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Standing waves, localised near the shoreline
of a water basin, and asymptotic quasimodes
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In this work, formal asymptotic solutions of a problem for linear water waves in a
bounded basin are constructed. The solutions have the form of asymptotic quasimodes
and are used for the description of standing water waves localised near the shoreline.
Such short-wavelength quasimodes exist only for a discrete set of frequencies, which are
determined by means of a quantisation-type condition. Some numerical results are also
addressed.
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1. Introduction

In the linear approximation of small amplitudes the velocity potential U satisfies the
Laplace equation

∇2U(x, y, z, t) = 0, in W, (1.1)

where W is a water basin with the free surface F and the bottom B, figure 1(a). The
shoreline L is a smooth curve in the (X, Z)-plane having the length l. The boundary
condition on the free surface takes the form (see Kuznetsov, Maz’ya & Vainberg (2002,
p. 9))

g
∂U
∂nF

+ ∂2U
∂t2

∣∣∣∣
F

= 0, (1.2)

where g is the acceleration due to gravity, and nF is directed opposite to the acceleration
due to gravity. The boundary condition on the bottom B reads

∂U
∂N

∣∣∣∣
B

= 0, (1.3)

where N is the normal to B directed into the water domain W.
† Email addresses for correspondence: lyalinov@yandex.ru, m.lyalinov@spbu.ru
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Figure 1. (a) A water basin W with the shoreline L, the free surface F and the bottom B. (b) The coordinate
system near the shoreline of the basin.

The problem for the non-stationary potential is to be supplemented by initial conditions.
In what follows, however, we study a problem for the stationary velocity potential u so that

U(x, y, z, t) = Re{u(x, y, z)e−iωt}, (1.4)

where ω is the circular frequency. Namely, the complex potential u satisfies the Laplace
equation,

∇2u = 0, (1.5)

the boundary condition on the free surface

∂u
∂nF

− γ0u
∣∣∣∣
F

= 0, (1.6)

where γ0 = ω2/g, and
∂u
∂N

∣∣∣∣
B

= 0, (1.7)

on the bottom. We assume that the shoreline L is a smooth curve on F with its natural
parametrisation, r0(s), where s is the length, s ∈ [0, l) and r0(s) = r0(s + l). The curve is
closed and smooth, and its curvature k(s) is a l-periodic function of s, k(s) = k(s + l). Let
the maximal value of the curvature be a−1

0 = maxs |k(s)|. One of our basic assumptions
herein is that

γ0 � a−1
0 , (1.8)

which implies, in particular, that the frequency ω = √
gγ0 is large. Actually it is possible

but not necessary to introduce dimensionless coordinates and parameters in our problem
normalising, for instance, the coordinates as x → x/a0, y → y/a0, z → z/a0, γ0 → γ0a0,
preserving the same notations x, y, z, γ0 for them.

In this work, we deal with high-frequency (or short-wavelength) solutions of problem
(1.5)–(1.7) assuming condition (1.8). As we will show below, the homogeneous problem
at hand may have non-trivial solutions only for some specific set of values of γ0,
which plays the role of the spectral parameter in problem (1.5)–(1.7). The corresponding
formal asymptotic solutions are called quasimodes. These solutions are localised near
the shoreline L (as γ0 a0 � 1) and l-periodic in s. In the following sections we give
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Standing waves and quasimodes

an asymptotic expression for the quasimodes and find the coefficients in the leading
terms of the asymptotic series. It turns out that the desired solutions exist provided
that the spectral parameter (and, therefore, the frequency) takes values from a discrete
set which is described by a short-wavelength (or semiclassical) ‘quantisation’ condition.
Similar conditions are known in quantum mechanics, in particular, in the form of
Bohr–Sommerfeld quantisation conditions as well as in the high-frequency theory of
the whispering gallery modes discussed by Babich & Buldyrev (1991, § 7.4). We note
that our spectral problem is a close relative of a traditional problem for calculation of
eigenvalues and eigenfunctions of a Laplacian in a bounded domain with appropriate
boundary conditions.

We make use of the constructed quasimodes attributing them to the physical meaning
of standing waves localised near the shoreline. We also discuss some numerical and
theoretical results about standing waves with the aid of the obtained asymptotic solutions.

1.1. Comments on the literature and description of the content
From the physical point of view (see Huntley, Guza & Thornton 1981), progressive edge
waves with the same wave period and wavelength travel in the opposite direction and
form standing waves with nodes located along the shoreline. Standing and edge waves
essentially influence the formation of morphodynamic patterns near shorelines.

To our mind, the most impressive experimental results dealing with the existence and
formation of the edge and standing waves are discussed by Yeh (1986), making use of the
experimental set-up, or in the natural observations by Huntley et al. (1981). Standing waves
in a water basin with a closed shoreline may be formed into eigenmodes that are periodic
with respect to s which is the coordinate along the shoreline. Experimentally, existence
of such low frequency eigenmodes (Faraday water waves) was shown, in particular, in a
recent paper (Liu & Wang 2023), where the authors also established interesting links with
collective excitations in Bose–Einstein condensates. To our knowledge, the pioneering
asymptotic results on a standing wave (Stokes-type mode) near the shorelines of the water
basins have been obtained by Dobrohotov (1986) and his colleagues (see also a somewhat
extended version in Dobrohotov, Zhevandrov & Simonov (1985)). The author is grateful
to Professor S. Dobrohotov of the Russian Academy of Sciences for important discussions
on the subject. Theoretical description of the phenomena dealing with the edge waves is
also given in the works by Guza & Bowen (1978) and Rockliff (1978) and also in classical
papers by Ursell (1952) and Roseau (1958). Clearly, the mentioned works represent a far
from exhaustive list of publications on standing and edge water waves.

In the second section we describe an ansatz for the desired asymptotic solutions. The
large parameter γ � 1 is proportional to γ0 supposing that ν := γ0/γ = O(1) as γ � 1.
The asymptotic expansion for the solutions is represented by power series with respect to
the parameter γ−1 multiplied by a rapidly varying exponent. We substitute the asymptotic
series with unknown coefficients into the problem (1.5)–(1.7) supplemented by localisation
and periodicity conditions. Equating terms of the same powers of γ−1, we arrive at a
recurrent sequence of the boundary value problems for the unknown coefficients. Notice
that we actually determine merely a few of the first terms in the expansion.

In the next sections, we study carefully the problems for the coefficients. To this
end, we make use of the trapped edge modes, Ursell’s solutions in an angle. The
corresponding problems for the coefficients are solvable provided that the inhomogeneity
terms in the problems are orthogonal to Ursell’s eigenfunctions. In this way, we obtain
differential equations for the coefficients. The latter equations are supplemented by
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Figure 2. Orthogonal to L, cross-section W∗ of the water domain W near the shoreline; s = const.

quasiperiodicity conditions. As a result, we arrive at the expressions for the leading
term and the first correction as well as at a ‘quantisation’ condition, known also as the
Bohr–Sommerfeld–Maslov quantisation condition, for the large parameter γ .

We then consider a particularly simple form of a constructed quasimode and give some
simple physical analysis supplemented by numerical results. The elevation of the free
surface corresponding to the main quasimodes is also addressed,

η(x, z, t) = −g−1 ∂

∂t
Re{u(x, 0, z)e−iωt}, (x, 0, z) ∈ F. (1.9)

In addition, we also discuss some numerical results for the elevation based on the obtained
asymptotic formulae.

2. Coordinate system near the shoreline L and asymptotic expansion for solutions

We intend to construct solutions that are localised near the shoreline L. To this end, we
suppose that a cross-section of the water domain W by a plane orthogonal to the shoreline
L at any point s is locally an angle of the constant openingΦ (0 < Φ < π/2), see figure 2.
We make use of the polar coordinates (r, ϕ) in the angle W∗ with the polar axis coinciding
with bottom line B∗, ϕ = 0. Now the coordinates (s, r, ϕ) in W near the shoreline L are
connected with the Cartesian coordinates, r = (x, y, z),

r(s, r, ϕ) = r0(s)+ n(s)r cos[ϕ −Φ] + Nr sin[ϕ −Φ], (2.1)

where t(s) = dr0(s)/ds and n(s) = k(s)(dt(s)/ds) are unit vectors tangent to L and normal
to L at the point s of the plane contour L, N is unit vector normal to the free surface F.

It is natural to introduce the reduced coordinate

R = γ r (2.2)

and the Laplace equation in the coordinates s,R, ϕ (see appendix A for details) takes the
form
∂2u
∂s2 + 1

γ

k′(s)R cos[ϕ −Φ]
1 − k(s)(R/γ ) cos[ϕ −Φ]

∂u
∂s

+ γ 2 (1 − k(s)(R/γ ) cos[ϕ −Φ])2
1
R
∂

∂R
R
∂u
∂R

+ γ (−k(s)) cos[ϕ −Φ](1 − k(s)(R/γ ) cos[ϕ −Φ])
∂u
∂R

+ γ 2(1 − k(s)(R/γ ) cos[ϕ −Φ])2
1

R2
∂2u
∂ϕ2 + γ k(s) sin[ϕ −Φ]

1
R
∂u
∂ϕ

= 0. (2.3)
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Standing waves and quasimodes

The boundary condition on the free surface F now reads(
1
R
∂u
∂ϕ

− ν(γ )u
)∣∣∣∣
ϕ=Φ

= 0, (2.4)

where ν(γ ) = γ0/γ = O(1), γ � 1 and on the bottom,

1
R
∂u
∂ϕ

∣∣∣∣
ϕ=0

= 0. (2.5)

The problem (2.3)–(2.5) is to be complemented by the localisation condition for u,

|u| ≤ e−dR, as R → ∞, d > 0, (2.6)

uniformly with respect to (s, ϕ). We note that we expect that the asymptotic solution u is
of O(e−d γ δ ) provided R ∼ O(γ δ) with some δ > 0, which means localisation of solutions
near the contour L in W. The periodicity condition for u with respect to s takes the form

u(s + l,R, ϕ; γ ) = u(s,R, ϕ; γ ). (2.7)

As R → 0, the solution u satisfies a Meixner’s type condition, u = c(s)+ Os(Rμ), for
some μ > 0.

Formal asymptotic solutions of the problem (2.3)–(2.7) are sought in the form (ansatz)

u(s,R, ϕ; γ ) = eiαγ sw(s,R, ϕ; γ ),
w(s,R, ϕ; γ ) = w0(s,R, ϕ)+ γ−1w1(s,R, ϕ)+ γ−2w2(s,R, ϕ)+ · · · .

}
(2.8)

Notice that w(s,R, ϕ; γ ) varies in s more slowly than eiαγ s as γ → ∞. The unknown
constant α as well as the functions wj will be found below.

At the same time we imply that the spectral parameter γ0 admits the expansion

γ0 = γ + δ1

γ
+ δ2

γ 2 + · · · (2.9)

and ν(γ ) = γ0/γ = 1 + δ1/γ
2 + δ2/γ

3 + · · · . It is worth noticing that there is no term
of O(1) in expansion (2.9) as γ � 1. Recall that the specific values of the parameter γ
and, hence, for the spectral parameter γ0 will be chosen below.

We write (2.3) in the form

∂2u
∂s2 + γ 2�2 u + γ (−k(s))R cos[ϕ −Φ](2 − k(s)(R/γ ) cos[ϕ −Φ])�2u

+ γ (−k(s))(1 − k(s)(R/γ ) cos[ϕ −Φ])Pu + 1
γ

k′(s)R cos[ϕ −Φ]
1 − k(s)(R/γ ) cos[ϕ −Φ]

∂u
∂s

= 0,

(2.10)

where we introduced the notations

�2u = 1
R
∂

∂R
R
∂u
∂R

+ 1
R2
∂2u
∂ϕ2 ,

Pu = cos[ϕ −Φ]
∂u
∂R

− sin[ϕ −Φ]
R

∂u
∂ϕ
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

Substituting the expansions (2.8), (2.9) into (2.10) (see also (A3) in Appendix A) and the
boundary conditions (2.4)–(2.7), equating terms of the same powers of γ , we arrive at a
recurrent sequence of problems for the unknowns w0,w1, . . . and α, δ1, δ2, . . . .
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2.1. The recurrent sequence of problems
In the leading approximation one has

−�2w0(s,R, ϕ)+ α2 w0(s,R, ϕ) = 0,(
1
R
∂w0

∂ϕ
− w0

)∣∣∣∣
ϕ=Φ

= 0,

1
R
∂w0

∂ϕ

∣∣∣∣
ϕ=0

= 0,

|w0| ≤ c e−d R, as R → ∞, d > 0,

w0(s + l,R, ϕ) = e−iαγ l w0(s,R, ϕ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

where the latter Floquet condition follows from periodicity of u in s, w0 is bounded as R →
0, (R, ϕ) ∈ W∗ (figure 2). The constant α from the ansatz and in (2.12) is still unknown.
The problem for w1 is non-homogeneous, it reads

−�2w1(s,R, ϕ)+ α2 w1(s,R, ϕ) = F1(s,R, ϕ),(
1
R
∂w1

∂ϕ
− w1

)∣∣∣∣
ϕ=Φ

= 0,

1
R
∂w1

∂ϕ

∣∣∣∣
ϕ=0

= 0,

|w1| ≤ c e−d R, as R → ∞, d > 0,

w1(s + l,R, ϕ) = e−iαγ lw1(s,R, ϕ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

where

F1(s,R, ϕ) = 2iα
∂w0(s,R, ϕ)

∂s
+ (−2k(s))R cos[ϕ −Φ]�2w0(s,R, ϕ)+ (−k(s))Pw0(s,R, ϕ) (2.14)

with �2w0(s,R, ϕ) = α2w0(s,R, ϕ) and w1 is bounded as R → 0.
For w2 one has

−�2w2(s,R, ϕ)+ α2 w2(s,R, ϕ) = F2(s,R, ϕ),(
1
R
∂w2

∂ϕ
− w2

)∣∣∣∣
ϕ=Φ

= f2(s,R),

1
R
∂w2

∂ϕ

∣∣∣∣
ϕ=0

= 0,

|w2| ≤ c e−d R, as R → ∞, d > 0,

w2(s + l,R, ϕ) = e−iαγ lw2(s,R, ϕ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)
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Standing waves and quasimodes

where

F2(s,R, ϕ) = 2iα
∂w1(s,R, ϕ)

∂s
+ (−2k(s))R cos[ϕ −Φ]�2w1(s,R, ϕ)+ (−k(s))Pw1(s,R, ϕ)

+ ∂2w0(s,R, ϕ)
∂s2 + k2(s)R2 cos2[ϕ −Φ]�2w0(s,R, ϕ)

+ k2(s)R cos[ϕ −Φ]Pw0(s,R, ϕ)+ iαk′(s)R cos[ϕ −Φ]w0(s,R, ϕ),
(2.16)

f2(s,R) = δ1 w0(s,R, Φ) (2.17)

with �2w1(s,R, ϕ) = α2 w1(s,R, ϕ)− F1(s,R, ϕ) and w2 is bounded as R → 0.
Problems for wj, δj−1 with j > 2 are written in a similar manner; they are omitted herein.

3. Solutions of the problems for the leading terms

The problem (2.12) for w0 is homogeneous and it may have non-trivial solutions only for
some special values of the yet undetermined parameters α and γ (γ � 1). Solutions of
this problem are sought in the form

w0(s,R, ϕ) = A0(s)v(R, ϕ). (3.1)

The unknown v solves the problem

−�2v(R, ϕ) = −α2v(R, ϕ),(
1
R
∂v

∂ϕ
− v

)∣∣∣∣
ϕ=Φ

= 0,

1
R
∂v

∂ϕ

∣∣∣∣
ϕ=0

= 0,

|v| ≤ c e−d R, as R → ∞, d > 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

and v is bounded as R → 0, whereas A0(s) satisfies the Floquet conditions A0(s + l) =
e−iαγ lA0(s). The equation for A0 is obtained below.

The problem (3.2) is a spectral problem to determine eigenfunctions v for some values of
the spectral parameter E = −α2. So we need to study the spectrum of the two-dimensional
Laplacian −�2 in the angle W∗ (figure 2) with the boundary conditions in (3.2). We
remind readers that a self-adjoint operator L = L∗ attributed to the problem (3.2) for the
Laplacian is well studied and its spectrum is exhaustively described.

3.1. Eigenfunctions and eigenvalues of the operator L
The self-adjoint operator L = L∗ attributed to the problem (3.2) can be defined by means
of its sesquilinear form aL that is semibounded, densely defined and closable in L2(W∗),

aL[ f , g] =
∫

W∗
∇f · ∇ḡ dx dy −

∫
F∗

f ḡ dσ, (3.3)

f , g ∈ H1(W∗). Some details on the definition and on the spectral description, having for
us a convenient form, could be found in the works Lyalinov (2021, 2023) and also in the
references in these works.
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The essential spectrum σe(L) coincides with the half-line [−1,∞), whereas the discrete
component σd(L) consists of a finite number NΦ of simple eigenvalues {Em},m =
1 . . .NΦ , Em = −α2

m with αm = 1/sin(Φ[2m − 1]), 0 < Φ < π/2. The eigenfunctions
hm(r, ϕ) are also known:

hm(R, ϕ) =
m−1∑
j=0

Cj (exp (−αmR cos[2Φj − ϕ])+ exp (−αmR cos[2Φj + ϕ])) . (3.4)

The constants Cj are determined by substitution to the boundary condition for ϕ = Φ,
C0 = 1,

Cj = 1
2

j∏
k=1

sin(Φ[2k − 1])− 1/αn

sin(Φ[2k − 1])+ 1/αn
. (3.5)

The eigenfunctions hm, known as edge waves, were found by Ursell (1952), where they
were written in a slightly different form (see also Evans 1989). However, the solution
h1(R, ϕ) is the Stokes edge wave known much earlier (see Stokes 1846),

h1(R, ϕ) = e−α1R cosϕ, α1 = 1
sinΦ

, E1 = −α2
1 . (3.6)

The total number NΦ of the eigenfunctions is as follows, NΦ = 1 as π/6 ≤ Φ < π/2,
NΦ = 2 as π/10 ≤ Φ < π/6, etc. The number NΦ increases by one provided decreasing
Φ goes through the value π/2[2j − 1], j = 2, 3, . . . .

It is convenient to normalise the eigenfunctions vn(R, ϕ) = hn(R, ϕ)‖hn‖−1, where

‖hn‖2 =
∫ Φ

0
dϕ

∫ ∞

0
dR R|hn(R, ϕ)|2. (3.7)

In what follows we shall use the normalised eigenfunctions vn(R, ϕ).
It should be noticed, however, that, contrary to the analogous problem studied in

Dobrohotov (1986) and Dobrohotov et al. (1985), we consider the case of the constant
angleΦ between the free surface F∗ and the bed B∗ at the point of the shoreline. The reason
is in the fact that for the varying angle the number of eigenvalues of the problem in W∗(s)
may change with s, which inevitably leads to inapplicability of the ansatz (2.8), (2.9).
Indeed, as mentioned above, for some threshold angles Φj = π/2[2j − 1], j = 2, 3, . . . an
additional eigenvalue of the problem (3.2) arises from (or disappears into) the edge of the
essential spectrum. It is obvious that this situation requires some special study and the
corresponding ansatz must be appropriately modified.

3.2. Solvability condition for the problems (2.13), (2.15) and equation for A0

We take solutions of the problem (2.12) in the form

w0(s,R, ϕ) = A(m)0 (s)vm(R, ϕ), m = 1, 2, . . .NΦ (3.8)

with still unknown A(m)0 (s) implying that α = αm in the problems (2.12), (2.13) and (2.15).
The problems (2.13), (2.15) are inhomogeneous and their spectral parameter −α2

takes the eigenvalues −α2
m so that the homogeneous problems have non-trivial

solutions A(m)1 (s)vm(R, ϕ) and A(m)2 (s)vm(R, ϕ) correspondingly with some unknown
A(m)1 (s),A(m)2 (s). As a result, the problems (2.13), (2.15) are solvable if some solvability
conditions are satisfied.
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Standing waves and quasimodes

Consider an auxiliary problem related to problems (2.13), (2.15), i.e.

−�2v(R, ϕ) = −α2
m v(R, ϕ)+ F(R, ϕ),(

1
R
∂v

∂ϕ
− v

)∣∣∣∣
ϕ=Φ

= f (R),

1
R
∂v

∂ϕ

∣∣∣∣
ϕ=0

= 0,

|v| ≤ c e−d R, as R → ∞, d > 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

where v is bounded as R → 0, m = 1, 2, . . .NΦ . We note that F and f as well as v may
parametrically depend on s assuming that these functions are square integrable over their
domains.

We multiply the equation in (3.9) by vm and integrate over W∗, make use of Green’s
formula and the boundary conditions. Indeed, we have∫

W∗
dVF vm =

∫
W∗

dV(−�2v + α2
mv) vm =

∫
W∗

dVv(−�2 vm + α2
m vm)

−
∫
∂W∗

dS
(
∂v

∂n
vm − ∂vm

∂n
v

)
= −

∫
F∗

dSf vm|F∗, (3.10)

where we used the equations and the boundary conditions. In this way we find the
solvability condition,

(F , vm)L2(W∗) + ( f , vm|F∗)L2(0,∞) = 0 (3.11)

or ∫ Φ

0
dϕ

∫ ∞

0
dρ ρF(ρ, ϕ) vm(ρ, ϕ)+

∫ ∞

0
dτ f (τ ) vm(τ,Φ) = 0. (3.12)

The inhomogeneity terms are orthogonal to solutions of the adjoint homogeneous
problem.

Recalling that w0(s,R, ϕ) = A(m)0 (s)vm(R, ϕ),m = 1, 2, . . .NΦ, we exploit the
solvability condition (3.12) for the problem (2.13), i.e. (F1, vm)L2(W∗) = 0, and arrive at
the equation for A(m)0 (s),

2iαm
dA(m)0 (s)

ds
− Vmk(s)A(m)0 (s) = 0, (3.13)

where

Vm =
∫ Φ

0
dϕ

∫ ∞

0
dρ ρ

(
2α2

mρ cos[ϕ −Φ] |vm(ρ, ϕ)|2 + [Pvm](ρ, ϕ)vm(ρ, ϕ)
)
.

(3.14)

Equation (3.13) is supplemented by the Floquet condition A(m)0 (s + l) = e−iαmγ lA(m)0 (s).
Equation (3.13) is easily integrated:

A(m)0 (s) = Cm
0 exp

{
−i

Vm

2αm

∫ s

0
k(τ ) dτ

}
. (3.15)
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M.A. Lyalinov

From the Floquet condition, with necessity we find that

αmγ
l

2π
− Vm

4παm

∫ l

0
k(τ ) dτ = n, (3.16)

where the integral
∫ l

0 k(τ ) dτ = 2π for a simple closed smooth curve L, then the
‘quantisation’ condition for γ reads

αmγ
l

2π
− Vm

2αm
= n, (3.17)

where n is entire and n is large because γ is large. Equation (3.17) specifies a discrete set of
values γ = γmn for which the problem at hand has asymptotic solutions from the desired
class,

γmn = 2π

αml

(
Vm

2αm
+ n

)
(3.18)

with m = 1, . . .NΦ , n ∈ Z, n � 1.
In the leading approximation the sought-for quasimodes have the form

u(s, r, ϕ; γmn) = Cmn
0 eiαmγmns exp

({
−i

Vm

2αm

∫ s

0
k(τ ) dτ

})
vm(γmnr, ϕ)(1 + O(γ−1

mn )),

(3.19)

and the spectral parameter

γ0 = γmn + δ1,m/γmn + · · · (3.20)

in (1.6) takes discrete values, where large γmn are found from the ‘quantisation’ condition
(3.17) in the form (3.18) and δ1,m is still unknown. A linear combination of the quasimodes
in (3.19) also gives a formal asymptotic solution of the problem (1.5)–(1.7) which is
bounded and localised near the shoreline, l-periodic in s,

u(s, r, ϕ) =
∑
m,n

Cmn
0 exp(iαmγmns) exp

({
−i

Vm

2αm

∫ s

0
k(τ ) dτ

})
vm(γmnr, ϕ)(1 + O(γ−1

mn )).

(3.21)

4. Study of the problems for w1 and w2; calculation of δ1

As α = αm, the problem for w1 is solvable, its solution can be represented in the form

w1(s,R, ϕ) = A(m)1 (s)vm(R, ϕ)+ w̃1(s,R, ϕ), (4.1)

where w̃1(s,R, ϕ) is a particular solution of the inhomogeneous problem and
A(m)1 (s)vm(R, ϕ) with unknown A(m)1 (s) solves the homogeneous problem (2.13). Having
w̃1(s,R, ϕ) at hand, we apply the solvability condition (3.12) to the inhomogeneous
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Standing waves and quasimodes

problem (2.15) for w2 with α = αm and arrive at the equation for A(m)1 (s),

2iαm
dA(m)1 (s)

ds
− Vmk(s)A(m)1 (s) = −B(m)1 (s)− δ1,mA(m)0 (s)v∗m, (4.2)

where δ1 = δ1,m,

v∗m =
∫ ∞

0
dτ |vm(τ,Φ)|2, (4.3)

B(m)1 (s) = d2A(m)0 (s)
ds2 + k2(s)A(m)0 (s)

×
∫ Φ

0
dϕ

∫ ∞

0
dρ ρ

(
2α2

mρ
2 cos2[ϕ −Φ] |vm(ρ, ϕ)|2

+ ρ cos[ϕ −Φ] [Pvm](ρ, ϕ)vm(ρ, ϕ)
)

+ iαmk′(s)A(m)0 (s)
∫ Φ

0
dϕ

∫ ∞

0
dρ ρ2 cos[ϕ −Φ] |vm(ρ, ϕ)|2

+ 2iαm
d
ds

∫ Φ

0
dϕ

∫ ∞

0
dρ ρw̃1(s, ρ, ϕ) vm(ρ, ϕ)

+ (−k(s))
∫ Φ

0
dϕ

∫ ∞

0
dρ ρ{2ρ cos[ϕ −Φ]�2w̃1(s, ρ, ϕ)

+ [Pw̃1](s, ρ, ϕ)} vm(ρ, ϕ). (4.4)

Equation (4.2) is to be supplemented by the Floquet condition

A(m)1 (s + l) = e−iαmγ lA(m)1 (s), (4.5)

where γ was found from the ‘quantisation’ condition (3.17).
Problem (4.2), (4.5) is, in general, not solvable because the homogeneous problem has a

non-trivial solution A(m)0 (s) = exp{−i(Vm/2αm)
∫ s

0 k(τ ) dτ } . The right-hand side in (4.2)

must satisfy a solvability condition, i.e. should be orthogonal to solution A(m)0 (s) of the
adjoint homogeneous equation. Such a solvability condition is deduced in a traditional

way. One should multiply equation (4.2) by A(m)0 (s) and integrate over the period [0, l)
on both sides then integrate by parts in the left-hand side and make use of the Floquet

condition for A(m)0 (s) and A(m)1 (s), thus arrive at∫ l

0
ds(B(m)1 (s)+ δ1,mA(m)0 (s)v∗m)A

(m)
0 (s) = 0. (4.6)

From condition (4.6) we determine δ1 = δ1,m,

δ1,m = − 1
v∗ml

∫ l

0
ds B(m)1 (s)A(m)0 (s). (4.7)

It is easy to show that δ1,m is real.
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Now a solution of the solvable problem (4.2), (4.5) can be represented in the form

A(m)1 (s) = Cm
1 A(m)0 (s)+ Cm(s)A

(m)
0 (s), (4.8)

Cm
1 A(m)0 (s) solves the homogeneous equation, Cm

1 is a constant, whereas Cm(s) is the
l-periodic solution of the equation

2iαm
dCm(s)

ds
= B(m)1 (s)

A(m)0 (s)
+ δ1,mv∗m. (4.9)

Solution Cm(s) of the latter equation is easily found by quadrature and it is l-periodic in
view of the solvability condition (4.6) so that A(m)1 (s) satisfies the Floquet condition. The
solution A(m)1 (s) is then constructed.

The procedure for construction of wj and δj as j > 1 is similar, however, with obvious
modifications and formal complications.

5. Physical and numerical analysis

We can compute asymptotic approximations for circular frequencies (‘eigenfrequencies’)
corresponding to quasimodes (3.19) with γmn taken from (3.18). They are given by

ωmn = √
gγmn =

√
2πg
αml

(
Vm

2αm
+ n

)
. (5.1)

Taking into account the leading asymptotic term, we obtain the stationary potential with
harmonic dependence on time in the form

Umn(s, r, ϕ, t) = cos
{
ωmnt − αmγmns + Vm

2αm

∫ s

0
k(τ ) dτ

}
vm(γmnr, ϕ)(1 + O(γ−1

mn )),

(5.2)
m = 1, 2, . . .NΦ , n is entire with large |n|, vm(R, ϕ) are the normalised eigenfunctions of
the spectral problem for the operator L. From the latter expression (5.2) we find the forms
of elevation η corresponding to different m, n,

ηmn(s, r, t) = ωmn

g
sin

{
ωmnt − αmγmns + Vm

2αm

∫ s

0
k(τ ) dτ

}
vm(γmnr, Φ)(1 + O(γ−1

mn )).

(5.3)
In what follows we consider the main sequence of frequencies ω1n, i.e. as m = 1,

denoting them ωn := ω1n with n ∈ Z and large |n|, γn = ω2
n/g. It corresponds to the main

Stokes edge wave v1 and to the first eigenvalue E1 = −α2
1. We have

ωn = √
gγn =

√
2πg
lα1

(
V1

2α1
+ n

)
. (5.4)

We note that α1 = 1/sinΦ and V1 = 1/sinΦ cosΦ so that V1/2α1 = 1/2 cosΦ.
From (5.3) for the free surface elevation of a standing wave we then find

ηn(s, r, t) = ωn

g
sin

{
ωnt − α1γns + V1

2α1

∫ s

0
k(τ ) dτ

}
e−α1γnr cosϕ

‖h1‖ (1 + O(γ−1
n )), (5.5)

where α1 = 1/ sinΦ and n is the number of a quasimode, ‖h1‖2 = tanΦ/4α2
1. Asymptotic

formula (5.5) for the main sequence of quasimodes ηn is quite elementary and can be easily
exploited for numerical computation.
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n 1 2 3 4 5 6 7 8 9 10

fn = ωn

2π
1.05 1.34 1.58 1.79 1.98 2.15 2.31 2.46 2.60 2.73

γna0 0.73 1.19 1.65 2.12 2.59 3.05 3.52 3.98 4.45 4.9

Table 1. Frequencies (Hz) computed by means of (5.6) and values of the dimensionless large parameter
γ a0 = γna0.

5.1. Some simple numerical results based on the asymptotic formulae
We consider the free water surface in a wok (an axially symmetric paraboloid).
Experimental results on the parametric excitation of the eigenoscillations in such a water
basin is discussed in Liu & Wang (2023). Contrary to our short-wavelength situation,
these experimental results were obtained for long wavelengths. Nevertheless, we make
use of some data from Liu & Wang (2023) for our numerical estimates and calculations.
The shape of parabolic axial cross-section of the bottom is described by y = a ρ2 with
a = 1.6 m−1, ρ is the distance from the axis of the paraboloid. The free water surface
F is a circle of radius ρ = a0, a0 = 0.164 m. The maximal depth of such a basin is
y0 = 0.043 m. These data have been exploited for the experimental observations of
low-frequency standing waves in Liu & Wang (2023).

In our model, the eigenfrequencies fn = ωn/2π are computed by means of an
elementary formula

fn = ωn

2π
= 1

2π

√
g sinΦ

r0

(
1

2 cosΦ
+ n

)
, (5.6)

where sinΦ = 0.4647, cosΦ = 0.8855 have been computed from the data above. In
table 1 we represent the results of calculation of the eigenfrequencies fn. We also give
values of the large parameter γna0 = γ r0 in table 1. For the values of n in table 1 for
which the dimensionless parameter γ r0 is sufficiently large, say, greater than three, the
asymptotic formulae can be applied.

In the situation at hand with Φ ∈ [π/10,π/6) (Φ = arcsin(0.4647) = 0.1538π ≈
27.7◦) there exist two eigenvalues E1 = −α2

1 with α1 = 1/sinΦ and E2 = −α2
2 with

α2 = 1/sin(3Φ) of the auxiliary problem in the angle W∗. We consider herein the main
sequence of the elevation forms corresponding to E1, from (5.5) we have, for s = ψa0,
ψ ∈ [0, 2π), α1γna0 = n + 1/2 cosΦ, a simple formula for the elevation

ηn(s, r, t) ∼ An sin {ωnt − nψ} exp
(

−
(

n + 1
2 cosΦ

)
r

a0
cosΦ

)
, (5.7)

n = 1, 2, . . . n is large enough so that γnr0 is large in table 1, r is the distance from the
circular shoreline L on the free surface F, ψ is the angle corresponding to a point s on the
shoreline, An = ωn/g‖h1‖.

In Figures 3–5 we give the numerical results for the eigenforms, standing waves for the
free surface elevation are represented in accordance with the formula above, where An =
{40.53; 44.83; 48.68} as n = 4, 5, 6, respectively. The number of nodes and antinodes is
exactly specified by the number n.
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Figure 3. Eigenform for the elevation as n = 4.
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Figure 4. Eigenform for the elevation as n = 5.

6. Concluding remarks

(i) In this work we have developed a formal asymptotic procedure that enables one to
obtain simple approximate formulae for the free surface elevation corresponding
to quasimodes of the velocity potential. We have introduced an asymptotic
parameter γ a0 of the problem which is large provided high-frequency stationary
oscillations are studied. The respective solutions exist provided quantisation-type
condition (3.17) is valid for the large parameter γ . This condition contains the
geometrical term 2Vm/αm that, it seems, cannot be found without asymptotic
solution of the problem at hand, e.g. from phenomenological arguments.
Having constructed the corresponding quasimodes, we described some of the

988 A22-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

43
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.438


Standing waves and quasimodes

–0.15

–0.15

–0.10
–0.05

–40

–20

0

20

40

0
0.05

0.10
0.15

–0.10
–0.05

0
0.05

0.10
0.15

Figure 5. Eigenform for the elevation as n = 6.

high-frequency eigenoscillations of the free surface localised near the shoreline of a
basin.
Asymptotic solutions localised near shorelines of water basins were also discussed
in Anikin et al. (2019), however, by means of Maslov’s canonical operator and for
an alternative model. It seems that the most recent asymptotic results on the waves
localised near shorelines are discussed in Dobrokhotov, Minenkov & Votiakova
(2024) (see also the references therein). The authors make use of the shallow water
model and the corresponding equations. The results include formal asymptotics
of solutions to the linearised shallow water problem in the form of the localised
standing waves. The asymptotic solutions to the corresponding nonlinear problem
are then given by means of Carrier–Greenspan transformations.

(ii) From the mathematical point of view, in order to assert that the constructed
quasimodes and asymptotic formulae for the high frequencies correspond to some
actual eigenfunctions and eigenvalues of the operator attributed to the problem
(1.5)–(1.7), additional work is required. Such a proof seems to be a difficult task
(Lazutkin 1993) and it is not considered herein. It is known from the literature
(Babich & Buldyrev 1991) that it was possible to prove that some sequences of actual
eigenvalues have the asymptotics coinciding with those constructed on a formal way
in the analogous problem for the whispering-gallery modes, Babich & Buldyrev
(1991, chapter 7). The analogous results for the eigenfunctions in such a problem are
not known to the author.

(iii) We have constructed a complex-valued asymptotic solution of the problem for
time-harmonic oscillations,

u(s,R, ϕ; γ )e−iωt = ei[αγ s−ωt]{w0(s,R, ϕ)+ γ−1w1(s,R, ϕ)+ γ−2w2(s,R, ϕ)+ · · · }.
(6.1)

This solution can be interpreted as a progressive edge wave localised near
the shoreline L propagating in the direction of the vector t(s) = dr0(s)/ds with
wave velocity Vprogr = ω/αγ . However, considering the real-valued potential
U(x, y, z, t) = Re{u(x, y, z)e−iωt} which actually has the physical meaning as that
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specifying the velocity of a fluid, V = ∇U, it makes no sense to speak about a
progressive wave, see also (5.2). It seems that only the term standing wave has a
physical meaning in the theory of linear water edge waves. In this respect, it ought
to clarify what is implied by a progressive wave in the linear model that is observed
experimentally, for instance, by Huntley et al. (1981).

(iv) It is obvious that the nonlinearity and viscosity as well as the surface tension effects
cannot be described by the accepted linear model of water waves of small amplitude
in this work. Nevertheless, the asymptotic results for the quasimodes of the free
surface elevation are given by elementary formulae which can be easily exploited
for numerical simulations.
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Appendix A. Laplace equation in the orthogonal curvilinear coordinates (s, r, ϕ) and
asymptotic expansion

The metric tensor attributed to the coordinates (s, r, ϕ) takes the form

{gij} =
⎛
⎝h2(s, r, ϕ) 0 0

0 1 0
0 0 r2

⎞
⎠ , (A1)

where h(s, r, ϕ) = 1 − k(s)r cos[ϕ −Φ]. The Laplacian in these coordinates reads

� = 1
rh(s, r, ϕ)

(
∂

∂s
r

h(s, r, ϕ)
∂

∂s
+ ∂

∂r
rh(s, r, ϕ)

∂

∂r
+ 1

r2
∂

∂ϕ
rh(s, r, ϕ)

∂

∂ϕ

)
. (A2)

We substitute the asymptotic expansion (2.8) for u into (2.10),

∂2

∂s2 eiαγ s
(

w0(s,R, ϕ)+ γ−1w1(s,R, ϕ)+ γ−2w2(s,R, ϕ)+ · · ·
)

+ γ 2eiαγ s
(

1
R
∂

∂R
R
∂

∂R
+ 1

R2
∂2

∂ϕ2

)

×
(

w0(s,R, ϕ)+ γ−1w1(s,R, ϕ)+ γ−2w2(s,R, ϕ)+ · · ·
)

+ γ eiαγ s(−k(s))R cos[ϕ −Φ](2 − k(s)(R/γ ) cos[ϕ −Φ])
(

1
R
∂

∂R
R
∂

∂R
+ 1

R2
∂2

∂ϕ2

)
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×
(

w0(s,R, ϕ)+ γ−1w1(s,R, ϕ)+ γ−2w2(s,R, ϕ)+ · · ·
)

+ γ eiαγ s(−k(s))(1 − k(s)(R/γ ) cos[ϕ −Φ])
{

cos[ϕ −Φ]
∂

∂R
− sin[ϕ −Φ]

R
∂

∂ϕ

}

×
(

w0(s,R, ϕ)+ γ−1w1(s,R, ϕ)+ γ−2w2(s,R, ϕ)+ · · ·
)

+ 1
γ

k′(s)R cos[ϕ −Φ]
1 − k(s)(R/γ ) cos[ϕ −Φ]

∂

∂s

× eiαγ s
(

w0(s,R, ϕ)+ γ−1w1(s,R, ϕ)+ γ−2w2(s,R, ϕ)+ · · ·
)

= 0. (A3)

Performing differentiation and equating terms of like powers in γ , we arrive at the
equations in (2.12)–(2.15).

REFERENCES

ANIKIN, A., DOBROHOTOV, S., NAZAYKINSKY, V. & TSVETKOVA, A. 2019 Asymptotics of the
eigenfunctions of the operator ∇D(x)∇ in 2D domains degenerating on their boundaries and billiards with
semi-rigid walls. Differ. Equ. 55 (5), 660–672.

BABICH, V. & BULDYREV, V. 1991 Short-Wavelength Diffraction Theory. Springer Series on Wave
Phenomena. Springer.

DOBROHOTOV, S. 1986 Asymptotic behaviour of water surface waves trapped by shores and irregularities of
the bottom relief. Sov. Phys. Dokl. 31 (7), 537–539.

DOBROHOTOV, S., ZHEVANDROV, P. & SIMONOV, K. 1985 Stokes edge waves in closed aqua-basins. In
Theoretical and Experimental Studies of Long-Wave Processes, pp. 13–19. FESC, USSR Academy of
Sciences (in Russian).

DOBROKHOTOV, S., MINENKOV, D. & VOTIAKOVA, M. 2024 Asymptotics of long nonlinear coastal waves
in basins with gentle shores. Russ. J. Math. Phys. 31 (1), 79–93.

EVANS, D.V. 1989 Edge waves over a sloping beach. Q. J. Mech. Appl. Maths 42, 131–142.
GUZA, R. & BOWEN, A. 1978 Finite amplitude edge waves. J. Mar. Res. 34, 269–293.
HUNTLEY, D., GUZA, R. & THORNTON, E. 1981 Field observations of surf beat. 1. Progressive edge waves.

J. Geophys. Res. 86 (C7), 6451–6466.
KUZNETSOV, N., MAZ’YA, V. & VAINBERG, B. 2002 Linear Water Waves. Cambridge University Press.
LAZUTKIN, V.F. 1993 KAM Theory and Semiclassical Approximations to Eigenfunctions. Springer.
LIU, X. & WANG, X. 2023 Polygonal patterns of Faraday water waves analogous to collective excitations in

Bose–Einstein condensates. Nat. Phys. 20, 287–293.
LYALINOV, M.A. 2021 A comment on eigenfunctions and eigenvalues of the Laplace operator in an angle with

robin boundary conditions. J. Math. Sci. 252, 646–653.
LYALINOV, M.A. 2023 Localized waves propagating along an angular junction of two thin semi-infinite elastic

membranes terminating an acoustic medium. Russ. J. Math. Phys. 30 (3), 345–359.
ROCKLIFF, N. 1978 Finite amplitude effects in free and forced edge waves. Proc. Camb. Phil. Soc. 83,

463–479.
ROSEAU, M. 1958 Short waves parallel to the shore over a sloping beach. Commun. Pure Appl. Maths 11,

433–493.
STOKES, G.G. 1846 Report on recent researches in hydrodynamics. In Report of the 16th Meeting of the British

Association for the Advancement of Science, Southampton, pp. 1–20. John Murray.
URSELL, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214 (1116), 79–97.
YEH, Y. 1986 Experimental study of standing edge waves. J. Fluid Mech. 169, 291–304.

988 A22-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

43
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.438

	1 Introduction
	1.1 Comments on the literature and description of the content

	2 Coordinate system near the shoreline L and asymptotic expansion for solutions
	2.1 The recurrent sequence of problems

	3 Solutions of the problems for the leading terms
	3.1 Eigenfunctions and eigenvalues of the operator L
	3.2 Solvability condition for the problems ([eqn22]2.13), ([eqn24]2.15) and equation for A0

	4 Study of the problems for w1 and w2; calculation of 1
	5 Physical and numerical analysis
	5.1 Some simple numerical results based on the asymptotic formulae

	6 Concluding remarks
	Appendix A. Laplace equation in the orthogonal curvilinear coordinates (s,r,) and asymptotic expansion
	References

