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Abstract In this paper the existence of infinitely many solutions for a class of Kirchhoff-type prob-
lems involving the p-Laplacian, with p > 1, is established. By using variational methods, we determine
unbounded real intervals of parameters such that the problems treated admit either an unbounded
sequence of weak solutions, provided that the nonlinearity has a suitable behaviour at ∞, or a pairwise
distinct sequence of weak solutions that strongly converges to 0 if a similar behaviour occurs at 0. Some
comparisons with several results in the literature are pointed out. The last part of the work is devoted
to the autonomous elliptic Dirichlet problem.
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1. Introduction

In 1883 Kirchhoff proposed the relation

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2 = 0 (K)

as an extension of the D’Alembert wave equation for free vibrations of elastic strings,
where the above constants have the following meanings: L is the length of the string, h

is the area of the cross-section, E is the Young modulus of the material, ρ is the mass
density and P0 is the initial tension (see [24]).

It is worth mentioning that (K) received much attention after the work of Lions [30],
where a functional analysis framework was proposed for the problem. For instance, we
refer the reader to [3,13,19] for some interesting results and further references. Recently,
the study of the Kirchhoff equation has been considered in the elliptic case and involving
the p-Laplacian operator.
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Motivated by this interest, in this paper we deal with the following elliptic problem of
Kirchhoff type:

−
(

a + b

∫
Ω

|∇u|p dx

)
∆pu + α(x)|u|p−2u = λh(x)f(u) in Ω,

u|∂Ω = 0,

⎫⎪⎬
⎪⎭ (Kλ)

where Ω is a bounded domain in R
N with smooth boundary ∂Ω, a and b are two non-

negative constants (non-contemporarily zero), p > 1, ∆pu := div(|∇u|p−2∇u) denotes
the usual p-Laplacian operator, α ∈ L∞(Ω) with ess infx∈Ω α(x) � 0, λ is a pos-
itive parameter, f : R → R is a continuous function and, finally, h ∈ L∞(Ω) with
ess infx∈Ω h(x) > 0.

Many solvability conditions for Kirchhoff-type equations are given, such as the Yang
index theory and invariant sets of descent flow (see [37,41]). However, for this kind of
non-local problem there have been several multiplicity results using variational methods
(see, for example, [1,14,23,31]).

Problem (Kλ) contains the following significant case:

−∆pu = λf(u) in Ω,

u|∂Ω = 0.

}
(Df

λ)

The existence of infinitely many solutions of the Dirichlet problem (Df
λ) has been studied

extensively. Most results assume that f is odd in order to apply some variant of the clas-
sical Lusternik–Schnirelmann theory. Only a few papers deal with nonlinearities having
no symmetry properties. Among them, the ones that are closest to the present paper are
certainly [2,23,36,38,40]. In particular, in [36], Omari and Zanolin proved that if

lim inf
ξ→0+

F (ξ)
ξp

= 0 and lim sup
ξ→0+

F (ξ)
ξp

= +∞, (1.1)

where

F (ξ) :=
∫ ξ

0
f(t) dt (ξ ∈ R),

(Df
λ) has a sequence of non-zero and non-negative weak solutions, satisfying that

maxx∈Ω̄ un(x) → 0 as n → ∞ (see also [32–34] and § 5).
In [2], Anello and Cordaro weakened condition (1.1) and obtained infinitely many

positive solutions of (Df
λ). The main idea of [2] is based on the general approach pro-

posed by Ricceri [38], which yields weak solutions by searching for local minima of the
underlying energy functional. This technique was suggested earlier in the paper of Saint
Raymond [40]. Subsequently, following the cited approach, He and Zou [23] investigated
the existence of infinitely many solutions for the problem

−
(

a + b

∫
Ω

|∇u|2 dx

)
∆u = λf(x, u) in Ω,

u|∂Ω = 0,

⎫⎪⎬
⎪⎭ (Hλ)

where f : Ω × R → R is a suitable Carathéodory function (see Remark 4.7).
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More recently, through the same variational approach, Dai and Liu studied the exis-
tence of infinitely many solutions for a non-local Kirchhoff-type equation involving the
p(x)-Laplacian (see [17]). A similar analysis was also used by Dai and Wei [18] to inves-
tigate the existence of infinitely many solutions for a p(x)-Kirchhoff-type problem with
Dirichlet boundary condition.

Here, inspired by the above-mentioned papers, we study the existence of infinitely
many non-negative solutions to (Kλ). In practice, the previous circumstance is realized
by showing that, under a suitable condition on the nonlinearity f , there exists a sequence
of local minima {un} for the functional associated with (Kλ).

More concretely, we determine intervals of parameters such that our problem admits
either an unbounded sequence of solutions, provided that f has a suitable behaviour at
∞, or a pairwise distinct sequence of solutions that converges to 0 if a similar behaviour
occurs at 0 (see Theorems 3.1 and 4.1, respectively). For instance, in Theorem 4.1, our
key assumption at 0, along with the natural condition (k1), can be formulated as the
following algebraic inequality:

− lim sup
ξ→0+

F (ξ)
ξp

< δ0
Ω,p lim inf

ξ→0+

F (ξ)
ξp

,

where

δ0
Ω,p :=

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)p dx∫

B(x0,τ/2) h(x) dx

is a real constant depending on the geometrical structure of Ω (see Remark 4.3).
For completeness, we mention that our results, for the Dirichlet case, are related

to some recent contributions obtained by Kristály and Moroşanu in their interesting
paper [28]. More precisely, they look for the existence of infinitely many non-negative
solutions to the problem

−∆u = λa(x)up + f(u) in Ω,

u|∂Ω = 0,

}
(Pλ)

where f : [0, +∞[ → R is a continuous function, the parameters p and λ are assumed to
be positive and a ∈ L∞(Ω) is allowed to be indefinite. The crucial hypothesis adopted
in the work is expressed by

−∞ < lim inf
ξ→L

F (ξ)
ξ2 � lim sup

ξ→L

F (ξ)
ξ2 = +∞, (1.2)

where either L = 0+ or L = +∞. Moreover, a necessary preliminary approach is devel-
oped for the weight problem

−∆u + K(x)u = h(x, u) in Ω,

u|∂Ω = 0,

}
(PK

h )

where K ∈ L∞(Ω) with ess infx∈Ω K(x) > 0 and h : Ω × [0, +∞[ → R is a Carathéodory
function satisfying certain properties (see also [29, Chapter 7]).
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As with the above results, in Theorems 5.1 and 5.7, studying the unperturbed Dirichlet
problem (Df

λ) we require that

− lim sup
ξ→L

F (ξ)
ξp

< δL
N,p lim inf

ξ→L

F (ξ)
ξp

,

where, again, either L = 0+ or L = +∞ and

δL
N,p := 2N+pN

∫ 1

1/2
tN−1(1 − t)p dt;

see, for instance, Remark 5.6 for some details about the case when F possesses the above
oscillating behaviour at 0.

As an example we present a particular existence result for a non-local elliptic problem
defined on a Euclidean bounded domain Ω ⊂ R

3.

Theorem 1.1. Let f : R → R be a continuous function such that

lim inf
ξ→0+

F (ξ)
ξ2 = 0 and lim sup

ξ→0+

F (ξ)
ξ2 > 0.

Furthermore, assume that, for every n ∈ N, there exist ξn, ξ′
n ∈ R, with 0 < ξn < ξ′

n and
limn→∞ ξ′

n = 0, such that F (ξn) = supξ∈[0,ξ′
n] F (ξ). There then exists λ∗ > 0 such that,

for every λ > λ∗, the problem

−
( ∫

Ω

|∇u|2 dx

)
∆u = λf(u) in Ω,

u|∂Ω = 0

⎫⎪⎬
⎪⎭ (Nλ)

admits a sequence {un} of non-negative and non-trivial weak solutions strongly conver-
gent to 0 in H1

0 (Ω) and such that limn→∞ ‖un‖∞ = 0.

We just observe that a more general condition than (1.1) in the low-dimensional case
was introduced, very recently, by Bonanno and Molica Bisci [4], studying the existence
of infinitely many weak solutions for a Sturm–Liouville problem. Subsequently, in [5],
the same authors, by using this novel approach, studied (Df

λ). There, (1.1) was replaced
by the inequality

lim inf
ξ→0+

max|t|�ξ F (t)
ξp

< κ lim sup
ξ→0+

F (ξ)
ξp

, (1.3)

where κ is a well-determined constant depending on the geometry of the open set Ω

(see [5, Theorem 1] and Remark 5.6). This oscillating behaviour has been adopted for
proving the existence of infinitely many weak solutions for different types of elliptic
problems. Among others, we mention the works [5–11,15,16]. For a direct comparison
with the above-mentioned results, with respect to (Df

λ), see Remark 5.5.
The paper has the following structure. In § 2 we introduce our notation and the abstract

Sobolev spaces setting. In §§ 3 and 4 we obtain our existence results (see Theorems 3.1
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and 4.1) and some significant consequences, for instance, Corollaries 3.5 and 3.7, by using
conditions on the nonlinearity f at ∞. Finally, § 5 is devoted to the autonomous Dirichlet
problem (Df

λ). To conclude, we cite the monographs [20] and [29] as general references
on related topics.

2. Preliminaries

Let Ω be a bounded domain in R
N (where N > 1) with smooth boundary ∂Ω, p > N/2

and h ∈ L∞(Ω), such that ess infx∈Ω h(x) > 0. Furthermore, denote by X the space
W 1,p

0 (Ω) endowed by the norm

‖u‖ :=
( ∫

Ω

|∇u(x)|p dx

)1/p

.

We consider a continuous function f : R → R and define

F (ξ) :=
∫ ξ

0
f(t) dt for every ξ ∈ R.

In the case N/2 < p � N we assume that f satisfies the following subcritical condition.

(h∞) There exist δ ∈ R
+ and q > 2p− 1, with q < ((p− 1)N + p)/(N − p) if p < N , such

that
|f(t)| � δ(1 + |t|q)

for every t ∈ R.

Moreover, let Jλ : X → R be the energy functional associated with (Kλ) as

Jλ(u) := Φ(u) − λΨ(u) ∀u ∈ X,

where

Φ(u) :=
1
p

(
a

∫
Ω

|∇u(x)|p dx +
b

2

( ∫
Ω

|∇u(x)|p dx

)2

+
∫

Ω

α(x)|u(x)|p dx

)

and
Ψ(u) :=

∫
Ω

h(x)F (u(x)) dx

for every u ∈ X.
It is well known that Φ is a continuously Gâteaux differentiable functional in X (at

u ∈ X) whose derivative is given by

Φ′(u)(v) :=
(

a + b

∫
Ω

|∇u(x)|p dx

) ∫
Ω

|∇u|p−2∇u(x) · ∇v(x) dx

+
∫

Ω

α(x)|u(x)|p−2u(x)v(x) dx

for every v ∈ X. Furthermore, Φ is weakly lower semicontinuous and coercive.
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On the other hand, standard arguments show that Ψ is a well-defined and continuously
Gâteaux differentiable functional whose Gâteaux derivative (at u ∈ X) is given by

Ψ ′(u)(v) :=
∫

Ω

h(x)f(u(x))v(x) dx

for every v ∈ X.
A function u : Ω → R is said to be a weak solution of (Kλ) if u ∈ X and
(

a + b

∫
Ω

|∇u(x)|p dx

) ∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x) dx

+
∫

Ω

α(x)|u(x)|p−2u(x)v(x) dx − λ

∫
Ω

h(x)f(u(x))v(x) dx = 0

for all v ∈ X. Hence, the critical points of Jλ are exactly the weak solutions of (Kλ).
Moreover, let

τ := sup
x∈Ω

dist(x, ∂Ω). (2.1)

Simple calculations show that there exists x0 ∈ Ω such that B(x0, τ) ⊂ Ω, where B(x0, τ)
is the open ball of radius τ centred at the point x0. We also define by

ωs := sN πN/2

Γ (1 + N/2)

the measure of the N -dimensional ball of radius s > 0, where Γ is the Gamma function
defined by

Γ (t) :=
∫ +∞

0
zt−1e−z dz ∀t > 0.

At this point, let θ ∈ X be the function

θ(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ∈ Ω \ B(x0, τ),
2
τ

(τ − |x − x0|) if x ∈ B(x0, τ) \ B(x0, τ/2),

1 if x ∈ B(x0, τ/2),

which will be useful in the following, in the proof of our theorems. One has that

‖θ‖p =
∫

Ω

|∇θ(x)|p dx =
2pωτ

τp

(
1 − 1

2N

)
.

Indeed, ∫
Ω

|∇θ(x)|p dx =
∫

B(x0,τ)\B(x0,τ/2)

2p

τp
dx

=
2p

τp
(meas(B(x0, τ)) − meas(B(x0, τ/2)))

=
2pωτ

τp

(
1 − 1

2N

)
.
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Finally, set

cp :=
(

meas(Ω)
ω1

)1/N

,

where ‘meas(Ω)’ stands for the Lebesgue measure of the open set Ω. As observed in [22,
p. 157], the value cp is the best constant that appears on the embedding X ↪→ Lp(Ω).

3. Infinitely many non-negative solutions

In the result below, condition (h1) states that the primitive of f must have an oscillating
behaviour near to ∞. In this case we have the existence of a sequence of arbitrarily large
weak solutions of problem (Kλ).

Theorem 3.1. Let b > 0 and let N/2 < p � N . Furthermore, let f : R → R be a
continuous function with f(0) � 0. Assume that (h∞) holds in addition to the following.

(h1) For every n ∈ N, there exist ξn, ξ′
n ∈ R, with 0 � ξn < ξ′

n and limn→∞ ξn = +∞,
such that

F (ξn) = sup
ξ∈[ξn,ξ′

n]
F (ξ).

Furthermore, assume that there exists a real constant σ∞ > 0 such that

(h2)

α∞ := lim inf
ξ→+∞

F (ξ)
ξ2p

> −σ∞,

(h3)

β∞ := lim sup
ξ→+∞

F (ξ)
ξ2p

>
σ∞

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)2p dx∫

B(x0,τ/2) h(x) dx
.

Then, for every

λ >
22(p−N)

pτ2p
(a + 1

2b + cp
p‖α‖∞)

× ω2
τ (2N − 1)2

β∞
∫

B(x0,τ/2) h(x) dx − σ∞
∫

B(x0,τ)\B(x0,τ/2) h(x)θ(x)2p dx
,

problem (Kλ) admits an unbounded sequence {un} of non-negative weak solutions in X.

Proof. Fix λ as in the conclusion, define

g(x, t) :=

{
h(x)f(t) if t � 0,

h(x)f(0) if t < 0
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for every (x, t) ∈ Ω × R, and consider the problem

−
(

a + b

∫
Ω

|∇u|p dx

)
∆pu + α(x)|u|p−2u = λg(x, u) in Ω,

u|∂Ω = 0.

⎫⎪⎬
⎪⎭ (Kg

λ)

Set

Φ(u) :=
1
p

[
a‖u‖p +

b

2
‖u‖2p +

∫
Ω

α(x)|u(x)|p dx

]

and

Ψ(u) :=
∫

Ω

( ∫ u(x)

0
g(x, t) dt

)
dx

for every u ∈ X. Abusing the notation, we denote here by Ψ the integral functional
associated with our nonlinearity as well as with the truncated function g. The weak
solutions of (Kg

λ) are the critical points of the functional

Jλ(u) := Φ(u) − λΨ(u) ∀u ∈ X.

Owing to the compact embedding of X into Lq+1(Ω), the functional Jλ is well defined
and sequentially weakly lower semicontinuous and continuously Gâteaux differentiable
in X.

Now, fix n ∈ N and define

En := {u ∈ X : 0 � u(x) � ξ′
n almost everywhere (a.e.) in Ω}.

Step 1. We can prove that the functional Jλ is bounded from below on En and that
its infimum on En is attained at un ∈ En.

Indeed, bearing in mind hypothesis (h∞), clearly one has that

F (t) � δ

(
|t| +

|t|q+1

q + 1

)
∀t ∈ R.

Hence, the inequality

Ψ(u) =
∫

Ω

( ∫ u(x)

0
g(x, t) dt

)
dx � δ‖h‖∞

(
ξ′
n +

ξ′
n

q+1

q + 1

)
meas(Ω)

holds for each u ∈ En. Then,

Jλ(u) = Φ(u) − λΨ(u)

� −λ

∫
Ω

( ∫ u(x)

0
g(x, t) dt

)
dx

� −λδ‖h‖∞

(
ξ′
n +

ξ′
n

q+1

q + 1

)
meas(Ω)
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for each u ∈ En. Thus, Jλ is lower bounded in En. It is clear that En is closed and convex,
thus weakly closed in X. Let αn := infu∈En

Jλ(u). For every k ∈ N, there exists vk ∈ En

such that
αn � Jλ(vk) < αn +

1
k

.

Hence, it follows that

Φ(vk) = λΨ(vk) + Jλ(vk)

� λδ‖h‖∞

(
ξ′
n +

ξ′
n

q+1

q + 1

)
meas(Ω) + αn +

1
k

� λδ‖h‖∞

(
ξ′
n +

ξ′
n

q+1

q + 1

)
meas(Ω) + αn + 1.

Then {vk} is a norm bounded in X. This implies that there exists a subsequence {vkm}
weakly convergent to un ∈ En, being En-weakly closed. At this point, we exploit the
weak sequentially lower semicontinuity of Jλ and we obtain that Jλ(un) = αn.

Step 2. It follows that un(x) ∈ [0, ξn] for almost every x ∈ Ω.
In fact, fix n ∈ N, define hn : R → R as

hn(t) =

⎧⎪⎨
⎪⎩

ξn if t > ξn,

t if 0 � t � ξn,

0 if t < 0,

and consider the continuous superposition operator Tn : X → En,

Tnu(x) := hn(u(x))

for every u ∈ X and x ∈ Ω. Moreover, one has that, for every u ∈ X, Tnu ∈ En. We set
v∗

n = Tnun and
Xn := {x ∈ Ω : un(x) �∈ [0, ξn]}.

If meas(Xn) = 0, our conclusion is achieved. Otherwise, suppose that meas(Xn) > 0.
Then, for almost every x ∈ Xn, one has that

ξn < un(x) � ξ′
n,

as well as that
v∗

n(x) = Tnun(x) = ξn. (3.1)

However, hypothesis (h1) yields that∫ un(x)

0
g(x, t) dt � sup

t∈[ξn,ξ′
n]

∫ t

0
g(x, s) ds =

∫ ξn

0
g(x, t) dt =

∫ v∗
n(x)

0
g(x, t) dt

for almost every x ∈ Xn. Hence,∫ un(x)

0
g(x, t) dt �

∫ v∗
n(x)

0
g(x, t) dt (3.2)
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and |∇v∗
n(x)| = 0 for almost every x ∈ Xn. Hence, from (3.2), it follows that

∫
Xn

( ∫ v∗
n(x)

un(x)
g(x, t) dt

)
dx � 0. (3.3)

Furthermore, since v∗
n(x) < |un(x)| for almost every x ∈ Xn, one has that∫

Xn

α(x)(|un(x)|p − |v∗
n(x)|p) dx � 0. (3.4)

Then, by using (3.3) and (3.4), we easily get that

Jλ(v∗
n) − Jλ(un)

= Φ(v∗
n) − Φ(un) − λ

∫
Ω

( ∫ v∗
n(x)

0
g(x, t) dt

)
dx + λ

∫
Ω

( ∫ un(x)

0
g(x, t) dt

)
dx

= −1
p

[
a

∫
Xn

|∇un(x)|p dx +
b

2

( ∫
Xn

|∇un(x)|p dx

)2

+
∫

Xn

α(x)(|un(x)|p − |v∗
n(x)|p) dx

]

− λ

∫
Xn

( ∫ v∗
n(x)

un(x)
g(x, t) dt

)
dx

� − b

2p

( ∫
Xn

|∇un(x)|p dx

)2

.

Since v∗
n ∈ En, it follows that Jλ(v∗

n) � Jλ(un). Then∫
Xn

|∇un(x)|p dx = 0.

Whence we obtain

‖v∗
n − un‖p =

∫
Ω

|∇v∗
n(x) − ∇un(x)|p dx =

∫
Xn

|∇un(x)|p dx = 0,

which means, since meas(Xn) > 0, that un(x) = v∗
n(x) ∈ [0, ξn] almost everywhere in Ω.

Step 3. We prove that un is a local minimum of Jλ in X.
To this end, let u ∈ X, let Tn be the operator defined above and let

Xn := {x ∈ Ω : u(x) �∈ [0, ξn]}.

Now, observe that

v∗
n(x) = Tnu(x) =

⎧⎪⎨
⎪⎩

ξn if u(x) > ξn,

u(x) if 0 � u(x) � ξn,

0 if u(x) < 0.

(3.5)
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By the definition of the operator Tn, one has that∫ u(x)

Tnu(x)
g(x, t) dt = 0

if x ∈ Ω \ Xn. Furthermore, if x ∈ Xn, then the following alternatives hold.

(a) If u(x) < 0, then∫ u(x)

Tnu(x)
g(x, t) dt =

∫ u(x)

0
g(x, t) dt =

∫ u(x)

0
h(x)f(0) dt = h(x)f(0)u(x) � 0.

(b) If ξn < u(x) � ξ′
n, then, by (h1), one has that∫ u(x)

Tnu(x)
g(x, t) dt =

∫ u(x)

0
g(x, t) dt −

∫ Tnu(x)

0
g(x, t) dt

=
∫ u(x)

0
g(x, t) dt −

∫ ξn

0
g(x, t) dt

=
∫ u(x)

0
g(x, t) dt − sup

t∈[ξn,ξ′
n]

∫ t

0
g(x, s) ds

� 0.

(c) If u(x) > ξ′
n, we exploit (h∞). Since q > p − 1, it follows that∫ u(x)

Tu(x)
g(x, t) dt =

∫ u(x)

ξn

g(x, t) dt � δ

∫ u(x)

ξn

(1 + tq) dt

= δ

[
(u(x) − ξn) +

1
q + 1

(u(x)q+1 − ξq+1
n )

]
.

Hence, the constant

C :=
δ

q + 1
sup
ξ�ξ′

n

(
(q + 1)(ξ − ξn) + (ξq+1 − ξq+1

n )
(ξ − ξn)q+1

)

is finite and we have that∫ u(x)

Tnu(x)
g(x, t) dt � C|u(x) − Tnu(x)|q+1

almost everywhere in Ω. We can then write that∫
Ω

( ∫ u(x)

Tnu(x)
g(x, t) dt

)
dx � Cγq+1‖u − Tnu‖q+1,

where

γ := sup
u∈X\{0}

(
∫

Ω
|u(x)|q+1 dx)1/(q+1)

‖u‖ < +∞.
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Taking into account the above computations, for every u ∈ X, one has

Jλ(u) − Jλ(Tnu) =
1
p

[
a(‖u‖p − ‖Tnu‖p) +

b

2
(‖u‖2p − ‖Tnu‖2p)

+
∫

Ω

α(x)(|u(x)|p − |Tnu(x)|p) dx

]

− λ

∫
Ω

( ∫ u(x)

Tnu(x)
g(x, t) dt

)
dx

� a

p

∫
Xn

|∇u(x)|p dx +
b

2p

( ∫
Xn

|∇u(x)|p dx

)2

− λ

∫
Ω

( ∫ u(x)

Tnu(x)
g(x, t) dt

)
dx

=
a

p

∫
Ω

|∇(u − Tnu)(x)|p dx +
b

2p

( ∫
Ω

|∇(u − Tnu)(x)|p dx

)2

− λ

∫
Ω

( ∫ u(x)

Tu(x)
g(x, t) dt

)
dx

� a

p
‖u − Tnu‖p +

b

2p
‖u − Tnu‖2p − Cγq+1λ‖u − Tnu‖q+1.

Since Tnu ∈ En, it follows that Jλ(Tnu) � Jλ(un). We then have

Jλ(u) � Jλ(un) + ‖u − Tnu‖2p

(
b

2p
− Cγq+1λ‖u − Tnu‖q+1−2p

)
.

Moreover, since Tn is continuous in X (see [32]), un = Tnun, q + 1 − 2p > 0 and

‖u − Tnu‖ � ‖u − un‖ + ‖un − Tnu‖ = ‖u − un‖ + ‖Tnun − Tnu‖,

there exists β > 0 such that

‖u − Tnu‖q+1−2p � b

4pλCγq+1

for every u ∈ X with ‖u − un‖ < β. Hence, if ‖u − un‖ < β, it follows that

Jλ(u) � Jλ(un) +
b

4p
‖u − Tnu‖2p � Jλ(un),

that is, un is a local minimum of Jλ in X.

Step 4. We prove that lim infn→∞ αn = −∞.
Exploiting (h2), there exists � > 0 such that

F (ξ) > −σ∞ξ2p
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for every ξ > �. Furthermore, let {ηk} ⊂ ]0, +∞[ be a sequence such that limk→∞ ηk =
+∞ and

lim
k→∞

F (ηk)
η2p

k

= lim sup
ξ→+∞

F (ξ)
ξ2p

. (3.6)

We can choose a subsequence {ξ′
nk

} of {ξ′
n} such that ξ′

nk
� ηk for every k ∈ N. Thus,

the function θk := ηkθ belongs to Enk
for every k ∈ N. Now, observe that

Φ(θk) � η2p
k

p

(
a +

b

2
+ cp

p‖α‖∞

)
‖θ‖2p (3.7)

for every k � k0. One then has

Jλ(θk) � η2p
k

p

(
a +

b

2
+ cp

p‖α‖∞

)
‖θ‖2p

− λ

[
F (ηk)

∫
B(x0,τ/2)

h(x) dx +
∫

B(x0,τ)\B(x0,τ/2)
h(x)F (θk(x)) dx

]

for every k � k0. Hence,

Jλ(θk) � η2p
k

p

(
a +

b

2
+ cp

p‖α‖∞

)
‖θ‖2p

− λ

[
F (ηk)

∫
B(x0,τ/2)

h(x) dx +
∫

G�

h(x)F (θk(x)) dx +
∫

G�

h(x)F (θk(x)) dx

]
,

where

G� := {x ∈ B(x0, τ) \ B(x0, τ/2) : 0 � θk(x) � �}

and

G� := {x ∈ B(x0, τ) \ B(x0, τ/2) : θk(x) > �}.

Now, by using the mean value theorem, we obtain∣∣∣∣
∫

G�

h(x)F (θk(x)) dx

∣∣∣∣ � ‖h‖∞ meas(Ω) max
t∈[0,�]

|f(t)|�. (3.8)

Inequalities (3.7) and (3.8) then yield

Jλ(θk) � η2p
k

[(
a +

b

2
+ cp

p‖α‖∞

)
‖θ‖2p

p

− λ

(
F (ηk)
η2p

k

∫
B(x0,τ/2)

h(x) dx − ‖h‖∞ meas(Ω)
η2p

k

max
t∈[0,�]

|f(t)|�

− σ∞

∫
B(x0,τ)\B(x0,τ/2)

h(x)θ(x)2p dx

)]
.
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Thus, taking into account the choice of the parameter λ, the right-hand side goes to −∞
as k → ∞. Hence, clearly one has that limk→∞ Jλ(θk) = −∞. Moreover, since

αnk
:= inf

u∈Enk

Jλ(u) � Jλ(θk),

the previous inequality implies that limk→∞ αnk
= −∞.

At this point, we can prove that the sequence of local minima unk
must be unbounded.

In fact, if it were bounded, there would be a subsequence, again denoted by unk
, weakly

convergent to some function ū ∈ X. We then have the contradiction

Jλ(ū) � lim inf
k→∞

Jλ(unk
) = −∞,

and the assertion is completely proved. �
Remark 3.2. The assumptions adopted in our results are strictly related to some

other theorems contained in [29, Chapter 7], as pointed out in § 1, where Kristály et al .
studied the existence of infinitely many weak solutions for the Dirichlet problem (see, for
instance, [29, Theorem 7.8]). In our case, due to the presence of the parameter λ, we are
able to also treat elliptic Dirichlet problems in which (1.2) is violated. See § 5 for more
details.

Remark 3.3. It is simple to see that (h2) and (h3) can be replaced by the following
(equivalent) algebraic inequality:

− lim sup
ξ→+∞

F (ξ)
ξ2p

< δ∞
Ω,2p lim inf

ξ→+∞

F (ξ)
ξ2p

, (G∞)

where we set

δ∞
Ω,2p :=

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)2p dx∫

B(x0,τ/2) h(x) dx
.

From (G∞) there exists σ∞ > 0 such that, for every

λ >
22(p−N)

pτ2p
(a + 1

2b + cp
p‖α‖∞)

× ω2
τ (2N − 1)2

β∞
∫

B(x0,τ/2) h(x) dx − σ∞
∫

B(x0,τ)\B(x0,τ/2) h(x)θ(x)2p dx
,

problem (Kλ) admits an unbounded sequence {un} of non-negative weak solutions in X.

Remark 3.4. After a careful analysis of the above proof, the reader can observe that
Theorem 3.1 also holds true in the low-dimensional case, i.e. p > N . In this setting our
conclusion can be achieved without condition (h∞), due to the presence of the compact
embedding X ↪→ C0(Ω̄). Moreover, as is easy to see, if a > 0 in the higher-dimensional
case, the growth condition can be relaxed and we can assume that p > 1.

From now on, in this section, we assume that b > 0 in addition to condition (h∞) when
the case N/2 < p � N is exploited.
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Corollary 3.5. Let f : R → R be a continuous function with f(0) � 0 such that (h1)
holds in addition to

lim inf
ξ→+∞

F (ξ)
ξ2p

= 0 and β∞ := lim sup
ξ→+∞

F (ξ)
ξ2p

> 0.

There then exists σ∞ > 0 such that, for every

λ >
22(p−N)

pτ2p
(a + 1

2b + cp
p‖α‖∞)

× ω2
τ (2N − 1)2

β∞
∫

B(x0,τ/2) h(x) dx − σ∞
∫

B(x0,τ)\B(x0,τ/2) h(x)θ(x)2p dx
,

problem (Kλ) admits an unbounded sequence {un} of non-negative weak solutions in X.

Proof. The result is an elementary consequence of Theorem 3.1. Indeed, since

lim sup
ξ→+∞

F (ξ)
ξ2p

> 0,

one can fix σ∞ > 0 such that

σ∞ <
β∞

∫
B(x0,τ/2) h(x) dx∫

B(x0,τ)\B(x0,τ/2) h(x)θ(x)2p dx
.

On the other hand,

0 = lim inf
ξ→+∞

F (ξ)
ξ2p

> −σ∞.

The proof is complete. �

Example 3.6. Let Ω be a smooth domain of R
3 and consider the continuous function

j : R → R defined by

j(t) :=

{
t4 sin 2t + 4t3 sin2 t if t > 0,

0 if t � 0,

and whose potential is

J(ξ) =
∫ ξ

0
j(t) dt = ξ4 sin2 ξ.

It is elementary to prove that all the hypotheses of Corollary 3.5 are verified. Then,
for every

λ >
49
8

(
a +

b

2

)
1

τ4(ωτ/2 − σ∞
∫

B(x0,τ)\B(x0,τ/2) θ(x)4 dx)
,

the problem

−
(

a + b

∫
Ω

|∇u|2 dx

)
∆u = λj(u) in Ω,

u|∂Ω = 0

admits an unbounded sequence {un} of non-negative weak solutions in H1
0 (Ω).
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In the next consequence we assume the stronger condition that

lim
ξ→+∞

F (ξ)
ξ2p

= +∞.

Corollary 3.7. Let f : R → R be a continuous function with f(0) � 0 such that (h1)
holds. Furthermore, assume that

lim
ξ→+∞

F (ξ)
ξ2p

= +∞.

Then, for every λ > 0, (Kλ) admits an unbounded sequence {un} of non-negative weak
solutions in X.

Example 3.8. Let Ω be a smooth domain of R
3 and consider the continuous function

k : R → R defined by

k(t) :=

{
t4(1/2 − sin(t3/4)) if t > 0,

0 if t � 0.

An easy computation ensures that all the hypotheses of Corollary 3.7 are verified; in
particular, we have that∫ ξ

0 k(t) dt

ξ4 =
4(81ξ3 − 2142ξ3/2 + 20 944)

243ξ11/4 cos ξ3/4

− 68(81ξ3 − 1386ξ3/2 + 6160)
729ξ7/2 sin ξ3/4

+
209 440
729ξ4

∫ ξ

0

sin t3/4
√

t
dt +

ξ

10
→ +∞

as ξ → +∞. Then, for every λ > 0, the problem

−
(

a + b

∫
Ω

|∇u|2 dx

)
∆u = λk(u) in Ω,

u|∂Ω = 0

admits an unbounded sequence {un} of non-negative weak solutions in H1
0 (Ω).

Finally, the following proposition is a consequence of Theorem 3.1.

Proposition 3.9. Let {an}, {bn} be two sequences in ]0, +∞[, an < bn < an+1 (for
all n � n0, for some n0 ∈ N), limn→∞ bn = +∞ and limn→∞ bn/an = +∞. Moreover,
let ϕ1, ϕ2 ∈ C1([0, 1]) be two non-negative and non-zero functions such that ϕi(0) =
ϕi(1) = ϕ′

i(0) = ϕ′
i(1) = 0 (for i = 1, 2), and define the function r : R → R as

r(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ1

(
t − bn

an+1 − bn

)
if t ∈

⋃
n�n0

[bn, an+1],

−ϕ2

(
t − an+1

bn+1 − an+1

)
if t ∈

⋃
n�n0

]an+1, bn+1[,

0 otherwise.
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Furthermore, let p > N and assume that there exists a constant σ∞ > 0 such that
maxs∈[0,1] ϕ2(s) < σ∞ and

max
s∈[0,1]

ϕ1(s) >
σ∞

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)2p dx∫

B(x0,τ/2) h(x) dx
.

Then, for every

λ >
22(p−N)

pτ2p

(
a +

b

2

)

× ω2
τ (2N − 1)2

maxs∈[0,1] ϕ1(s)
∫

B(x0,τ/2) h(x) dx − σ∞
∫

B(x0,τ)\B(x0,τ/2) h(x)θ(x)2p dx
,

the problem

−
(

a + b

∫
Ω

|∇u|p dx

)
∆pu = λh(x)y(u) in Ω,

u|∂Ω = 0,

⎫⎪⎬
⎪⎭ (Gλ)

where
y(u) := |u|2p−1(2pr(u) + ur′(u)),

admits an unbounded sequence {un} of non-negative weak solutions in X.

Proof. Let {an}, {bn} be two positive sequences satisfying our assumptions. We claim
that all the hypotheses of Theorem 3.1 are verified. Indeed, one has that

F (ξ) :=
∫ ξ

0
y(t) dt = ξ2pr(ξ) ∀ξ ∈ R

+.

Moreover, direct computations ensure that

lim inf
ξ→+∞

F (ξ)
ξ2p

= lim inf
ξ→+∞

r(ξ) = − max
s∈[0,1]

ϕ2(s) > −σ∞

and

lim sup
ξ→+∞

F (ξ)
ξ2p

= lim sup
ξ→+∞

r(ξ) = max
s∈[0,1]

ϕ1(s) >
σ∞

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)2p dx∫

B(x0,τ/2) h(x) dx
.

Hence, for every parameter λ, as in the conclusion, Theorem 3.1 and Remark 3.3 guar-
antee the existence of an unbounded sequence of weak solutions of (Gλ). �

A concrete application of the above result is presented in the following.

Example 3.10. Let Ω ∈ R
N be an open set of smooth boundary and let h ∈ L∞(Ω)

with ess infx∈Ω h(x) > 0. Furthermore, take

an := n! and bn := n!n
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for every n � 2. Now, define ϕ1, ϕ2 ∈ C1([0, 1]) as

ϕ1(s) := αe4e1/s(s−1), ϕ2(s) := βe4e1/s(s−1) ∀s ∈ [0, 1],

where β > 0 and

α >
(β + 1)

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)4 dx∫

B(x0,τ/2) h(x) dx
.

Set p > N and

r(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ1

(
t − n!n

(n + 1)! − n!n

)
if t ∈

⋃
n�2

[n!n, (n + 1)!],

−ϕ2

(
t − (n + 1)!

(n + 1)!(n + 1) − (n + 1)!

)
if t ∈

⋃
n�2

](n + 1)!, (n + 1)!(n + 1)[,

0 otherwise.

Then, for every

λ >
22(p−N)

pτ2p

(
a +

b

2

)
ω2

τ (2N − 1)2

α
∫

B(x0,τ/2) h(x) dx − (β + 1)
∫

B(x0,τ)\B(x0,τ/2) h(x)θ(x)2p dx
,

the problem

−
(

a + b

∫
Ω

|∇u|p dx

)
∆pu = λh(x)y(u) in Ω,

u|∂Ω = 0,

where
y(u) := |u|2p−1(2pr(u) + ur′(u)),

admits an unbounded sequence {un} of non-negative weak solutions in X.

Remark 3.11. Instead of the function θ used in our results, it is possible to work
with a suitably assigned cut-off function ϑ ∈ C∞

0 (Ω), such that ϑ ∈ X. More precisely,
if we assume that there exists a compact subset D ⊂ supp(ϑ), such that 0 � ϑ(x) � 1
for every x ∈ Ω and ϑ|D = 1, condition (h3) in Theorem 3.1 can be replaced by the
hypothesis

β∞ := lim sup
ξ→+∞

F (ξ)
ξ2p

>
σ∞

∫
Ω\D

h(x)θ(x)2p dx∫
D

h(x) dx
,

obtaining that, for every

λ >
1
p

(
a +

b

2
+ cp

p‖α‖∞

)
‖ϑ‖

β∞
∫

D
h(x) dx − σ∞

∫
supp(ϑ)\D

h(x)θ(x)2p dx
,

problem (Kλ) admits an unbounded sequence {un} of non-negative weak solutions in X.
A direct (and well-known) construction of ϑ is recalled in [6].
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4. Arbitrarily small non-negative solutions

By slightly modifying the assumptions in Theorem 3.1, we can also obtain the existence
of a sequence of non-trivial arbitrarily small weak solutions. In particular, in this case,
we require that the primitive of f has an oscillating behaviour near the origin expressed
by condition (k1). Assuming that p > N/2, the statements of our result are as follows.

Theorem 4.1. Let f : R → R be a continuous function, with f(0) = 0, satisfying the
following condition.

(k1) For every n ∈ N, there exist ξn, ξ′
n ∈ R, with 0 � ξn < ξ′

n and limn→∞ ξ′
n = 0, such

that
F (ξn) = sup

ξ∈[ξn,ξ′
n]

F (ξ).

Furthermore, assume that there exists a real constant σ0 such that

(k2)

lim inf
ξ→0+

F (ξ)
ξp

> −σ0,

(k3)

β0 := lim sup
ξ→0+

F (ξ)
ξp

>
σ0

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)p dx∫

B(x0,τ/2) h(x) dx
.

Then, for every

λ >
2p−N

pτp

(
a +

b

2
+ cp

p‖α‖∞

)
ωτ (2N − 1)

β0
∫

B(x0,τ/2) h(x) dx − σ0
∫

B(x0,τ)\B(x0,τ/2) h(x)θ(x)p dx
,

problem (Kλ) admits a sequence {un} of non-negative and non-trivial weak solutions
strongly convergent to 0 in X and such that limn→∞ ‖un‖∞ = 0.

Proof. The first steps of our proof are similar to [23, Theorem 2.1]. For our purposes,
we start by choosing

q ∈
]
2p − 1,

(p − 1)N + p

N − p

[
if p < N . In the other cases it is enough to choose q > 2p − 1. Furthermore, fix λ as in
the conclusions and fix t̄ > 0. By our assumptions on the data, fixing t̄ > 0, there exists
δ > 0 such that, for every 0 � t � t̄ and almost every x ∈ Ω, one has

|h(x)f(t)| � δ.

Without loss of generality, we suppose that, for every n ∈ N, max{ξ′
n, ξn} � t̄. Let λ be

as in the condition, and define g : Ω × R → R as

g(x, t) :=

⎧⎪⎨
⎪⎩

h(x)f(t̄) if t > t̄,

h(x)f(t) if 0 � t � t̄,

0 if t < 0.
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Whence, for almost every x ∈ Ω and t ∈ R, it turns out that

|g(x, t)| � δ. (4.1)

Now, consider the problem (Kg
λ),

−
(

a + b

∫
Ω

|∇u|p dx

)
∆pu + α(x)|u|p−2u = λg(x, u) in Ω,

u|∂Ω = 0,

and set

Jλ(u) := Φ(u) − λΨ(u) ∀u ∈ X,

where

Φ(u) :=
1
p

[
a‖u‖p +

b

2
‖u‖2p +

∫
Ω

α(x)|u(x)|p dx

]

and

Ψ(u) :=
∫

Ω

( ∫ u(x)

0
g(x, t) dt

)
dx

for every u ∈ X. Again abusing the notation, we denote here by Ψ the integral functional
associated with the truncated map g. Clearly, the weak solutions of (Kg

λ) are the critical
points of the energy functional Jλ.

Owing to (4.1) and the compact embedding of X into Lq+1(Ω) (respectively, into
C0(Ω̄) if p > N), the functional Jλ is well defined and sequentially weakly lower semi-
continuous and continuously Gâteaux differentiable in X.

Taking into account (4.1) and (k1) and using the same methods as applied in the proof
of Theorem 3.1, one can prove that, for every n ∈ N, Jλ admits a local minimum un that
belongs to the set

En := {u ∈ X : 0 � u(x) � ξ′
n a.e. in Ω}.

More precisely, every un assumes its values in the interval [0, ξn] except for a null Lebesgue
measure subset of Ω. Set αn := infu∈En

Jλ(u) = Jλ(un). For every u ∈ En, by using (4.1),
one has that

Jλ(u) = Φ(u) − λΨ(u)

� −λ

∫
Ω

( ∫ u(x)

0
g(x, t) dt

)
dx

� −δλ meas(Ω)ξ′
n.

Then, since −δλ meas(Ω)ξ′
n � αn � 0, it follows that

lim
n→∞

αn = 0. (4.2)
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At this point we observe that

Φ(un) = λΨ(un) + Jλ(un)

� λ

∫
Ω

( ∫ un(x)

0
g(x, t) dt

)
dx + αn

� δλ meas(Ω)ξ′
n + αn.

Hence, the last inequality yields that

lim
n→∞

‖un‖ = 0.

To obtain the condition, it is enough to prove that such local minima are pairwise distinct.
From now on, technicality and method are different with respect to [23, Theorem 2.1];
see Remark 4.7 for more details.

By (k2), there exists ρ̄ > 0 such that

F (ξ) > −σ0ξ
p (4.3)

for every ξ ∈]0, ρ̄[. Now, let {ζk} ⊂ ]0, +∞[ be a sequence such that limk→∞ ζk = 0 and

lim
k→∞

F (ζk)
ζp
k

= lim sup
ξ→0+

F (ξ)
ξp

. (4.4)

Now, observe that

Φ(θk) � ζp
k

p

(
a +

b

2
+ cp

p‖α‖∞

)
‖θ‖p (4.5)

for every k � k1. Then, due to (4.5), one has that

Jλ(θk) � ζp
k

p

(
a +

b

2
+ cp

p‖α‖∞

)
‖θ‖p

− λ

(
F (ζk)

∫
B(x0,τ/2)

h(x) dx +
∫

B(x0,τ)\B(x0,τ/2)
h(x)F (θk(x)) dx

)

for every k � k1, and, owing to (4.3), it follows that

Jλ(θk) � ζp
k

p

(
a +

b

2
+ cp

p‖α‖∞

)
‖θ‖p

− λ

(
F (ζk)

∫
B(x0,τ/2)

h(x) dx − σ0ζ
p
k

∫
B(x0,τ)\B(x0,τ/2)

h(x)θ(x)p dx

)

for k > k2. One then has that

Jλ(θk) � ζp
k

[(
a +

b

2
+ cp

p‖α‖∞

)
‖θ‖p

p

− λ

(
F (ζk)

ζp
k

∫
B(x0,τ/2)

h(x) dx − σ0

∫
B(x0,τ)\B(x0,τ/2)

h(x)θ(x)p dx

)]
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for every k sufficient large. But, fixing n ∈ N, since

λ >
2p−N

pτp

(
a +

b

2
+ cp

p‖α‖∞

)
ω2

τ (2N − 1)
β0

∫
B(x0,τ/2) h(x) dx − σ0

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)p dx

,

there exists a positive integer k̄ such that ζk̄ � ξ′
n (thus, the function θk̄ := ζk̄θ belongs

to En) and Jλ(θk̄) < 0. At this point, since

αn = Jλ(un) = inf
u∈En

Jλ(u) � Jλ(θk̄) < 0,

bearing in mind (4.2), there exists a subsequence of {un}, again denoted by {un}, of
pairwise distinct elements. Now, clearly {un} is a sequence of weak solutions for the
truncated problem (Kg

λ). On the other hand, we have that

0 = ess inf
x∈Ω

un(x) < ess sup
x∈Ω

un(x) � t̄

for every n ∈ N. In conclusion, {un} is a sequence of weak solutions for the initial
problem (Kλ). �

Remark 4.2. We emphasize that, also when 1 < p � N , no restriction on the growth
of f , related to the critical exponent, is assumed in Theorem 4.1 if a > 0. Moreover,
Theorem 1.1 follows immediately from the above result.

Remark 4.3. In analogy to Remark 3.3, (k2) and (k3) can be replaced by the relation

− lim sup
ξ→0+

F (ξ)
ξp

< δ0
Ω,p lim inf

ξ→0+

F (ξ)
ξp

, (G0)

where

δ0
Ω,p :=

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)p dx∫

B(x0,τ/2) h(x) dx
.

From (G0) there exists σ0 > 0 such that, for every

λ >
2p−N

pτp

(
a +

b

2
+ cp

p‖α‖∞

)
ωτ (2N − 1)

β0
∫

B(x0,τ/2) h(x) dx − σ0
∫

B(x0,τ)\B(x0,τ/2) h(x)θ(x)p dx
,

problem (Kλ) admits a sequence {un} of non-negative and non-trivial weak solutions
strongly convergent to 0 in X and such that limn→∞ ‖un‖∞ = 0.

The following example is a direct consequence of Theorem 4.1.

Example 4.4. Fix α and σ0 to be two positive real constants, with σ0 < α. Set

an :=
1

n!n
and bn :=

1
n!
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for every n � 2, and define f : R → R as

f(t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4α(b2
n − b2

n+1)
t − bn+1

(an − bn+1)2
if bn+1 � t � an + bn+1

2
,

4α(b2
n − b2

n+1)
an − t

(an − bn+1)2
if

an + bn+1

2
< t � an,

0 otherwise.

As observed in [21], one has that

lim inf
ξ→0+

F (ξ)
ξ2 = α and lim sup

ξ→0+

F (ξ)
ξ2 = +∞.

Moreover,
F (an+1) = sup

ξ∈[an+1,bn+1]
F (ξ).

Then, from Theorem 4.1, for every λ > 0, the problem

−
(

a + b

∫
Ω

|∇u|2 dx

)
∆u = λf(u) in Ω,

u|∂Ω = 0

admits a sequence {un} of non-negative weak solutions strongly convergent to 0 in H1
0 (Ω)

and such that limn→∞ ‖un‖∞ = 0.

We end this section with analogous statements to Proposition 3.9 and Example 3.10,
written for the behaviour of the potential at 0.

Proposition 4.5. Let {an}, {bn} be two sequences in ]0, +∞[ such that bn+1 <

an < bn (for all n � n0, for some n0 ∈ N), limn→∞ bn = 0 and limn→∞ bn/an = +∞.
Moreover, let ϕ1, ϕ2 ∈ C1([0, 1]) be two non-negative and non-zero functions such that
ϕi(0) = ϕi(1) = ϕi

′(0) = ϕi
′(1) = 0 for i = 1, 2. Furthermore, let g : R → R be the

function defined by

g(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ1

(
t − bn+1

an − bn+1

)
if t ∈

⋃
n�n0

[bn+1, an],

−ϕ2

(
t − an+1

bn+1 − an+1

)
if t ∈

⋃
n�n0

]an+1, bn+1[,

0 otherwise.

Assume that there exists a constant σ0 > 0 such that maxs∈[0,1] ϕ2(s) < σ0 and

max
s∈[0,1]

ϕ1(s) >
σ0

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)p dx∫

B(x0,τ/2) h(x) dx
.

Then, for every

λ >
2p−N

pτp

(
a+

b

2

)
ωτ (2N − 1)

maxs∈[0,1] ϕ1(s)
∫

B(x0,τ/2) h(x) dx − σ0
∫

B(x0,τ)\B(x0,τ/2) h(x)θ(x)p dx
,

https://doi.org/10.1017/S0013091513000722 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000722


802 G. Molica Bisci and P. F. Pizzimenti

the problem

−
(

a + b

∫
Ω

|∇u|p dx

)
∆pu = λh(x)y(u) in Ω,

u|∂Ω = 0,

where
y(u) := |u|p−1(pg(u) + ug′(u)),

admits a sequence {un} of non-negative and non-trivial weak solutions strongly conver-
gent to 0 in X and such that limn→∞ ‖un‖∞ = 0.

Example 4.6. Let Ω ⊂ R
3 be an open set of smooth boundary and let h ∈ L∞(Ω)

such that ess infx∈Ω h(x) > 0. Furthermore, take {an} and {bn} to be two real sequences,
as in Example 4.4. Now, define ϕ1, ϕ2 ∈ C1([0, 1]) as follows:

ϕ1(s) := αe4e1/s(s−1), ϕ2(s) := βe4e1/s(s−1) ∀s ∈ [0, 1],

where β > 0 and

α >
(β + 1)

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)2 dx∫

B(x0,τ/2) h(x) dx
.

Set

r(t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ1

(
t − 1/(n + 1)!

1/(n!n) − 1/(n + 1)!

)
if t ∈ A,

−ϕ2

(
t − 1/((n + 1)!(n + 1))

1/(n + 1)! − 1/((n + 1)!(n + 1))

)
if t ∈ B,

0 otherwise,

where

A :=
⋃
n�2

[
1

(n + 1)!
,

1
n!n

]
and B :=

⋃
n�2

]
1

(n + 1)!(n + 1)
,

1
(n + 1)!

[
.

Then, for every

λ >
2−N

τ2

(
a +

b

2

)
ωτ (2N − 1)

α
∫

B(x0,τ/2) h(x) dx − (β + 1)
∫

B(x0,τ)\B(x0,τ/2) h(x)θ(x)2 dx
,

the problem

−
(

a + b

∫
Ω

|∇u|2 dx

)
∆u = λh(x)y(u) in Ω,

u|∂Ω = 0,

where
y(u) := u(2r(u) + ur′(u)),

admits a sequence {un} of non-negative and non-trivial weak solutions strongly conver-
gent to 0 in H1

0 (Ω) and such that limn→∞ ‖un‖∞ = 0.
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Remark 4.7. As pointed out in § 1, in [23] He and Zou studied the existence of a
sequence of weak solutions for (Kλ). We note that the result in [23] can be easily rewrit-
ten for Kirchhoff-type problems involving the p-Laplacian operator without technical
difficulties. For instance, we can prove (for every λ > 0) the existence of infinitely small
weak solutions of (Kλ), requiring in Theorem 4.1 the following condition instead of (k2)
and (k3).

(jj) There exist a constant M � 0 and a sequence {tn} ⊂ R
+, with limn→∞ tn = 0,

such that

lim
n→∞

F (tn)
tpn

= +∞

and
inf

ξ∈[0,tn]
F (ξ) � −MF (tn).

We note that the proof of this fact can be shown by arguing exactly as in [23, The-
orem 2.1], where the case p = 2 and α ≡ 0 was analysed. In particular, the technical
condition (jj) guarantees that, in the above notation, αn < 0 for every n ∈ N. More pre-
cisely, fix n0 ∈ N, and choose a compact set K ⊂ Ω with meas(K) = (M +1) meas(Ω\K)
and a function v ∈ X such that

v(x) :=

⎧⎪⎨
⎪⎩

1 x ∈ K,

0 � v(x) � 1 x ∈ Ω \ K,

0 otherwise.

We now fix λ > 0. By the former condition of (jj), there exist n̄ ∈ N and some positive
constant C such that tn � ξ′

n0
and

ess inf
x∈Ω

∫ tn

0
g(x, t) dt > Ctpn � (M + 1)

λ meas(K)
Φ(tnv)

for every n � n̄, where

Φ(tnv) =
tpn
p

(
a

∫
Ω

|∇v(x)|p dx +
btpn
2

( ∫
Ω

|∇v(x)|p dx

)2

+
∫

Ω

α(x)|v(x)|p dx

)
.

Taking into account the latter condition of (jj), for every n � n̄, we have that

−Ψ(tnv)
Φ(tnv)

= −
∫

K
(
∫ tn

0 g(x, t) dt) dx

Φ(tnv)
−

∫
Ω\K

(
∫ tnv(x)
0 g(x, t) dt) dx

Φ(tnv)

� −
∫

K
ess infx∈Ω(

∫ tn

0 g(x, t) dt) dx

Φ(tnv)

−
∫

Ω\K
ess infx∈Ω inft∈[0,tn](

∫ t

0 g(x, s) ds) dx

Φ(tnv)
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� −
∫

K
ess infx∈Ω(

∫ tn

0 g(x, t) dt) dx

Φ(tnv)
+ M

∫
Ω\K

ess infx∈Ω(
∫ tn

0 g(x, t) dt) dx

Φ(tnv)

= −
(1/(M + 1)) meas(K) ess infx∈Ω(

∫ tn

0 g(x, t) dt)
Φ(tnv)

< − 1
λ

.

Whence, since tnv ∈ En0 and Jλ(tnv) < 0, we have that αn0 := infu∈En0
Jλ(u) < 0.

Our variational setting, as well as the methods used within the proof, is very similar to
the one exploited in [23]. However, it is easy to see that Theorem 4.1 and the analogous
version of [23, Theorem 2.1] for p-Laplacian Kirchhoff-type equations are mutually inde-
pendent due to the different assumptions at 0. Indeed, requiring (jj), one immediately
has that

lim sup
ξ→0+

F (ξ)
ξp

= +∞.

We now observe that Theorem 4.1 can be applied to suitable nonlinearities f , for which
the above asymptotical condition is not valid, as pointed out, for instance, in Example 4.6.
On the other hand, following [23], one can also consider cases in which

lim inf
ξ→0+

F (ξ)
ξp

= −∞.

Of course, this relation contradicts the assumption that

lim inf
ξ→0+

F (ξ)
ξp

> −σ0

in Theorem 4.1. For instance, adopting condition (jj) instead of (k2) and (k3) in Theo-
rem 4.1, the problem

−
(

a + b

∫
Ω

|∇u|p dx

)
∆pu = λf(u) in Ω,

u|∂Ω = 0,

where f : R → R is the function defined by

f(t) :=

⎧⎨
⎩

(
p + 1

p

)
t1/p sin t−1/(p+1) −

(
1

p + 1

)
t1/p(p+1) cos t−1/(p+1) if t > 0,

0 otherwise,

and p > (1 +
√

5)/2, admits a sequence {un} of non-negative and non-trivial weak
solutions for every λ > 0 that is strongly convergent to 0 in X and such that
limn→∞ ‖un‖∞ = 0. In this case, a direct computation ensures that

lim inf
ξ→0+

F (ξ)
ξp

= −∞,

where F (ξ) := ξ(p+1)/p sin ξ−1/(p+1), for every ξ > 0.
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Remark 4.8. Since in our approach we just require the condition that

β0 >
σ0

∫
B(x0,τ)\B(x0,τ/2) h(x)θ(x)p dx∫

B(x0,τ/2) h(x) dx
,

together with a suitable restriction on the value of the parameter λ, we emphasize that,
contrary to the result contained in [23], we can also consider classes of problems in which

lim sup
ξ→0+

F (ξ)
ξp

< +∞.

See, for instance, Proposition 4.5.

5. The autonomous Dirichlet problem with p-Laplacian

This last section is devoted to the study of the autonomous Dirichlet problem (Df
λ),

−∆pu = λf(u) in Ω,

u|Ω = 0.

First of all, conserving our previous notation, we note that the value of

Ip :=
∫

B(x0,τ)\B(x0,τ/2)
θ(x)p dx

can be easily computed, yielding

Ip =
2p

τp

∫
B(x0,τ)\B(x0,τ/2)

(τ − |x − x0|)p dx = 2pNωτB(1/2,1)(N, p + 1),

where B(1/2,1)(N, p + 1) denotes the generalized incomplete beta function given by

B(1/2,1)(N, p + 1) :=
∫ 1

1/2
tN−1(1 − t)p dt;

see, for instance, [4] for a direct computation.
The first result that we present here can be viewed as an analogue of Theorem 3.1

written for autonomous p-Laplacian equations. More precisely, the existence of infinitely
many solutions for (Df

λ), for every λ sufficiently large, is established, requiring a suitable
control at ∞ of the behaviour of the function ξ−pF (ξ) with respect to a suitable constant
depending on the geometry of Ω.

Theorem 5.1. Let f : R → R be a continuous function with f(0) � 0 such that (h1)
holds. Furthermore, assume that there exists a real constant σ∞ > 0 such that

(h′
2)

γ∞ := lim inf
ξ→+∞

F (ξ)
ξp

> −σ∞,

(h′
3)

β′
∞ := lim sup

ξ→+∞

F (ξ)
ξp

> 2N+pNB(1/2,1)(N, p + 1)σ∞.
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Then, for every

λ >
2p−N

pτp

(
ωτ (2N − 1)

β′
∞ωτ/2 − 2pNωτB(1/2,1)(N, p + 1)σ∞

)
,

problem (Df
λ) admits an unbounded sequence {un} of non-negative weak solutions in X.

Remark 5.2. Note that Obersnel and Omari [35, Theorem 2.2] proved the existence of
two sequences of solutions for the Dirichlet problem (for p = 2) under some constraints on
the potential at ∞. One of their hypotheses implies a sign condition on f . More precisely,
the nonlinearity is assumed to be definitively positive on the real half-line. Clearly, this
assumption cannot be verified in our setting due to the presence of condition (h1).

Corollary 5.3. Let f : R → R be a continuous function with f(0) � 0 such that (h1)
holds. Furthermore, assume that

lim inf
ξ→+∞

F (ξ)
ξp

= 0 and β′
∞ := lim sup

ξ→+∞

F (ξ)
ξp

> 0.

There then exists σ∞ > 0 such that, for every

λ >
2p−N

pτp

(
ωτ (2N − 1)

β′
∞ωτ/2 − 2pNωτB(1/2,1)(N, p + 1)σ∞

)
,

problem (Df
λ) admits an unbounded sequence {un} of non-negative weak solutions in X.

Remark 5.4. We explicitly observe that in the case 1 < p � N , in Theorem 5.1 and
Corollary 5.3, we tacitly assume that condition (h∞) is verified.

Remark 5.5. We recall that in [12] and, subsequently, in [5], Cammaroto et al . and
Bonanno, respectively, through a different approach and taking advantage of the compact
embedding of X ↪→ C0(Ω̄), when p > N , studied the Dirichlet problem (Df

λ). Clearly,
their results cannot be applied to the case 1 < p � N . In any case, in the low-dimensional
context our theorems are also mutually independent with respect to others obtained in
the cited works, since we do not assume that (1.3) holds true. Furthermore, contrary
to [5, Theorem 1.1], in Theorem 5.1 the interval of parameters for which (Df

λ) admits
infinitely many weak solutions is always unbounded.

Remark 5.6. We emphasize that in Theorem 5.1, in order to obtain infinitely many
weak solutions for λ sufficiently large, we require an oscillating behaviour of the potential
F at ∞ (expressed by (h1)) in addition to the strict algebraic inequality

− lim sup
ξ→+∞

F (ξ)
ξp

< δ∞
N,p lim inf

ξ→+∞

F (ξ)
ξp

,

where δ∞
N,p := 2N+pNB(1/2,1)(N, p + 1).

The next theorem is an immediate consequence of Theorem 4.1.
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Theorem 5.7. Let f : R → R be a continuous function, with f(0) = 0, such that (k1)
and (k2) hold in addition to

β0 := lim sup
ξ→0+

F (ξ)
ξp

> 2N+pNB(1/2,1)(N, p + 1)σ0.

Then, for every

λ >
2p−N

pτp

(
ωτ (2N − 1)

β0ωτ/2 − 2pNωτB(1/2,1)(N, p + 1)σ0

)
,

problem (Df
λ) admits a sequence {un} of non-negative and non-trivial weak solutions

strongly convergent to 0 in X and such that limn→∞ ‖un‖∞ = 0.

From Theorem 5.7 we derive the following result.

Corollary 5.8. Let f : R → R be a continuous function with f(0) = 0 and such that
condition (k1) holds. Furthermore, assume that

α0 := lim inf
ξ→0+

F (ξ)
ξp

> 0.

There then exists σ0 > 0 such that, for every

λ >
2p−N

pτp

(
ωτ (2N − 1)

β0ωτ/2 − 2pNωτB(1/2,1)(N, p + 1)σ0

)
,

problem (Df
λ) admits a sequence {un} of non-negative and non-trivial weak solutions

strongly convergent to 0 in X and such that limn→∞ ‖un‖∞ = 0.

In conclusion, we refer the reader to [25–28,39] for contributions related to the topics
treated in this work.
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16. G. D’Agùi and G. Molica Bisci, Existence results for an elliptic Dirichlet problem, Le
Matematiche 66(1) (2011), 133–141.

17. G. Dai and D. Liu, Infinitely many positive solutions for a p(x)-Kirchhoff-type equation,
J. Math. Analysis Applic. 359(2) (2009), 704–710.

18. G. Dai and J. Wei, Infinitely many non-negative solutions for a p(x)-Kirchhoff-type
problem with Dirichlet boundary condition, Nonlin. Analysis 73 (2010), 3420–3430.

19. P. D’Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation
with real analytic data, Invent. Math. 108 (1992), 247–262.

20. L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, Volume 19
(American Mathematical Society, Providence, RI, 1998).

21. F. Faraci, A note on the existence of infinitely many solutions for the one-dimensional
prescribed curvature equation, Stud. Univ. Babes-Bolyai Math. 4 (2010), 83–90.

22. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,
2nd edn (Springer, 1983).

23. X. He and W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Non-
lin. Analysis 70 (2008), 1407–1414.

24. G. Kirchhoff, Mechanik (Teubner, Leipzig, 1883).
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31. T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic
trasmission problem, Appl. Math. Lett. 16 (2003), 243–248.

32. M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space
into another is continuous, J. Funct. Analysis 33 (1979), 217–229.

33. F. I. Njoku and F. Zanolin, Positive solutions for two-point BVPs: existence and
multiplicity results, Nonlin. Analysis 13 (1989), 1329–1338.

34. F. I. Njoku, P. Omari and F. Zanolin, Multiplicity of positive radial solutions of a
quasilinear elliptic problem in a ball, Adv. Diff. Eqns 5 (2000), 1545–1570.

35. F. Obersnel and P. Omari, Positive solutions of elliptic problems with locally oscillat-
ing nonlinearities, J. Math. Analysis Applic. 323 (2006), 913–929.

36. P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem
with an oscillatory potential, Commun. PDEs 21 (1996), 721–733.

37. K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the
Yang index, J. Diff. Eqns 221 (2006), 246–255.

38. B. Ricceri, A general variational principle and some of its applications, J. Computat.
Appl. Math. 113 (2000), 401–410.

39. B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global
Optim. 46 (2010), 543–549.

40. J. Saint Raymond, On the multiplicity of the solutions of the equation −∆u = λf(u),
J. Diff. Eqns 180 (2002), 65–88.

41. Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff-type problems via
invariant sets of descent flow, J. Math. Analysis Applic. 317 (2006), 456–463.

https://doi.org/10.1017/S0013091513000722 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000722



