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A Note on Detecting Algebraic Cycles

G. V. Ravindra

Abstract. The purpose of this note is to show that the homologically trivial cycles contructed by

Clemens and their generalisations due to Paranjape can be detected by the technique of spreading

out. More precisely, we associate to these cycles (and the ambient varieties in which they live) certain

families which arise naturally and which are defined over C and show that these cycles, along with their

relations, can be detected in the singular cohomology of the total space of these families.

1 Introduction

One of the fundamental questions in the theory of algebraic cycles is their detection.

More precisely, given an algebraic cycle, one would like to know when its class in the
Chow group of cycles modulo rational equivalence is non-trivial. The usual way of
detecting cycles is purely cohomological i.e., via their images under the cycle class
map and the Abel–Jacobi map.

The conjectural framework of mixed motives provides an answer to this question
via the existence of filtrations on the Chow groups and higher Abel-Jacobi maps [6].
Filtrations satisfying many of these properties has been constructed by Asakura [1],

Lewis [8], Paranjape [2], and Saito [12], among others.

The fundamental idea underlying the above constructions is as follows. A variety
V over C can be thought of as a family of varieties over the algebraic closure Q ⊂
C of the field of rational numbers. Even when the variety is defined over Q , the

Chow group of such a variety (when considered over C) may contain cycles that are
defined over larger fields. In particular, the usual examples of non-trivial elements in
F2 CH2(S) where S is a surface are defined over fields of transcendence degree 2 [13].
Thus, in order to detect such cycles we must use the full force of such a “family”-like

structure.

For any variety V over C we consider the collection of Cartesian diagrams

V

��

// V

��

Spec C // S

where S and V are varieties defined over Q , and the lower horizontal arrow factors

through the generic point of S. Assume for the moment that V is smooth projective,

Received by the editors August 9, 2004; revised November 17, 2004.
AMS subject classification: 14C25.
c©Canadian Mathematical Society 2006.

464

https://doi.org/10.4153/CMB-2006-045-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-045-4


A Note on Detecting Algebraic Cycles 465

and that S and V are smooth and V → S is proper and smooth. Since any algebraic
cycle on V (and V itself) is defined over some finitely generated field, we have [7],

CHp(V ) = lim
−→

CH p(V)

There is a cycle class map into Deligne–Beilinson cohomology, see [5],

CHp(V) → H
2p
Db(V, Q(p))

which when restricted to cycles homologous to zero can be identified with the usual
Abel–Jacobi map. On taking limits, we get a map

cl
p
ADb

: CHp(V ) → H
2p
ADb

(V, Q(p))

where the group on the right is defined to be the limit of the Deligne–Beilinson coho-
mology groups of the various models of V . One expects (this again follows from the
Bloch–Beilinson conjectures) that cycles defined over fields of positive transcendence

degree are detected by the above map. Since the above map is obtained by taking
direct limits, we should be able to detect any given cycle at some finite stage, i.e., on
some model V.

The purpose of this note is to show that the cycles contructed by Clemens [4]

and their generalisations due to Paranjape [10] can be detected by the technique of
spreading out.

In the next section we analyse certain cycles which can be thought of as natural
generalisation of the Clemens–Paranjape cycles. We associate to these cycles (and

the ambient varieties in which they live) certain families (which are defined over C)
which arise naturally, and show that these cycles can be detected in the singular coho-
mology of the total space of these families. The advantage of working with families
such as these is that we can now work with cohomology with Z coefficients. This

makes it possible then to detect cycles whose image under the cycle class map is tor-
sion. This can then be used to detect cycles along with their relations.

2 The Cycles of Clemens and Paranjape

2.1 The Setup and Notation

Let X be a smooth projective variety of dimension 2d−1 and let C be a codimension d

subvariety of X. Let f : X → S be a flat family where X, S are smooth with X as the
geometric generic fibre. Further suppose that S is a curve and the family has special
fibre X0 over s0 ∈ S containing only ordinary double points {pi} as singularities. Let

C → T be a smooth family with geometric generic fibre C such that there exists a
diagram:

(1) C
�

�

//

��

X

��

T
δ

// S

https://doi.org/10.4153/CMB-2006-045-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-045-4


466 G. V. Ravindra

Assume that the map T → S is a finite cover with simple ramification at t0 ∈ T where
δ(t0) = s0.

We consider the following two cases.

(i) The special fibre C0 of the family C passes through exactly one of the double
points, denoted p0, in the fibre X0.

(ii) The special fibre C0 of the family C misses the double points in the fibre X0.

Let X̃0 be the blow up of the double point p0 and let E denote the exceptional fibre
over the point p0.

Let XT := X ×S T be the pull back of X to a family over T. XT then picks up

ordinary double point singularities at the singular points of X0. By the universal
property of fibre products there is a lifting ĩ : C →֒ XT .

Let Y → XT be the blowing up at the ordinary double point p0. The special fibre of

Y → T at t0 is the union of X̃0 and a smooth quadric Q such that X̃0 meets Q transver-
sally along E. Let C̃ be the strict transform under the blow up map. If C0 passes
through the double point p0 then C̃ intersects Q in a projective space Pd−1 ⊂ E.

We make the following assumption in order to simplify our arguments.

Assumption 2.1 For the generic fibre X in the family X → S, H2d(X, Z) ∼= Z so
that the composite map (for the given embedding X →֒ PN)

CHd(X) → H2d(X, Z) ∼= H2d−2(X, Z) ∼= H2d−2(P
N , Z) ∼= Z

is the degree map.

Let A be a relatively ample class on X → S. Let H be Ad and denote by H its

restriction to a general fibre of the family X → S. Assume that the degree of H

denoted by deg(H) is odd. Then Ξ = deg(H).C − deg(C).H is a cycle on XT whose
restriction to the generic fibre ξ := deg(H).C −deg(C).H is a nullhomologous cycle.
Let C̃ be the strict transform of C under the map Y → XT and let Ξ̃ := deg(H).C̃ −
deg(C).H.

2.2 Detecting Nullhomologous Cycles

We shall now show that the cycle Ξ̃ can be detected in the cohomology of the total
space Y in the case when C0 passes through exactly one ordinary double point. Our
method here is entirely topological and avoids any use of Hodge theory. We shall

work locally over a disc ∆ around the point 0 ∈ S in the base locus. We denote by
∆̃ the component of the inverse image of ∆ in T containing t0. Having reduced the
situation to such a neighbourhood, we note that the special fibre X0 is a deformation
retract of the family X×S ∆ → ∆. Without loss of generality, we can assume that X0

contains exactly one ordinary double point. We then have that in the blow up family
Y ×T ∆̃ → ∆̃, X̃0 ∪ Q is a deformation retract of Y ×T ∆̃.

Theorem 2.2 We work with notation as above. Let N := (Y \ Q) ×T ∆̃.
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(i) Suppose that the special fibre C0 passes through the ordinary double point p0, then

the image of Ξ̃ := deg(H).C̃− (deg C).H is non-trivial 2-torsion in the cohomol-

ogy of N.

(ii) If C0 does not pass through p0 in X0 then the class of Ξ̃ is trivial in the cohomology

of N.

Proof (i) Consider the following diagram:

H2d−1(E, Z) = 0

��

· · · → H2d−2(Q, Z))
iQ,∗

// H2d(Y
∆̃
, Z)

(i∗Q ,i∗)

��

j∗

// H2d(N; Z) → · · ·

H2d(Q; Z) ⊕ H2d(X̃0, Z)

��

H2d(E; Z)

where the horizontal sequence is the Gysin sequence and the vertical one is the Mayer–
Vietoris sequence. The composite i∗Q ◦ iQ,∗ in the diagram

H2d−2(Q, Z)
iQ,∗
−−→ H2d(Y

∆̃
, Z)

i∗Q
−→ H2d(Q, Z)

is ∪c1(NQ/Y), the cup product with the first Chern class of the normal bundle of Q

in Y. Now, NQ/Y
∼= OQ(−1) for the natural embedding Q →֒ P2d. Since c1(OQ(1))

generates H2(Q, Z), the first Chern class of this normal bundle can be identified with
the class −[E] where [E] is the class of the exceptional fibre in X̃0.

Furthermore, as Q occurs naturally as a smooth odd-dimensional quadric hyper-

surface of P2d, all its even cohomology groups are isomorphic to Z.
Let L ⊂ C̃ be the exceptional fibre. This is contained in Q as a Pd−1 and therefore

[L] generates H2d(Q, Z). Thus the class of Ξ̃, denoted by [Ξ̃], restricts to the class
deg(H).[L] in H2d(Q, Z). Moreover its image under the isomorphism H2d(Y

∆̃
) ∼=

H2d(X̃0 ∪ Q) is the class deg(H).[L]. On the other hand, since the composition i∗Q ◦
iQ,∗ =

⋃

c1(OQ(−1) one has by the projection formula,

η ∪ i∗Qc1(OP2d (−1)) = i∗Q
(

iQ,∗(η) ∪ c1(OP2d (−1))
)

Now Q does not contain any d-dimensional (or codimension d − 1) linear subspace.

Therefore when η is the generator of H2d−2(Q, Z), the above expression is equal to
−2[L]. Since (i∗Q, i∗) is injective, this implies that (after identifying the cohomology

of Y∆ and X̃0 ∪ Q), the class [Ξ̃] does not lie in the image of iQ,∗ and hence belongs
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to coker(iQ,∗) →֒ H2d(N; Z). As deg(H) is odd, the above discussion implies that
2[Ξ̃] ∈ Im(iQ,∗) and hence [Ξ̃] is 2-torsion in H2d(N; Z).

(ii) Suppose, on the other hand, that C0 does not pass through the ordinary double
point. Since C does not pass through the double point of the singular fibre, it is
isomorphic to its pullback in Y. Therefore the support of Ξ̃ has empty intersection

with the exceptional fibre Q. Thus Ξ̃ goes to zero under the vertical map (i∗Q.i∗). This
implies that its class in the cohomology of Y is zero. Hence its restriction to N is zero.

2.3 More Cycles

We wish now to generalise the above situation to one where there are finitely many
cycles on a variety X, the generic fibre of a flat family X → S with only ordinary
double points occurring as singularities. For this we assume that for i = 1, . . . , l,
there are diagrams:

(2) Ci
�

�

//

��

X

��

Ti

δi

// S

Here δi is finite proper map of smooth curves with simple ramification points and
such that its branch locus is contained in the singular locus of the family X → S.
Moreover, Ci → Ti is a smooth family with generic fibre Ci which is a codimension d

subvariety of X.

Let T := T1 ×S · · · ×S Tl and XT → T be the base change. Let Y denote the
blow-up of XT at all its ordinary double points.

Assumption 2.3 The branch loci for the maps δi in diagram 2 are distinct. More-
over for each i, Ci misses the singularities in the fibres over points outside its branch
locus and passes through exactly one ordinary double point on each of the singular

fibres over the points in the branch locus.

For any integer 1 ≤ i ≤ l one can now construct finitely many diagrams in the
following manner: we choose a small open disc ∆i ⊂ S containing exactly one branch
point of δi contained in S. Since the various branch loci are disjoint, ∆i can be so

chosen such that it does not contain branch points of δ j for j 6= i. We then have the
following diagrams:

Ci
�

�

//

��

Xi

��

∆̃i

δi

// ∆i
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and for j 6= i,

C j,i
�

�

//

��

Xi

��

∆ j,i ∼= ∆i

Here the families C j,i , Ci , Xi are the restrictions of the families in diagram (2) to
the disc ∆i . As earlier, we may assume without loss of generality that the singular
fibres have exactly one ordinary double point.

Thus we have the following situation.

(i) For j 6= i the family C j,i completely misses the singular locus of the special fibre

of the family Xi → ∆i .
(ii) The map ∆̃i → ∆i is a double cover which is ramified at one point.
(iii) For the family of cycles Ci , there exists a point 0 ∈ ∆i such that the special

fibre C0 at 0 passes through the ordinary double point of the (singular) fibre of

Xi → ∆i .

On a general member X of the family Xi → ∆i , we then have finitely many codi-
mension d cycles ξ j = deg(H).C j − deg(C j).H where C j is a general member of the
family C j,i and H is a codimension d linear section in X.

2.4 Relations Between Cycles

We now wish to study the relations between the cycles Ξ̃i defined by ξi in X as it varies

in the family Y → T.

Theorem 2.4 The cycles Ξ̃i are linearly independent modulo 2 in CHd(Y), the Chow

group of codimension d cycles.

Proof Suppose there exists a relation
∑

i

niΞ̃i = 0.

If p : T → S denotes the morphism between T and S, then one notes that for any
i, p−1(∆i) ∼= ∆̃i . For i = i0, consider the restriction of the above sum to Yi0

:=
Y|

p−1(∆i )
. Note that Yi0

is isomorphic to Xi ×∆i
∆̃i blown up at the ordinary double

point occuring in the special fibre of Xi → ∆i . Then one has a relation
∑

i ni[Ξ̃i] = 0
in H2d(Yi0

, Z). Consider its image in the cohomology of Ni0
under the map

H2d(Yi0
, Z) → H2d(Ni0

, Z).

By Theorem 2.2 we know that [Ξ̃i] vanishes for i 6= i0 since these do not intersect
the exceptional divisors over the singularities in the special fibre of Xi0

→ ∆i0
. This

implies that ni0
.[Ξ̃i0

] = 0. Since [Ξ̃i0
] is a non-trivial 2-torsion class, this implies that

ni0
is divisible by 2. Similarly arguing, we see that 2 divides ni for all i. Hence the

cycles are linearly independent modulo 2.
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2.5 Torsion in Chow Groups

We shall now make some remarks about the rank of CH2(Y). We make note of the
following useful lemma.

Lemma 2.5 If G is an abelian group such that its torsion subgroup Gtor is a subgroup

of (Q/Z)r, then we have

rankQ (G ⊗ Q) + r ≥ rankZ/2Z(G ⊗ Z/2Z).

Proof See [4].

We shall now show that CH2(Y)tors, the subgroup of torsion cycles is a subgroup
of (Q/Z)r for some r. By the Merkurjev–Suslin theorem [9], one has for any l,

CH2(Y)(l) ⊂ H3
et (Y, Ql/Zl(2)).

Taking limits over all l, we have

CH2(Y)tors ⊂ H3(Y, Q/Z(2)).

Now,

H3(Y, Q/Z) ∼= H3(Y, Z) ⊗ Q/Z ⊕ H4(Y, Z)tors

∼= (Q/Z)b3 ⊕
[

N
⊕

k=1

(Z/pnk

k )
]

.

The second isomorphism follows from the fact that H4(Y, Z) is of finite type. Since
Z/pnk

k ⊂ Q/Z, we finally have the desired inclusion, i.e.,

CH2(Y)tors ⊂ (Q/Z)r.

Corollary 2.6 Suppose there exist countably infinite number of diagrams as in (1) sat-

isfying the assumptions above. Further assume d = 2. Then the cycles {Ξi} generate

a subgroup whose rank when tensored with Q is infinite. In particular, the cycles of

Clemens and Paranjape can be detected along with their relations after spreading out.

Proof Let G ⊂ CH2(Y) be the group generated by the cycles Ξ̃i . Since G ⊗ Z/2Z

has infinite rank we conclude from Lemma 2.5 and the discussion preceding this
corollary that G has infinite rank.

3 Conclusions

We have shown that it is possible to detect almost all known cycles along with their
relations in a method similar to the above. The list of such cycles and other details
can be found in [11].
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