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Sub-Bergman Hilbert spaces on the unit
disk III
Shuaibing Luo and Kehe Zhu
Abstract. For a bounded analytic function φ on the unit disk D with ∥φ∥∞ ≤ 1, we consider the
defect operators Dφ and Dφ of the Toeplitz operators Tφ and Tφ , respectively, on the weighted
Bergman space A2

α . The ranges of Dφ and Dφ , written as H(φ) and H(φ) and equipped with
appropriate inner products, are called sub-Bergman spaces.

We prove the following three results in the paper: for −1 < α ≤ 0, the space H(φ) has a complete
Nevanlinna–Pick kernel if and only if φ is a Möbius map; for α > −1, we have H(φ) = H(φ) = A2

α−1
if and only if the defect operators Dφ and Dφ are compact; and for α > −1, we have D2

φ(A2
α) =

D2
φ(A

2
α) = A2

α−2 if and only if φ is a finite Blaschke product. In some sense, our restrictions on α
here are best possible.

1 Introduction

Let H be a Hilbert space, and let B(H) be the space of all bounded linear operators on
H. If T ∈ B(H) is a contraction, we use H(T) to denote the range space of the defect
operator (I − TT∗)1/2. It is well known that H(T) is a Hilbert space with the inner
product

⟨(I − TT∗)1/2x , (I − TT∗)1/2 y⟩H(T) = ⟨x , y⟩H ,

where x , y ∈H ⊖ ker(I − TT∗)1/2. Spaces of the type H(T) have been studied exten-
sively in the literature, mostly in connection with operator models.

There are two special cases that are especially interesting. First, if H = H2 is the
classical Hardy space on the unit disk D, and if T = Tφ is the analytic Toeplitz
operator (multiplication operator) induced by a function φ in the unit ball H∞1 of
H∞, then H(Tφ) is called a sub-Hardy space (or a de Branges–Rovnyak space). Such
spaces appeared in the work [11] of de Branges concerning the Bieberbach conjecture
and were studied systematically in Sarason’s monograph [21]. See also the recent
monograph [12].

Second, if H = A2 is the classical Bergman space on the unit disk and if T = Tφ
is the analytic Toeplitz operator (multiplication operator) on A2 for some φ ∈ H∞1 ,
then H(Tφ) is naturally called a sub-Bergman space. Such spaces have been studied
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Sub-Bergman Hilbert spaces on the unit disk III 1521

by several authors in the literature, beginning with [25, 26] and including [1, 8–10, 13,
14, 18, 20, 22, 23].

In this paper, we focus on sub-Bergman spaces in the weighted case. More
specifically, we will consider a family of “generalized Bergman spaces” A2

α . With the
definition of generalized Bergman spaces A2

α deferred to the next section, we mention
the following special cases: A2

0 = A2 is the ordinary Bergman space, A2
−1 = H2 is the

Hardy space, and A2
−2 =D is the Dirichlet space. We will also consider multiplications

operators Tφ = T α
φ ∶ A2

α → A2
α induced by functions fromM1(A2

α), the closed unit ball
of the multiplier algebra M(A2

α) of A2
α . It is natural for us to use the notation Hα(φ)

for the space H(Tφ). Similarly, we will write Hα(φ) for the space H(T) when T is the
adjoint operator T∗φ ∶ A2

α → A2
α . Note that for α ≥ −1, we have M(A2

α) = H∞.
Motivated by the main results obtained in [10, 26], we will study the following three

problems:
(a) When does Hα(φ) have a complete Nevanlinna–Pick (CNP) kernel?
(b) When do we have Hα(φ) = Hα(φ) = A2

α−1?
(c) When do we have (I − TφTφ)(A2

α) = (I − TφTφ)(A2
α) = A2

α−2?
Our main results are Theorems A–C below.

Theorem A For −1 < α ≤ 0, the space Hα(φ) has a CNP kernel if and only if φ is a
Möbius map. When α > 0, Hα(φ) does not have a CNP kernel.

A (more subtle) characterization is also obtained when −2 < α < −1. Here, even the
result for the case α = 0 is new. The case α = −1 was studied in [10].

Theorem B For α > −1, we have Hα(φ) = Hα(φ) = A2
α−1 if and only if φ is a finite

Blaschke product, which is also equivalent to the corresponding defect operators being
compact.

Our methods rely on the assumption α > −1 in a very critical way. In particular,
the result above is definitely invalid when α = −1 (the Hardy space case). Some special
cases of this result can be found in [1, 8, 9, 14, 22, 26].

Theorem C For α > −1, we have (I − TφTφ)(A2
α) = (I − TφTφ)(A2

α) = A2
α−2 if and

only if φ is a finite Blaschke product.

The special case α = 0 was proved in [26]. Once again, the assumption α > −1 is
critical here.

2 Generalized Bergman spaces

For any real number α, we fix some nonnegative integer k such that 2k + α > −1 and
let A2

α denote the space of analytic functions f on D such that

∫
D

(1 − ∣z∣2)2k ∣ f (k)(z)∣2 dAα(z) < ∞,(2.1)

where

dAα(z) = (1 − ∣z∣2)α dA(z).
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Here, dA is the normalized area measure on D. It is easy to see that the weighted area
measure dAα is finite if and only if α > −1, in which case we will normalize dAα so
that Aα(D) = 1.

It is well known that the space A2
α is independent of the choice of the integer k

used in (2.1). Two particular examples are worth mentioning: A2
−1 = H2 and A2

−2 =D,
the Hardy and Dirichlet spaces, respectively. See [24] for more information about the
“generalized weighted Bergman spaces” Ap

α .
Each space A2

α is a Hilbert space with a certain choice of inner product. For
example, if α > −1, we can choose k = 0 in (2.1) and simply use the natural inner
product in L2(D, dAα) for A2

α :

⟨ f , g⟩ = ∫
D

f (z)g(z) dAα(z).

More generally, for any α > −2, it is easy to show that an analytic function f (z) =
∑∞n=0 anzn belongs to A2

α if and only if
∞
∑
n=0

∣an ∣2
(n + 1)α+1 < ∞.

Since
n!

Γ(n + 2 + α) ∼
1

(n + 1)α+1

as n →∞, we see that

⟨ f , g⟩ =
∞
∑
n=0

n! Γ(2 + α)
Γ(n + 2 + α) anbn , f (z) =

∞
∑
n=0

anzn , g(z) =
∞
∑
n=0

bnzn

defines an inner product on A2
α . With this inner product, the functions

en(z) =
�
���Γ(n + 2 + α)

n! Γ(2 + α) zn , n ≥ 0,

form an orthonormal basis for A2
α , which yields the reproducing kernel of A2

α as
follows:

K(z, w) =
∞
∑
n=0

en(z)en(w) =
∞
∑
n=0

Γ(n + 2 + α)
n! Γ(2 + α) (zw)n = 1

(1 − zw)2+α .(2.2)

Although all spaces A2
α , when α > −2, have the same type of reproducing kernel as

given in (2.2), their multiplier algebras depend on α in a critical way. It is well known
that M(A2

α) = H∞ for α ≥ −1. When α < −1, M(A2
α) is a proper sub-algebra of H∞.

We will consider the defect operators

Dφ = Dα
φ = (I − TφT∗φ )

1/2 , Dφ = Dα
φ = (I − T∗φ Tφ)

1/2 ,

and the associated operators

Eφ = Eα
φ = I − TφT∗φ , Eφ = Eα

φ = I − T∗φ Tφ ,

where φ ∈M1(A2
α) and Tφ ∶ A2

α → A2
α is the (contractive) multiplication operator.
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Recall that

Hα(φ) = H(Tφ), Hα(φ) = H(T∗φ ),

which are the generalized sub-Bergman Hilbert spaces defined in the Introduction.
For any α > −2, just like the unweighted case α = 0, Hα(φ) is a reproducing kernel
Hilbert space whose kernel function is given by

Kα ,φ(z, w) = Kα ,φ
w (z) = 1 − φ(z)φ(w)

(1 − zw)2+α .(2.3)

Similarly, Hα(φ) is a reproducing kernel Hilbert space whose kernel function is given
by

Kα ,φ(z, w) = Kα ,φ
w (z) = ∫

D

1 − ∣φ(u)∣2
(1 − zu)2+α(1 − uw)2+α dAα(u).

The spaces Hα(φ) and Hα(φ) have been studied by several authors, mostly in the
case α ≥ 0. See [9, 22] for example. We will generalize several results in the literature
to weighted Bergman spaces A2

α with α > −1.

3 Complete Nevanlinna–Pick kernels

In this section, we will determine exactly when the reproducing kernel function Kα ,φ
w

in (2.3) is a CNP kernel. The following definition is from Theorem 8.2 in [3].

Definition 3.1 Suppose K = K(z, w) = Kw(z) is an irreducible kernel function on a
set Ω . K is called a CNP kernel if there are an auxiliary Hilbert space L, a function
b ∶ Ω → L, and a nowhere vanishing function δ on Ω such that

Kw(z) = δ(z)δ(w)
1 − ⟨b(z), b(w)⟩ , z, w ∈ Ω.

If K is a CNP kernel, the corresponding Hilbert space H(K)with kernel K is called
a CNP space. CNP spaces share many properties with the Hardy space H2, and they
have been studied extensively in the literature (see, e.g., [2, 4–7] and the references
therein for recent developments). In 2020, Chu [10] determined which de Branges–
Rovnyak spaces (sub-Hardy spaces) have CNP kernel. We will characterize which sub-
Bergman spaces have CNP kernel.

The reproducing kernel for the Hardy space H2 is

KH2

w (z) = 1
1 − zw

.

If φ ∈ H∞1 is not a constant, we let

H(KH2
○ φ) = { f ○ φ ∶ f ∈ H2}.

Then

KH2
○ φ(z, w) = KH2

(φ(z), φ(w)) = 1
1 − φ(z)φ(w)
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is a kernel function and Cφ ∶ H2 → H(KH2 ○ φ) defined by Cφ f = f ○ φ is a unitary
(see [19, p. 71]).

Given a ∈ D, we let

φa(z) = a − z
1 − az

denote the Möbius map that interchanges the points 0 and a. If we take a = φ(0) and
define

ψ(z) = φa(φ(z)), g(z) =
√

1 − ∣a∣2
1 − aφ(z) ,

then an easy calculation shows that

Kα ,ψ
w (z) = g(z) g(w)Kα ,φ

w (z).(3.1)

See, e.g., [17, p. 18]. So Kα ,φ
w (z) is a CNP kernel if and only if Kα ,ψ

w (z) is a CNP kernel.
The following result can be obtained from [19, Theorem 6.28].

Lemma 3.1 Let H1 and H2 be reproducing kernel Hilbert spaces of functions on a set
Ω with reproducing kernels K1 and K2, respectively. Let F be a Hilbert space, and let
Φ ∶ Ω → B(F,C) be a function. Then the following are equivalent:
1. Φ is a contractive multiplier from H1 ⊗ F to H2.
2. K2(z, w) − K1(z, w)Φ(z)Φ(w)∗ is positive-definite.

We will use M1(H1 ,H2) to denote the set of contractive multipliers from H1 to
H2. When H1 =H2 =H, we will simplify the notation to M1(H).

Lemma 3.2 Let φ ∈ H∞1 be a nonconstant function. Then

M1(H(KH2
○ φ)) = { f ○ φ ∶ f ∈M1(H2)}.

Proof This follows easily from the fact that Cφ ∶ H2 → H(KH2 ○ φ) is a unitary. ∎

In what follows, we will use the notation K(z, w) ⪰ 0 or 0 ⪯ K(z, w) to mean that
K(z, w) is a reproducing kernel, that is, K(z, w) = K(w , z) and it is positive-definite
in the sense that

N
∑

i , j=1
K(z i , z j)c i c j ≥ 0

for all z i ∈ D and c i ∈ C, 1 ≤ i ≤ N , and N ≥ 1. We will begin with the following result
for the ordinary Bergman space, which illustrates the main techniques we use in this
section.

Theorem 3.3 Let φ ∈ H∞1 and α = 0. Then Kφ
w(z) =∶ K0,φ

w (z) is a CNP kernel if and
only if φ is a Möbius map.

Proof If φ is a Möbius map, say

φ = ζ a − z
1 − az

, ζ ∈ T, a ∈ D,
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then it is easy to check that

Kφ
w(z) = 1 − ∣a∣2

(1 − az)(1 − aw)
1

1 − zw
,

which is clearly a CNP kernel.
Conversely, suppose Kφ

w(z) is a CNP kernel. If a = φ(0) ≠ 0, then we consider
ψ(z) = φa(φ(z)). By (3.1), we have that Kψ

w(z) is a CNP kernel and ψ(0) = 0. So we
will assume that φ also satisfies φ(0) = 0, which implies Kφ

0 (z) = 1 for all z ∈ D.
It is well known that if a reproducing kernel function Kw(z) = K(z, w) on D

satisfies K(z, 0) = 1 for all z ∈ D, then it is a CNP kernel if and only if

1 − 1
K(z, w) ⪰ 0.

See [3, p. 88] for example. Since

1 − 1
Kφ

w(z)
= 1 − (1 − zw)2

1 − φ(z)φ(w)
= 2zw − z2w2 − φ(z)φ(w)

1 − φ(z)φ(w)
,

we have

1 − z√
2

w√
2 −

φ(z)√
2z

φ(w)√
2w

1 − φ(z)φ(w)
⪰ 0.

It follows from this and Lemma 3.1 that

Φ(z) = ( z√
2

, φ(z)√
2z

) ∈M1(H(KH2
○ φ) ⊗C

2 , H(KH2
○ φ)).(3.2)

Thus,

z√
2
∈M1(H(KH2

○ φ)), φ(z)√
2z

∈M1(H(KH2
○ φ)).

Using z/
√

2 ∈M1(H(KH2 ○ φ)) and 1 ∈ H(KH2 ○ φ), we can find a function h ∈ H2

such that
z√
2
= z√

2
(1) = h(φ(z)), z ∈ D.(3.3)

Therefore, φ is injective, and by Lemma 3.2, h ∈M1(H2) = H∞1 and h(0) = 0. Simi-
larly, we deduce from φ(z)/(

√
2 z) ∈M1(H(KH2 ○ φ)) that z/(2h) ∈ H∞1 . Then (3.2)

implies that

T ∶= (h, z
2h

) ∈ Mult1(H2 ⊗C
2 , H2).

Since

T∗ 1
1 − λz

= (h(λ), z
2h

(λ) ) 1
1 − λz

,
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we conclude that

∣h(λ)∣2 + ∣λ∣2
4∣h(λ)∣2 ≤ 1, λ ∈ D/{0}.

Passing to boundary limits, we obtain

∣h(λ)∣2 + 1
4∣h(λ)∣2 ≤ 1

for almost all λ ∈ T. It follows that ∣h(λ)∣ = 1√
2 for almost all λ ∈ T. Thus,

√
2h is

an inner function. By the Schwarz lemma, the inequality
√

2∣h(z)∣ ≤ 1 together with
h(0) = 0 implies that

√
2∣h(z)∣ ≤ ∣z∣ on D. This along with z/(2h) ∈ H∞1 shows that

1√
2
≤ ∣

√
2 h(z)

z
∣ ≤ 1, z ∈ D,

which implies that the inner function
√

2h(z)/z has no zero inside D and has no
singular factor. Therefore,

√
2h(z) = ζz for some ζ ∈ T. It then follows from (3.3) that

φ(z) = ζz, which finishes the proof of the theorem. ∎
The characterization of CNP kernels for the sub-A2

α spaces Hα(φ) are more subtle
though. The results we obtain will depend on the range of the parameter α.

Theorem 3.4 Suppose φ ∈ H∞1 and −1 < α ≤ 0. Then the reproducing kernel of Hα(φ)
in (2.3) is a CNP kernel if and only if φ is a Möbius map.

Proof The case α = 0 concerns the ordinary Bergman space, which is Theorem 3.3.
So we assume −1 < α < 0 for the rest of this proof.

First, assume that φ is a Möbius map, say φ(z) = ζ a−z
1−az with ζ ∈ T and a ∈ D. Then

an easy computation shows that the reproducing kernel for Hα(φ) can be written as

K(z, w) = 1 − ∣a∣2
(1 − az)(1 − aw)

1
(1 − zw)1+α ,

which is known to be a CNP kernel. See [3].
Next, we assume that the kernel for Hα(φ) in (2.3) is a CNP kernel. Once again,

by considering ψ(z) = φa ○ φ(z) with a = φ(0) and using (3.1), we may assume that
φ(0) = 0.

When φ(0) = 0, we have Kα ,φ
0 (z) = 1 for all z ∈ D. In this case, it is known that the

kernel Kα ,φ
w (z) is CNP if and only if 1 − [1/Kα ,φ

w (z)] ⪰ 0 (see [3] for example). Since

1 − 1
Kα ,φ

w (z)
= 1 − (1 − zw)2+α

1 − φ(z)φ(w)

= [szw −
∞
∑
n=2

s(s − 1)Γ(n − s)
n! Γ(2 − s) znwn − φ(z)φ(w) ] 1

1 − φ(z)φ(w)
,

where s = α + 2 ∈ (1, 2), we must have

[1 −
∞
∑
n=2

(s − 1) Γ(n − s)
n! Γ(2 − s) zn−1wn−1 − φ(z)√

sz
φ(w)√

sw
] 1

1 − φ(z)φ(w)
⪰ 0.
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Let

Φ(z) =
⎛
⎜
⎝

φ(z)√
sz

,
√

s − 1
2!

z, . . . ,

�
���(s − 1)Γ(n − s)

n! Γ(2 − s) zn−1 , . . .
⎞
⎟
⎠

.

By Lemma 3.1, we have

Φ ∈M1(H(KH2
○ φ) ⊗ l 2 , H(KH2

○ φ)).(3.4)

Thus,

φ(z)√
sz

,

�
���(s − 1)Γ(n − s)

n! Γ(2 − s) zn−1 ∈M1(H(KH2
○ φ)), n ≥ 2.

It follows from
√

s − 1
2!

z ∈M1(H(KH2
○ φ), 1 ∈ H(KH2

○ φ),

that there exists some function h ∈ H2 such that
√

s − 1
2

z =
√

s − 1
2

h(φ(z)), z ∈ D.(3.5)

Therefore, φ is injective, and by Lemma 3.2,
√

s − 1
2

h ∈M1(H2) = H∞1

with h(0) = 0. Then we also have
�
���(s − 1)Γ(n − s)

n! Γ(2 − s) zn−1 =
�
���(s − 1)Γ(n − s)

n! Γ(2 − s) h(φ(z))n−1 , n ≥ 2.

Similarly, from φ(z)/
√

sz ∈M1(H(KH2 ○ φ)), we obtain z/
√

sh ∈ H∞1 .
By (3.4), we must have

T(z) ∶=
⎛
⎜
⎝

z√
sh

,
√

s − 1
2!

h, . . . ,

�
���(s − 1)Γ(n − s)

n! Γ(2 − s) hn−1 , . . .
⎞
⎟
⎠

∈M1(H2 ⊗ l 2 , H2).

Note that

T∗ 1
1 − λz

=

⎛
⎜
⎝

z√
sh
(λ),

√
s − 1

2!
h(λ), . . . ,

�
���(s − 1)Γ(n − s)

n! Γ(2 − s) hn−1(λ)
⎞
⎟
⎠

1
1 − λz

.
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It follows that
∣λ∣2

s∣h(λ)∣2 +
∞
∑
n=2

(s − 1)Γ(n − 2)
n! Γ(2 − s) ∣h(λ)∣2n−2 ≤ 1, λ ∈ D/{0}.

Passing to radial limits, we obtain

1
s∣h(λ)∣2 +

∞
∑
n=2

(s − 1)Γ(n − s)
n! Γ(2 − s) ∣h(λ)∣2n−2 ≤ 1

or

1 +
∞
∑
n=2

s(s − 1)Γ(n − s)
n! Γ(2 − s) ∣h(λ)∣2n ≤ s∣h(λ)∣2

for almost all λ ∈ T. We necessarily have ∣h(λ)∣2 ≤ 1. Comparing the above inequality
with the classical Taylor series

(1 − x)s = 1 − sx +
∞
∑
n=2

s(s − 1)Γ(n − s)
n! Γ(2 − s) xn , x ∈ (−1, 1),

we obtain (1 − ∣h(λ)∣2)s ≤ 0 for almost all λ ∈ T, so h is an inner function. This
together with z/

√
sh ∈ H∞1 implies that h(z) = ζz for some constant ζ ∈ T. By (3.5),

we have φ(z) = ζ z. This completes the proof of the theorem. ∎
Note that, in the case when α = −1, a characterization for φ ∈ H∞1 was obtained in

[10] in order for the kernel

K(z, w) = 1 − φ(z)φ(w)
(1 − zw)2+α = 1 − φ(z)φ(w)

1 − zw
to be CNP. The necessary and sufficient condition for φ is the following: there exists a
function h ∈ H∞1 such that ψ(z) = zh(ψ(z)), where ψ(z) = φa(φ(z)) with a = φ(0).

When −2 < α < −1, we have the following result.

Theorem 3.5 Suppose −2 < α < −1 and φ ∈M1(A2
α). Let a = φ(0) and ψ = φa ○ φ.

Then the function

Kα ,φ
w (z) = 1 − φ(z)φ(w)

(1 − zw)2+α

is a CNP kernel if and only if there exists

h = (h1 , h2 , . . . , hn , . . .) ∈M1(H2 , H2 ⊗ l 2)
such that

ψ(z) =
∞
∑
n=1

�
���(2 + α)Γ(n − α − 2)

n! Γ(−1 − α) zn hn(ψ(z))

on D.

Proof Recall from (3.1) that Kα ,φ
w (z) is a CNP kernel if and only if Kα ,ψ

w (z) is a CNP
kernel. So we will assume that φ(0) = 0. In this case, we have Kα ,φ

0 (z) = 1 for all z ∈ D
and 1 − [1/Kα ,φ

w (z)] ⪰ 0.
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Let s = α + 2 and write

1 − 1
Kα ,φ

w (z)
= 1 − (1 − zw)s

1 − φ(z)φ(w)

= (
∞
∑
n=1

sΓ(n − s)
n! Γ(1 − s) znwn − φ(z)φ(w)) 1

1 − φ(z)φ(w)
.

Since 1/(1 − φ(z)φ(w)) is a CNP kernel, it follows from Theorem 8.57 of [3] that
1 − [1/Kα ,φ

w (z)] ⪰ 0 if and only if there exists

Φ = (φn) ∈M1(H(KH2
○ φ), H(KH2

○ φ) ⊗ l 2)

such that

φ(z) =
∞
∑
n=1

�
��� sΓ(n − s)

n! Γ(1 − s) zn φn(z).

By Lemma 3.2, there exist h = (hn) ⊂ H∞1 such that φn(z) = hn(φ(z)) for all n and
h ∈ Mult1(H2 , H2 ⊗ l 2). This proves the desired result. ∎

For an example of a CNP kernel Kα ,φ
w (z)when −2 < α < −1, fix any positive integer

n and consider

φ(z) =
�
���(2 + α)Γ(n − 2 − α)

n! Γ(−1 − α) zn .

It is easy to see that φ ∈M1(A2
α) and, by the theorem above, Kα ,φ

w (z) is a CNP kernel.
Also, if h = ( 1

2 , 1
4 , . . . , 1

2n , . . .), and

φ(z) =
∞
∑
n=1

�
���(2 + α)Γ(n − 2 − α)

n! Γ(−1 − α)
zn

2n ,

then h ∈ Mult1(H2 , H2 ⊗ l 2), φ ∈M1(A2
α), and Kα ,φ

w (z) is a CNP kernel.
When α > 0, the identity function φ(z) = z belongs to H∞1 =M1(A2

α), but

Kα ,φ
w (z) = 1 − zw

(1 − zw)2+α = 1
(1 − zw)1+α

is NOT a CNP kernel (see [3]). In fact, when α > 0, Kα ,φ
w (z) is not a CNP kernel for any

φ ∈M1(A2
α) = H∞1 . The following result was communicated to us by Michael Hartz.

Theorem 3.6 [16] Suppose α > 0 and φ ∈ H∞1 . Then Kα ,φ
w (z) is not a CNP kernel.

Proof We prove it by contradiction. Suppose Kα ,φ
w (z) is a CNP kernel. By the same

observation as before, we may assume φ(0) = 0. Note that when α > 0,

1 − φ(z)φ(w)
(1 − zw)1+α ⪰ 0.

Thus, let Sw(z) = 1/(1 − zw) be the Szegő kernel, then Kα ,φ/S is positive-definite.
Then an application of the Schur product theorem shows that H∞(D) =M(H2) is

https://doi.org/10.4153/S0008414X23000494 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000494


1530 S. Luo and K. Zhu

contractively contained in M(Hα(φ)) (see [15, Corollary 3.5] or the proof in Lemma
4.2). Since M(Hα(φ)) is also contractively contained in H∞(D), we conclude that
M(Hα(φ)) = H∞(D) with equality of norms.

Now, a normalized CNP kernel is uniquely determined by its multiplier algebra
(see [15, Corollary 3.2]). Since Kα ,φ

w (z) and Sw(z) are CNP kernels, it follows that
Kα ,φ

w (z) = Sw(z). Thus,

1 − φ(z)φ(w) = (1 − zw)1+α , z, w ∈ D.

Setting w = z, we obtain that

1 − ∣φ(z)∣2 = (1 − ∣z∣2)1+α .

But by the Schwarz lemma, ∣φ(z)∣ ≤ ∣z∣, from which we see that the above equation
cannot be held when α > 0. This contraction then finishes the proof. ∎

The above argument also works for α = 0, and it provides a different proof of
Theorem 3.3.

4 Compactness of defect operators

In this section, we will characterize functions φ ∈ H∞1 such that the defect operators
Dα

φ and Dα
φ , where α > −1, are compact. The following result follows from I-9 of [21].

Lemma 4.1 Let α > −1, φ ∈ H∞1 , and Mα(φ) = φA2
α . Then

Hα(φ) ∩ Mα(φ) = φHα(φ).

The following result was proved in [18, 23]. We provide a different proof here.

Lemma 4.2 Let α > −1 and φ ∈ H∞1 . If φ is a finite Blaschke product, then

Hα(φ) = Hα(φ) = A2
α−1 .

Proof By the definition of A2
α−1, it is not hard to see that any function that is analytic

on the closed unit disk is a multiplier of A2
α−1. In particular, Tφ is a bounded operator

on A2
α−1. If ∥Tφ∥B(A2

α−1) = C < ∞, then

(I − TφT∗φ /C2)Kα−1
w (z) = 1 − φ(z)φ(w)/C2

(1 − zw)1+α ⪰ 0.

Thus, by the Schur product theorem [19],

(1 − φ(z)φ(w)/C2)(1 − φ(z)φ(w))
(1 − zw)2+α = 1 − φ(z)φ(w)/C2

(1 − zw)1+α
1 − φ(z)φ(w)

1 − zw
⪰ 0.

It follows that φ/C is a contractive multiplier of Hα(φ). Thus, φHα(φ) ⊆ Hα(φ).
Combining this with Hα(φ) ⊆ A2

α , we obtain

φHα(φ) ⊆ Hα(φ) ∩ φA2
α = Hα(φ) ∩ Mα(φ).

By Lemma 4.1, we then have φHα(φ) ⊆ φHα(φ), so Hα(φ) ⊆ Hα(φ).
To finish the proof, we note Hα(φ) = A2

α−1 [22] and use the fact that the subnor-
mality of Tφ gives Hα(φ) ⊆ Hα(φ) in general. ∎
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Lemma 4.3 Let φ be a nonconstant function in H∞1 . Then the following conditions are
equivalent.
(a) φ is a finite Blaschke product.
(b) 1 − ∣φ(z)∣2 → 0 as ∣z∣ → 1−.
(c) (1 − ∣φ(z)∣2)/(1 − ∣z∣2) is bounded both above and below on D.

Proof The equivalence of (a) and (c) was proved in [26]. It is trivial that (c) implies
(b).

If (b) holds, then ∣φ(z)∣ → 1 uniformly as ∣z∣ → 1−, so φ is an inner function. It is
clear that φ cannot have infinitely many zeros. If φ contains a singular inner factor S,
then there exists at least one point ζ ∈ T such that S(z) → 0 as z approaches ζ radially,
which contradicts with the limit ∣φ(z)∣ → 1 as ∣z∣ → 1−. Thus, φ cannot contain any
singular inner factor. Hence, φ must be a finite Blaschke product. This shows that (b)
implies (a) and completes the proof of the lemma. ∎

Lemma 4.4 Suppose α > −1 and T ∶ A2
α → A2

α is a bounded linear operator. If the range
of T is contained in A2

γ for some γ < α, then T belongs to the Schatten class Sp for all
p > 2/(α − γ).

Proof It is well known that if γ < α, then A2
γ ⊂ A2

α , and the inclusion mapping i ∶
A2

γ → A2
α is bounded. If T maps A2

α into A2
γ , then by the closed graph theorem, there

exists a constant C > 0 such that ∥T f ∥A2
γ
≤ C∥ f ∥A2

α
for all f ∈ A2

α , that is, T can be
thought of as a bounded linear operator from A2

α into A2
γ . We can then write T = iT

and T∗T = T∗(i∗ i)T .
The operator i∗ i ∶ A2

γ → A2
γ is positive. With respect to the monomial orthonormal

basis {en = cnzn} of A2
γ from Section 2, the operator i∗ i is diagonal with the corre-

sponding eigenvalues given by

⟨i∗ ien , en⟩A2
γ
= c2

n⟨zn , zn⟩A2
α
= Γ(n + 2 + γ)

n! Γ(2 + γ)
n! Γ(2 + α)

Γ(n + 2 + α) ∼
1

(n + 1)α−γ ,

as n →∞. This shows that i∗ i belongs to the Schatten class Sp of A2
γ for all p with p(α −

γ) > 1. Thus, T belongs to the Schatten class Sp of A2
α whenever p > 2/(α − γ). ∎

Note that the result above remains true even if the parameters α and γ fall below
−1, although the proof needs to be modified. Details are omitted. We now prove the
main results of this section in the next two theorems.

Recall that

Dα
φ = (I − TφT∗φ )

1/2 , Dα
φ = (I − T∗φ Tφ)

1/2

are the defect operators, and

Eα
φ = I − TφT∗φ , Eα

φ = I − T∗φ Tφ .

Theorem 4.5 Suppose α > −1 and φ ∈ H∞1 . Then the following conditions are equiva-
lent.
(a) The defect operator Dα

φ is compact on A2
α .

(b) The function φ is a finite Blaschke product.
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(c) The space Hα(φ) equals A2
α−1.

(d) The space Hα(φ) is contained in A2
α−1.

Proof To prove (a) implies (b), we consider the normalized reproducing kernels

ka(z) = Ka(z)
∥Ka∥

= K(z, a)√
K(a, a)

= (1 − ∣a∣2)(2+α)/2

(1 − za)2+α

for A2
α . It is easy to see that ka → 0 weakly in A2

α as ∣a∣ → 1−. If Dα
φ is compact, then

so is Eα
φ , which implies that ⟨Eα

φ ka , ka⟩ → 0 as ∣a∣ → 1−. It is easy to see that T∗φ ka =
φ(a) ka , so we have

⟨Eα
φ ka , ka⟩ = ⟨(I − TφT∗φ )ka , ka⟩ = 1 − ⟨T∗φ ka , T∗φ kz⟩ = 1 − ∣φ(a)∣2 .

Thus, the compactness of Dα
φ implies 1 − ∣φ(a)∣2 → 0 as ∣a∣ → 1−, which, according to

Lemma 4.3, shows that φ is a finite Blaschke product. This proves (a) implies (b).
Lemma 4.2 states that (b) implies (c). It is trivial that (c) implies (d). It follows from

Lemma 4.4 that (d) implies (a). This completes the proof of the theorem. ∎

Theorem 4.6 Suppose α > −1 and φ ∈ H∞1 . Then the following conditions are equiva-
lent.
(a) The defect operator Dα

φ is compact on A2
α .

(b) The function φ is a finite Blaschke product.
(c) The space Hα(φ) equals A2

α−1.
(d) The space Hα(φ) is contained in A2

α−1.

Proof First, assume that condition (a) holds. Taking the square of Dα
φ , we see that

the Toeplitz operator T1−∣φ∣2 (with nonnegative symbol) is compact on A2
α . It follows

from Corollary 7.9 of [27] that for any positive r > 0, we have

lim
∣a∣→1−

1
Aα(D(a, r)) ∫D(a ,r)

(1 − ∣φ(z)∣2) dAα(z) = 0,

where D(a, r) = {z ∈ D ∶ β(z, a) < r} is the Bergman metric ball with center a and
radius r, and Aα(D(a, r)) is the dAα measure of D(a, r). Equivalently,

lim
∣a∣→1−

1
Aα(D(a, r)) ∫D(a ,r)

∣φ(z)∣2 dAα(z) = 1.(4.1)

We claim that this implies ∣φ(z)∣2 → 1 uniformly as ∣z∣ → 1−. In fact, if this conclusion
is not true, then there exist a constant σ ∈ (0, 1) and a sequence {an} in D such that
∣an ∣ → 1 as n →∞ and ∣φ(an)∣ < σ for all n ≥ 1.

If z ∈ D(an , r), then by Theorem 5.5 of [27],

∣φ(z)∣ ≤ ∣φ(z) − φ(an)∣ + ∣φ(an)∣ ≤ ∥φ∥B β(z, an) + σ < ∥φ∥Br + σ ,

where

∥φ∥B = sup
z∈D

(1 − ∣z∣2)∣φ′(z)∣
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is Bloch seminorm of φ (recall that every function in H∞ belongs to the Bloch space).
If we use a sufficiently small radius r such that the constant δ = ∥φ∥Br + σ < 1, then

1
Aα(D(an , r)) ∫D(an ,r)

∣φ(z)∣2 dAα(z) ≤ δ2 < 1

for all n ≥ 1. This is a contradiction to (4.1).
Thus, we must have ∣φ(z)∣2 → 1 uniformly as ∣z∣ → 1−. By Lemma 4.3, φ is a finite

Blaschke product. This proves that (a) implies (b).
It follows from Lemma 4.2 that (b) implies (c). It is trivial that (c) implies (d). That

(d) implies (a) follows from Lemma 4.4. ∎

It follows from the proof of the theorem above that, for α > −1, k > 0, and φ ∈ H∞1 ,
the Toeplitz operator T(1−∣φ∣2)k is compact on A2

α if and only if φ is a finite Blaschke
product.

5 The range of I − TφT∗φ and I − T∗φ Tφ

In this section, we study the range of the operators Eα
φ and Eα

φ . The special case α = 0
was considered in [26]. It is clear that Dα

φ is compact on A2
α if and only if Eα

φ is compact
on A2

α . Similarly, Dα
φ is compact on A2

α if and only if Eα
φ is compact on A2

α .

Proposition 5.1 Suppose α > −1 and φ is a finite Blaschke product. Then

A2
α−1 = { f (z) = ∫

D

1 − ∣φ(w)∣2
(1 − zw)2+α g(w) dAα(w) ∶ g ∈ A2

α+1}(5.1)

= { f (z) = ∫
D

1 − ∣φ(w)∣2
(1 − zw)2+α g(w) dAα(w) ∶ g ∈ L2(D, dAα+1)} .(5.2)

Proof Let

dAφ ,α(z) = (1 − ∣φ(z)∣2) dAα(z),

and let A2
φ ,α denote the space of analytic functions in L2(D, dAφ ,α). It follows from

Lemma 4.3 that

L2(D, dAφ ,α) = L2(D, dAα+1), A2
φ ,α = A2

α+1 ,

with equivalent norms. Consider the integral operator Sφ ∶ A2
φ ,α → A2

α defined by

Sφ f (z) = Pα[(1 − ∣φ∣2) f ](z) = ∫
D

1 − ∣φ(w)∣2
(1 − zw)2+α f (w) dAα(w),(5.3)

where Pα ∶ L2(D, dAα) → A2
α is the orthogonal projection. It is clear that Sφ is simply

the operator Eα
φ with its domain extended to the larger space A2

φ ,α .
Now, the first desired equality (5.1) follows from the proof of Proposition 3.5 in [25],

word by word, together with the fact that Hα(φ) = A2
α−1 from the previous section.

The second equality (5.2) follows from the same argument by replacing the operator
Sφ above by its extension Sφ ∶ L2(D, dAφ ,α) → A2

α , still defined by (5.3). We leave
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the details to the interested reader but summarize the main points of this omitted
argument as follows.

For both

Sφ ∶ A2
φ ,α → A2

α and Sφ ∶ L2(D, dAφ ,α) → A2
α ,

the adjoint S∗φ is simply the inclusion, the image H of Sφ is a reproducing kernel Hilbert
space with the inner product

⟨Sφ f , Sφ g⟩H = ⟨ f , g⟩L2(D,d Aφ ,α) , f , g ∈ ker(Sφ)⊥ ,

and the reproducing kernel of H at w is SφS∗φKα
w , where Kα

w is the reproducing kernel
of A2

α at w. Consequently, the reproducing kernel of H is given by

SφKα
w(z) = ∫

D

1 − ∣φ(u)∣2
(1 − zu)2+α(1 − uw)2+α dAα(u),

which coincides with the reproducing kernel of Hα(φ). By uniqueness of the repro-
ducing kernel, we must have H = Hα(φ) = A2

α−1, which yields the desired representa-
tions in (5.1) and (5.2). ∎

Lemma 5.2 If α > −1 and φ is a finite Blaschke product, then

Eα
φ(A2

α) = Eα
φ(A2

α) = A2
α−2 .

Proof As a Toeplitz operator on A2
α , we can write

Eα
φ f (z) = ∫

D

1 − ∣φ(w)∣2
(1 − zw)2+α f (w) dAα(w), f ∈ A2

α .

It follows that

(Eα
φ f )′(z) = ∫

D

Φ(w)
(1 − zw)3+α f (w) dAα+1(w) = Pα+1(Φ f )(z),

where Pα+1 ∶ L2(D, dAα+1) → A2
α+1 is the orthogonal projection and

Φ(w) = (α + 1)w(1 − ∣φ(w)∣2)
1 − ∣w∣2 .

By Lemma 4.3, Φ ∈ L∞(D). It follows from Theorem 3.11 of [27] that Pα+1 maps
L2(D, dAα) boundedly to A2

α . Therefore, f ∈ A2
α implies (Eα

φ f )′ ∈ A2
α , which is clearly

equivalent to Eα
φ f ∈ A2

α−2. This proves that Eα
φ maps A2

α into A2
α−2.

To show that the mapping Eα
φ ∶ A2

α → A2
α−2 is onto, we switch from the ordinary

derivative (Eα
φ f )′ to a certain fractional radial differential operator R (= R2+α ,1 using

the notation from [24]) of order 1:

REα
φ f (z) = ∫

D

1 − ∣φ(w)∣2
(1 − zw)3+α f (w) dAα(w).

It is still true that Eα
φ f ∈ A2

α−2 if and only if REα
φ f ∈ A2

α . See [24].
Fix any function g ∈ A2

α−2. Then the function Rg belongs to A2
α . It follows from

Proposition 5.1, with α in (5.1) and (5.2) replaced by α + 1, that there exists a function
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h ∈ L2(D, dAα+2) such that

Rg(z) = ∫
D

1 − ∣φ(w)∣2
(1 − zw)3+α h(w) dAα+1(w).

Applying the inverse of R to both sides, we obtain

g(z) = ∫
D

1 − ∣φ(w)∣2
(1 − zw)2+α h(w) dAα+1(w).

Let h̃(w) = (1 − ∣w∣2)h(w). Then h̃ ∈ L2(D, dAα) and

g(z) = ∫
D

1 − ∣φ(w)∣2
(1 − zw)2+α h̃(w) dAα(w).

By Proposition 5.1 again, there exists a function f ∈ A2
α such that

g = ∫
D

1 − ∣φ(w)∣2
(1 − zw)2+α f (w) dAα(w),

or g = Eα
φ f . Thus, we have shown that Eα

φ(A2
α) = A2

α−2.
Next, we show that Eα

φ(A2
α) = A2

α−2. Note that Tφ is a Fredholm operator. So φA2
α

is closed in A2
α , ker(T∗φ ) = A2

α ⊖ φA2
α , and A2

α = (A2
α ⊖ φA2

α) ⊕ φA2
α . Since

(I − TφT∗φ )φ f = φ(I − T∗φ Tφ) f , f ∈ A2
α ,

it follows that

Eα
φ(A2

α) = (A2
α ⊖ φA2

α) ⊕ φEα
φ(A2

α) = (A2
α ⊖ φA2

α) ⊕ φA2
α−2 .

Since A2
α ⊖ φA2

α consists of the reproducing kernels or the derivative of the reproduc-
ing kernels in A2

α , we have A2
α ⊖ φA2

α ⊆ A2
α−2. Also,

dim(A2
α ⊖ φA2

α) = dim(A2
α−2 ⊖ φA2

α−2).

Thus, we obtain that

Eα
φ(A2

α) = (A2
α−2 ⊖ φA2

α−2) + φA2
α−2 = A2

α−2 ,

completing the proof of the lemma. ∎
We can now prove the main result of this section, namely, the next two theorems.

Theorem 5.3 Suppose α > −1 and φ ∈ H∞1 . Then the following conditions are equiva-
lent.
(a) The operator Eα

φ is compact on A2
α .

(b) The function φ is a finite Blaschke product.
(c) The range of Eα

φ equals A2
α−2.

(d) The range of Eα
φ is contained in A2

α−2.

Proof Since Eα
φ = (Dα

φ)2, the operator Eα
φ is compact if and only if Dα

φ is compact.
Thus, the equivalence of (a) and (b) follows from Theorem 4.5.

Lemma 5.2 shows that (b) implies (c). It is trivial that (c) implies (d). Finally, that
(d) implies (a) follows from Lemma 4.4. ∎
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Theorem 5.4 Suppose α > −1 and φ ∈ H∞1 . Then the following conditions are equiva-
lent.
(a) The operator Eα

φ is compact on A2
α .

(b) The function φ is a finite Blaschke product.
(c) The range of Eα

φ equals A2
α−2.

(d) The range of Eα
φ is contained in A2

α−2.

Proof It is similar to the proof of Theorem 5.3. ∎
Finally, we note that the main results of this and the previous section cannot be

extended to the Hardy space H2 (the case α = −1). For example, in this case, if φ(z) = z,
then I − TφTφ = 0 and I − TφTφ is a rank-one operator. More generally, if φ is any
inner function, then I − TφTφ = 0.

Acknowledgment We would like to thank Michael Hartz for permitting us to
include his proof of Theorem 3.6.
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