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Abstract
With the in-depth study of thin-film structures, nonuniform thin films with rigid elements have been applied in the
aerospace and flexible electronics industries. For thin-film structures with rigid elements, there is an interaction
force between the rigid element and the thin film; therefore, the wrinkling mode of the thin film changes under the
influence of the interaction force. In this study, a wrinkle model was developed to predict the wrinkle morphol-
ogy of thin-film structures with rigid elements on the diagonal. First, the wrinkle patterns of the rigid elements
were observed at different positions using tensile experiments. Then, the relationship between the tilt of the rigid
element and the wrinkle wavelength was investigated using a finite-element eigenvalue buckling analysis. Finally,
local wrinkling caused by the perturbed stress of the rigid element was introduced, and a wrinkling model of a
square thin film with rigid elements on the diagonal under tension was established. The theoretical analysis results
were compared with simulation and experimental results, demonstrating that the model can accurately describe the
wrinkle patterns of thin-film structures containing rigid elements on the diagonal under tension.

Nomenclature
Ai wrinkle amplitude (mm)
a inner circle radius of rigid elements (mm)
b diameter of outer circle of rigid elements (mm)
Cijkl elastic matrix of films
Dijkl Eshelby tensor of thin films
E elastic modulus of thin films (MPa)
l distance from endpoint of rigid element to vertex of thin film (mm)
R inner circle radius of thin film (mm)
Rc distance from rigid element to vertex of thin film (mm)
Rwi wrinkle radius (mm)
Ti tensile force (N)
t thickness of the thin film (mm)
wi wrinkle flexure function (mm)
α half inner corner of square thin film (deg)
β angle between endpoint of rigid component and coordinate axis (deg)
εθc tensile strain in circumferential direction
εθw geometric strain
εθρ tensile strain in radial direction
θ angle between any point on thin film and y-axis (deg)
λi half wavelength of thin films (mm)
ν Poisson’s ratio of thin films
ρ distance of any point on thin film to top vertex of thin film (deg)
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σij total stress of thin film (MPa)
σ 0

ij total stress of thin film (MPa)
σ ′

ij stress of uniform thin film (MPa)
σ c

ij concentrated stress at vertex of rigid element (MPa)
σρ radial stress acting on corner vertex of thin film under tension (MPa)

1.0 Introduction
Thin-film structures are widely used in flexible electronics and aerospace engineering because of their
light weight and high storage ratios [1–4]. Adding microstructures to thin-film structures, such as
thin-film antenna structures in aerospace engineering, has drawn significant interest [5–7]. When the
boundary of a thin film is constrained because of the low bending stiffness of the film, the film experi-
ences compressive stress under tension, which causes the film to wrinkle instead of deforming uniformly
under the influence of compressive stress [8–10]. Therefore, the wrinkling behaviour of thin films under
compressive stress is of interest to researchers.

Tension field theory and stability theory remain the main analytical methods for studying the wrin-
kling behaviour of thin films [11, 12]. In the tension field theory, it is assumed that the bending stiffness
of the thin film is zero, and the wrinkle region in the thin film is predicted by calculating the mini-
mum principal stress of the thin film; however, tension field theory cannot calculate the amplitude of
wrinkles in thin films [13]. In stability theory, it is usually assumed that a thin film can withstand small
amounts of compressive stress, and the wrinkling phenomenon is regarded as the buckling behaviour
of the film. Through stability theory, characteristic parameters, such as the wrinkle wavelength and
wrinkle amplitude of thin films, can be obtained [14–18]. However, the influence of the microstructure
on the nonuniform distribution of thin-film wrinkles has not received much attention. When there is a
microstructure on the thin film, the interaction force between the microstructure and the thin film changes
the stress distribution of the thin film. Under the interaction, the thin film undergoes local bending and
forms local wrinkles, thus changing the wrinkle pattern of the thin film [19–22].

In this study, the wrinkling behaviour of nonuniform thin-film structures with rigid components was
first observed through experiments and numerical simulations. By incorporating stability theory, the
relationship between the wrinkling mode of nonuniform thin films and the size of the microstructures
was established. In turn, after determining the wrinkling mode of nonuniform thin films based on a
nonuniform thin-film stress analysis method proposed previously [22], a stress equilibrium relationship
was established by introducing perturbation stress and analysing the local wrinkle deformation caused
by the microstructure and global wrinkle deformation caused by tensile force. A model for predicting the
wrinkling of square films containing microstructures on the diagonal was developed, providing a new
approach to controlling the nonuniform film wrinkling mode and predicting the wrinkling deformation.

2.0 Experimental observation
In this article, a square rigid element of 10 × 10 × 1mm and a square polyimide thin film of 300 ×
300 × 0.025mm were used, wherein the rigid element was symmetrically fixed on the diagonal of the
thin film through an adhesive, as shown in Fig. 1. The material properties of polyimide film structure
and square rigid elements are listed in Table 1. In the experiment, polyimide tape was used to fix the
film vertex. A tension sensor was used to control the tension, and photogrammetry was used to measure
the wrinkle deformation of the film. When T1 = T2 = 30N and the rigid element positions Rc are 30,
40, 50, and 60mm, the wrinkle pattern R is as shown in Fig. 2. When T1 = 5N, T2 = 20N, and the rigid
element positions Rc are 30, 40, 50, and 60mm, the wrinkle pattern is as shown in Fig. 3. Figure 2
shows that the rigid element does not tilt with the wrinkle under uniform tension. Figure 3 reveals that
the rigid element tilts with the wrinkle under nonuniform tension. Furthermore, Figs. 2 and 3 show
that the appearance of the rigid element changes the wrinkle pattern, and the wrinkle amplitude is the
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Figure 1. Structural diagram of nonuniformities of thin film with rigid elements.

smallest when the position of the rigid element Rc = 50mm. In previous studies, this phenomenon was
investigated through stress analysis. However, this phenomenon provides a new idea for restraining and
controlling thin-film wrinkles.

3.0 Results and discussion
3.1 Effect of rigid elements on wrinkles patterns
The relationship between whether the rigid element inclines with a wrinkle and the size of the rigid
element was analysed. For tension T1 = T2, an eigenvalue buckling analysis of the thin-film structure
shown in Fig. 1 was conducted using ABAQUS finite-element analysis (FEA) software. The thin shell
element S4R with four nodes and six degrees of freedom was used for the membrane structure, and
the hexahedral element C3D8R with eight nodes and three degrees of freedom was used for the rigid
element. All finite-element dimensions were 1 mm. The rigid element and membrane were connected
by binding constraints. An eigenvalue buckling analysis can be used to determine the buckling mode
of a thin film. The eigenvalue buckling results when the location of the rigid element Rc = 30 mm are
shown in Fig. 4.

Through eigenvalue buckling analysis, two buckling modes can be obtained. When rigid elements
are present on the thin film, it can have two different modes of wrinkling. The rigid elements in mode
1 are inclined with the appearance of wrinkles, and the rigid elements in mode 2 are not inclined with
the appearance of wrinkles. This result is consistent with the experimental results shown in Figs. 2
and 3. Therefore, the wrinkle mode of the nonuniform thin-film structure of rigid elements is mainly
determined by the relationship between the radius of the circumscribed circle of the rigid element and the
wrinkle wavelength. In other words, when the wrinkle half-wavelength d < 2λ1, the wrinkle mode of the
film is consistent with mode 1; when the wrinkle half-wavelength d � 2λ2, the wrinkle mode of the thin
film is consistent with the mode 2. The wavelength λ of the thin-film structure can be expressed as [16]
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Table 1. Material parameters of thin film and rigid
elements

Parameter Thin film Rigid element
Thickness (mm) 0.025 1
Poisson’s ratio 0.34 0.34
Young’s modulus (MPa) 2,500 71,000

Figure 2. Wrinkling patterns of rigid element at different locations under uniform tension: (a)–(d) show
positions Rc of the rigid elements of 30, 40, 50, and 60mm, respectively.

λ =
[

Eπ 2t2Rw
2

12(1 − ν2)σρ

] 1
4

(1)

where E is the elastic modulus of the thin film, v is Poisson’s ratio of the thin film, t is the thickness
of the thin film, and σρ is the radial stress of the nonuniform thin film. At the thin-film boundary, the
influence of the disturbance stress of the rigid element on the thin-film stress field can be ignored. At
this point, the radial stress of the nonuniform thin film is consistent with the radial stress of the uniform
thin film, which can be expressed as

σρ = 4T cos θ

(π + 2)ρt
(2)

Here, Rw is the radius of the wrinkled region in the thin film. The boundary region of the thin film
can be obtained [16] as

Rw = e−vR (3)

According to the experimental observations, when T1/T2 = 4, wrinkles occur across the diagonal
region of the thin film. Therefore, the tension ratio is defined as c = T1/T2. When the wrinkle pattern is
shown in mode 2, the global wrinkle radius Rw1 and local wrinkle radius Rw2 can be expressed as{

Rw1 = Rc/sin α

Rw2 = Rw − Rw1

(4)

Here, λ1 is the first half-wavelength close to the central line and can be expressed as

λ1 =
(

Rc

sin α
+ d

2

)
tan

(α

n

)
(5)
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Figure 3. Wrinkling patterns of rigid element at different locations under nonuniform tension: (a)–(d)
show positions Rc of the rigid elements of 30, 40, 50, and 60mm, respectively.

The wrinkling number n of the thin film can be expressed as

n = αRw

λ
(6)

At this time, one can obtain the relationship between the side length and the wrinkle mode when the
position of the rigid element Rc = 30 mm, as shown in Fig. 5. Figure 3 reveals that, when the position of
the rigid element Rc = 30 mm, the side length of the rigid element 2a = 10 mm, and T1 = T2, the wrinkle
mode of the nonuniform thin film is mode 2 – that is, the rigid element does not tilt with the appearance
of wrinkles.

3.2 Wrinkle model when rigid element is inclined with the wrinkle
The experimental results in Fig. 2 show that, when the diameter of the circumscribed circle of the rigid
element is d � 2λ1, the wrinkle mode of the nonuniform thin film is mode 2. To describe the wrinkle
pattern in mode 2, the wrinkle configuration function w on a nonuniform thin film can be expressed as
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Figure 4. Eigenvalue buckling analysis of thin-film structures with rigid elements.

Figure 5. Relationship between side length of rigid element and wrinkled mode.
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w =
4∑

i=1

(wi1 + wi2) (7)

According to thin-film stability theory, the local wrinkle configuration function wi1 and the global
wrinkle configuration function wi2 can be expressed as

wi1 = Ai1 sin

(
πρ

c(−1)i Rw1

)
sin

(
πθ

λ

)

wi2 = Ai2 sin

⎡
⎢⎢⎣

π

(
ρ − l + Rw2

2

)
Rw2

⎤
⎥⎥⎦sin

[
π (θ − β)

λ

] (8)

The geometric strain εθw in the wrinkle direction can be expressed as

εθw = εθc − εθρ = −A2π 2

4λ2
(9)

where εθρ and εθc are the tensile strain in the radial direction and the shrinkage strain in the circumfer-
ential direction, respectively, and can be expressed as

εθρ = −ν
σρ

E
(10)

εθc =
∫

σρ

E
dy

y
(11)

Equations (10) and (11) can be substituted into Equation (9) to obtain the wrinkle amplitude A(ρ, θ)

of the thin film:

A(ρ, θ) =
2λ

√(
εθρ − εθc

)
π

(12)

The strain field of a nonuniform thin film can be calculated using Eshelby’s elastic inclusion theory.
According to previous research [19], the stress distribution in thin films with rigid inclusions can be
expressed as

σij = σ 0
ij + σ ′

ij + σ c
ij (13)

where σ 0
ij is the stress of the uniform thin film, σij′ is the disturbance stress caused by the rigid element,

and σ c
ij is the concentrated stress at the corners of the rigid element, which are respectively expressed

as [22]

σ ′
ij = Cijkl

(
Dijklε

∗
ij

)
(14)

σ c
ij = a2

π(r2 − a2)

||x| − |y||
r

σ ′
ij (15)

σ 0
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 0
x = − 4T

2πR
+

i=4∑
i=1

4T(x cos iθ − y sin iθ)
2
[
R − (x sin iθ + y cos iθ)

]
ρ4hm(π + 2)

σ 0
y = − 4T

2πR
+

i=4∑
i=1

4T
[
R − (x sin iθ + y cos iθ)

]3

ρ4hm(π + 2)

τ 0
xy = − 4T

2πR
+

i=4∑
i=1

4T (x cos iθ − y sin iθ)
[
R − (x sin iθ + y cos iθ)

]2

ρ4hm(π + 2)

(16)
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Here, Cijkl is the elastic matrix of the film, ε∗
ij is the characteristic strain of the film, and Dijkl is the

Eshelby external tensor, which can be expressed as [22]

D1111(r) = 1

8(1 − ν)

[
3a4

r4
+ (1 − 2ν)

2a2

r2

]
+ 1

(1 − ν)

[
(1 + ν)

a2

r4
x2

n − 3a4

r6
x2

n − 2a2

r6
x4

n + 3a4

r8
x4

n

]

D1122(r) = 1

8(1 − ν)

[
a4

r4
− (1 − 2ν)

2a2

r2

]

+ 1

2(1 − ν)

{[
(1 − 2ν) x2

n + y2
n

] a2

r4
−

(
y2

n + 1

a2
x2

ny2
n

)
a4

r6
+ 6a4

r8
x2

ny2
n

}

D2211(r) = 1

8(1 − ν)

[
a4

r4
− (1 − 2ν)

2a2

r2

]

+ 1

2(1 − ν)

{[
(1 − 2ν) y2

n + x2
n

] a2

r4
−

[
x2

n + 1

a2
x2

ny2
n

]
a4

r6
+ 6a4

r8
x2

ny2
n

}

D2222(r) = 1

8(1 − ν)

[
3a4

r4
+ (1 − 2ν)

2a2

r2

]
+ 1

(1 − ν)

[
(1 + ν)

a2

r4
y2

n − 3a4

r6
y2

n − 2a2

r6
y2

n + 3a4

r8
y2

n

]

D1212(r) = 1

2(1 − ν)

[
a4

r4
+ (1 − 2ν)

2a2

r2

]
+ 1

1 − ν

[
ν
(
x2

n + y2
n

) a2

r4
− (

x2
n + y2

n

) a4

r6

]
(17)

When ρ = Rw1/2 and θ = 0, an exponential function obtained through finite-element analysis is
introduced to modify the wrinkle amplitude, and the maximum amplitude Ai1 of the global wrinkle
configuration function w is obtained as

Ai1 = c(−1)i
e−(3t|xi|)2

A

(
c(−1)i

Rw1

2
, 0

)
(18)

Because the rigid element on the thin film changes the original stress field of the thin film, local
wrinkles caused by the disturbance stress of the rigid element appear on both sides of the thin film, and
the amplitude of the wrinkles is the largest at the apex of the rigid element. When ρ = l and ρ = l, the
maximum amplitude Ai2 of the local wrinkle configuration function w caused by the rigid element is

Ai2 = c(−1)i
e−

[
3t
(
|xi|− d+λ2

2

)]2

A(l, β) (19)

where λ2 is the half-wavelength of the first wrinkle outside the rigid element, which can be
expressed as

λ2 =
(

Rc

sin α
+ d

2

)
tan

(α

n
+ β

)
− d

2
(20)

By substituting Equations (18) and (19) into Equation (8), the wrinkle configuration function of the
nonuniform thin-film structure of rigid elements corresponding to mode 1 can be obtained. When the
rigid element is large, the wrinkle shape shown in mode 1 mostly appears in the case of uniform tension.
Therefore, taking uniform stretching as an example, when the distance between the rigid elements Rc =
30mm and tension T1 = T2 = 30N, the wrinkle distribution diagrams obtained through the stretching
experiment, finite-element simulation, and theoretical analysis are as shown in Fig. 6. The out-of-plane
deformation in the path 1 cross section is also shown in Fig. 6.

3.3 Wrinkle model when the rigid element does not incline with the wrinkle
When the circumscribed circle diameter of the rigid element d < 2λ1, the wrinkle pattern of the nonuni-
form thin film is mode 1, and the rigid element tilts with the appearance of the wrinkle. Therefore,
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Figure 6. Wrinkle shapes and out-of-plane deformation in the path cross section: (a) is the experimental
result, (b) is the FEA result, (c) is the analytical result, and (d) is the out-of-plane deformation in the
path 1 cross section.

to describe the wrinkle morphology shown in mode 1, the wrinkle configuration function w of the
nonuniform film can be expressed as

w =
4∑

i=1

(wi1 + wi2) (21)

where wi1 is the local wrinkle configuration caused by rigid elements, and wi2 is the global wrinkle
configuration. According to thin-film stability theory, wrinkles wi1 and wi2 can be expressed as

wi1 = Ai1 sin

(
πρ

c(−1)i Rw

)
cos

(
πθ

λ

)

wi2 = Ai2 sin

[
π(ρ − l)

Rw2

]
cos

[
π(θ − β)

λ

]
(22)

When ρ = c(−1)i
/2 and θ = 0, the maximum amplitude A of the local wrinkle configuration function

w caused by the rigid element is

Ai1 = c(−1)i
e−

[
3t
(
|xi|− λ2

2

)]2

A

(
c(−1)i

Rw1

2
, 0

)
(23)

When ρ = l and θ = β, the maximum amplitude A of the local wrinkle configuration function w
caused by the rigid element is

Ai2 = e−
[
3t
(
|xi|− 2λ1+λ2

2

)]2

A(l, β) (24)

When i is odd, xi = x. When i is even, xi = y. By substituting Equations (23) and (24) into Equation
(22), the wrinkle configuration function of the nonuniform thin-film structure of rigid elements corre-
sponding to mode 2 can be obtained. The slope of the rigid element can be obtained by substituting
the coordinates of the endpoint of the rigid element into Equation (22). The wrinkle pattern shown in
mode 1 is prone to occur in the case of nonuniform stretching or small rigid elements. Therefore, taking
nonuniform stretching as an example, when the rigid element distance Rc = 30 and the tensile forces
T1 = 5N and T2 = 20N, the wrinkle distribution diagrams obtained by the experiment, finite-element
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Figure 7. Wrinkle shapes and out-of-plane deformation in the path cross section: (a) is the experimental
result, (b) is the FEA result, (c) is the analytical result, (d) is the out-of-plane deformation in the path 1
cross section, and (e) is the out-of-plane deformation in the path 2 cross section.

simulation, and theoretical analysis are as shown in Fig. 7. The out-of-plane deformations in the path 1
and 2 cross sections are shown in Fig. 7.

4.0 Conclusion
A tensile square thin-film wrinkle model with a rigid element located on the diagonal line was
constructed, and the relationship between the shape and size of the rigid element was analysed by
experimental observation and finite-element simulation. A nonuniform stress field was introduced to
superimpose the local folds caused by the disturbance stress of the rigid element and the global folds of
the thin film. Compared with the finite-element analysis, the proposed model is easier to solve and does
not lead to divergent results, which provides a new approach to the wrinkle analysis of nonuniform thin
films with microstructures.
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