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Weakly nonlinear behaviour of transonic buffet
on airfoils
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In transonic flow conditions, buffeting associated with finite-amplitude lift fluctuations can
limit the operational envelope of an aircraft. For both airfoils and wings, these oscillations
have been linked to global flow instabilities that arise from a Hopf bifurcation. We employ
a combination of numerical simulations and global stability analysis to investigate the
near-critical behaviour of the oscillatory buffet-onset instability on airfoils. The flow is
governed by the unsteady Reynolds-averaged Navier–Stokes equations, with a basic state
provided by a steady-state solution. In the weakly nonlinear formulation, the disturbance
amplitude is described by the Landau equation. The linear growth rate can be determined
from either the simulations or the stability analysis, and the Landau constant is derived
from simulations resulting in finite-amplitude equilibrium states. The results show that
the Landau constant is nearly independent of Mach number and angle of attack for a
given airfoil. Using the Landau constant derived from a small number of simulations,
the stability analysis can be employed to efficiently capture the essential finite-amplitude
behaviour needed to estimate the buffet-onset boundary. The stability analysis is shown
to capture the envelope of lift oscillations during a continuous pitch of an airfoil, from
pre-buffet through post-buffet lift levels.

Key words: nonlinear instability, high-speed flow

1. Introduction

Large-scale buffeting flow can result in excessive lift fluctuations on aircraft operating
at higher lift coefficients, thus limiting the allowable flight envelope. In transonic
flow conditions, this is associated with shock oscillations that are synchronized to
oscillations of the downstream shear layer. In order to avoid this buffeting condition, a
buffet-onset boundary must be determined. This is typically done by slowly increasing
the lift coefficient (e.g. pulling a windup turn) until the airplane experiences unsteady
normal accelerations. The buffet-onset boundary as a function of Mach number is then
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set by the airplane lift level where the peak-to-peak accelerations exceed some threshold
value.

This sequence of increasing angle of attack leading to increasing lift coefficient,
ultimately resulting in the onset of large-scale unsteadiness, is also observed on airfoils.
As a result, the transonic buffet on airfoils has been used as a model problem to investigate
basic mechanisms (McDevitt & Okuno 1985; Jacquin et al. 2009) – although swept-wing
buffet is more complex and also involves additional instabilities. Transonic buffet on
airfoils has been shown to result from a Hopf bifurcation, leading to an oscillatory flow
instability (Crouch, Garbaruk & Magidov 2007; Crouch et al. 2009a,b; Iorio, Gonzalez
& Ferrer 2014; Sartor, Mettot & Sipp 2015). The initial onset and flow structure of
the instability is well predicted by the stability analysis, when compared with both
experiments (Crouch et al. 2009a,b; Crouch, Garbaruk & Strelets 2019; Fukumoto et al.
2023) and simulations (Crouch et al. 2009a; Moise et al. 2023). Crouch et al. (2009a)
also suggested that the near-critical nonlinear amplitudes are consistent with a weakly
nonlinear description of a supercritical bifurcation.

Global instabilities have also been shown to give rise to large-scale unsteady flow for
both infinite swept wings (Crouch et al. 2019; Paladini et al. 2019) and finite-span swept
wings (Timme 2020; Plante & Laurendeau 2023; Sansica & Hashimoto 2023). For the
swept wing, there is a travelling wave mode in addition to the oscillatory mode seen on
airfoils. The travelling wave mode convects outboard along the wing, with a dominant
spanwise wavelength approximately equal to the wing chord (Iovnovich & Raveh 2014;
Crouch et al. 2019; Paladini et al. 2019; He & Timme 2021). The relative role of these
modes is dependent on the configuration and the flow conditions, but in any case, some
insight into the finite-amplitude behaviour is needed to assess the buffet boundary.

Earlier studies using unsteady simulations combined with proper orthogonal
decomposition or dynamic mode decomposition have shown that the post-critical buffeting
flow can be well represented using low-order modelling (Ohmichi, Ishida & Hashimoto
2017; Poplingher & Raveh 2018; Fukumoto et al. 2023). These studies also show that the
dominant flow structure is qualitatively the same as predicted by the linear global stability
analysis (GSA). Sansica et al. (2022) used the sparse identification of nonlinear dynamics
technique in conjunction with dynamic mode decomposition to extract a low-order
representation of the entire flow field from unsteady simulations. The underlying dynamics
are linked to the Landau equation, consistent with a supercritical bifurcation.

Here, we apply weakly nonlinear analysis to predict the post-critical buffeting flow
as an extension of the global stability theory, focused on the oscillatory mode of a
two-dimensional airfoil. The Landau equation is used to model the nonlinear amplitude
variation, with the constants determined by various combinations of numerical simulation
and stability analysis. The problem formulation provides a description of the numerical
formulations used for the unsteady simulations and the GSA, followed by the weakly
nonlinear analysis. Results are then presented for two different airfoils, followed by
discussion and conclusions.

2. Problem formulation

The study is based on an airfoil at fixed chord Reynolds number ReC = U∞c/ν and Mach
number M. The airfoil angle of attack α is generally fixed, but may also vary slowly in
time. Results are presented for the OAT15A airfoil at ReC = 3 × 106 and the NACA0012
airfoil at ReC = 107. The buffet instability growth rate γ and angular frequency ω are
non-dimensionalized by c/U∞, giving a Strouhal number of St = fc/U∞ = ω/2π.
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The flow is governed by the unsteady Reynolds-averaged Navier–Stokes (URANS)
equations, using the Spalart–Allmaras turbulence model (Spalart & Allmaras 1994) for
closure of the Reynolds stresses. The turbulence model includes the compressibility
correction (Spalart 2000), with the constant C5 = 3.5.

The URANS equations are solved numerically using two independent in-house
finite-element codes. The unsteady simulations are based on the code FELight, which is
run on a fixed unstructured grid. This code follows the discretization and solution methods
of the HOMA solver (Ahrabi & Mavriplis 2020). The GSA uses a solution-adaptive
scheme (loosely) coupling the GGNS-T1 solver with the EPIC grid adaption module
(Michal et al. 2018). EPIC is an anisotropic grid generation and adaptation code which
takes a Riemannian metric and target grid complexity (usually, number of grid nodes
or cells) and produces an unstructured grid approximately conforming to the input
metric, following the paradigm of grid/metric duality (Loseille & Alauzet 2011). To be
meaningful, the Riemannian metric is tied to some sort of error estimation in the localized
form. For this study, we use a metric arising from the goal-oriented error-estimation
technique described in detail in Kamenetskiy et al. (2022). The adaptive grid approach
is very efficient and robust for the GSA, but not suitable for the unsteady simulations.

In both the FELight and GGNS-T1 codes, the URANS equations are spatially
discretized using streamline upwind/Petrov–Galerkin (SUPG), which is a stabilized
finite-element discretization utilizing globally continuous finite elements (Brooks &
Hughes 1982). For the current study, piecewise linear elements are used. For the mixed
types of cells (such as prisms, pyramids and hexes) used in the fixed-grid unsteady
simulations, we use standard globally continuous finite-element spaces, which have
locally poly-linear elements as well. The resulting discretization is second order for
all equations, including the turbulence model equation governing ν̃. Written in terms
of the primitive variables q = [ρ, u, v, T, ν̃]T, the semi-discretized system of ordinary
differential equations has the form

M
∂q
∂t

= R(q), (2.1)

where R(·) is the discrete residual and M is the finite-element mass matrix independent of
q. Other variable choices can also be used for the GSA to streamline the extraction of the
eigenfunctions.

The boundary conditions are implemented either as essential (strong) conditions (e.g.
non-slip viscous walls, where the velocity components and ν̃ are set to zero) or as flux
boundary conditions (e.g. in the far field and on free-slip inviscid walls). For this transonic
flow, additional shock-capturing artificial dissipation is used, as in Holst et al. (2021).

To solve this system of equations, we employ a pseudo-transient continuation method
(Kelley & Keyes 1998), in which the temporal term is augmented as follows:

M
(

∂q
∂t

+ ∂q
∂τ

)
= R(q). (2.2)

In this equation, τ serves as the pseudo-time, distinct from t, which denotes physical time.
For steady-state computations, the physical time term is set to zero. The pseudo-transient

term is discretized using the first-order backward difference formula. The resulting implicit
system is linearized exactly and solved in a marching manner. To expedite convergence,
the pseudo-time is computed for each grid node, resulting in a local time-stepping method.
The local time steps are amplified by a global Courant–Friedrichs–Lewy (CFL) number
to adjust the pace of nonlinear advancements. The linearized system is solved using
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Figure 1. Representative grids used for the (a) unsteady simulations and the (b) global stability calculations.
Background colour for (b) shows the Mach number distribution.

an inexact Newton method, wherein the linear system is solved via an ILU-preconditioned
GMRES method (Saad & Schultz 1986). Additionally, a line search process is employed to
determine an optimal relaxation factor for the Newton updates, derived from the solution of
the linearized system. A CFL number control mechanism is also integrated to regulate the
pace of nonlinear advancement. The algorithm employed closely resembles those outlined
in Kelley & Keyes (1998).

2.1. Unsteady simulation approach
The unsteady simulations are initialized with steady equilibrium states, which are solutions
to the steady RANS equations. For the unsteady problem, the temporal term is discretized
using the second-order backward difference formula. Treating the pseudo-time term
similar to that of the steady-state scenario leads to a dual time-stepping technique
(Jameson 1991). In this technique, the equations for each implicit time step are treated
as modified steady-state problems, which are solved by iteratively progressing through the
pseudo-time variable. The application of the Newton method with ILU-preconditioning
and the inclusion of a line search process facilitates achieving deep levels of convergence
(down to machine precision) for both steady-state and unsteady problems within each time
step.

For the unsteady simulations, the initial steady state and the unsteady evolution are
calculated on a fixed grid, as shown in figure 1(a). The grid has been refined in the areas
of the shock and downstream shear-layer motions. The grid resolution and the physical
time step are evaluated based on their impact on the buffet-instability growth rate and
frequency, as discussed in the results.

2.2. Global stability analysis
For the GSA, we consider a small (linearized) perturbation around a steady-state
‘fixed-point’ solution (q = q(B) + q′), yielding

M
∂q′

∂t
= Jq′, (2.3)
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with J = ∂R/∂q|q=q(B) . Expanding the linear perturbation in the normal-mode form q′ =
q̂eλt, with λ = γ + iω gives

M−1J q̂ = λq̂. (2.4)

Exact Jacobians J are obtained via the automatic differentiation approach, which provides
an exact linearization at the converged steady state. This is essential for the current
‘discretize-then-linearize’ approach for GSA – in contrast to the ‘linearize-then-discretize’
approach of Crouch et al. (2009a).

For the stability analysis, both the initial steady state and the global stability equations
are solved using an adaptive grid with the drag coefficient chosen as the target functional
output. In the process of adaptation, the curved geometry is resolved – that is, new grid
nodes are projected to the exact geometry as driven by the error estimate. An example of
the solution adaptive grid is shown in figure 1(b). Note that as the goal-oriented adaption
approach utilizes information from both the primal and adjoint solutions, both primal and
adjoint ‘flow features’ can be clearly seen as being resolved by the grid.

For each grid in the solution-adaptive sequence, as the solver reaches machine-zero
convergence for the discrete residuals, the exact Jacobian J of the steady-state residual
is computed and stored. The same is done for the mass matrix, which is not a trivially
diagonal matrix for the considered case of the continuous finite-element spaces. Then,
a separate code is used to solve the eigenvalue problem, based on the SLEPc package
(Hernandes, Roman & Vidal 2005). The shift-and-invert approach with prescribed (γ ∗,
ω∗), and γ ∗ > 0, is used to capture the least-stable eigenvalues over a range of frequencies.

2.3. Weakly nonlinear analysis
Transonic buffet on high-Reynolds-number airfoils results from a Hopf bifurcation, similar
to the onset of vortex shedding behind a circular cylinder at moderately low Reynolds
numbers (Crouch et al. 2007). As the angle of attack is increased (for a fixed Mach
number), the steady base flow loses stability and an oscillatory mode begins to grow.
In general, a Hopf bifurcation could be supercritical or subcritical, resulting in different
finite-amplitude behaviour. In the neighbourhood of the bifurcation, the amplitude of the
variation can be described by the Landau equation (Drazin & Reid 1981):

∂A
∂t

= γ0A + γ1A3, (2.5)

where γ0 is the linear growth rate and γ1 is the Landau constant, also referred to as the first
Lyapunov coefficient. The amplitude A is a characteristic measure of the strength of the
oscillation; here we define A as one-half of the peak-to-peak variation of the normalized lift
fluctuation C′

L(t) = (CL(t) − C(B)
L )/C(B)

L , where CL(t) is the airfoil lift coefficient and C(B)
L

is the lift coefficient of the steady base state. A lift-based amplitude definition provides
a direct link to a buffet boundary, but an alternative amplitude definition such as the
normalized shock displacement could also be used.

Based on experimental observations showing a smooth increase in CL(t) − C(B)
L with

angle of attack (McDevitt & Okuno 1985), the bifurcation is expected to be supercritical.
For a supercritical bifurcation, the Landau constant γ1 is negative and the supercritical
oscillation is characterized by a finite-amplitude limit cycle. For these equilibrium states,
the Landau constant can be determined from the equilibrium amplitude Ae and the linear
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Figure 2. Variation of (a) lift coefficient CL and (b) normalized lift fluctuation C′
L with different levels of

initial perturbation 	α. OAT15A airfoil with M = 0.73, α = 3.3◦.

growth rate γ0:

∂Ae

∂t
= γ0Ae + γ1Ae

3 = 0 → γ1 = −γ0/Ae
2. (2.6)

Alternatively, the equilibrium amplitude can be determined from known values of the
growth rate γ0 and Landau constant γ1.

In general, the Landau constant describing the finite-amplitude correction is complex,
and includes a correction to the frequency ω0. In the current study, this frequency
correction is less than 2 % (i.e. the equilibrium frequency is essentially the same as the
linear frequency) and is not considered in the detailed results. In a perturbation analysis,
two additional finite-amplitude corrections would be obtained at O(A2): a mean-flow
correction and a second harmonic. These are briefly discussed in the results.

3. Results

The numerical simulations are initiated by perturbing a steady RANS solution with a small
increase in angle of attack 	α. Figure 2 shows the variation of the lift coefficient CL and
the normalized lift fluctuation C′

L for different values of 	α. The resulting angle of attack
α + 	α is slightly different in each case, but this has negligible effects on the results of
interest. Figure 2(b) shows that the initial amplitude is proportional to 	α, but the linear
growth rate and the equilibrium amplitude are independent of the initial amplitude.

The linear growth rate γ0 and frequency ω0 are used to assess the grid resolution and
time-step sensitivity for the unsteady simulations. These linear growth parameters show
greater sensitivities than the equilibrium values. Table 1 shows the calculated instability
characteristics for three different grids and time steps. The values for the medium grid with
a 0.02c/U∞ time step are within 0.3 % of the finest-grid and minimum time-step results –
thus, all subsequent results are based on these intermediate values.

Figure 3 shows the growth rates and frequencies for different values of Mach number
and angle of attack for the OAT15A airfoil. The extracted values from the numerical
simulations (all based on 	α = 10−5) are in very good agreement with the GSA, even
though these are from different codes using different grids and different numerical solvers.
The stability results show slightly higher growth rates compared with the numerical
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0.04c/U∞ 0.02c/U∞ 0.01c/U∞

Coarse grid (104 000 nodes) 0.0367, 0.4437 0.0367, 0.4437 0.0367, 0.4437
Medium grid (286 000 nodes) 0.0322, 0.4488 0.0322, 0.4491 0.0322, 0.4489
Fine grid (986 000 nodes) 0.0321, 0.4509 0.0321, 0.4506 0.0321, 0.4507

Table 1. Variation of linear growth rate and frequency (γ0, ω0) from simulations as a function of time step
and grid size. OAT15A airfoil with M = 0.73, α = 3.3◦.
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(a) (b)
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M = 0.74
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Figure 3. (a) Growth rate γ0 and (b) frequency ω0 as determined by the stability analysis (blue diamonds),
the unsteady simulations (red squares), the earlier approach of Crouch et al. (2009a) (grey dash) and the
experiments of Jacquin et al. (2009) (× symbols) for the OAT15A airfoil with M = 0.72, 0.73 and 0.74.

simulations, consistent with the observations of Crouch et al. (2009a). The symbols (×)
show the buffet-onset angles of attack (for M = 0.72, 0.73) and the buffet frequencies (at
α = 3.5◦) from the experiments of Jacquin et al. (2009), which are in good agreement
with the predictions.

For the M = 0.73 case, results are also provided from the approach of Crouch et al.
(2009a) for comparison. Both the critical angle of attack and the frequency are in generally
good agreement. Analyses of Sartor et al. (2015) and Sansica et al. (2022) both predict a
critical angle of attack closer to 3.5◦ for this Mach number, notably higher than the current
results. This is attributed primarily to differences in the turbulence model used in those
studies. The critical angle of attack from Paladini et al. (2019) is 3.3◦, only slightly higher
than the 3.1◦ reported here – the version of the turbulence model used in that study being
similar to that of the current work. Each of these earlier works predicts a frequency near
ω ≈ 0.45, in very good agreement with the current predictions.

The numerical simulation cases are each run sufficiently long to enable the extraction of
an equilibrium amplitude Ae, similar to the example of figure 2. Equilibrium amplitudes
for different Mach numbers are plotted as a function of α in figure 4. The results confirm
that the Hopf bifurcation is supercritical, consistent with Sansica et al. (2022). Although
the results of Sartor et al. (2015) and Sansica et al. (2022) identify a different critical
angle of attack, for an α increment of 0.5 above the critical value, their results give an
equilibrium amplitude of Ae ≈ 0.1 for M = 0.73 – in good agreement with figure 4.

999 A8-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.499


J.D. Crouch, B.R. Ahrabi and D.S. Kamenetskiy

(c)
0.15

0.10

0.05

Ae

0

2.5 3.0 3.5
α

4.0

0.15
(a) (b)

0.10

0.05

Ae

0

2.5 3.0 3.5
α

4.0 2.5 3.0 3.5
α

4.0

0.15

0.10

0.05

0

Figure 4. Equilibrium amplitudes as determined from the unsteady simulations for the OAT15A airfoil with
(a) M = 0.72, (b) M = 0.73 and (c) M = 0.74.

–10

–5γ1

0

0 0.1 0.2

M = 0.72
M = 0.73
M = 0.74

α – αcrit
0.3 0.4 0.5

Figure 5. Variation of the Landau constant γ1 as determined from the unsteady simulations for the OAT15A
airfoil with M = 0.72, 0.73 and 0.74.

Using (2.6), the associated Landau constant is determined for each case based on the
simulation amplitude Ae and growth rate γ0. The Landau constants are shown in figure 5,
plotted against the α increment from the critical value αcrit. Neglecting the value of γ1
nearest to the onset of instability (which is highly sensitive to the estimated A2

e in (2.6)), the
Landau constant shows very little change with α and Mach number, ranging between −7 <

γ1 < −4.5. This suggests that the buffet dynamics for a given airfoil can be represented by
a simple function γ1 = f (α − αcrit), or by a constant value – a linear fit is shown in figure 5
for comparison. Note that a meaningful quantitative comparison with the Landau constant
calculated in Sansica et al. (2022) is not possible, due to differences with the turbulence
model used in that study.

As noted in § 2.3, there is also an O(A2) correction to the average lift level resulting
from the nonlinearity. Using results similar to figure 2, the adjustment to the average
CL is estimated to be Cave

L ≈ C(B)
L (1 − A2). This correction estimate does not affect

the estimated buffet amplitude, but it does provide a more complete description of the
nonlinear dynamics.

Having determined the airfoil Landau constant from a few isolated simulations,
the bifurcation diagrams can be efficiently constructed using the growth rates derived
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Figure 6. Equilibrium amplitudes from stability analysis (blue lines) and simulation (red symbols) for the
OAT15A airfoil with (a) M = 0.72, (b) M = 0.73 and (c) M = 0.74.
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Figure 7. Equilibrium amplitudes from stability analysis (blue lines) and simulation (red symbols) for the
NACA0012 airfoil with (a) M = 0.74 and (b) M = 0.76.

from the GSA. Figure 6 shows the global-stability-based predictions (blue curves using
γ1 = −7.5 + 7(α − αcrit)) in comparison with the simulation results (red symbols). The
comparisons show very good agreement over the range of amplitudes, extending to rather
large peak-to-peak values greater than 20 %.

To assess the generalizability of the results, we also consider the NACA0012 airfoil.
Following a similar process to determine the Landau constant for two different Mach
numbers, we obtain γ1 = −1.4 + 1.2(α − αcrit). The nominal value for the Landau
constant −1.3 < γ1 < −0.7 is smaller than for the OAT15A airfoil. Using the linear fit for
γ1, in combination with the growth rates from the GSA, the predicted bifurcation curve
(blue line) is compared to the simulation (red symbols) in figure 7. The overall agreement
is good, and is very good up to peak-to-peak amplitudes of 30 %.

We now consider the case of an airfoil undergoing a continuous increase in angle of
attack, analogous to the windup turn used for aircraft buffet determination. Figure 8 shows
the variation of the lift coefficient as a function of the angle of attack α for two different
pitch rates, 0.0001◦/(c/U∞) and 0.001◦/(c/U∞). In both cases, the CL values for α < 3.1
are consistent with the steady-state calculations. Beyond α ≈ 3.2, the CL value for the
lower pitch rate oscillates rapidly, consistent with the stability analysis. On the scale of
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Figure 8. Variation of lift coefficient CL for a continuously pitched OAT15A airfoil at M = 0.73.
Time-varying simulations with pitch rates 0.0001◦/(c/U∞) (grey line) and 0.001◦/(c/U∞) (red line).
Amplitude envelope from stability analysis (blue line).

this plot, the oscillations (in terms of cycles per degree of α) are much more frequent than
can be seen in the figure. The grey zone in the figure shows the trace of these oscillations.
For the higher pitch rate, the CL oscillation is easily observed beyond α ≈ 3.4. While the
discernable oscillations initially occur at higher α for the higher pitch rate, the envelope
of the oscillations is independent of the pitch rate. The delay in the initial oscillation
for higher pitch rates is a result of less time for the instability to grow over a given
interval of α variation. The results show that empirical estimates of the buffet onset from
a continuous-pitch study can be influenced by the pitch rate.

The blue curves in figure 8 show the amplitude envelope as determined from the GSA
using CL = C(B)

L (1 − A2
e ± Ae). Instability occurs at α ≈ 3.1, and for higher α values the

limits on CL are based on the equilibrium amplitudes. The GSA provides a good estimate
for the limiting behaviour, even in the continuous-pitch case. While the reduction in
average CL is somewhat greater than the simple A2

e estimate, the fluctuation content of
primary interest is well captured.

4. Conclusions

Weakly nonlinear analysis provides an effective framework for efficiently modelling the
finite-amplitude oscillations linked to airfoil buffeting. Building on the global stability
approach, a Landau equation is used to capture the post-critical behaviour of the dominant
unsteadiness. Results show that the value of the Landau constant changes only weakly for
a given airfoil, with varying Mach number and angle of attack. In practice, the Landau
constant can be determined from a perturbation analysis, or from a small number of
unsteady simulations. This can then be combined with linear growth rates from stability
analysis to calculate equilibrium amplitudes. This provides a very efficient approach to
develop finite-amplitude buffet boundaries.

The weakly nonlinear approach has been used to evaluate the amplitude behaviour
resulting from a continuously pitched airfoil, analogous to an airplane wing during a
windup manoeuvre. The stability analysis provides an envelope for the lift fluctuations,
which is compared with URANS simulations using different pitch rates. Higher pitch rates
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result in delayed onset of finite-amplitude buffet oscillations, but the limiting values for
each angle of attack are unchanged, and are well predicted by the GSA estimations.

The relative simplicity of the current approach – using only GSA and a limited number
of simulations to capture the general nonlinear dynamics – makes it a good candidate
for other problems where global stability results already exist. The effectiveness of the
approach for the more general swept-wing buffet problem will be dependent on the relative
role, or dominance, of different instabilities over a relevant range of angles of attack.
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