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Families of Young functions and limits
of Orlicz norms
Sullivan F. MacDonald and Scott Rodney

Abstract. Given a σ-finite measure space (X , μ), a Young function Φ, and a one-parameter family of
Young functions {Ψq}, we find necessary and sufficient conditions for the associated Orlicz norms of
any function f ∈ LΦ(X , μ) to satisfy

lim
q→∞

∥ f ∥LΨq (X ,μ) = C∥ f ∥L∞(X ,μ) .

The constant C is independent of f and depends only on the family {Ψq}. Several examples of one-
parameter families of Young functions satisfying our conditions are given, along with counterexamples
when our conditions fail.

1 Introduction

It is a well-known result in classical analysis (see, e.g., [5, 6]) that if (X , μ) is a measure
space and if f ∈ Lr(X , μ) for some r ≥ 1, then

lim
p→∞

∥ f ∥L p(X ,μ) = ∥ f ∥L∞(X ,μ) .(1.1)

The authors of [2] investigated a similar limiting property of Orlicz norms associated
with a one-parameter family of Young functions {Ψq} which is defined by setting
Ψq(t) = t p log(e − 1 + t)q , where p ≥ 1 is fixed and q can be any positive real number.
They showed that if f belongs to the Orlicz space LΨq0 (X , μ) for some q0 > 0, then

lim
q→∞

∥ f ∥LΨq (X ,μ) = ∥ f ∥L∞(X ,μ) .(1.2)

Here, ∥ f ∥LΨq (X ,μ) denotes the Luxembourg norm of f with respect to Ψq given by

∥ f ∥LΨq (X ,μ) = inf {λ > 0 ∶ ∫
X

Ψq(
∣ f ∣
λ
) dμ ≤ 1}.

Modifying the proof of [2, Theorem 1], we show that (1.2) holds for any family of
Young functions {Ψq} that satisfies Condition 1.1, which we call δ-admissibility. Like
the authors of [2], our efforts were motivated by an application in partial differential
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Families of Young functions and limits of Orlicz norms 27

equations, where we sought to employ a Moser iterative scheme in Orlicz spaces to
study regularity of weak solutions to Poisson’s equation. Ultimately, those results were
achieved using alternative techniques in [1].

Nevertheless, our main result Theorem 1.2 may be useful in the study of related
problems. Furthermore, it illustrates a surprising relationship between Orlicz spaces
defined with respect to (X , μ), and the space L∞(X , μ) of essentially bounded
functions on X.

Throughout this work, we assume that (X , μ) is a positive measure space with
μ(X) > 0. To state our main result concisely, we begin by defining δ-admissibility.

Condition 1.1 Given δ > 0, a one-parameter family of Young functions {Ψq} is said
to be δ-admissible if lim

q→∞
Ψq(t) = ∞ for t > δ, and for 0 < t < δ, one of the following

holds:
(i) If μ(X) = ∞, then lim

q→∞
Ψq(t) = 0.

(ii) If μ(X) < ∞, then lim
q→∞

Ψq(t) < μ(X)−1.

Perhaps the simplest δ-admissible family is the 1-admissible collection obtained by
taking Ψq(t) = tq for q ≥ 1, and more examples of δ-admissible families are discussed
in Section 3.

Now, we state our main result concerning these families of Young functions.

Theorem 1.2 Let (X , μ) be a σ-finite measure space, and let {Ψq} be a one-parameter
family of Young functions. Let Φ be another Young function such that, for any k > 0, the
composition

t
Ψ−1

q (Φ(t))(1.3)

is nondecreasing on the interval [0, k] whenever q is sufficiently large. Then the identity

lim
q→∞

∥ f ∥LΨq (X ,μ) =
1
δ
∥ f ∥L∞(X ,μ)(1.4)

holds for every f ∈ LΦ(X , μ) if and only if {Ψq} is δ-admissible for some 0 < δ < ∞.

Remark 1.3 (1) We note that σ-finiteness of (X , μ) is only required for the for-
ward implication. Further, in many cases, (1.3) is nondecreasing on all of [0,∞)
for large q. For example, if Ψq(t) = tq and Φ(t) = tr for r ≥ 1, then (1.3) is
nondecreasing on [0,∞) for q ≥ r.

(2) The distinction between cases (i) and (ii) in Condition 1.1 is needed to prove
necessity of δ-admissibility for identity (1.4), but it is not needed for sufficiency.
Indeed, if μ(X) < ∞ and 0 < t < μ(X)−1, then one cannot select sets of large
enough μ-measure with which to compute the limit of Ψ−1

q (t) as q →∞ using
(1.4). We also note that Condition 1.1 is weaker than the closely related sufficient
condition where lim

q→∞
Ψq(t) = 0 in (i) and (ii).

https://doi.org/10.4153/S0008439523000449 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000449


28 S. F. MacDonald and S. Rodney

Usually it is difficult to find the inverse of a given Young function in closed form.
To make (1.3) easier to verify for given examples of Φ and Ψq , notice that (1.3) is
nondecreasing on [0, k] exactly when the following is nondecreasing on [0, Φ(k)]:

Φ−1(t)
Ψ−1

q (t) .

So, to check that the conditions of Theorem 1.2 hold for a Young function Φ and a
given family {Ψq}, it suffices to compute the inverse of Ψq for each q > 0, and to know
either Φ or Φ−1.

The theorem stated above implies the main result of [2], and we include a stream-
lined proof of this special case in Section 5. Furthermore, we observe that if Φ(t) = t,
then (1.3) is nondecreasing whenever Ψq is a Young function, and from Theorem 1.2,
we obtain the following result that involves no growth condition.

Corollary 1.4 If (X , μ) is a σ-finite measure space and if {Ψq} is a δ-admissible family
for 0 < δ < ∞, then (1.4) holds for every f ∈ L1(X , μ).

The remainder of this paper is organized as follows: In Section 2, we establish
preliminary results for Young functions and Orlicz spaces, and in Section 3, we discuss
several examples of δ-admissible families to show how Theorem 1.2 can be applied.
Section 4 is then devoted to the proof of our main result, and Section 5 examines the
special case of log-bumps. We conclude with Section 6, where we demonstrate that
identity (1.4) can fail if the family {Ψq} is not δ-admissible for any finite δ > 0.

2 Preliminaries

This section contains a brief introduction to Young functions and Orlicz spaces. Our
discussion is largely expository, and for a complete treatment, the reader is referred
to [4]. To begin, a nonnegative function ψ ∶ [0,∞) → [0,∞) is said to be a density if
it is right continuous, nondecreasing, ψ(t) = 0 exactly when t = 0, and ψ(t) → ∞ as
t →∞. Given a density ψ, the associated function Ψ ∶ [0,∞) → [0,∞) defined by

Ψ(t) = ∫
t

0
ψ(s)ds

is called a Young function. For our purposes, the important functional properties of
Ψ are that it is continuous, strictly increasing, and convex on (0,∞). Moreover, it
is clear that Ψ(0) = 0 and that Ψ(t) → ∞ as t →∞. Since the function Ψ(t) = t has
constant density it is not a Young function according to the definition above, however
for our purposes, it can often be treated as one.

Given a Young function Ψ and a measure space (X , μ), the Orlicz space LΨ(X , μ)
is defined as the collection of μ-measurable functions f ∶ X → R for which the
Luxembourg norm

∥ f ∥LΨ(X ,μ) = inf {λ > 0 ∶ ∫
X

Ψ ( ∣ f ∣
λ
) dμ ≤ 1}
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Families of Young functions and limits of Orlicz norms 29

is finite. Equipped with this norm LΨ(X , μ) is a Banach space (see [6]). The Orlicz
classes generalize the Lebesgue spaces, and it is easy to verify that ∥ ⋅ ∥L p(X ,μ) = ∥ ⋅
∥LΨ(X ,μ)when Ψ(t) = t p for p ≥ 1. Orlicz spaces can also provide a finer scale of norms
then Lp(X , μ) in the following sense: if μ(X) < ∞ and Ψq(t) = t p(1 + log(1 + t))q for
p ≥ 1 and q > 0, then, for any ε > 0, we have

Lp+ε(X , μ) ⊊ LΨq(X , μ) ⊊ Lp(X , μ).

These inclusions can be verified using Hölder’s inequality, and their strictness follows
from the examples constructed in [3].

In the sections that follow, we employ several properties of the Luxembourg norm
which we now establish. The first is a version of Chebyshev’s inequality on the Orlicz
scale. Henceforth, we use the notation χS to denote the indicator function of a set
S ⊆ X.

Theorem 2.1 (Chebyshev’s inequality) For α ≥ 0, a μ-measurable function
f ∶ X → R, and a Young function Ψ, the following inequality holds:

αΨ−1(μ({x ∈ X ∶ ∣ f (x)∣ ≥ α})−1)−1 ≤ ∥ f ∥LΨ(X ,μ) .(2.1)

Proof First, we establish a simpler form of (2.1) in the norm of L1(X , μ) using
a standard argument. Fix α > 0 and define fα = αχ{∣ f ∣≥α} so that fα ≤ ∣ f ∣ holds
pointwise and

μ({∣ f ∣ ≥ α}) = μ({x ∈ X ∶ ∣ f (x)∣ ≥ α}) = 1
α ∫

X
fα(x)dμ ≤ 1

α ∫
X
∣ f (x)∣dμ

= 1
α
∥ f ∥L1(X ,μ) .

Next, we replace α with β = α/∥ f ∥Ψ . Using that Ψ is strictly increasing, it follows from
the inequality above that

μ({∣ f ∣ ≥ β∥ f ∥Ψ}) = μ({Ψ( ∣ f ∣
∥ f ∥LΨ(X ,μ)

) ≥ Ψ(β)})

≤ 1
Ψ(β) ∫X

Ψ( ∣ f ∣
∥ f ∥LΨ(X ,μ)

)dμ.

It is a well-known property of the Luxembourg norm, established in many stan-
dard references (e.g., [4]), that ∫X Ψ(∣ f ∣/∥ f ∥LΨ(X ,μ))dμ ≤ 1. From this, it follows
that μ({∣ f ∣ ≥ β∥ f ∥LΨ(X ,μ)}) ≤ Ψ(β)−1, and since Ψ−1 is increasing, this implies that
Ψ−1(μ({x ∈ X ∶ ∣ f ∣ ≥ α})−1)−1 ≤ β−1. Writing β in terms of α and f gives (2.1). ∎

Equipped with this result, we can compute the Orlicz norms of indicator functions.

Corollary 2.2 If S ⊆ X is μ-measurable, then ∥χS∥LΨ(X ,μ) = Ψ−1(μ(S)−1)−1 .
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Proof The estimate Ψ−1(μ(S)−1)−1 ≤ ∥χS∥Ψ follows at once from Chebyshev’s
inequality. For the reverse inequality, observe that

∫
X

Ψ( χS

Ψ−1(μ(S)−1)−1 )dμ = ∫
S

Ψ( 1
Ψ−1(μ(S)−1)−1 )dμ = ∫

S

1
μ(S)dμ = 1.

By the definition of the Luxembourg norm, this implies that ∥χS∥Ψ ≤
Ψ−1(μ(S)−1)−1. ∎

In this paper, we work with limits of Orlicz norms that are defined by a one-
parameter family of Young functions. Subject to appropriate growth conditions,
these families have useful pointwise properties which we will exploit in the sections
to follow. Our main condition on these families is the following generalization of
Condition 1.1.

Condition 2.3 Given α ≥ 0 and β ≥ α, a family of Young functions {Ψq} is said to be
(α, β)-admissible if lim

q→∞
Ψq(t) = ∞ for t > β, and for 0 < t < α, one of the following

holds:
(i) If μ(X) = ∞ then lim

q→∞
Ψq(t) = 0.

(ii) If μ(X) < ∞ then lim
q→∞

Ψq(t) < μ(X)−1.

Proposition 2.4 Let {Ψq} be an (α, β)-admissible family. If μ(X) = ∞ and t > 0, or
if μ(X) < ∞ and t ≥ μ(X)−1, then

α ≤ lim inf
q→∞

Ψ−1
q (t) ≤ lim sup

q→∞
Ψ−1

q (t) ≤ β.(2.2)

Proof If α = 0, then the first inequality in (2.2) holds trivially, so we assume that
α > 0.

Fix t > 0, if μ(X) = ∞ and t ≥ μ(X)−1 if μ(X) < ∞, and assume toward a contra-
diction that there exists η > 0 such that

lim inf
q→∞

Ψ−1
q (t) ≤ α − η.

Given any 0 < ε < η then, there exists an increasing sequence {q j} such that q j →∞
and j →∞ and Ψ−1

q j
(t) < α − ε for each j. Since each Ψq is strictly increasing for all

q > 0, we find that t < Ψq j(α − ε) for each j. Taking the limit as j →∞, we see from
Condition 2.3 that 0 < t ≤ 0 if μ(X) = ∞, and μ(X)−1 ≤ t < μ(X)−1 if μ(X) < ∞. In
any case, this is a contradiction, meaning that

α − η < lim inf
q→∞

Ψ−1
q (t).

Since η > 0 was arbitrary, we get the first inequality in (2.2). The estimates for the limit
supremum in (2.2) follow in an identical fashion. ∎

If α = β = δ for some δ > 0, then Condition 2.3 is the same as δ-admissibility, and
Proposition 2.4 gives
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lim
q→∞

Ψ−1
q (t) = δ

for each t > 0 when μ(X) = ∞, and for each t ≥ μ(X)−1 when 0 < μ(X) < ∞. In fact,
the limit identity above is equivalent to δ-admissibility.

Proposition 2.5 A family of Young functions {Ψq} is δ-admissible if and only if

lim
q→∞

Ψ−1
q (t) = δ(2.3)

holds for all t > 0 if μ(X) = ∞, and for all t ≥ μ(X)−1 if 0 < μ(X) < ∞.

Proof Proposition 2.4 gives the forward implication, leaving us to prove that if (2.3)
holds for t in the appropriate range then {Ψq} is δ-admissible. Regardless of whether
μ(X) is finite or infinite, if Ψq(t) ≤ M for some M > 0 and large q, then t ≤ Ψ−1

q (M)
and (2.3) gives

t ≤ lim
q→∞

Ψ−1
q (M) = δ.

As M was arbitrary, it follows in the contrapositive that if t > δ, then lim
q→∞

Ψq(t) = ∞.

Assume now that 0 < μ(X) < ∞ and suppose (2.3) holds for all t ≥ μ(X)−1 > 0. If

lim
q→∞

Ψq(t) ≥ μ(X)−1 ,

then given 0 < ε < 1, we have Ψq(t) > μ(X)−1(1 − ε) whenever q is sufficiently large.
By convexity of Ψq , it follows that

μ(X)−1 ≤
Ψq(t)
1 − ε

≤ Ψq(
t

1 − ε
),

and so t ≥ (1 − ε)Ψ−1
q (μ(X)−1) whenever q is sufficiently large. Using (2.3), we take

the limit to find

t ≥ (1 − ε) lim
q→∞

Ψ−1
q (μ(X)−1) = (1 − ε)δ.

Since ε was arbitrary, we conclude that t ≥ δ. Thus, lim
q→∞

Ψq(t) < μ(X)−1 when t < δ.

On the other hand, if μ(X) = ∞ and (2.3) is satisfied for t > 0, and if Ψq(t) ≥ ε for
some ε > 0 and for all large q, then

t ≥ lim
q→∞

Ψ−1
q (ε) = δ.

Thus, if t < δ, then lim
q→∞

Ψq(t) ≤ ε, and as ε > 0 was arbitrary, we have

lim
q→∞

Ψq(t) = 0. ∎
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3 Examples

There are many examples of δ-admissible families of Young functions, and moreover,
they are often easy to construct. In this section, we showcase some families to illustrate
the utility of our main result, Theorem 1.2.

Example 3.1 If Ψq(t) = tq and Φ(t) = tr for some r ≥ 1, then (1.3) is nondecreasing
for t > 0 whenever q ≥ r. Moreover, the family {Ψq} is 1-admissible, and an applica-
tion of Theorem 1.2 gives the well-known identity (1.1).

Example 3.2 If Φ(t) = tr for r ≥ 1 and Ψq(t) = t p log(e − 1 + t)q for p ≥ 1, then

Φ−1(Ψq(t))
t

= t
p
r log(e − 1 + t)

q
r

t

fails the growth condition of Theorem 1.2 when r > p, and satisfies it when r ≤ p,
regardless of the value of q > 0. In the latter case, Theorem 1.2 recovers identity (1.2)
for f ∈ Lr(X , μ).

Example 3.3 Given N ∈ N and p ≥ 1, consider the family of Nth-order iterated log-
bumps

Ψq(t) = t p log . . . log
�����������������������������������

N times

(c + t)q ,

where c is chosen independent of q so that Ψq(1) = 1. This family is 1-admissible, and
a straightforward adaptation of the argument in Section 5 shows that (1.3) is nonde-
creasing on any interval of the form [0, k] for f ∈ LΨq0 (X , μ) whenever q > q0 > 0 is
sufficiently large. Thus, Theorem 1.2 applies to the Orlicz norms characterized by the
Nth-order iterated log-bumps above, giving

lim
q→∞

∥ f ∥LΨq (X ,μ) = ∥ f ∥L∞(X ,μ),

whenever f ∈ LΨq0 (X , μ) for some q0 > 0. We emphasize that in this example, the
convergence of the ∥ f ∥LΨq (X ,μ) norms to ∥ f ∥L∞(X ,μ) is independent of p. Thus, for
identity (1.4) to hold when {Ψq} is a family of iterated log-bumps, it is not necessary
to assume that f ∈ Lp+ε(X , μ) for any ε > 0.

Example 3.4 For any fixed Young function Φ, one can obtain a 1-admissible family
using the structure of Nth-order iterated log-bumps by defining

Ψq(t) = Φ(t) log . . . log
�����������������������������������

N times

(c + t)q ,

where c is chosen so that Ψq(1) = Φ(1) for all q. Indeed, iterated log-bumps of the
form
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Ψq(t) = (t
N
∏
j=1

log . . . log
�����������������������������������

j times

(c j + t))
p

log . . . log
�����������������������������������

N times

(cN + t)q(3.1)

are of this type, for p ≥ 1, provided that the constants c1 , . . . , cN are chosen so that the
value of Ψq(δ) is independent of q for some δ > 0. Once again Theorem 1.2 applies
to this family, allowing us to reproduce the limit in [3, Theorem 6.1]. This result is
proved in [3] by means of a modification of the techniques of [2], which rely on the
properties of iterated logarithms.

As in the last example, a similar calculation to that employed in Section 5 shows
that if Φ = Ψq0 for Ψq as in (3.1), then (1.3) is nondecreasing on any bounded interval of
the form [0, k] for k > 0 whenever q > q0 is sufficiently large. Once again, we conclude
that the LΨq(X , μ) norms of f converge to ∥ f ∥L∞(X ,μ), provided f ∈ LΨq0 (X , μ) for
some q0 > 0.

There are many more families for which δ-admissibility can be established, and the
interested reader is encouraged to construct their own examples.

4 Proof of Theorem 1.2

Every Orlicz norm used in this section is defined with respect to a fixed measure space
(X , μ), so we will always write ∥ ⋅ ∥LΨ(X ,μ) = ∥ ⋅ ∥Ψ and ∥ ⋅ ∥L∞(X ,μ) = ∥ ⋅ ∥∞. Fix δ > 0
and suppose that {Ψq} is a δ-admissible family of Young functions. Identity (1.4) is
trivial if f ≡ 0, and we will treat the case of unbounded f separately at the end. Thus,
we begin by assuming that 0 < ∥ f ∥∞ < ∞, and we note that it is enough to prove
(1.4) when ∥ f ∥Φ = 1. Since (1.3) is nondecreasing on [0, ∥ f ∥∞] by hypothesis for q
sufficiently large, we have

∥ f ∥Ψq = ∥Ψ−1
q (Φ(∣ f ∣)) ∣ f ∣

Ψ−1
q (Φ(∣ f ∣))∥

Ψq

≤ ∥Ψ−1
q (Φ(∣ f ∣))∥

Ψq

∥ f ∥∞
Ψ−1

q (Φ(∥ f ∥∞))
.

Additionally, we see that ∥Ψ−1
q (Φ(∣ f ∣))∥Ψq ≤ 1 since by definition of the Luxembourg

norm,

∫
X

Ψq (Ψ−1
q (Φ(∣ f (x)∣))) dμ = ∫

X
Φ(∣ f ∣)dμ ≤ 1.

Moreover, in the case 0 < μ(X) < ∞, we have that

Φ(∥ f ∥∞) ≥ μ(X)−1 ∫
X

Φ(∣ f ∣)dμ = μ(X)−1 .

Equality holds above since ∥ f ∥Φ = 1 and since f is bounded by assumption (see, e.g.,
[7, Equation (3.13)]). Using these estimates, we find from Proposition 2.5 that

lim sup
q→∞

∥ f ∥Ψq ≤ ∥ f ∥∞ lim
q→∞

Ψ−1
q (Φ(∥ f ∥∞))−1 = ∥ f ∥∞

δ
.

Next, suppose that 0 < ε < ∥ f ∥∞, and let S = {x ∈ Ω ∶ ∣ f (x)∣ ≥ ∥ f ∥∞ − ε}. From
the definition of the essential supremum and Chebyshev’s inequality, it follows at
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once that 0 < μ(S) ≤ Φ((∥ f ∥∞ − ε)−1), meaning that μ(S) is finite and nonzero.
Moreover, Chebyshev’s inequality with α = ∥ f ∥∞ − ε also shows that

(∥ f ∥∞ − ε)Ψ−1
q (μ(S)−1)−1 ≤ ∥ f ∥Ψq .

From Proposition 2.5, it follows that Ψ−1
q (μ(S)−1)−1 → δ−1 as q →∞, since S ⊆ X and

μ(S)−1 ≥ μ(X)−1 when 0 < μ(X) < ∞. As a result, we find that

∥ f ∥∞ − ε
δ

≤ lim inf
q→∞

∥ f ∥Ψq .

Since ε > 0 was arbitrary, this gives δ−1∥ f ∥∞ ≤ lim inf
q→∞

∥ f ∥Ψq , proving that (1.4) holds.

In the case where ∥ f ∥∞ = ∞, choose N > 1 and set fN = min{∣ f ∣, N} so that
∥ fN∥∞ = N . Applying our work above, we see that

lim inf
q→∞

∥ f ∥Ψq ≥ lim inf
q→∞

∥ fN∥Ψq ≥ δ−1∥ fN∥∞ = δ−1N .

Since N may be chosen arbitrarily large, we find lim inf
q→∞

∥ f ∥Ψq = ∞ as required.

Now, we show that if (1.4) holds for all f ∈ LΦ(X , μ), then the family {Ψq} is δ-
admissible. Specifically, we utilize the characterization of δ-admissible families given
by Proposition 2.5 to recognize that it is enough to show that

lim
q→∞

Ψ−1
q (t) = δ

for every t > 0 when μ(X) = ∞, and for t ≥ μ(X)−1 when μ(X) is finite and positive.
Suppose, first that μ(X) = ∞. Given t > 0, we use that (X , μ) is σ-finite to select

sets S1 ⊂ X and S2 ⊂ X of sufficiently large measure so that with t j = μ(S j)−1 we have
0 < t2 < t1 < t. Using (1.4) with f j = χS j ∈ LΦ(X , μ), we find from Corollary 2.2 that

lim
q→∞

Ψ−1
q (t j) = lim

q→∞
∥ f j∥−1

LΨq (X ,μ) = δ∥ f j∥−1
L∞(X ,μ) = δ.

Since we may choose λ ∈ (0, 1) so that λt2 + (1 − λ)t = t1, the concavity of Ψ−1
q gives

λΨ−1
q (t2) + (1 − λ)Ψ−1

q (t) ≤ Ψ−1
q (t1).

Letting q →∞ we find after taking a limit supremum and rearranging that

lim sup
q→∞

Ψ−1
q (t) ≤ δ.

Moreover, since Ψ−1
q is increasing, δ ≤ lim inf

q→∞
Ψ−1

q (t). Thus, lim
q→∞

Ψ−1
q (t) = δ for t > 0.

In the case that 0 < μ(X) < ∞, if t > μ(X)−1, we may proceed exactly as above (see
Remark 1.3). If t = μ(X)−1, the required estimate follows at once by applying (1.4) to
f = χX ∈ LΦ(X , μ). In any case, we have established that

lim
q→∞

Ψ−1
q (t) = δ

for t ≥ μ(X)−1 when 0 < μ(X) < ∞, and for t > 0 when μ(X) = ∞. It follows from
Proposition 2.5 that {Ψq} is δ-admissible.
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Remark 4.1 If we use the more general Condition 2.3 in place of Condition 1.1 in
Theorem 1.2, simple modifications of the proof above show that one has the estimates

1
β
∥ f ∥∞ ≤ lim inf

q→∞
∥ f ∥Ψq ≤ lim sup

q→∞
∥ f ∥Ψq ≤

1
α
∥ f ∥∞.(4.1)

It may be the case that the limit of the norms ∥ f ∥Ψq does not exist for a family {Ψq}
which is (α, β)-admissible, as we show with the following example. Let

Ψq(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 tq , 0 ≤ t ≤ 1

2 ,
1
2 (tq + (2t − 1)2+sin q), 1

2 < t < 1,
1
2 (tq + (2t − 1)3), t ≥ 1,

so that {Ψq} is ( 1
2 , 1)-admissible. If f = χS for S with 2 < μ(S), then ∥ f ∥∞ = 1 and

1 ≤ lim inf
q→∞

∥ f ∥Ψq ≤ lim sup
q→∞

∥ f ∥Ψq ≤ 2.

On the other hand, we can show that lim
q→∞

Ψ−1
q (t) does not exist for t ∈ (0, 1

2 ), and
thus

lim
q→∞

∥ f ∥Ψq = lim
q→∞

Ψ−1
q (μ(S)−1)−1(4.2)

does not exist. To see this, assume toward a contradiction that there is a t ∈ (0, 1
2 ) such

that lim
q→∞

Ψ−1
q (t) = d .

First, we show that d ∈ ( 1
2 , 1). Given ε > 0, we have for all large q that d − ε <

Ψ−1
q (t) < d + ε and Ψq(d − ε) < t < Ψq(d + ε). If d < 1

2 , then we can choose ε small
enough that d + ε ≤ 1

2 , meaning that Ψq(d + ε) → 0 as q →∞. Since t < Ψq(d + ε) for
all large q, this gives a contradiction for large q. Likewise, if d > 1, then we can choose ε
such that d − ε ≥ 1, meaning that Ψq(d − ε) → ∞ as q →∞. Since Ψq(d − ε) < t < 1

2 ,
this gives another contradiction, and it follows that 1

2 ≤ d ≤ 1.
If d = 1

2 , then 1
2 < d + ε < 1 when ε is small and Ψq(d + ε) = 1

2 ((
1
2 + ε)q +

(2ε)2+sin q). Choosing ε < 1
2 so small that (2ε)2+sin q ≤ 2ε ≤ t and then taking q so

large that ( 1
2 + ε)q ≤ t, we get Ψq(d + ε) ≤ t, a contradiction. Similarly, if d = 1, then

1
2 < d − ε < 1 for small ε and

Ψq(d − ε) = (1 − ε)q + (1 − 2ε)2+sin q

2
≥ (1 − 2ε)2+sin q

2
≥ (1 − 2ε)3

2
.

Since t < 1
2 , we can choose ε sufficiently small that (1−2ε)3

2 ≥ t, another contradiction.
It follows that 1

2 < d < 1 and 1
2 < d − ε < d + ε < 1 for small ε. Consequently,

Ψq(d ± ε) = (d ± ε)q + (2(d ± ε) − 1)2+sin q

2
.

Taking q = π
2 + kπ for odd k ∈ Z gives t > Ψq(d − ε) = 1

2 ((d − ε)q + 2(d − ε) − 1),
while using even k gives t < Ψq(d + ε) = 1

2 ((d + ε)q + (2(d + ε) − 1)3). For ε small
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and q large, we show that this is impossible. By convexity of the map t ↦ tq for q ≥ 1,
we have (d + ε)q < (d − ε)q + (d + 3ε)q , and moreover, a straightforward calculation
shows that

(2(d + ε) − 1)3 = 4d(2d − 1)(d − 1) + 4ε(2 + 6d2 − 6d + 6dε + 2ε2 − 3ε) + (2d − 2ε − 1).

Note that 4d(2d − 1)(d − 1) < 0 when 1
2 < d < 1. From the estimates above, we get

(d + ε)q + (2(d + ε) − 1)3 < (d − ε)q + (d + 3ε)q + 4d(2d − 1)(d − 1)
+ 4ε(2 + 2ε2 + 3ε) + (2d − 2ε − 1).

Taking ε small and q large, we can ensure that

(d + 3ε)q + 4d(2d − 1)(d − 1) + 4ε(2 + 2ε2 + 3ε) ≤ 0,

and doing this gives the following contradiction:

2t < (d + ε)q + (2(d + ε) − 1)3 ≤ (d − ε)q + 2(d − ε) − 1) < 2t.

Thus, the limit in (4.2) may not exist when the δ-admissibility condition fails.

5 Log-bump Orlicz norms

Here, we show that Theorem 1.2 implies [2, Theorem 1], which states that (1.4) holds
with δ = 1 for a specific family of log-bump Young functions. Given p ≥ 1, the log-
bumps are of the form Ψq(t) = t p log(e − 1 + t)q for q > 0, and the collection of all
these bumps is a 1-admissible family. Thus, [2, Theorem 1] follows from Theorem 1.2,
once we demonstrate that for k > 0, the function (1.3) is nondecreasing on [0, k]when
Φ(t) = Ψq0(t) for some q0 > 0 and when q is large. To do this, we first assume that
q > q0 and for t > 0, we define

F(t) = t
Ψ−1

q (Ψq0(t)) ,

so that F satisfies the equation Ψq0(t) = Ψq(tF(t)−1). Recalling the form of Ψq , we
get

F(t)p log(e − 1 + t)q0 = log(e − 1 + t
F(t))

q

(5.1)

for t > 0. It follows from the definition above that F is continuous on (0,∞), and to
extend F continuously to zero, we observe that

log(e − 1)q0 lim
t→0+

F(t)p = log(e − 1 + lim
t→0+

Ψ−1
q (Ψq0(t)))

q

= log(e − 1)q .

Setting F(0) = lim
t→0+

F(t) = log(e − 1)
q−q0

p , thus ensures that F is continuous on
[0,∞).

Lemma 5.1 If q > q0, then F(t) > F(0) for every t > 0.
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Proof Observe that if q > q0, then Ψq(t) ≥ Ψq0(t) when t ≥ 1, while Ψq(t) <
Ψq0(t) when 0 < t < 1. In the case t ≥ 1, we use that Ψ−1

q is strictly increasing to see
that t ≥ Ψ−1

q (Ψq0(t)), which implies that F(t) ≥ 1 > F(0). Likewise, 0 < t < 1 gives
F(t) < 1, and by (5.1), we find

log(e − 1 + t)q < log(e − 1 + t
F(t))

q

= F(t)p log(e − 1 + t)q0 .

Rearranging, we see that F(t) > log(e − 1 + t)
q−q0

p > F(0). ∎

Now, fix k > 0, set I = [0, k], and let M = supI F. We show that F is injective on I
when q is large enough. To this end, fix t1 ∈ I, set c = F(t1), and note that F(t1) = F(0)
if and only if t1 = 0. On the other hand, if t1 > 0, then c ∈ (F(0), M] by Lemma 5.1.
Moreover, from (5.1), we see that t1 is a fixed point of the map Tc ∶ [0,∞) → R defined
by

Tc(t) = c exp (c
p
q log(e − 1 + t)

q0
q ) − c(e − 1).

Since F(0) < c, it is easy to see that Tc(0) > 0. Furthermore, a straightforward
computation shows that T ′′c (t) < 0 if and only if

q0c
p
q log (e − 1 + t)

q0
q < q log (e − 1 + t) + q − q0 .(5.2)

For large q, this is achieved uniformly in c ∈ [0, M]. To see why, choose q ≥ q0 so that

M p ≤ ( q
q0
)

q

log(e − 1)q−q0 .

Then c
p
q ≤ q

q0
log(e − 1)1− q0

q ≤ q
q0

log(e − 1 + 1)1− q0
q for each t ≥ 0, and this shows that

(5.2) holds for each t ≥ 0, and we see Tc(t) is strictly concave on (0,∞).
For q large as above, we find that Tc(0) > 0 and Tc is a continuous and strictly

concave function on (0,∞). Thus, Tc(t) has a unique fixed point in [0,∞) and so
it is t1. This gives F injective on I since F(t2) = c = F(t1) shows that t1 and t2 are
fixed points of Tc(t). Since F is a continuous, injective function on I, the Intermediate
Value Theorem shows that F is strictly monotone on I. Lastly, since Lemma 5.1 shows
that F(0) < F(t) for t ∈ I, we conclude that F is strictly increasing on I when q is
sufficiently large. Thus, with the hypotheses of Theorem 1.2 verified, we have reproved
[2, Theorem 1].

6 Necessity of admissibility conditions

Finally, we show that Conditions 1.1 and 2.3 are necessary for the norm limit to be
related to the essential supremum of a function. This means that our admissibility
conditions cannot be weakened in Theorem 1.2 or Remark 4.1.

Theorem 6.1 Let {Ψq} be a family of Young functions, and let Φ be a Young function
for which (1.3) is nondecreasing, and assume that there exists f ∈ LΦ(X , μ) ∩ L∞(X , μ)
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such that

0 < lim inf
q→∞

∥ f ∥Ψq ≤ lim sup
q→∞

∥ f ∥Ψq < ∞.(6.1)

Then {Ψq} is (α, β)-admissible for some β > 0 and α ≥ 0.

Proof First, assume to the contrary that Ψq(t) → ∞ as q →∞ for each fixed t > 0.
Arguing as in the proof of Proposition 2.4, we conclude that Ψ−1

q (t) → 0 as q →∞
for each t > 0. Since the limit infimum in (6.1) is nonzero, we have 0 < ∥ f ∥∞, and as
in the proof of Theorem 1.2, we can choose ε < ∥ f ∥∞ to see that

(∥ f ∥∞ − ε) lim inf
q→∞

Ψ−1
q (μ({x ∈ Ω ∶ ∣ f (x)∣ ≥ ∥ f ∥∞ − ε})−1)−1 ≤ lim inf

q→∞
∥ f ∥Ψq .

By definition of the essential supremum, μ({x ∈ Ω ∶ ∣ f (x)∣ ≥ ∥ f ∥∞ − ε}) > 0,
meaning that the limit on the left-hand side above diverges and ∥ f ∥Ψq →∞ as
q →∞, contradicting the right-hand limit of (6.1). Thus, there is a t0 > 0 for which
lim sup

q→∞
Ψq(t0) < ∞, and therefore,

lim sup
q→∞

Ψq(t) < ∞

holds for every 0 ≤ t ≤ t0 since each Young function is strictly increasing. This means
that (α, β)-admissibility holds for some α ≥ 0 and β > 0.

Similarly, suppose that Ψq(t) → 0 as q →∞ for each t > 0, so that Ψ−1
q (t) → ∞ by

the argument of Proposition 2.4. Arguing as in Section 4, we have

lim sup
q→∞

∥ f ∥Ψq ≤ ∥ f ∥∞ lim sup
q→∞

Ψ−1
q (Φ(∥ f ∥∞))−1 = 0,

and again this contradicts (6.1). Since each Ψq is strictly increasing, we conclude that
lim inf

q→∞
Ψq(t) > 0 for large t > 0. Thus, there exists α ≤ β satisfying Condition 2.3. ∎

In the case of δ-admissibility, where α = β = δ, the argument above shows that
Theorem 1.2 fails when δ is not both positive and finite.

Corollary 6.2 Let {Ψq} be a family of Young functions such that for every t > 0,

lim
q→∞

Ψq(t) = ∞ (resp. lim
q→∞

Ψq(t) = 0).

If f satisfies the remaining hypotheses of Theorem 1.2, then regardless of the value of
∥ f ∥∞,

lim
q→∞

∥ f ∥LΨq (X ,μ) = ∞ (resp. lim
q→∞

∥ f ∥LΨq (X ,μ) = 0).

To illustrate, if f = χ[0,1] and Ψq(t) = t p log(e + t)q , then Corollary 2.2 shows that
∥ f ∥LΨq (R,d x) = Ψ−1

q (1)−1, but {Ψq} is not δ-admissible for any δ > 0. A straightfor-
ward calculation shows that
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lim
q→∞

∥ f ∥LΨq (R,d x) ≥ lim inf
q→∞

∥ f ∥LΨq (R,d x) = lim inf
q→∞

Ψ−1
q (1)−1 = ∞ > ∥ f ∥L∞(R,d x).

Thus, if Condition 1.1 fails, then the Orlicz norms may not converge to ∥ f ∥L∞(X ,μ).
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