figure 1.1-3). Let us denote the input and output planes with the ray’s coordinates, 
and then we try to relate the input and output coordinates with a matrix after the trav-
eling of the distance d. Since n n n1 2= =  and q q q q1 2 2 2 2 1 1 1= = = =, .v n n v  From the 
geometry, we also find x x d x d x dv n2 1 1 1 1 1 1= + ≈ + = +tanq q / . Therefore, we can 
relate the output coordinates of the ray with its input coordinates as follows:
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where
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1

0 1  (1.1-3a)

Figure 1.1-3 Ray propagating in a homogeneous medium with the input and output coordinates
x v n1 1 1 1, =( )q  and x v n2 2 2 2, ,=( )q  respectively
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which is called the translation matrix. The matrix describes the translation of a ray 
for a distance d  along the optical axis in a homogenous medium of .n  The determinant 
of d n/  is

d n

d n
/

/
,= =

1

0 1
1

and hence d n/  is a positive unimodular matrix. For a translation of the ray in air, we 
have n =1, and the translation can be represented simply by

d

d
=










1

0 1
.  (1.1-3b)

 Refraction Matrix
We consider a spherical surface separating two regions of refractive indices n1 and n2 
as shown in Figure 1.1-4. The center of the spherical surface is at C, and its radius of 
curvature is R. The convention for the radius of curvature is as follows. The radius of 
curvature of the surface is taken to be positive (negative) if the center C of curvature 
lies to the right (left) of the surface. The ray strikes the surface at the point A and gets 
refracted into media n2 . Note that the input and output planes are the same. Hence, the 
height of the ray at A, before and after refraction, is the same, that is, x x2 1= . fi and 
ft are the angles of incidence and refraction, respectively, which are measured from 
the normal NAC to the curved surface. Applying Snell’s law and using the paraxial 
approximation, we have

n ni t1 2f f= .  (1.1-4)

Now, from geometry, we know that φ θ φi = +1  and φ θ φt = +2  (Figure 1.1-4). 
Hence, the left side of Eq. (1.1-4) becomes

n n v n x Ri1 1 1 1 1 1φ θ φ= + = +( ) / ,  (1.1-5)

Figure 1.1-4 Ray trajectory during refraction at a spherical surface separating two regions of 
refractive indices n1 and n2
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where we have used sinf f= ≈x R1 / . Now, the right side of Eq. (1.1-4) is

n n v n x Rt2 2 2 2 2 2φ θ φ= + = +( ) / ,  (1.1-6)

where x x1 2= as the input and output planes are the same.
Finally, putting Eqs. (1.1-5) and (1.1-6) into Eq. (1.1-4), we have

v n x R v n x R1 1 1 2 2 2+ = +/ /

or

v v n n x R x x2 1 1 2 1 1 2= + −( ) =/ , .as  (1.1-7)

We can formulate the above equation in terms of a matrix equation as
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where
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The determinant of R  is

R p
=
−

=
1 0

1
1.

The 2 × 2 ray transfer matrixR is a positive unimodular matrix and is called the 
refraction matrix. The matrix describes refraction for the spherical surface. The quan-
tity p given by

p
n n

R
=

−2 1

is called the refracting power of the spherical surface. When R is measured in meters, 
the unit of p is called diopters. If an incident ray is made to converge on (diverge 
from) by a surface, the power is positive (negative) in sign.

 Thick- and Thin-Lens Matrices
A thick lens consists of two spherical surfaces as shown in Figure 1.1-5. We shall find 
the system matrix that relates the system’s input coordinates x v1 1,( ) to system’s output 
ray coordinates ( , ).x v2 2  Let us first relate ( , )x v1 1  to ( , )x v1 1¢ ¢ through the spherical sur-
face defined by R1. ( , )x v1 1¢ ¢  are the output coordinates due to the surface R1. According 
to Eq. (1.1-8), we have
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Now, ( , )x v1 1¢ ¢  and ( , )x v2 2¢ ¢  are related through a translation matrix as follows:
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 (1.1-10)

where ( , )x v2 2¢ ¢  are the output coordinates after translation, which are also the coor-
dinates of the input coordinates for the surface R2 . Finally, we relate ( , )x v2 2¢ ¢  to the 
system’s output coordinates ( , )x v2 2  through
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If we now substitute Eq. (1.1-10) into Eq. (1.1-11), then we have
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Subsequently, substituting Eq. (1.1-9) into the above equation, we have the system 
matrix equation of the entire system as follows:
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 (1.1-12)

We have now finally related the system’s input coordinates to output coordinates. 
Note that the system matrix, S R T R= −R d n R2 2 1/ , is a product of three ray transfer 

Figure 1.1-5 Thick lens
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matrices. In general, the system matrix is made up of a collection of ray transfer 
matrices to account for the effects of a ray passing through the optical system. As the 
ray goes from left to right in the positive direction of the z-axis, we obtain the system 
matrix by writing the ray transfer matrices from right to left. This is precisely the 
advantage of the matrix formalism in that any ray, during its propagation through the 
optical system, can be tracked by successive matrix multiplications. Let  and   be 
the 2 × 2 matrices as follows:
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Now, returning to the system matrix in Eq. (1.1-12), the determinant of the system 
matrix, S R T R= −R d n R2 2 1/ , is

S R T R R T R= = × × =− −R d n R R d n R2 2 1 2 2 1
1/ / .

Note that even the system matrix is also positive unimodular. The condition of a unit 
determinant is a necessary but not a sufficient condition on the system matrix.

We now derive a matrix of an idea thin lens of focal length f, called the thin-lens 
matrix, f . For a thin lens in air, we let d ® 0 and n1 1=  in the configuration of Fig-
ure 1.1-5. We also write n n2 =  for notational convenience. Then the system matrix 
in Eq. (1.1-12) becomes
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 (1.1-13)

where f  is the focal length of the thin lens and is given by

1
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.

For f > 0, we have a converging (convex) lens. On the other hand, we have a diverging 
(concave) lens when f < 0. Figure 1.1-6 summarizes the result for the ideal thin lens.
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Note that the determinant of f  is

f

f

=
−

=
1 0

1
1

1.

1.1.2 Ray Tracing through a Thin Lens

As we have seen from Section 1.1.1, when a thin lens of focal length f  is involved, 
then the matrix equation, from Eq. (1.1-13), is
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.  (1.1-14)

 Input Rays Traveling Parallel to the Optical Axis
From Figure 1.1-7a, we recognize that x x1 2=  as the heights of the input and output 
rays are the same for the thin lens. Now, according to Eq. (1.1-14), / .v x f v2 1 1=− +  
For v1 0= , that is, the input rays are parallel to the optical axis, v x f2 1=− / . For pos-
itive ,x1 v2 0<  as f > 0 for a converging lens. For negative ,x1 v2 0.>  All input rays 
parallel to the optical axis converge behind the lens to the back focal point (a distance 
of f  away from the lens) of the lens as shown in Figure 1.1-7a. Note that for a thin 
lens, the front focal point is also a distance of f  away from the lens.

 Input Rays Traveling through the Center of the Lens
For input rays traveling through the center of the lens, their input ray coordinates 
are ( , ) , .x v v1 1 10=( )  The output ray coordinates, according to Eq. (1.1.14), are 
( , ) ,x v v2 2 10=( ) . Hence, we see as v v2 1= , all rays traveling through the center of the 
lens will pass undeviated as shown in Figure 1.1-7b.

Figure 1.1-6 Ideal thin lens of focal length f  and its associated ray transfer matrix
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 Input Rays Passing through the Front Focal Point of the Lens
For this case, the input ray coordinates are ( , / )x v x f1 1 1= , and, according to Eq. (1.1-
14), the output ray coordinates are ( , )x x v2 1 2 0= = , which means that all output rays 
will be parallel to the optical axis ( )v2 0= , as shown in Figure 1.1-7c.

Similarly, in the case of a diverging lens, we can draw conclusions as follows. The 
ray after refraction diverges away from the axis as if it were coming from a point on 
the axis a distance f  in front of the lens, as shown in Figure 1.1-8a. The ray traveling 
through the center of the lens will pass undeviated, as shown in Figure 1.1-8b. Finally, 
for an input ray appearing to travel toward the back focus point of a diverging lens, the 
output ray will be parallel to the optical axis, as shown in Figure 1.1-8c.

 Example: Imaging by a Convex Lens

We consider a single-lens imaging as shown in Figure 1.1-9, where we assume the 
lens is immersed in air. We first construct a ray diagram for the imaging system. An 
object OO¢ is located a distance d

0
 in front of a thin lens of focal length f . We send 

two rays from a point O¢ towards the lens. Ray 1 from O¢ is incident parallel to the 
optical axis, and from Figure 1.1-7a, the input ray parallel to the optical axis con-
verges behind the lens to the back focal point. A second ray, that is, ray 2 also from 
O¢, is now drawn through the center of the lens without bending and that is the result 
from Figure 1.1-7b. The interception of the two rays on the other side of the lens 
forms an image point of O¢. The image point of O¢ is labeled at I¢ in the diagram. The 
final image is real, inverted, and is called a real image.

Figure 1.1-7 Ray tracing through a thin convex lens

(a) (b) (c)

Figure 1.1-8 Ray tracing through a thin concave lens

(a) (b) (c)
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10 Gaussian Optics and Uncertainty Principle

Now we investigate the imaging properties of the single thin lens using the matrix 
formalism. The input plane and the output plane of the optical system are shown in 
Figure 1.1-9. We let ( , )x v0 0  and ( , )x vi i  represent the coordinates of the ray at O¢ and 
I¢, respectively. We see there are three matrices involved in the problem. The overall 
system matrix equation becomes

x

v

x

v

x

v
i

i
d f di










=










=








T L T S

0

0

0

0

0

.  (1.1-15)

The overall system matrix,

S T L T= =








 −












d f d

i

i

d

f

d
0

1

0 1

1 0

1
1

1

0 1
0









,

is expressed in terms of the product of three matrices written in order from right to left 
as the ray goes from left to right along the optical axis, as explained earlier. According 
to the rule of matrix multiplication, Eq. (1.1-15) can be simplified to

x

v

d f d d d d f

f
d f

i

i

i i i








=
− + −

− −












1

1
1

0 0

0

/ /

/











=



















x

v

A B

C D

x

v
0

0

0

0

.  (1.1-16)

To investigate the conditions for imaging, let us concentrate on the ABCD matrix 
of   in Eq. (1.1-16). In general, we see that x Ax Bv Axi = + =0 0 0  if B = 0, which 
means that all rays passing through the input plane at the same object point x0 will 
pass through the same image point xi in the output plane. This is the condition of 
imaging. In addition, for B = 0, A x xi= / 0 is defined as the lateral magnification of 

Figure 1.1-9 Ray diagram for single-lens imaging
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the imaging system. Now in our case of thin-lens imaging, B = 0 in Eq. (1.1-16) leads 
to d d d d fi i0 0 0+ − =/ , which gives the well-known thin-lens formula:

1 1 1

0d d fi

+ = .  (1.1-17)

The sign convention for Eq. (1.1-17) is that the object distance d0 is positive (nega-
tive) if the object is to the left (right) of the lens. If the image distance di is positive 
(negative), the image is to the right (left) of the lens and it is real (virtual). In Figure 
1.1-9, we have d0 0> , di > 0, and the image is therefore real, which means physically 
that light rays actually converge to the formed image I¢. Hence, for imaging, Eq. (1.1-
16) becomes

x

v

d f

f
d f

x

v
i

i

i








=
−

− −

















1 0

1
1 0

0

0

/

/







, (1.1-18)

which relates the input ray and output ray coordinates in the imaging system. Using 
Eq. (1.1-17), the lateral magnification M  of the imaging system is

M A
x

x

d

f

d

d
i i i= = = − =−
0 0

1 .  (1.1-19)

The sign convention is that if M > 0, the image is erect, and if M < 0, the image is 
inverted. As shown in Figure 1.1-9, we have an inverted image as both di and d0 are 
positive.

If the object lies within the focal length, as shown in Figure 1.1-10, we follow the 
rules as given in Figure 1.1-8 to construct a ray diagram. However, now rays 1 and 2, 
after refraction by the lens, are divergent and do not intercept on the right side of the 
lens. They seem to come from a point I¢. In this case, since d0 0>  and di < 0, M > 0. 
The final image is virtual, erect, and is called a virtual image.

Figure 1.1-10 Imaging of a converging lens with object inside the focal length
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1.2 Resolution, Depth of Focus, and Depth of Field

1.2.1 Circular Aperture

The numerical aperture (NA) of a lens is defined for an object or image located 
infinitely far away. Figure 1.2-1 shows an object located at infinity, which sends rays 
parallel to the lens with a circular aperture. The angle qim used to define the NA on 
the image side is

NA sin imi in= ( / ),q 2  (1.2-1)

where ni is refractive index in the image space. Note that the aperture stop limits the 
angle of rays passing through the lens, which affects the achievable NA. Let us now 
find the lateral resolution, Dr.

Since we treat light as particles in geometrical optics, each particle then can be 
characterized by its momentum, p0. According to the uncertainty principle in quan-
tum mechanics, we relate the minimum uncertainty in a position of quantum, Dr, to 
the uncertainty of its momentum, Dpr, according to the relationship

∆ ∆r p hr ≥ , (1.2-2)

where h is Planck’s constant, and Dpr is the momentum spread in the r-component of 
the photons. The momentum of the FB ray (chief ray, a ray passes through the center 
of the lens) along the r-axis is zero, while the momentum of the FA ray (marginal ray, 
a ray passes through the edge of the lens) along the r-axis is ∆p pAB = 0 2sin im( / )q ,  
where p h0 0= / l  with l0 being the wavelength in the medium, that is, in the image 
space. Hence, Dpr is ∆ ∆p p pr AB= =2 2 20sin im( / )q  to accommodate a maximum 
variation (or spread) of the momentum direction by an angle qim. By substituting this 
into Eq. (1.2-2), we have lateral resolution

Figure 1.2-1 Uncertainty principle used in finding lateral resolution and depth resolution
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∆
∆

r
h

p

h

pr

≥ = =
2 2 2 20

0

sin sinim im( / ) ( / )
.

q q
l  (1.2-3)

Note that this equation reveals that in order to achieve high resolution, we can increase 
qim / 2. For example, when qim / 2 90= °, Dr  is half the wavelength, that is, /l0 2, 
which is the theoretical maximum lateral resolution.

Since the wavelength in the image space, l0, is equal to lv in/ , where lv is the 
wavelength in air or in vacuum, Eq. (1.2-3) becomes, using Eq. (1.2-1),

∆r
n

v

i

v

i

≥ =
l l

2 2 2sin NAim( / )
.

q
 (1.2-4)

Similarly, we can calculate the depth of focus, Dz. Depth of focus, also called longi-
tudinal resolution in the image space, is the axial distance over which the image can 
be moved without loss of sharpness in the object. To find the depth of focus, we use

∆ ∆z p hz ≥ , (1.2-5)

where Dpz is the momentum difference between rays FB and FA along the z- direction, 
as shown in Figure 1.2-1, which is given by

∆p p pz = −0 0 2cos im( / ).q  (1.2-6)

By substituting this expression into Eq. (1.2-5), we have

∆
∆

z
h

p

h

pz

≥ =
−

=
−[ ] [ ]0

0

1 2 1 2cos cosim im( / ) ( / )
.

q q
l

 (1.2-7)

This equation reveals that in order to achieve small depth of focus, we can increase 
qim / 2. For example, when qim / 2 90= °, Dz is one wavelength, that is, l0, which is 
the theoretical maximum longitudinal resolution. Equation (1.2-7) can be written in 
terms of the numerical aperture and is given by

∆z
n n

v

i i i

≥
− −

=
− −

l l0

2 2 21 1 2sin NAim( / )
.

q
 (1.2-8)

For small angles, that is, qim <<1, one can use the approximation 
1 1 22 2− ≈ −sin sinb b( ) /  to get

∆z
ni v

i

≥
2

2

l
NA

. (1.2-9)

Taking the equality in Eq. (1.2-9) and combining with Eq. (1.2-4), we have

∆

∆

r

z

( )
≈

2

0

8

l
 (1.2-10)
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14 Gaussian Optics and Uncertainty Principle

under the small-NA approximation. This equality is derived from uncertainty relation-
ship, which says that during imaging the higher the lateral resolution is, the shorter the 
depth of focus. For example, by increasing the lateral resolution by a factor of 2 will 
result in the depth of focus decreased by a factor of 4.

Figure 1.2-2 shows an image-forming instrument with qob and qim denoting the ray 
of maximum divergent angle and maximum convergent angle from the object side and 
the image side, respectively.

If the resolutions in the object space are given by ∆r v0 02≈ l / NA  and 
∆z n v0 0 0

22≈ l / NA , where NA sin ob0 0 2= n ( / )q  and n0 is the refractive index in 
the object space, and if the lateral magnification of the instrument is M , the reso-
lution on the image space is then ∆ ∆r M ri ≈ 0. Let us establish the relationship 
between the depth of field Dz0 and the depth of focus Dzi, where ∆z ni i v i≈ 2 2l / NA  
with NA sin imi in= ( / )q 2 . Since ∆ ∆r M r Mi v i v≈ = =l l/ /2 20 0NA NA , we have 
NA NA0 = ×M i . Hence,

∆

∆

z n n M

M n
n

n
M z

i i v i i v

i v

i

≈ = ( )
=

=

2 2

2

2
0

2

2
0
2

0

2
0

l l
l

/ / /

( / )

.

NA NA

NA  (1.2-11)

This result indicates that the longitudinal resolutions in the object space and image 
space are related by a factor of M 2. Take a 40×, NA0 0 6» .  microscope objective as 
an example, we have ∆r v0 02 0 5≈ ≈l / .NA mµ  for red light with wavelength of 632 
nm and the depth of field, ∆z n v0 0 0

22 3 5≈ ≈l / .NA mµ  for n0 1=  in air. In the image 
space, the lateral resolution is ∆ ∆r M ri ≈ = × =0 40 0 5 20. µ µm m and the depth of 
focus is∆ ∆z M zi ≈ = × =2

0
240 3 5 0 56. .µm mm for ni =1.

1.2.2 Annular Aperture

Three-dimensional imaging in microscopy aims to develop techniques that can pro-
vide high lateral resolution, and at the same time maintain a large depth of focus in 
order to observe a thick specimen. However, calculations have shown that the depth 
of focus may be increased by reducing the numerical aperture of the lens, but this 
is achieved at the expense of a decrease in lateral resolution. In what follows, we 

Figure 1.2-2 Image-forming instrument illustrating resolutions in the object  
space and image space
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consider an annular aperture which has the property of increasing the depth of focus 
and at the same time maintaining the lateral resolution. An annular aperture is defined 
as a clear circular aperture with a central obstruction, as shown in Figure 1.2-3. If 
the aperture is an annulus with outer radius a and inner radius b, we define a central 
obscuration ratio e = b a/ . For e = 0, we have a clear circular aperture.

Since b q= im as shown in Figure 1.2-1, the possible spread in the r-component of 
momentum Dpr  is the same in Figure 1.2-4 as it is in Figure 1.2-1. Hence, the lateral 
resolution remains the same as that in the case of the clear aperture, that is, e= 0, 
given by Eq. (1.2-4). However, the spread or uncertainty in the momentum in the z- 
direction is different due to the central obscuration of the annulus. Dpr  in this case is 
the momentum difference between the ray passing the upper part of the annulus (Ray 
A) and the ray passing the lower part of the annulus (Ray B) and is given by

∆ ∆ ∆p p pz = −Ray A Ray B,  (1.2-12)

where DpRay A and DpRay B are given by Eq. (1.2-6) with b  and a  substituted into the 
argument of cosine, respectively. Hence Eq. (1.2-12) becomes

Figure 1.2-3 Annular aperture

Figure 1.2-4 Uncertainty principle used in finding depth of focus for a lens with annular aper-
ture stop
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∆p pz =




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−


















0 2 2

cos cos ,
α β

and the depth of focus is

∆
∆

z
h

pz
ann = =






−








l
a b

0

2 2
cos cos

,  (1.2-13)

which can be shown to have the form

∆z v
ann

NA

NA
NA

=
−

+ −( )
− −

l

e
1

1 1
1

2

2 2

2

,

 (1.2-14)

where NA= ( )sin /b 2 , that is, assuming the lens is being immersed in air. For small 
NAs, it can be shown that Eq. (1.2-14) is given by

∆
∆

z
zv

ann
NA

=
−( )

=
−( )

2

1 12 2 2

l
e e

.  (1.2-15)

The above equation is consistent with Eq. (1.2-9) for a clear aperture, that is, for the 
case e = 0. With 95% obstruction, that is, e = 0 95. , we can increase the depth of focus 
of a clear lens by more than a factor of 10.

1.3 Illustrative Examples

1.3.1 Three-Dimensional Imaging through a Single-Lens Example

Figure 1.3-1a shows the imaging of two objects in front of the lens, where both of the 
object lie beyond the focal length of the lens. We note that magnification is different, 
depending on the object distance to the lens. Let us consider longitudinal magnifi-
cation, Mz , in addition to lateral magnification, M, considered earlier. Longitudinal 
magnification Mz  is the ratio of an image displacement along the axial direction, ddi, 
to the corresponding object displacement, dd0, that is, M d dz i= d d/ 0.

Using Eq. (1.1-17) and treating di  and d0 as variables, we take the derivative of di  
with respect to d0 to obtain

M d d Mz i= =−d d/ .0
2  (1.3-1)

This equation is consistent with Eq. (1.2-11) and states that the longitudinal magni-
fication is equal to the square of the lateral magnification. The minus sign in front of 
the equation signifies that a decrease in the distance of the object from the lens, d0 , 
will result in an increase in the image distance, di , and vice versa. The situation of 
a magnified volume is shown in Figure 1.3-1b, where a cube volume (abcd plus the 
dimension into the paper) is imaged into a truncated pyramid with a–b imaged into 
a'–b' and c–d imaged into c'–d'.
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171.3 Illustrative Examples

Figure 1.3-2 Spreading from a slit

Figure 1.3-1  (a) Illustration of different magnifications and (b) volumetric imaging

1.3.2 Angle of Spread from a Slit Example

Consider light emanating from a slit aperture of width lx, as shown in Figure 1.3-2.
We relate the minimum uncertainty in position Dx of a quantum to the uncertainty 

in its momentum Dpx according to
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∆ ∆x p hx ≥ .

Because the quantum of light can emerge from any point in the aperture, we have 
∆x lx= . Therefore,

∆p
h

lx
x

∼ .

We define the angle of spread as

q

l

l
sp ∼ = =
∆p

p

h

l
h l

x x

x0

0

0 ,  (1.3-2)

which is basically the result in Eq. (1.2-3) for small angles. Note that the spread angle 
is inversely proportional to the width of the aperture.

Problems

1.1 Find the transfer matrix for Snell’s law.

1.2 An object 4 cm tall is 10 cm in front of a convex lens of focal length 20 cm. 
Using the matrix formalism, find the location and magnification of the image. Draw a 
ray diagram from the object to the image.

1.3 A slide 5 cm tall is located 110 cm from a screen (see Figure P.1.3). What is the 
focal length of the positive lens, which will project a real image measuring 50 cm on 
the screen? Use the matrix formalism to solve the problem.

Figure P.1.3 Single-lens system

1.4 If an object 3 cm tall is located on the optical axial 24 cm to the left of the convex 
lens as shown in Figure P.1.4, find the position and size of the image using the matrix 
formalism. Also, draw the ray diagram from the object to the image.
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1.5 In 3-D imaging through a single lens example, it is stated that the longi-
tudinal magnification is equal to the square of the lateral magnification, that is, 
M d d Mz i= =−d d/ .0

2  Verify this statement.

1.6 Fill in the blanks below for several microscope objective lenses (assuming the 
lenses are immersed in air with wavelength of operation using red light of lv = 632nm).

Magnification, NA Resolution in image space Depth of field (µm) Depth of focus (mm)

10×, 0.1
20×, 0.4
40×, 0.6
60×, 0.8
100×, 0.95

1.7 Starting from Eq. (1.2-13) and with reference to Figure 1.2-4, show that the 
depth of focus of an annular aperture with a thin lens is given by

∆z v
ann

NA

NA
NA

=
−

+ −( )
− −

l

e
1

1 1
1

2

2 2

2

,

where NA sin= b / 2( )  and for small NAs, it is approximately given by

∆
∆

z
zv

ann
NA

=
−( )

=
−( )

2

1 12 2 2

l
e e

,

whereDz  is the depth of focus for a clear lens.
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