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THE SIMPLEST LOW LINEAR ORDER
WITH NO COMPUTABLE COPIES

ANDREY FROLOV AND MAXIM ZUBKOV

Abstract. A low linear order with no computable copy constructed by C. Jockusch and R. Soare has
Hausdorff rank equal to 2. In this regard, the question arises, how simple can be a low linear order with
no computable copy from the point of view of the linear order type? The main result of this work is an
example of a low strong �-representation with no computable copy that is the simplest possible example.

§1. Introduction. The study of this article is aimed at describing algebraic
properties of structures having computable presentations. Feiner [3] constructed
a ∅′-computable Boolean algebra with no computable presentation. An analysis of
his proof shows that this Boolean algebra does not even have a lown presentation
for any natural n. There was the conjecture that every lown Boolean algebra has a
computable representation. Jockusch and Downey [11] confirmed this hypothesis for
n = 1. Since every Boolean algebra is generated by a linear order, similar questions
were asked for the class of linear orders. Feiner [2] constructed a ∅′-computable
linear order which has no computable presentation.

J. Knight (unpublished) stated the question of the existence of a computable
copy for every low linear order. However, Soare and Jockusch [17] disproved this
hypothesis by constructing a low linear order without a computable copy (in fact,
they constructed such an order in each nonzero computably enumerable degree).
On the other hand, Moses and Downey [15] proved that each low discrete linear
order has a computable copy (a linear order is discrete if it has no limit points).
From these results, the following question naturally arises (in fact, a whole research
program), which was asked in 1998 in Downey’s survey [1]: describe a property P
of classical order types that guarantee that if L is a low linear order and P holds for
the order type of L then L is isomorphic to a computable linear order.

In terms of order types, various partial solutions to Downey’s question were
obtained. Initially, Frolov [5] showed that every low strongly �-like linear order has
a computable copy. Later, he also generalized this result [6]: every low k-quasidiscrete
linear order has a computable copy (a linear order is called k-quasidiscrete if it has
only infinite blocks and maximal blocks of sizes not greater than k). The first result
can be improved in the other direction: if a low linear order with � condensation has
no strongly �-like subinterval then it has a computable copy [7]. Also, we would like
to note the result of Zubkov [23]. He introduced the left and right local maximal
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98 ANDREY FROLOV AND MAXIM ZUBKOV

blocks and proved that if sizes of the left and right local maximal blocks of a low
�-like linear order are bounded by a fixed number then the order type of this linear
order can be described by a ∅′-limitwise monotonic function on rationals, and,
consequently, this linear order has a computable copy (see, [10, 24]). The following
two results about lown linear orders are worth mentioning. The first result is the
result of Thurber, Alaev, and Frolov [18]. They proved that every low21-quasidiscrete
linear order is computably presentable. The second one was obtained by Montalbán
and Kach [14]. They proved that if a linear order is lown and has only finitely many
descending cuts then it has a computable copy.

The complete solution to Downey’s problem seems to the authors extremely diffi-
cult and hardly possible. Therefore, as mentioned above, this is more likely a research
program but not just a question. The fact is that besides positive partial results there
are several negative ones. For example, Frolov [8] constructed a low2 scattered linear
order that does not have a computable presentation. The question of whether every
low scattered linear order has a computable presentation remains open. Also, Frolov
[9] constructed a low �-like linear order that does not have a computable copy (the
cited paper is a survey where the reader could find more results).

Let us discuss the last result in more detail. As mentioned above, Soare and
Jockusch [17] constructed a low linear order which does not have a computable
copy. This linear order has the Hausdorff rank equal to 2. Frolov [9] constructed a
low �-like linear order with no computable copy. Note that an �-like linear order has
Hausdorff rank equal to 1, so it has the least possible Hausdorff rank. However, the
non-singleton blocks (i.e., blocks with at least two elements) in the order constructed
by Frolov are arranged in a rather complex way. Note that non-singleton blocks of
an arbitrary �-like linear order can have any ordering. For example, (� + 2 + �) · L
is �-like, and the order types of L and the set of its non-singleton blocks are the
same, where L can be any linear order. The low linear order with no computable
copy constructed by Frolov is an �-sum of strongly �-representations of sets and,
consequently, non-singleton blocks ordered as �2. Could we simplify it? Namely,
the following question arises: is there a low linear order with no computable copy
which is (a strongly) an �-representation of a set? In this paper, we answer positively
to this question (Theorem 2.2).

Note that �-representations are the simplest orders which are not satisfying all
known at this moment properties P from Downey’s question above. Let us recall
the definition of an �-representation. Let {a0, a1, a2, ... } be an enumeration of
a set A ⊆ �, perhaps with repetitions. Then a linear order L of the order type
� + a0 + � + a1 + � + a2 + � + ··· is called an �-representation of the set A. If the
enumeration is with no repetitions then the �-representation is called injective; if
the enumeration is in the non-decreasing order then it is called a non-decreasing
�-representation; and if the enumeration is increasing then it is called a strongly
�-representation.

Despite the simplicity of these order types and various obtained results, the study
of theoretical computability properties of �-representations and especially strong �-
representations encounter many serious difficulties. By direct arguments, Feiner [3]
showed that �-representable sets (that is, sets having computable �-representations)
belong to the Σ0

3-level of the arithmetical hierarchy. On the other hand, Rosenstein
[16] and Fellner [4] coded any Σ0

2-set and Π0
2-set, correspondingly, into a computable
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strong �-representation. This result was improved by Zubkov [21]: if A is Σ0
2 and

B is Π0
2 then A

⋃
B is strongly �-representable. Thus, there is a “gap” between

the upper and lower bounds of the levels of the arithmetic hierarchy of sets that
have computable �-representations. Lerman built a Σ0

3-set without a computable
�-representation. Rosenstein showed that any strongly �-representable set is Δ0

3. In
fact, he proved that every non-decreasing �-representable set belongs to Δ0

3. In the
same paper, Rosenstein stated the question of describing strongly �-representable
sets. However, this is a difficult problem, and at least from the above results it follows
that there is no such description in the arithmetical hierarchy. Downey [1] asked a
weaker question of describing at least strongly �-representable degrees. A series of
results was obtained in this direction, also.

Lerman [12] proved that a degree is �-representable if and only if it is computably
enumerable relatively to ∅′′. Frolov and Zubkov [24] and Turetsky and Kach [20],
independently, proved that a degree is increasing �-representable if and only if it is
∅′′-computable. We will note here only one more result obtained by Zubkov [22].
A degree is strongly �-representable if and only if it has the range of a ∅′-limitwise
monotonic function f : Q → N which satisfies the following conditions: f(x) ≥ 1
for all x, the set of x such that f(x) > 1 is ordered as �, and if f(x), f(y) > 1 and
x <Q y then f(x) <N f(y). More detailed surveys could be found in [10, 19].

Note here that the results above can be translated without changes to
low �-representations and low strong �-representations, correspondingly.
Consequently, the class of degrees of sets having computable �-representations
(strong �-representations) coincides with the class of degrees of sets with low
�-representations (strong �-representations). Thus, the coding techniques for
�-representations above are not enough to construct a low strong �-representation
without a computable copy. We propose a new technique that allows us to prove that
the classes of sets having computable (strong) �-representations and low (strong)
�-representations are different. Then the following question naturally arises.

Question 1.1. Describe sets that have a low (strongly) �-representation but have
no computable one.

§2. The main result and an informal description of the construction. Recall that
a computable linear order is called (relatively) Δ0

n-categorical if, for any two
computable (X -computable, correspondingly) its representations, there exists a
Δ0
n-isomorphism (ΔXn -isomorphism, correspondingly) between them (n is a natural

number). Before going to the main result we prove the following non-difficult fact.

Lemma 2.1. Every �-representation is relatively Δ0
3-categorical.

Proof. Let L1 and L2 be two isomorphic �-representations. Then we can
find finite blocks and dense intervals inside both linear orders using the oracle
(L1 ⊕ L2)′′. Moreover, we can find the i-th non-singleton block by the sequential
finding of the first block, of the second block, etc. The first block is the block that
has no successors to the left, the second block is the block that has no successors
between it and the first block, and so on. Thus, we can compute an isomorphism
using the specified oracle. Namely, we map the i-th non-singleton block of the first
linear order to the i-th non-singleton block of the second linear order and dense
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100 ANDREY FROLOV AND MAXIM ZUBKOV

intervals between non-singleton blocks of the first order to dense intervals between
corresponding non-singleton blocks of the second order. �

Theorem 2.2. There exists a low strongly �-representation with no computable
copy.

Proof. As known (see [13] or [6]), a linear order L has a low copy if and only if it
has a ∅′-computable copy with the ∅′-computable successor relation. Therefore, it is
enough to construct a ∅′-computable linear order with the ∅′-computable successor
relation which is a strong �-representation. So, the construction uses a ∅′-oracle.

Every computable linear order is computably isomorphic to a c.e. subset of
rationals (see, for example, [1]). Abusing the notation, let {We}e∈� be a computable
enumeration of all c.e. subsets of Q. We will denote the induced linear order on a
c.e. subset in the same way asWe .

We construct L ≤T ∅′ with successor relation SL ≤T ∅′ meeting

Pe : L �We via ϕ∅′′
e .

We note that the requirements do indeed prove the theorem: by the lemma above,
if L has a computable copy L′ then there is a ∅′′-computable isomorphism between
L and L′.

Since we are using a ∅′-oracle, we will be approximating ϕ∅′′
e using the Limit

Lemma in relativized form, and hence considering lim
s
ϕ∅′
e (x, s) as a Limit Lemma

approximation to ϕ∅′′
e , and this is only Σ0

2. The strategy is either to show that this
limit does not exist, or to show that for some argument, if it exists then it is wrong. So,
either force it to change infinitely often for some x, or force it to give a wrong value.
We are using both ϕ∅′

e (x)[s] and ϕ∅′
e (x, s), for this approximation interchangeably.

The informal description is organized as follows: the first part is a construction of
the linear order, the second part is satisfying of one requirement, and the last part
is an interaction of different requirement strategies.

The domain of the linear order will be �. At each stage s we will have a finite
orderingLs . At stage s + 1 we will add points toLs to makeLs+1. To keepSL ≤T ∅′,
for each successive pair of points x <Ls+1 y we will irrevocably declare whether this
is an adjacency.

The general shape of the construction is the following. At each stage, we will be
building a series of blocks B0 <Ls B1 <Ls ··· , where initially |Bi [s]| = 2i + 2. This
fact means that forBi [s] we have declared b1[s], ... , b2i+2[s] to be 2i + 2 adjacencies,
so this must be a part of a block of size at least 2i + 2. To keep track of what is
happening, we will declare points in blocks as x-points, and points from dense
subintervals as y-points. In the construction, x-points are forever x-points, but
y-points can become x-points if we suddenly decide that they are part of a block,
but this can only happen with the addition of further points as we describe below.

Between blocks Bi and Bi+1 currently we will be densifying and will have added
y-points so have xxxx ... xy ... yx ... x. The y points have been declared to be non-
adjacencies, as have xy and yx. In the absence of any actions of the Pe ’s, at every
stage s we would simply add a new y-point between y-points and between x and y
and between y and x. So for example, xyyyyx would become xyyyyyyyyyx, and
declare that the new yy’s and new xy and yx are non-adjacencies.
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Now, because of the action of a Pe , we might choose instead to make some of the
y-points new x-points. This can be done by adding, for instance, a point a between
two y-points and declare that ya and ay are adjacencies making yay as xxx part of
a block of size at least 3. Note that we also have the option of doing a similar action
on the left of right ends of a current block.

Of course, any such action must still keep the blocks in increasing order of size.
For example, between Bi [s] and Bi+1[s], if we added a new partial block B, it’s size
would need to be at least |Bi [s]| + 1, it would become the new Bi+1[s + 1], and we’d
also need to increase the old Bi+1[s] to have size larger than Bi+1[s + 1], and likely
it would become Bi+2[s + 1].

We now turn to the description of the strategies for diagonalizing the We . We
begin by describing the basic module, for a single P0.

We begin working on B0[s] = {x0 <Ls x1} and B1[s] = {x2 <Ls x3 <Ls x4 <Ls
x5}. Currently we are densifying between the blocks.

Case 1. (Hereinafter we give a numeration of cases as in the formal construction
below). We wait till ϕ∅′

0 (x2)[s0] = z0 and part of a 3-block Zs0 ⊂We, s0 , and ϕ∅′
0 [s0]

looks like a partial isomorphism, taking a block B0 and B1 to blocks Z0[s0] and
Z = Z1[s0] of the correct sizes inW0[s0], and ∅′ has declared the members of Z0[s0]
and Z = Z1[s0] to be adjacencies inW0 (Σ0

1-questions). Should this not happen, we
will have diagonalizedW0 by luck.

The overall plan is to make z0 have no stable pre-image inL, by making |Zs | → ∞,
or to diagonalize at some finite stage.

Now, assuming we have reached stage s0. Let p0 be the number of elements
between B0[s0] and B1[s0]. Using s0, we can figure out if there are strictly more than
2p0 + 1 many elements ofW0 between Z0[s0] and Z = Z1[s0], as this only involves
Σ0

1-questions aboutW0.

Case 2.2. If there are not, then there are no more than 2p0 + 1 many elements
between Z0[s0] and Z = Z1[s0], and hence both Z0[s0] and Z = Z1[s0] are part
of the same block, which we think of as Zs0+1. In this case, we will simply
continue to densify between B0 and B1 giving, in the limit a 2-block followed by a
4-block. Neither can be a pre-image of Z = lim

s
Zs , which must find a pre-image

later in the L-ordering.

Case 2.3. There are strictly more than 2p0 + 1 many points between Z0[s0] and
Z = Z1[s0]. In this case, we will amalgamate the two blocksB0 andB1 by turning all
the y-points between them into x-points by adding p0 + 1 many new points between
the y points, xy and yx as indicated above. This becomes B0[s0 + 1], and naturally
also involves making all the blocks Bj [s0 + 1] (j > 0) bigger to keep the strong �-
representation property. (For instance, add |B0[s0]| + 2p0 + 2 many points to their
right ends).

The point of this is the following. IfW0 is to be isomorphic to L, then B0[s0 + 1]
needs an image. But Z0[s0] needs a pre-image. There are no blocks in L left of
B0[s0 + 1]. So the pre-image must either be B0[s0 + 1], or something right of this
block. Thus, the image of B0[s0 + 1] cannot contain z0.

We conclude that in either cases, the pre-image of z0 must be in a block Bj [s] for
j > 0 at some s > s0.
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102 ANDREY FROLOV AND MAXIM ZUBKOV

Case 3. Now we will again wait for a stage s1 > s0 such that ϕ∅′
0 (x, s1) = z0[s1],

and the ϕ∅′
0 [s1] to seem correct, meaning that Z0[s1] must be a ∅′-guaranteed block

of size |Bj [s1]| where x ∈ Bj [s1], of course, for some j > 0. Our action is similarly
to the above.

First, between Bj–1[s1] and Bj [s1] we begin a new block Bj [s1 + 1], by first
increasing the size of Bk[s1] for k ≥ j, waiting for ϕ∅′

0 to catch up and then
beginning the new block, for instance, of the same size as Bj [s1], noting that
Bj+1[s1 + 1] = Bj [s1] once this has begun. Now we will repeat the argument with
the blocks Bj [s1] and Bj+1[s1 + 1].

That is, we’d wait for ϕ∅′
0 [s2] to look like a partial isomorphism on these two

blocks giving images Zj [s2] and Z = Zj+1[s2], say at stage s2 > s1. We’d if there are
at least 2p2 + 2 many points between them inW0. In the case that there are not we
promise to densify between Bj [s2] and Bj+1[s2 + 1], and note that the blocks Zj [s2]
and Z = Zj+1[s2] become amalgamated in W0 and their pre-image must be right
of Bj+1[s2 + 1]. If there are many such points, we would amalgamate Bj [s2] and
Bj+1[s2] to make Bj [s2 + 1]; and again this forces the pre-image of Zs right of Bj [s]
for all s > s2.

Now if this cycle happens infinitely often, Z cannot have a pre-image (outcome 0,
and Zs → ∞). If it does not (outcome 1) then ϕ∅′

0 [s] stops recovering. In either
case, ϕ∅′′

0 is not an isomorphism.

The reader can see that this strategy has two outcomes 0 <L 1, i.e., outcome
0 is the true outcome if and only if it happens infinitely many time. The general
strategies will follow a reasonably standard Π0

2-argument. For example, P0 will
have one version Rε , and P1 will have two versions R0 and R1, and P2 will have
four versions R00, R01, R10, R11, and so on. R1 simply works with two blocks
right of the current two blocks being used by Rε . It is initialized each time
Rε acts.
R0 is aware of the fact that Rε will cause Z to become infinite, and will use pairs

of blocks Bj , Bj+1[s] with j → ∞. It’s strategy is obvious. It will use blocks left of
those being used by Rε . It waits for the pre-image of z0 to be in some Bj for j > 3.
(In general Pe will pick a base be large enough that a single block can only be used
by finitely many strategies. This makes sure that all blocks are finite.)R0 would then
use B1[s] and B2[s] as its base blocks, and looking for an image of the first element
of B2[s] to be z1. The reader should also note that if we wish to increase the size
of a block Bk for the sake of R0, then we would first do it, wait for ϕ∅′

0 to recover
first before looking at ϕ∅′

1 . In general, once we force (ϕ∅′
1 )–1(z1) to move right of

B1, before we’d attack R0 again, we’d wait for Rε to be strictly right of the relevant
attack blocks in L. This action requires accuracy, which is detailed in the formal
part of the proof.

The inductive strategies are straightforward extensions of the above.

§3. The formal construction. As explained in the previous section, the formal
construction consists of three parts. We give, initially, the strategy L of the
construction of the linear order, secondly, strategies R� of a requirement Pe , where
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|�| = e, and, finally, the general strategy which controls the execution of other
strategies.

From now, we fix the oracle ∅′ until the end of the proof.

3.1. The strategy L. This strategy describes the construction of the linear order
due to the parameters defined by strategies R� . We will construct a sequence of
∅′-computable linear orders Ls with ∅′-computable successor relations SLs such
that Ls ⊆ Ls+1, SLs ⊆ Ls+1, L =

⋃

s∈�
Ls , and SL =

⋃

s∈�
SLs . Since SLs ⊆ SLs+1 , we

will use S instead of SLs . It will not cause of misunderstandings. The successor
relation on We is denoted by Se . We will use the following notations: < is a
standard order on natural numbers,<L is the constructed linear order, and<e is the
order onWe .

Moreover, in the during of the construction we will define a predicate P(u, v, e, s)
which is a protection of the requirement with the number e to add new elements
between u and v at stage s.

Stage 0. We define L0 = {0}.
Stage s + 1. For every pair of elements u <L v <L 2s + 1 from Ls such that

¬S(u, v) and (∀�)[(|�| ≤ s + 1)&¬P(u, v, �, s + 1)] (i.e., they are not protected by
a higher priority strategy), we add one new element between u and v.

We add into Ls+1 the least unused odd number as the least element, and the
least unused even number a as the greatest element. Let k be the greatest size of
Ls -blocks. Then we choose the least odd numbers such that u1, ... , u2k /∈ Ls . We
put them into Ls+1 and define a <L u1 <L ··· <L u2k , S(a, u1), and S(ui , ui+1) for
all i = 1, ... , 2k.

For every pair of elements u, v ∈ Ls+1 such that the relation S(u, v) is not defined,
we set ¬S(u, v). This completes the description of the strategy L.

3.2. The tree of strategies. We will use �, �, � to denote finite or infinite binary
strings. The empty string we denoted by ε. If � = t1t2t3 ... is a finite or infinite string
then �(i) = ti , � � 0 = ε, and � � i = t1 ... ti . If � and � are finite strings then the
concatenation of these strings we denoted by ��. The length of the finite string � is
denoted by |�|. If A is a set then |A| denotes the cardinality of the set.

For every finite binary string �, we describe a strategy R� . Every strategy R� has
two outcomes:

0—the pre-image of a witness y� has changed infinitely often;
1—the isomorphism ϕ∅

′′
e is diagonalized using finitely many stages.

A strategy R� tries to satisfy the requirement Pe , where e = |�|. This strategy
uses the assumption that for every i < |�| the strategy R��i has the true outcome
�(i). Thus, the set of strategies R� is located on a binary tree. To be specific,
the left branch of the tree corresponds to the outcome 0, and the right branch
corresponds to the outcome 1. Note that there are 2e strategiesR� such that e = |�|
which try to satisfy requirement Pe . Let’s move on to the detailed description of
strategies R� .
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104 ANDREY FROLOV AND MAXIM ZUBKOV

3.3. The strategy R� . Since we already fixed the oracle ∅′, we will use ϕe instead
of ϕ∅′

e to simplified notations.

Stage 0. We initialize the strategy R� . Hereinafter, this means that we define
w� [0] = 0 and set the witness y� [0] and the parametersx� [0] and d� [0] are undefined.

Stage s + 1. There are three cases. In the first case, the witness y� [s] is undefined.
In the second case, y� [s] is defined, but x� [s] is undefined. And in the third case,
both y� [s] and x� [s] are defined.

Case 1. The witness y� [s] is undefined. It is possible that either the strategy does
not choose a witness or the work of the strategy is injured by a higher priority
strategy.

We check the existence of two non-singleton blocksBl = [ll , lr ]s andBr = [rl , rr ]s
of Ls such that:

1.1 These blocks are adjacent at this stage, i.e., (∀u, v ∈ Ls)[u, v ∈ [lr , rl ]s →
¬S(u, v)].

1.2 ϕe(·, s + 1) is correctly defined on B≤
r = {u ∈ Ls | u ≤L rr & (∃v ∈

Ls) [S(u, v)]}, i.e., B≤
r is the set of elements belong to non-singleton blocks to

the left of Br and belong to Br . Correct definiteness means that:
1.2.1 ϕe(·, s + 1) is order preserving on B≤

r , i.e., for all u, v ∈ B≤
r , if u <L v then

ϕe(u, s + 1) <e ϕe(v, s + 1).
1.2.2 ϕe(·, s + 1) preserves the successor relation, i.e., for all u, v ∈ B≤

r , if S(u, v)
then Se(ϕe(u, s + 1), ϕe(v, s + 1)).

1.2.3 ϕe(·, s + 1) preserves right and left ends of blocks, i.e., for all u ∈ B≤
r , if

¬(∃v ∈ Ls) [v >L u&S(u, v)] then

¬(∃v ∈We, s+1) [v >e ϕe(u, s + 1) &S(ϕe(u, s + 1), v)]

and, similarly, if ¬(∃v ∈ Ls) [v <L u&S(u, v)] then

¬(∃v ∈We, s+1) [v <e ϕe(u, s + 1) &S(ϕe(u, s + 1), v)].

Note that from the points above it follows that the blocks of Ls map to blocks of
We,s+1 under ϕe(·, s + 1).

1.3 The location of the blocks Bl and Br is consistent with higher priority
strategies. Namely, for all i < |�|, if �(i) = 1 then Br, ��i <L Bl <L Br , and if
�(i) = 0 then Bl <L Br <L Bl, ��i .

1.4 The least even number belongs to Bl ∪ Br is bigger than 2e.
If the blocks Bl and Br satisfying the conditions above exist, then there are three

possibilities:
a)Bl contains an even number; Br does not contain an even number.
b)Br contains an even number; Bl does not contain an even number.
c) Both Bl and Br contain even numbers.
In cases (a) and (b) we define Bl, � [s + 1] = Bl , Br, � [s + 1] = Br , ll, � [s + 1] = ll ,

lr, � [s + 1] = lr , rl, � [s + 1] = rl , rr, � [s + 1] = rr , P(lr, � , rl, � , �, s + 1) = 1, w� [s +
1] = 0, and d� [s + 1] = min{k | 2k ∈ Bl ∪ Br}.

In case (c) we have |Bl | < |Br |. Recall that all blocks with even numbers have
even sizes. Consequently, both the numbers |Bl | and |Br | are even and, therefore,
|Bl | < |Bl | + 1 < |Br |. We add a new block B ′ = [l ′, r′] between Bl and Br such
that the new block consists of |Bl | + 1 odd numbers. We define Bl, � [s + 1] = B ′,
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Br, � [s + 1] = Br , ll, � [s + 1] = l ′, lr, � [s + 1] = r′, x� [s + 1] = rl, � [s + 1] = rl ,
y� [s + 1] = ϕe(x� [s + 1], s + 1), rr, � [s + 1] = rr , P(lr, � [s + 1], rl, � [s + 1], �,
s + 1) = 1, w� [s + 1] = 0, and d� [s + 1] = min{k | 2k ∈ Bl ∪ Br}.

If no blocks are satisfying the conditions 1.1–1.4 then x� [s + 1] and y� [s + 1] are
still undefined. In both the cases, the outcome of the strategy is 1.

Case 2. Both the parameters y� [s] and x� [s] are defined. There are the following
subcases: Case 2.1 means that the approximation of the isomorphism looks
incorrect, and Cases 2.2–2.4 mean that the approximation of the isomorphism looks
correct with additional conditions.

Case 2.1. The approximation of the isomorphism looks incorrect, i.e., at least
one of the conditions of 1.2 does not hold. Then we take off protection, which was
established by this strategy, to add new elements into L between lr, � [s] and rl, � [s],
i.e., we define P(lr, � [s], rl, � [s], �, s + 1) = 0. The outcome of the strategy is 1.

Further, assume that Case 2.1 does not hold, i.e., the approximation of the
isomorphism looks correct (all the conditions of 1.2 hold).

Case 2.2. Assume that ϕ–1
e (y� [s], s + 1) = x� [s] and |[ϕe(lr, � [s], s + 1),

ϕe(rl, � [s], s + 1)]| ≤ 2|[lr, � [s], rl, � [s]]s | + 1, i.e., We has no between the images
of Bl, � [s] and Br, � [s] two times plus one more elements than Ls has enumerated
between blocks Bl, � [s] and Br, � [s]. Then we define P(lr, � [s], rl, � [s], �, s + 1) = 1
and the outcome is 1.

Case 2.3. Assume that ϕ–1
e (y� [s], s + 1) = x� [s] and |[ϕe(lr, � [s], s + 1),

ϕe(rl, � [s], s + 1)]| > 2|[lr, � [s], rl, � [s]]s | + 1, i.e., We has between the images of
Bl, � [s] and Br, � [s] two times plus one more elements than Ls has enumerated
between the blocks Bl, � [s] and Br, � [s]. In this case, we amalgamate the blocks
Bl, � [s] and Br, � [s]. To this purpose, we do the following procedure.

If [lr, � [s], rl, � [s]]s = {u0 <L u1 <L ··· <L um+1}, then we choose the least unused
odd numbers v0, ... , vm and define ui <L vi <L ui+1. If the number of elements
between ll, � [s] and rr, � [s] is odd, then we choose one more the least unused
odd number v–1 and define u0 <L v–1 <L v0, S(u0, v–1), S(v–1, v0), and S(v0, u1).
Otherwise, if the number of elements between ll, � [s] and rr, � [s] is even, then we
define S(u0, v0) and S(v0, u1). For all other i ∈ {1, ... , m}, we define S(ui , vi) and
S(vi , ui+1). Thus, the amalgamated block [ll, � [s], rr, � [s]]s+1 will have an even size.
Let k be equal to |[ll, � [s], rr, � [s]]s+1|.

Further, we increase all blocks to the right of rr,� [s] such that blocks keep the
increasing order of sizes. Let B = {u1 <L ··· <L um} be a block such that rr,� [s] <L
u1. We choose the least unused odd numbers v1, ... , vk and add them into the
block B immediately to the right of um. Namely, we define um <L v1 <L ··· <L vk
and S(um, v1) and S(vi , vi+1) for all i ∈ {1, ... , k – 1}. Since k is an even number,
the number of B’s elements does not change the parity. We define P(lr, � [s], rl, � [s],
�, s + 1) = 0 and, for all pairs u, v ∈ Ls+1 such that the successor relation is not
defined yet, define ¬S(u, v). The outcome is 1.

Case 2.4. Assume that ϕ–1
e (y� [s], s + 1) �= x� [s]. We initialize all strategies R�

such that � = �1� (� is an arbitrary binary string), and take off all protections
P(u, v, �, s + 1) = 0 for all u, v. Moreover, we take off protections defined by R� ,
and set y� [s + 1] and d� [s + 1] to be undefined. The outcome is 0.

In all cases, if we not explicitly stated otherwise then we keep values of parameters
without changes.
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Case 3. The witness y� [s] is defined and x� [s] is undefined. This case is possible,
if the pre-image of y� [s] has changed. Then we try to find an appropriate x� [s + 1]
by the following way.

As in Case 1, we check the existence of two blocks Bl and Br satisfying conditions
3.1–3.5, where 3.1–3.3 are the same as 1.1–1.3, and instead of 1.4 we have the
following:

3.4 ϕ–1
e (y� [s], s + 1) ∈ Br .

Additionally, we check the condition:
3.5 If �(i) = 0 then max(2w� [s]·|�|, 26) < d��i [s] for all i < |�|.
If such blocks exist then we define x� [s + 1] = ϕ–1

e (y� [s], s + 1), andw� [s + 1] =
w� [s] + 1. The other parameters are defined as in Case 1. Otherwise, we do nothing.
In both the cases, the outcome is 1.

This completes the description of the strategy R� .

3.4. The general strategy. Stage 0. Do stage 0 of the strategy Rε and do stage 0
of the strategy L.

Stage s + 1. This stage has s + 2 substages.
Substage j = 0. Do stage s + 1 of the strategy Rε .
Substage j + 1 < s + 1. Assume that the strategy R� has executed at substage j

with outcome t. Then we do stage s + 1 of the strategy R�t .
Substage s + 1. Do stage 0 of the strategiesR� for all � such that |�| = s + 1. Do

stage s + 1 of the strategy L.

§4. The formal verification. In this section, we verify that all requirements Pe are
satisfied.

Let now � be the leftmost path of the strategy tree which is working infinitely
often.

Lemma 4.1. The set of non-singleton blocks is co-final inL and has the order type�.

Proof. Since at every stage s + 1 an even number is added into Ls+1 as the
greatest element, the set of even numbers is co-final in L and has the order type �.
Consequently, the set of blocks with even numbers is co-final in L and has the
order type �, also. We add a block with no even numbers between blocks with even
numbers only. Therefore, the set of all blocks is co-final in L and has the order
type �. �

Lemma 4.2. For every i, the strategy R��i initialized finitely many times by the
higher priority strategies.

Proof. We use the induction by i. If i = 0 then there is no strategy with higher
priority than Rε and the statement of this lemma is trivial. Suppose that the lemma
is proved for i. We prove it for i + 1. Assume that s0 is the stage such that the strategy
R��i is not initialized by the strategies of higher priority after s0. Then after stage
s0 the strategy R��i+1 can be initialized only by the strategy R��i . Two cases are
possible. If �(i) = 0, then R��i+1 is not initialized by the strategies R��i . If �(i) = 1
then we can find stage s1 ≥ s0 such that after this stageR��i has outcome only 1 and,
consequently, this strategy does not initialize the strategy R��i+1. Then after stage
s1 the strategy R��i+1 is not initialized by the strategies with higher priority. �
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Lemma 4.3. If �(i) = 1 then all parameters of R��i are stabilized, i.e., there is a
stage after which values of parameters are not changed.

Proof. By Lemma 4.2, there is a stage after which the strategy R��i is not
initialized by the strategies with higher priority. Since �(i) = 1, there is a stage after
which the outcome of R��i is equal to 1. Let s0 be the greatest of these two stages.

Suppose that after stage s0 we have only Case 1 of the construction. In this case
parameters of R��i are not defined at every stage and the statement is proved.

Now, we assume that there is a stage s1 ≥ s0 such that we have a case different
from Case 1 at stage s1. Since we can return into Case 1 only by the higher priority
strategy initialization, after stage s1 we do not have Case 1.

Initially, we suppose that after stage s1 we have only Case 3. Then the parameter
y��i is defined and will be not changed, since the change is possible only by the
higher priority strategy initialization. Other parameters are undefined and will be
never defined. Consequently, the statement of the lemma has been proved.

Otherwise, suppose that there is a stage s2 ≥ s1 such that a case different from
Case 3 (and Case 1) holds at stage s2. Note that Case 2.4 is not possible, since it
has outcome 0. Consequently, we have one of Cases 2.1–2.3. After that we cannot
return into Case 3. The returning can happen only in two cases: either the strategy
R��i does not change the parameter y��i but can make it to be undefined in Case
2.4, or the parameter can be initialized by the higher priority strategy. Both cases
are not possible by choosing stage s0.

Thus, we have Cases 2.1–2.3 after stage s2. These cases do not change the
parameters and, hence, the lemma is proved. �

Lemma 4.4. If �(i) = 0 then y��i is stabilizing.

Proof. By Lemma 4.2, there is a stage s0 after which the strategy R��i is not
initialized by the higher priority strategy. By the lemma assumed, there is a stage
s1 > s0 such that the outcome of the strategy is 0 at stage s1 + 1. It is possible only in
Case 2.4, and, consequently, after executing stage s1 the parameter y��i was defined.
By the construction, the strategy R��i does not change the parameter y��i . Only the
higher priority strategy initialization can be the cause of the parameter change. By
choosing s1, the parameter y��i will not be changed more. �

The next lemma plays a key role in the theorem’s proof.

Lemma 4.5. If �(i) = 0 then lim inf
s→∞

d��i [s] = ∞.

Proof. By Lemmas 4.3 and 4.4, there exists a stage s0 after which y��i and all
parameters of the strategies R��j with j < i and �(j) = 1 are stabilized.

Initially, we consider the isolated situation when only the strategyR��i can change
the constructing linear order. Then there are stages s ′′ > s ′ > s0 at which R��i has
outcome 0, i.e., Case 2.4. holds. It means that the parameter x��i is defined before
executing stage s ′′, and the parameter x��i [s ′] is undefined. Consequently, there is a
stage s1 such that s ′′ > s1 > s ′ and x��i [s1] is defined. It can happen under execution
of Cases 1 and 3. But by choosing of stage s0, the strategy was not initialized by the
higher priority strategies, and, consequently, Case 3 holds.

Let k be a number of pairs of successors located to the left of x��i [s1] at stage s1.
By conditions 3.1–3.4, there are k pairs of successors to the left of y��i [s1]. Since
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Case 2.4 holds at stage s ′′, ϕ–1
i (y��i [s1], s ′′) �= x��i [s1] at this stage. Note that ϕi is

correctly defined at all blocks to the left of ϕ–1
i (y��i [s1], s ′′) and the blocks of the

linear order Ls1 to the left of x��i [s1] are coincide with the blocks of the linear order
Ls′′ to the left of x��i [s ′′] = x��i [s1] (under assuming that other strategies do not
change non-singleton blocks of the linear order).

Since blocks of We can expand only, ϕ–1
i (y��i [s1], s ′′) and x��i [s1] cannot be in

the same block. Moreover, x��i [s1] <L ϕ
–1
i (y��i [s1], s ′′). Then the number of the

successor pairs of Wi to the left of y��i [s1] is strictly more than k. Thus, there
is no stage s ′′′ such that ϕ–1

i (y��i [s1], s ′′′) = x��i [s1]. Indeed, ϕ–1
i (y��i [s1], s ′′′) and

x��i [s1] cannot be in the same block under the considered assuming.
Now we use the arguments above to prove the lemma in the general case. By

condition 3.5 of Case 3, there is a stage s1 > s0 such that d��i [s1] > 2n (n ≥ 6).
Now we wish to argue that there is a stage s2 > s1 such that d��i [s2] > 2n+1. By

condition 3.5, if d��i [s] < 2n+1, then strategies R��j can work to the left of x��i [s]
only with j < n, and every such strategy can act at most n times. Thus, all such
strategies can make at most n2 changes of the linear order to the left of x��i [s].
After that, all strategies different fromR��i cannot make changes of the linear order
before stage s2 such that d��i [s2] > 2n+1. Due to arguments of the isolated situation,
such a stage s2 exists.

We will prove that at every stage s ′ > s2 the following holds d��i [s ′] > 2n.
Indeed, if it is not true, i.e., there is a stage s ′ > s2 such that d��i [s ′] ≤ 2n+1

then the construction can add at most (n + 1)2 new blocks to the left of x��i [s2],
and consequently, d��i can decreased at most by (n + 1)2. Since n ≥ 6, we have
d��i [s ′] > d��i [s2] – (n + 1)2 > 2n+1 – (n + 1)2 > 2n.

From the arguments above, it follows that lim infs d��i [s] = ∞. �
Lemma 4.6. The linear order L is a strongly �-representation of a set.

Proof. At every stage s, non-singleton blocks are located in the increasing
order of sizes. During the construction, the sizes of blocks can only increase. By
Lemma 4.1, it is enough to show that all blocks of L are finite. By the construction,
only finitely many strategies work on the initial segment to the left of the block
with element 2e. By the previous lemma, every such strategy can make finitely many
actions on this initial segment: it can add new blocks or amalgamate two different
blocks into one. Consequently, the sizes of blocks of this initial segment will not be
increasing after all these strategies finished the action. Since the set of blocks with
even numbers are co-final, the size of every block L will be finite. �

The next lemma is finishing the proof.

Lemma 4.7. The strategy R��e satisfies the requirement Pe .

Proof. Suppose that ϕ∅′′
e is an isomorphism of linear orders L and We and

ϕ∅′
e (·, s) is an approximation of this isomorphism. Recall that we useϕe(·, s) instead

of ϕ∅′
e (·, s) to shorten the notation.

If �(e) = 0 then, by Lemma 4.3, the value y��e is stabilized after an appropriate
stage and, by Lemma 4.5, (∀u ∈ L) (∃s0) (∀s > s0) [ϕ–1

e (y��e , s) >L u], i.e., y��e
does not have a pre-image in the limit. It is a contradiction with the supposing that
ϕ∅′′
e (·, s) is an isomorphism.
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Now we assume that �(e) = 1. Let s0 be a stage after that the strategy R��e is
not initialized by the higher priority strategies and the outcome of this strategy
and all strategies R��i (i < e) with �(i) = 1 is equal to 1. Using the arguments of
Lemma 4.3, we can show that there is a stage s1 > s0 such that one of the following
three conditions holds.

(1) Suppose that Case 1 of the strategy R��e holds at every stage after s1. By
choosing stage s0, all parameters of strategies R��i with i < e and �(i) = 1 are
stabilized and we can consider non-singleton blocks Br, ��i . Note that there are
finitely many such blocks and, by Lemma 4.1, there are adjacent non-singleton
blocks Bl <L Br of L which are located to the right of Br, ��i . Let s2 be a stage
after which ϕe is not changed on Br and on non-singleton blocks to the left of
Br (by Lemma 4.6, this set is finite and, consequently, the required stage exists).
Then at every stage s > s2 the conditions 1.1 and 1.2 of Case 1 hold. The condition
Br, ��i <L Bl <L Br (i < e and �(i) = 1) of point 1.3 holds. It is remain to note
that, by Lemma 4.5, there is a stage s3 > s2 such that for every s > s3 and i < e
with �(i) = 0 we have ϕ–1(y��i , s) >L Br . It is a contradiction with Br, ��i <L
Bl <L Br and ϕ–1(y��i , s) ∈ Br, ��i . Consequently, the function ϕe(·, s) cannot be
an approximation of an isomorphism.

(2) Suppose that Case 3 always holds after stage s1. It is not hard to see, if
ϕe(·, s) is an approximation of an isomorphism then there is a stage s2 > s1 such
that all conditions 3.1–3.4 are true. By Lemma 4.5, we have lim infs d��i [s] = ∞
for every i < e such that �(i) = 0. Consequently, there is a stage s3 > s2 such
that 2w� [s2]·|�| < d��i [s3]. If s3 is the least stage with the condition above then
w� [s2] = w� [s] for every s ∈ {s2, s2 + 1, ... , s3}. Then condition 3.5 is true and
the parameter x� is defined at this stage and, consequently, we have the case at
stage s3 + 1 which is different from Case 3. It is a contradiction with supposing
of this case. Consequently, the function ϕe(·, s) is not an approximation of an
isomorphism.

(3) At every stage after stage s1 we have Case 2. Since �(i) = 1, Case 2.4 never
happens again. Then we have the following subcases.

Subcase A. Suppose that there are infinitely many stages such that Case 2.1 holds.
Since the values of the parameters of the strategy R��e have no changes after stage
s1, Br, ��e has no changes too. If ϕe is an approximation of an isomorphism then
there must exist a stage s2 > s1 such that ϕe is the same as an isomorphism at blocks
to the left of Br, ��e at every stage after stage s2. Then Case 2.1 cannot happen after
stage s2. It is a contradiction with the supposing.

Subcase B. Suppose that Case 2.2 holds after some stage s2. We argue that it
is not possible. Since the approximation looks correctly, the images of Bl, ��e and
Br, ��e belong to different blocks of the linear order We, s at every stage s > s2.
Consequently, any preset number of elements must be enumerated between them, in
particular 2|[lr, ��e , rl, ��e]s |. The Case 2.3 holds at the appropriate stage. We have a
contradiction.

Subcase C. There are infinitely many stages such that Case 2.3 holds. Suppose
that Case 2.3 holds at a stage s3 > s2. Then at stage s3 + 1 either the approximation
looks incorrectly and we have Case 2.1, or the approximation looks correctly and,
consequently, the pre-image of y��e is changed, i.e., we have Case 2.4. Again, we
have a contradiction with choosing s2 > s1.
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Since we have contradictions at every subcase A, B, and C, the function ϕe(·, s) is
not an approximation of an isomorphism. Thus, the lemma is completely proved. �
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