
Combinatorics, Probability and Computing (2025), 1–4
doi:10.1017/S0963548325000112

ARTICLE

Short proof of the hypergraph container theorem
Rajko Nenadov1and Huy Tuan Pham2

1School of Computer Science, University of Auckland, Auckland, New Zealand and 2School of Mathematics, Institute for
Advanced Study, Princeton, NJ, USA
Corresponding author:Huy Tuan Pham; Email: htpham@caltech.edu

(Received 11 November 2024; revised 17 February 2025; accepted 17 March 2025)

Abstract
We present a short and simple proof of the celebrated hypergraph container theorem of Balogh–Morris–
Samotij and Saxton–Thomason. On a high level, our argument utilises the idea of iteratively taking vertices
of largest degree from an independent set and constructing a hypergraph of lower uniformity which pre-
serves independent sets and inherits edge distribution. The original algorithms for constructing containers
also remove in each step vertices of high degree, which are not in the independent set. Our modified
algorithm postpones this until the end, which surprisingly results in a significantly simplified analysis.
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1. Introduction
The method of containers is a powerful technique in combinatorics used to produce a small num-
ber of clusters encompassing independent sets of a given hypergraph. While in some applications,
one follows the idea of themethod and the general principles for building such clusters, quite often
one can apply off-the-shelf tools. Themost such applicable tool has been developed independently
by Balogh, Morris, and Samotij [1] and Saxton and Thomason [9], and it is this result that is com-
monly referred to as the hypergraph container theorem. For an introduction to the method, the
hypergraph container theorem, and its many surprising applications, we refer the reader to the
International Congress of Mathematicians (ICM) survey [2]. A number of different proofs and
versions of this result have been obtained since [3–5, 7, 8, 10, 11]. We present a simple and short
proof of a slight generalisation of the original theorem. Two other short proofs have been obtained
very recently by Campos and Samotij [6].

Let V be a finite set. Given a subset X ⊆V , let 〈X〉 = {S⊆V : X ⊆ S}. We say a probability
measure ν over 2V is (p,K)-uniformly spread if for every non-empty X ⊆V , we have ν(〈X〉)�
Kp|X|−1/|V|. Uniform signifies that the measure is fairly uniform from the point of view of ele-
ments ofV . Throughout the paper, we useV =V(H) andN = |V|, whereH is a given hypergraph.
If all edges in a hypergraphH have size at most �, we say thatH is an(� �)-graph.

Theorem 1.1. For every � ∈N and K, ε > 0, there exists T > 0 such that the following holds.
SupposeH is an (� �)-graph, and let ν be (p,K)-uniformly spreadmeasure over 2V supported onH,
for some p ∈ (0, 1]. Then for every independent set I ⊆V(H), there exists F ⊆ I and C = C(F)⊆V
such that |F|� TNp, ν(H[C])< ε, and I ⊆ C ∪ F.

If ν is uniform on H, we obtain the original hypergraph container theorems [1, 9] (that being
said, one can also obtain a non-uniform statement from the original containers by taking hyper-
edges with multiplicity). More importantly, it will be evident in our proof that non-uniform
C© The Author(s), 2025. Published by Cambridge University Press.

https://doi.org/10.1017/S0963548325000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548325000112
mailto:htpham@caltech.edu
https://doi.org/10.1017/S0963548325000112


2 R. Nenadov and H. T. Pham

measures naturally arise and streamline the argument, even if one is only interested in proving
Theorem 1.1 for the uniform measure. While we are not aware of an application where a non-
uniform measure is used, it is conceivable that proving a supersaturation result, often used in a
combination with container-type theorems, might become easier (or at least more elegant) if deal-
ing with non-uniform measures. Dependence of T on the uniformity is of order O(2�2 ), which is
also along the lines of the original results. Near-optimal dependence was obtained by Balogh and
Samotij [3] and Campos and Samotij [6].

2. Proof
Our proof bears resemblance to the proof from [1, 9]. On a high level, we choose F in Theorem 1.1
by greedily taking vertices from I with largest degree with respect to ν and construct a hypergraph
of lower uniformity given by (parts) of hyperedges containing vertices from F. A common feature
in many of the proofs utilising a similar idea is that one also keeps track of the vertices which are
not in I but have larger degree than the last chosen vertex in F. The main novelty here is that we
completely avoid this, unless we are in a case where the resulting hypergraph of lower uniformity
is not sufficiently dense to proceed with the induction. In this case, we show that removing vertices
of high degree immediately yields a desired container. It is worth noting that the proofs from [1, 9]
also have a similar case distinction; however; the analysis in our cases turns out to be significantly
simpler.

Theorem 1.1 follows by iterated application of the following lemma, known as the hypergraph
container lemma.

Lemma 2.1. For every � ∈N and K > 0, there exists δ > 0 such that the following holds. Suppose
H is an (� �)-graph, and there exists a (p,K)-uniformly spread measure ν over 2V supported on
H, for some p ∈ (0, 1]. Then for every independent set I ⊆V, there exists F ⊆ I and C = C(F)⊆V
such that |F|� �Np, |C|� (1− δ)N, and I ⊆ C ∪ F. Moreover, C can be unambiguously constructed
from any set F̂ such that F ⊆ F̂ ⊆ I.

Proof. We prove the lemma by induction on �. For � = 1, take F =∅ and C ⊆V to be the set of
all vertices v ∈V with ν(v)= 0. As there are at least N/K vertices with strictly positive measure,
the lemma holds for δ = 1/K. We now prove the lemma for �� 2. If |I| <Np, then we simply take
F = I. Therefore, without loss of generality, we may assume |I|�Np.

Set F =∅⊆ I, L=∅⊆ 2V , and D,H′ =∅⊆H. Here F denotes a “fingerprint”; D is the set
of hyperedges we delete along the way due to some “heavy” sets (see (1), and L is the fam-
ily of sets responsible for edges in D being deleted; the hypergraph H′ consists of a subset of
“nicely” distributed edges, which contain at least one vertex from F. Repeat the following for Np
rounds: Take v ∈ I \ F to be a largest vertex with respect to ν(〈v〉 ∩R), where R=H[V \ F] \D
(tie-breaking done in some canonical way, e.g. by agreeing on the ordering of V). Add v to F, set
H′ =H′ ∪ (〈v〉 ∩R), and for each X ∈ 2V \L of size |X|� � − 1 such that

ν(〈X〉 ∩H′)>Kp|X|/N, (1)
add X to L and set D =D ∪ (〈X〉 ∩R).

A few observations about the process. First, as ν is (p,K)-uniformly spread the value ν(〈X〉 ∩
H′) increases by at most ν(〈X ∪ {v}〉)�Kp|X|/N after adding a vertex v 
∈ X to F. Once a subset X
satisfies (1), no more hyperedges that contain X are added to H′; thus at the end of the process;
we have

ν(〈X〉 ∩H′)� 2Kp|X|/N (2)
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for every X ⊆V \ F of size |X|� � − 1. Second, given a set F̂ such that F ⊆ F̂ ⊆ I, we can recon-
struct F from F̂ together with the order in which the vertices were added; thus; we can also
reconstructH′ andR.

We next derive several useful lower bounds on ν(H′). First, we show that if ν(D) is large, then
ν(H′) is also large. In particular, the following holds:

ν(H′)� 2−�pν(D). (3)
On the one hand, for each e ∈D, there exists X ∈L such that e ∈ 〈X〉, thus ∑

X∈L ν(〈X〉)� ν(D).
On the other hand, we have by (1) that∑

X∈L
ν(〈X〉 ∩H′)>

∑
X∈L

Kp|X|/N � p
∑
X∈L

ν(〈X〉).

Here in the last inequality, we use that ν is (p,K)-uniformly spread. Furthermore, each edge e in
H′ may contribute to at most 2� terms ν(〈X〉 ∩H′). Hence,

ν(H′)� 2−�
∑
X∈L

ν(〈X〉 ∩H′)> 2−�pν(D),

as claimed in (3).
Next, we show that

ν(H′)� (Np) max
v∈I\F ν(〈v〉 ∩R). (4)

Let Ri denote the hypergraph R at the moment when the i-th vertex vi was added to F (thus
R=R|F|). We observe that sinceR is non-increasing and by our choice of v in each step,

ν(H′)�
|F|∑
i=1

ν(〈vi〉 ∩Ri)�
|F|∑
i=1

max
v∈I\F ν(〈v〉 ∩R|F|),

yielding (4).
Let α = 2−�−2. We now distinguish two cases, where if ν(H′) is large, then we can apply the

inductive hypothesis to an appropriate (� � − 1)-graph, and otherwise, we can immediately find
a small container C for which I \ F ⊆ C.

Case 1: ν(H′)� αp. Let H′′ denote the (� � − 1)-graph consisting of sets X such that
X =H′ \ F for some H′ ∈H′. Set ν′ to be the probability measure over 2V\F given by

ν′(X) ∝
{

ν((X ∪ 2F)∩H′), if X ∈H′′,
0, otherwise,

where X ∪ 2F = {X ∪ Y : Y ∈ 2F}. From (2) and ν(H′)� αp, we conclude that ν′ is (p, 2Kα−1)-
uniformly spread. Also observe that I is an independent set in H′′; thus, by the induction
hypothesis, there exists F′ ⊆V of size |F′|� (� − 1)Np and C = C(F′) such that |C|� (1− δ)N
and I ⊆ C ∪ F′. Note that we can reconstruct C from F := F ∪ F′.

Case 2: ν(H′)< αp. By (3), we have ν(D)< 1/4 and hence ν(R)� ν(H)− ν(H′)− ν(D)>
1/2. By (4), for every v ∈ I \ F, we have

ν(〈v〉 ∩R)� α/N. (5)
Let now C ⊆V \ F denote the set of all v ∈V \ F such that ν(〈v〉 ∩R)� α/N. By (5), we have
I \ F ⊆ C. Furthermore,

ν(R)�
∑
v∈C

ν(〈v〉 ∩R)+
∑

w∈V\(F∪C)
ν(〈w〉 ∩R)< α + (N − |C|) ·K/N.

Hence, |C| <N − (ν(R)− α)N/K < (1− δ)N for δ = 1/(4K). This concludes the construction of
the desired F and C. �
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For the sake of completeness, we derive Theorem 1.1 from Lemma 2.1.

Proof of Theorem 1.1. Let δ > 0 be as given by Lemma 2.1 for � and K/ε (as K). We prove the
theorem for T = � log (Kε−1)/ log (1+ δ).

We find a fingerprint F and a container C as follows. Set F =∅ and C =V , and as long as
ν(H[C])� ε, do the following: Let F′ and C′ be as given by Lemma 2.1 applied with ν′ being
a probability measure over 2C given by ν′(X) ∝ ν(X) if X ∈H[C], and ν′(X)= 0 otherwise. Set
F := F ∪ F′ and C := C′, and proceed to the next iteration.

If ν(H[C])� ε, then for non-empty X ⊆ C,

ν′(〈X〉)� ν(〈X〉)
ν(H[C])

� Kp|X|−1/N
ε

� K
ε
p|X|−1/|C|,

and hence ν′ is (p,K/ε)-uniformly spread each time we apply Lemma 2.1. Furthermore, if
ν(H[C])� ε, then |C|� εN/K. In each iteration, the set C shrinks by a factor of 1− δ; thus,
we are done after at most log (Kε−1)/ log (1+ δ) iterations. The set F grows by at most �Np in
each iteration, which gives an upper bound of TNp on its final size for the above choice of T =
T(K, ε). Due to the last property in Lemma 2.1, the final set C can be unambiguously constructed
from F. �
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