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Complex linear differential equations with
solutions in weighted Dirichlet spaces and
derivative Hardy spaces

Qingze Lin and Huayou Xie*

Abstract. In this paper, by the use of 𝑛-th derivative characterization, we obtain several some suffi-
cient conditions for all solutions of the complex linear differential equation

𝑓 (𝑛) + 𝐴𝑛−1 (𝑧) 𝑓 (𝑛−1) + · · · + 𝐴1 (𝑧) 𝑓 ′ + 𝐴0 (𝑧) 𝑓 = 𝐴𝑛 (𝑧)

to lie in weighted Dirichlet spaces and derivative Hardy spaces, respectively, where 𝐴𝑖 (𝑧) (𝑖 =

0, 1, · · · , 𝑛) are analytic functions defined in the unit disc. This work continues the lines of the
investigations by Heittokangas, et al. for growth estimates about the solutions of the above equation.

1 Introduction

Denote byD the open unit disc in the complex plane and by 𝜕D = {𝑧 : |𝑧 | = 1} the unit
circle. Define 𝐻 (D) as the space of all analytic functions onD.

In 1982, the complex second-order equation

𝑓 ′′ + 𝐴(𝑧) 𝑓 = 0,

where 𝐴(𝑧) ∈ 𝐻 (D), was investigated by Pommerenke [37]. Bymeans of Carlesonmea-
sures, he showed some sufficient conditions on the analytic function 𝐴(𝑧) such that all
solutions of the above equation lie in Hardy spaces. Later on, complex linear differen-
tial equations of second and even higher orders on the unit disc attracted the attention
of many scholars. In 2000, Heittokangas [19] investigated the growth of the solutions of
the equation

𝑓 (𝑛) + 𝐴𝑛−1 (𝑧) 𝑓 (𝑛−1) + · · · + 𝐴1 (𝑧) 𝑓 ′ + 𝐴0 (𝑧) 𝑓 = 𝐴𝑛 (𝑧) (1.1)

where 𝑛 ≥ 2. Hewished to find some sufficient conditions for the coefficients 𝐴𝑖 (𝑧) (𝑖 =
0, 1, · · · , 𝑛) such that all solutions of the equation (1.1) lie in some function spaces (i.e.,
weighted Hardy spaces, Bloch type spaces and general function spaces 𝐹 (𝑝, 𝑞, 𝑠)). In
[25], two sufficient conditions for all solutions of equation (1.1) to lie in growth spaces
𝐻∞

𝛼 were presented by Huusko et al. Recall that for 0 < 𝛼 < ∞, 𝐻∞
𝛼 is the space

consisting of all functions 𝑓 ∈ 𝐻 (D) such that

∥ 𝑓 ∥𝐻∞
𝛼
:= sup

𝑧∈D
| 𝑓 (𝑧) | (1 − |𝑧 |2)𝛼 < ∞.
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Recently, equation (1.1) had been extensively studied in some other function spaces,
such as weighted Fock spaces [24], Morrey spaces [39] and Dirichlet-Morrey spaces
[40]. In particular, for the case of 𝐴𝑛 (𝑧) = 0, a lot of works had been done by a num-
ber of researchers. For instance, by means of sharp estimates of logarithmic derivatives,
Gundersen-Steinbart-Wang [17] showed that every solution 𝑓 of the linear differential
equation

𝑓 (𝑛) + 𝑝𝑛−1 (𝑧) 𝑓 (𝑛−1) + · · · + 𝑝1 (𝑧) 𝑓 ′ + 𝑝0 (𝑧) 𝑓 = 0

where 𝑝𝑖 (𝑧) are polynomials and 𝑝0 ≠ 0, is entire of finite rational order. The related
problems in the unit disc were later considered by Chyzhykov et al. [5]. Indeed, they
investigated the impact of the increasing in coefficients on the growth of solutions of
the equation

𝑓 (𝑛) + 𝐴𝑛−1 (𝑧) 𝑓 (𝑛−1) + · · · + 𝐴1 (𝑧) 𝑓 ′ + 𝐴0 (𝑧) 𝑓 = 0. (1.2)

Later on, Korhonen and Rättyä [26] continued the work of Chyzhykov et al. to show a
precise estimate for the growth of solutions of the equation (1.2). In [21], Heittokan-
gas et al. studied the growth relation between the coefficients and the solutions of the
equation (1.2) in weighted Bergman or Hardy spaces. Indeed, they show that when the
coefficients in the equation (1.2) belong to weighted Bergman or Hardy spaces, then
all solutions are of some finite orders of growth, measured according to the Nevanlinna
characteristic. For more related results, we refer the readers to [4, 15, 20, 27, 28, 42].

In this paper, motivated by the above works, we are interested in studying the suffi-
cient conditions for all solutions of the equation (1.1) to lie in derivative Hardy spaces
and weighted Dirichlet spaces. Now, let’s recall their definitions.

Definition 1.1 Let 0 < 𝑝 < ∞. The derivative Hardy space 𝑆𝑝 is a proper subspace of
Hardy space 𝐻2 and consists of 𝑓 ∈ 𝐻 (D) satisfying

∥ 𝑓 ∥𝑆𝑝 := (| 𝑓 (0) |𝑝 + ∥ 𝑓 ′∥𝐻 𝑝 )1/𝑝 =

(
| 𝑓 (0) |𝑝 + sup

0<𝑟<1

1
2𝜋

∫ 2𝜋

0
| 𝑓 ′ (𝑟𝑒𝑖 𝜃 ) |𝑝𝑑𝜃

)1/𝑝
< ∞.

In particular, for any 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 ∈ 𝐻 (D), it holds that ∥ 𝑓 ∥2

𝑆2 = | 𝑓 (0) |2 +∑∞
𝑛=1 𝑛

2 |𝑎𝑛 |2. In 1978, Roan [38] started on the investigations for the boundedness of
composition operators on derivative Hardy spaces. Related problems were also inves-
tigated by MacCluer [35]. After their works, Contreras and Hernández-Díaz [6] made
a systematic work on the boundedness, compactness, complete continuity and weak
compactness of weighted composition operators on derivative Hardy spaces. Recently,
Lin, et al. [32] showed the boundedness of Volterra type operators on derivative Hardy
spaces. Other intriguing issues about derivative Hardy spaces have been studied, includ-
ing linear isometries [36], invariant subspace problems [7, 8, 29, 32], order boundedness
of weighted composition operators [31, 33] and so forth. For more results about the
derivative Hardy spaces, we refer the readers to [2, 9, 16, 18, 22, 23] and the references
therein.
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For 0 < 𝑝 < ∞ and −1 < 𝛼 < ∞, the weighted Bergman space 𝐴𝑝
𝛼 consists of all

𝑓 ∈ 𝐻 (D) such that

∥ 𝑓 ∥ 𝑝
𝐴
𝑝
𝛼

:=
∫
D
| 𝑓 (𝑤) |𝑝𝑑𝐴𝛼 (𝑤) < ∞

where 𝑑𝐴(𝑤) = (1/𝜋)𝑑𝑥𝑑𝑦 is the normalized Lebesgue area measure on D and
𝑑𝐴𝛼 (𝑤) = (1 + 𝛼) (1 − |𝑤 |2)𝛼𝑑𝐴(𝑤) is the weighted Lebesgue measure (See [10] or
[43] for more information about Bergman spaces).

Definition 1.2 For 0 < 𝑝 < ∞ and −1 < 𝛼 < ∞, the weighted Dirichlet space D 𝑝
𝛼

consists of all 𝑓 ∈ 𝐻 (D) such that

∥ 𝑓 ∥D𝑝
𝛼
:=

(
| 𝑓 (0) |𝑝 +

∫
D
| 𝑓 ′ (𝑤) |𝑝𝑑𝐴𝛼 (𝑤)

)1/𝑝
< ∞.

It is obvious that for any 𝑓 ∈ 𝐻 (D), 𝑓 ∈ D 𝑝
𝛼 if and only if 𝑓 ′ ∈ 𝐴𝑝

𝛼. When 𝑝 < 𝛼+1,
the weighted Dirichlet space D 𝑝

𝛼 coincides with the weighted Bergman space 𝐴𝑝
𝛼−𝑝

with equivalent norms. If 𝑝 > 𝛼 + 2, the weighted Dirichlet space D 𝑝
𝛼 is contained in

the essentially bounded space 𝐻∞ (see [41, Theorem 4.2]).
In 1999, Wu [41] gave the Carleson measure characterization for the weighted

Dirichlet space D 𝑝
𝛼 when 𝑝 ≥ 𝛼 + 1. In addition, he provided a sufficient and nec-

essary condition, in terms of Carleson measures, for boundedness of multiplication
operators on such weighted Dirichlet spaces. Related studies also appeared in the work
of Arcozzi-Rochberg-Sawyer [3]. Continuing their researches, Girela and Peláez [12]
obtained complete characterizations, in terms of Carleson measures, of conditions that
enable the weighted Dirichlet spaces D 𝑝

𝛼 to be embedded into the Lebesgue spaces
𝐿𝑞 (𝑑𝜇) for 𝑞 > 𝑝 > 0 , where 𝑑𝜇 is a positive Borel measure on D. Later, the char-
acterizations of boundedness and compactness of multiplication operators and some
integration operators on weighted Dirichlet spaces were obtained in [11, 30]. See [13]
and [14] for related studies about weighted Dirichlet spaces.

Now, we state our main results. Theorem 1.1 and 1.2 show two sufficient conditions
for all solutions of the equation (1.1) to lie in weighted Dirichlet spaces. Theorems 1.3
and 1.4 show two sufficient conditions for all solutions of the equation (1.1) to lie in
derivative Hardy spaces.

Theorem 1.1 Let 0 < 𝑝 < ∞ and 𝛼 > −1. Let 𝑛 be a positive integer and 𝐴𝑖 ∈ 𝐻 (D),
𝑖 = 0, 1, · · · , 𝑛. Assume that the following statements hold:

𝐶1 :=
∫
D

����∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0
𝐴𝑛 (𝜉𝑛−1)𝑑𝜉𝑛−1 · · · 𝑑𝜉1

����𝑝 𝑑𝐴𝛼 (𝑧) < ∞,

𝐶2 :=
∫
D

©«
𝑛−1∑︁
𝑚=1

∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑚−1

0

���∑𝑚
𝑘=1 𝐴

(𝑚−𝑘 )
𝑛−𝑘 (𝜉𝑚)

���
(1 − |𝜉𝑚 |2)

𝛼+2
𝑝

𝑑𝜉𝑚 · · · 𝑑𝜉1
ª®®¬
𝑝

𝑑𝐴𝛼 (𝑧)
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and

𝐶3 :=



∫
D

(∫ 𝑧

0

∫ 𝜉1
0 · · ·

∫ 𝜉𝑛−2
0

|𝐴0 ( 𝜉𝑛−1 ) |

(1−| 𝜉𝑛−1 |2 )
𝛼+2−𝑝
𝑝

𝑑𝜉𝑛−1 · · · 𝑑𝜉1
) 𝑝
𝑑𝐴𝛼 (𝑧), 𝑖 𝑓 𝑝 < 𝛼 + 2;∫

D

(∫ 𝑧

0

∫ 𝜉1
0 · · ·

∫ 𝜉𝑛−2
0 |𝐴0 (𝜉𝑛−1) |

(
log 2

1−| 𝜉𝑛−1 |2
) 𝑝−1

𝑝

𝑑𝜉𝑛−1 · · · 𝑑𝜉1
) 𝑝
𝑑𝐴𝛼 (𝑧), 𝑖 𝑓 𝑝 = 𝛼 + 2;∫

D

(∫ 𝑧

0

∫ 𝜉1
0 · · ·

∫ 𝜉𝑛−2
0 |𝐴0 (𝜉𝑛−1) | 𝑑𝜉𝑛−1 · · · 𝑑𝜉1

) 𝑝
𝑑𝐴𝛼 (𝑧), 𝑖 𝑓 𝑝 > 𝛼 + 2.

are two positive constants satisfying 𝐶2 + 𝐶3 < 1/𝑑, where 𝑑 > 0 is sufficiently large and is
only related to 𝑛, 𝑝. Then all solutions of the equation (1.1) lie inD 𝑝

𝛼 .

Theorem 1.2 Let 0 < 𝑝 < ∞ and 𝛼 > −1. Let 𝑛 be a positive integer and 𝐴𝑖 ∈ 𝐻 (D),
𝑖 = 0, 1, · · · , 𝑛. Assume that the following statements hold:

𝐾1 :=
∫
D
|𝐴𝑛 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝𝑑𝐴𝛼 (𝑧) < ∞,

𝐾2 :=


∫
D |𝐴0 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝛼−2𝑑𝐴𝛼 (𝑧), 𝑖 𝑓 𝑝 < 𝛼 + 2;∫
D |𝐴0 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝

(
log 2

1−|𝑧 |2
) 𝑝−1

𝑑𝐴𝛼 (𝑧), 𝑖 𝑓 𝑝 = 𝛼 + 2;∫
D |𝐴0 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝𝑑𝐴𝛼 (𝑧), 𝑖 𝑓 𝑝 > 𝛼 + 2,

and

𝐾3 :=
𝑛−1∑︁
𝑖=1

∥𝐴𝑖 ∥ 𝑝𝐻∞
𝑛−𝑖

are two positive constants satisfying 𝐾2 + 𝐾3 < 1/𝑐, where 𝑐 > 0 is sufficiently large and is
only related to 𝑛, 𝑝. Then all solutions of the equation (1.1) lie inD 𝑝

𝛼 .

Theorem 1.3 Let 0 < 𝑝 < ∞. Let 𝑛 be a positive integer and 𝐴𝑖 ∈ 𝐻 (D), 𝑖 = 0, 1, · · · , 𝑛.
Assume that the following statements hold:

𝐶1 := sup
0<𝑟<1

1
2𝜋

∫ 2𝜋

0

�����∫ 𝑟𝑒𝑖𝜃

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0
𝐴𝑛 (𝜉𝑛−1)𝑑𝜉𝑛−1 · · · 𝑑𝜉1

�����𝑝 𝑑𝜃 < ∞,

𝐶2 := sup
0<𝑟<1

1
2𝜋

∫ 2𝜋

0

©«
𝑛−1∑︁
𝑚=1

∫ 𝑟𝑒𝑖𝜃

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑚−1

0

���∑𝑚
𝑘=1 𝐴

(𝑚−𝑘 )
𝑛−𝑘 (𝜉𝑚)

���
(1 − |𝜉𝑚 |2)1/𝑝

𝑑𝜉𝑚 · · · 𝑑𝜉1
ª®®¬
𝑝

𝑑𝜃

and

𝐶3 :=


sup0<𝑟<1

1
2𝜋

∫ 2𝜋
0

(∫ 𝑟𝑒𝑖𝜃

0

∫ 𝜉1
0 · · ·

∫ 𝜉𝑛−2
0

|𝐴0 ( 𝜉𝑛−1 ) |

(1−| 𝜉𝑛−1 |2 )
1−𝑝
𝑝

𝑑𝜉𝑛−1 · · · 𝑑𝜉1
) 𝑝
𝑑𝜃, 𝑖 𝑓 0 < 𝑝 < 1;

sup0<𝑟<1
1
2𝜋

∫ 2𝜋
0

(∫ 𝑟𝑒𝑖𝜃

0

∫ 𝜉1
0 · · ·

∫ 𝜉𝑛−2
0 |𝐴0 (𝜉𝑛−1) |𝑝 𝑑𝜉𝑛−1 · · · 𝑑𝜉1

)
𝑑𝜃, 𝑖 𝑓 1 ≤ 𝑝 < ∞.

are two positive constants satisfying 𝐶2 + 𝐶3 < 1/𝑑, where 𝑑 > 0 is sufficiently large and is
only related to 𝑛, 𝑝. Then all solutions of the equation (1.1) lie in 𝑆𝑝 .
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Theorem 1.4 Let 0 < 𝑝 < ∞. Let 𝑛 be a positive integer and 𝐴𝑖 ∈ 𝐻 (D), 𝑖 = 0, 1, · · · , 𝑛.
Assume that the following statements hold:

𝐾1 :=
∫
𝜕D

(∫
𝑆 ( 𝜉 )

|𝐴𝑛 (𝑧) |2 (1 − |𝑧 |2)2𝑛−4𝑑𝐴(𝑧)
) 𝑝/2

𝑑𝑚(𝜉) < ∞,

𝐾2 :=


∫
𝜕D

(∫
𝑆 ( 𝜉 ) |𝐴0 (𝑧) |

2 (1 − |𝑧 |2)2(𝑛−1−
1
𝑝
)
𝑑𝐴(𝑧)

) 𝑝/2
𝑑𝑚(𝜉), 𝑖 𝑓 0 < 𝑝 < 1;∫

𝜕D

(∫
𝑆 ( 𝜉 ) |𝐴0 (𝑧) |

2 (1 − |𝑧 |2)2𝑛−4𝑑𝐴(𝑧)
) 𝑝/2

𝑑𝑚(𝜉), 𝑖 𝑓 1 ≤ 𝑝 < ∞,

and

𝐾3 :=
𝑛−1∑︁
𝑖=1

min

{
∥𝐴𝑖 ∥ 𝑝𝐻∞

𝑛−𝑖
,

∫
𝜕D

(∫
𝑆 ( 𝜉 )

|𝐴𝑖 (𝑧) |2 (1 − |𝑧 |2)2(𝑛− 𝑗−1− 1
𝑝
)
𝑑𝐴(𝑧)

) 𝑝/2
𝑑𝑚(𝜉)

}
are two positive constants satisfying 𝐾2 + 𝐾3 < 1/𝑐, where 𝑐 > 0 is sufficiently large and is
only related to 𝑛, 𝑝. Then all solutions of the equation (1.1) lie in 𝑆𝑝 .

The structure of this paper is organized as follows.
In Section 2, we collect some preliminary lemmas that will be used throughout the

paper. In Section 3, we prove our main results.
Throughout this paper, for any two positive functions 𝑓 (𝑥) and 𝑔(𝑥), wewrite 𝑓 ≲ 𝑔

if 𝑓 ≤ 𝑐𝑔 holds, where 𝑐 is a positive constant independent of the variable 𝑥. We write
𝑓 ≈ 𝑔 whenever 𝑓 ≲ 𝑔 ≲ 𝑓 . Moreover, the value of “𝑐 " may vary from line to line but
will remain independent of the main variables.

2 Preliminaries

First, we need the following two lemmas, which will be used frequently later.

Lemma 2.1 [9] Suppose that 𝑁 is a positive integer and 𝑏𝑛 ≥ 0 for 𝑛 = 1, 2, · · · , 𝑁 . Then(
𝑁∑︁
𝑛=1

𝑏𝑛

) 𝑝
≤

𝑁∑︁
𝑛=1

𝑏
𝑝
𝑛 , 0 < 𝑝 ≤ 1

and (
𝑁∑︁
𝑛=1

𝑏𝑛

) 𝑝
≤ 𝑁 𝑝−1

(
𝑁∑︁
𝑛=1

𝑏
𝑝
𝑛

)
, 1 ≤ 𝑝 < ∞.

Lemma 2.2 [43, Theorem 4.28] Suppose 𝑝 > 0, 𝛼 > −1, 𝑛 ≥ 0, and 𝑓 ∈ 𝐻 (D). Then

∥ 𝑓 ∥𝐴𝑝𝛼 ≈
𝑛−1∑︁
𝑖=0

| 𝑓 (𝑖) (0) |𝑝 +
∫
D
| 𝑓 (𝑛) (𝑧) |𝑝 (1 − |𝑧 |2)𝑛𝑝𝑑𝐴𝛼 (𝑧).

Moreover, we need to use the following equivalent norms of 𝐻 𝑝 :
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Lemma 2.3 ([1, p. 125]) Suppose 0 < 𝑝 < ∞ and 𝑓 ∈ 𝐻 𝑝 . Then

∥ 𝑓 ∥ 𝑝
𝐻 𝑝 ≈

𝑛−1∑︁
𝑖=0

| 𝑓 (𝑖) (0) |𝑝 +
∫
𝜕D

(∫
𝑆 ( 𝜉 )

| 𝑓 (𝑛) (𝑧) |2 (1 − |𝑧 |2)2𝑛−2𝑑𝐴(𝑧)
) 𝑝/2

𝑑𝑚(𝜉).

Next, the growth estimates of elements in 𝑆𝑝 andD 𝑝
𝛼 are given in the following two

lemmas, respectively.

Lemma 2.4 (see [32, 33]). If 1 ≤ 𝑝 < ∞, then for any 𝑓 ∈ 𝑆𝑝 , it holds that | 𝑓 (𝑧) | ≤
𝜋∥ 𝑓 ∥𝑆𝑝 , 𝑧 ∈ D. If 0 < 𝑝 < 1, then for any 𝑓 ∈ 𝑆𝑝 ,

| 𝑓 (𝑧) | ≲ ∥ 𝑓 ∥𝑆𝑝
(1 − |𝑧 |2)1/𝑝−1

, ∀𝑧 ∈ D.

Lemma 2.5 [41] Let 0 < 𝑝 < ∞ and 𝛼 > −1. If 𝑓 ∈ D 𝑝
𝛼 , then

(1) | 𝑓 (𝑧) | ≲
∥ 𝑓 ∥D𝑝𝛼

(1−|𝑧 |2 )
𝛼+2−𝑝
𝑝

, whenever 𝑝 < 𝛼 + 2;

(2) | 𝑓 (𝑧) | ≲
(
log 2

1−|𝑧 |2
) 𝑝−1

𝑝 ∥ 𝑓 ∥D𝑝
𝛼
, whenever 𝑝 = 𝛼 + 2;

(3) | 𝑓 (𝑧) | ≤ ∥ 𝑓 ∥D𝑝
𝛼
, whenever 𝑝 > 𝛼 + 2.

In addition, we have to use the following growth estimates for the 𝑛-th order
derivative function.

Lemma 2.6 Let 0 < 𝑝 < ∞,𝛼 > −1 and 𝑛 be a positive integer. If 𝑓 ∈ D 𝑝
𝛼 , then

| 𝑓 (𝑛) (𝑧) | ≲
∥ 𝑓 ∥D𝑝

𝛼

(1 − |𝑧 |2)
2+𝛼
𝑝

+𝑛−1
, 𝑧 ∈ D.

Proof For any 𝑧 ∈ D, by [34, Lemma 2.1], we know

| 𝑓 (𝑛−1) (𝑧) |𝑝 ≲

∫
𝐷𝑟 (𝑧) | 𝑓 (𝑤) |

𝑝𝑑𝐴𝛼 (𝑤)
(1 − |𝑧 |2)2+𝛼+(𝑛−1) 𝑝

≲

∫
D | 𝑓 (𝑤) |𝑝𝑑𝐴𝛼 (𝑤)

(1 − |𝑧 |2)2+𝛼+(𝑛−1) 𝑝
.

Letting 𝑓 = 𝑔′ yields

|𝑔 (𝑛) (𝑧) |𝑝 ≲

∫
D |𝑔′ (𝑤) |𝑝𝑑𝐴𝛼 (𝑤)
(1 − |𝑧 |2)2+𝛼+(𝑛−1) 𝑝

,

which is the desired result. ■

By Lemma 2.3, it is not difficult to obtain the following result.

Lemma 2.7 Let 0 < 𝑝 < ∞ and 𝑛 be a non-negative integer. If 𝑓 ∈ 𝑆𝑝 , then

| 𝑓 (𝑛) (𝑧) | ≲ ∥ 𝑓 ∥𝑆𝑝
(1 − |𝑧 |2)1/𝑝+𝑛−1

, 𝑧 ∈ D.
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3 The proof of the main results

Proof of Theorem 1.1: Assume that 𝑓 is a solution of equation (1.1), then

𝑓
(𝑛)
𝑟 (𝑧) +

𝑛−1∑︁
𝑗=0

𝐵 𝑗 (𝑧) 𝑓 ( 𝑗 )𝑟 (𝑧) = 𝐵𝑛 (𝑧), 𝑧 ∈ D, (3.1)

where 𝑓𝑟 (𝑧) = 𝑓 (𝑟𝑧), 𝐵 𝑗 (𝑧) = 𝐵 𝑗 (𝑧, 𝑟) = 𝑟𝑛− 𝑗𝐴 𝑗 (𝑟𝑧), 𝑗 = 0, · · · , 𝑛 − 1, 𝐵𝑛 (𝑧) =

𝑟𝑛𝐴𝑛 (𝑟𝑧), 0 ≤ 𝑟 < 1.
By using the equation

𝑓 (𝑧) =
∫ 𝑧

0
𝑓 ′ (𝜉)𝑑𝜉 + 𝑓 (0)

𝑛 − 1 times, we get

𝑓 ′𝑟 (𝑧) =
∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0
𝑓
(𝑛)
𝑟 (𝜉𝑛−1)𝑑𝜉𝑛−1 · · · 𝑑𝜉1 +

𝑛−2∑︁
𝑗=0

𝑓
( 𝑗+1)
𝑟 (0)
𝑗 !

𝑧 𝑗

=

∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0

(
𝐵𝑛 (𝜉𝑛−1) −

𝑛−1∑︁
𝑗=0

𝐵 𝑗 (𝜉𝑛−1) 𝑓 ( 𝑗 )𝑟 (𝜉𝑛−1)
)
𝑑𝜉𝑛−1 · · · 𝑑𝜉1 +

𝑛−2∑︁
𝑗=0

𝑓
( 𝑗+1)
𝑟 (0)
𝑗 !

𝑧 𝑗 .

Combining this with Lemma 2.1, we obtain

∥ 𝑓𝑟 ∥ 𝑝D𝑝
𝛼

=

∫
D
| 𝑓 ′𝑟 (𝑧) |𝑝𝑑𝐴𝛼 (𝑧) + | 𝑓𝑟 (0) |𝑝

=

∫
D

���� ∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0

(
𝐵𝑛 (𝜉𝑛−1) −

𝑛−1∑︁
𝑗=0

𝐵 𝑗 (𝜉𝑛−1) 𝑓 ( 𝑗 )𝑟 (𝜉𝑛−1)
)
𝑑𝜉𝑛−1 · · · 𝑑𝜉1

+
𝑛−2∑︁
𝑗=0

𝑓
( 𝑗+1)
𝑟 (0)
𝑗 !

𝑧 𝑗
����𝑝𝑑𝐴𝛼 (𝑧) + | 𝑓𝑟 (0) |𝑝

≲
∫
D

����∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0
𝐵𝑛 (𝜉𝑛−1)𝑑𝜉𝑛−1 · · · 𝑑𝜉1

����𝑝 𝑑𝐴𝛼 (𝑧)

+
∫
D

�����∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0

𝑛−1∑︁
𝑗=1

𝐵 𝑗 (𝜉𝑛−1) 𝑓 ( 𝑗 )𝑟 (𝜉𝑛−1)𝑑𝜉𝑛−1 · · · 𝑑𝜉1

�����𝑝 𝑑𝐴𝛼 (𝑧)

+
∫
D

����∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0
𝐵0 (𝜉𝑛−1) 𝑓𝑟 (𝜉𝑛−1)𝑑𝜉𝑛−1 · · · 𝑑𝜉1

����𝑝 𝑑𝐴𝛼 (𝑧)

+
∫
D

�����𝑛−2∑︁
𝑗=0

𝑓
( 𝑗+1)
𝑟 (0)
𝑗 !

𝑧 𝑗

�����𝑝 𝑑𝐴𝛼 (𝑧) + | 𝑓𝑟 (0) |𝑝

=𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝐼5.
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Let us first discuss 𝐼2. From [25, Lemma 12], we have

𝐼2 =

∫
D

�����∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0

𝑛−1∑︁
𝑗=1

𝑗−1∑︁
𝑖=0

(−1)𝑖
(
𝑗 − 1
𝑖

)
( 𝑓 ′𝑟 · 𝐵

(𝑖)
𝑗
) ( 𝑗−𝑖−1) (𝜉𝑛−1)𝑑𝜉𝑛−1 · · · 𝑑𝜉1

�����
𝑝

𝑑𝐴𝛼 (𝑧)

As∫ 𝜉𝑛−1−( 𝑗−𝑖−1)

0

∫ 𝜉𝑛−( 𝑗−𝑖−1)

0
· · ·

∫ 𝜉𝑛−2

0

(
𝑓 ′𝑟 · 𝐵

(𝑖)
𝑗

) ( 𝑗−𝑖−1)
(𝜉𝑛−1)𝑑𝜉𝑛−1 · · · 𝑑𝑛−( 𝑗−𝑖−1)

=

∫ 𝜉𝑛−1−( 𝑗−𝑖−1)

0

∫ 𝜉𝑛−( 𝑗−𝑖−1)

0
· · ·

∫ 𝜉𝑛−3

0

[(
𝑓 ′𝑟 · 𝐵

(𝑖)
𝑗

) ( 𝑗−𝑖−2)
(𝜉𝑛−2) −

(
𝑓 ′𝑟 · 𝐵

(𝑖)
𝑗

) ( 𝑗−𝑖−2)
(0)

]
𝑑𝜉𝑛−2 · · · 𝑑𝑛−( 𝑗−𝑖−1)

= 𝐵
(𝑖)
𝑗
(𝜉𝑛−1−( 𝑗−𝑖−1) ) 𝑓 ′𝑟 (𝜉𝑛−1−( 𝑗−𝑖−1) ) −

𝑗−𝑖−2∑︁
𝑡=0

(
𝐵
(𝑖)
𝑗
𝑓 ′𝑟

) (𝑡 )
(0)

𝑡!
𝜉𝑡
𝑛−1−( 𝑗−𝑖−1) ,

then

𝐼2 =

∫
D

����� 𝑛−1∑︁
𝑗=1

𝑗−1∑︁
𝑖=0

(−1)𝑖
(
𝑗 − 1
𝑖

) ∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2−( 𝑗−𝑖−1)

0

[
𝐵
(𝑖)
𝑗
(𝜉𝑛−1−( 𝑗−𝑖−1) ) 𝑓 ′𝑟 (𝜉𝑛−1−( 𝑗−𝑖−1) )

−
𝑗−𝑖−2∑︁
𝑡=0

(
𝐵
(𝑖)
𝑗
𝑓 ′𝑟

) (𝑡 )
(0)

𝑡!
𝜉𝑡
𝑛−1−( 𝑗−𝑖−1)

]
𝑑𝜉𝑛−1−( 𝑗−𝑖−1) · · · 𝑑𝜉1

�����𝑝𝑑𝐴𝛼 (𝑧).

We relabel the indices as follows:

𝑗 = 𝑛 − 𝑘, 𝑖 = 𝑚 − 𝑘.

It follows that

𝐼2 =

∫
D

����� 𝑛−1∑︁
𝑚=1

∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑚−1

0

[
𝑚∑︁
𝑘=1

(−1)𝑚−𝑘
(
𝑛 − 𝑘 − 1
𝑚 − 𝑘

)
𝐵
(𝑚−𝑘 )
𝑛−𝑘 (𝜉𝑚)

]
𝑓 ′𝑟 (𝜉𝑚)𝑑𝜉𝑚 · · · 𝑑𝜉1

−
𝑛−1∑︁
𝑗=1

𝑗−1∑︁
𝑖=0

𝑗−𝑖−2∑︁
𝑡=0

(−1)𝑖
(
𝑗 − 1
𝑖

) (
𝐵
(𝑖)
𝑗
𝑓 ′𝑟

) (𝑡 )
(0)

(𝑛 − 𝑗 + 𝑖 + 𝑡)! 𝑧
𝑛− 𝑗+𝑖+𝑡

�����𝑝𝑑𝐴𝛼 (𝑧)

≲
∫
D

�����𝑛−1∑︁
𝑚=1

∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑚−1

0

[
𝑚∑︁
𝑘=1

𝐵
(𝑚−𝑘 )
𝑛−𝑘 (𝜉𝑚)

]
𝑓 ′𝑟 (𝜉𝑚)𝑑𝜉𝑚 · · · 𝑑𝜉1

�����𝑝 𝑑𝐴𝛼 (𝑧)

+
∫
D

�������
𝑛−1∑︁
𝑗=1

𝑗−1∑︁
𝑖=0

𝑗−𝑖−2∑︁
𝑡=0

(
𝐵
(𝑖)
𝑗
𝑓 ′𝑟

) (𝑡 )
(0)

(𝑛 − 𝑗 + 𝑖 + 𝑡)! 𝑧
𝑛− 𝑗+𝑖+𝑡

�������
𝑝

𝑑𝐴𝛼 (𝑧)

=𝐼21 + 𝐼22.

2025/01/01 15:25
https://doi.org/10.4153/S0008439525000013 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000013


Complex linear differential equations 9

By Lemma 2.6, we have

𝐼21 ≤
∫
D

(
𝑛−1∑︁
𝑚=1

∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑚−1

0

����� 𝑚∑︁
𝑘=1

𝐵
(𝑚−𝑘 )
𝑛−𝑘 (𝜉𝑚)

����� �� 𝑓 ′𝑟 (𝜉𝑚)�� 𝑑𝜉𝑚 · · · 𝑑𝜉1

) 𝑝
𝑑𝐴𝛼 (𝑧)

≲∥ 𝑓𝑟 ∥ 𝑝D𝑝
𝛼

∫
D

©«
𝑛−1∑︁
𝑚=1

∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑚−1

0

���∑𝑚
𝑘=1 𝐵

(𝑚−𝑘 )
𝑛−𝑘 (𝜉𝑚)

���
(1 − |𝜉𝑚 |2)

𝛼+2
𝑝

𝑑𝜉𝑚 · · · 𝑑𝜉1
ª®®¬
𝑝

𝑑𝐴𝛼 (𝑧)

≲∥ 𝑓𝑟 ∥ 𝑝D𝑝
𝛼

𝐶2.

On the other hand, we have

𝐼4+𝐼22 = sup
𝑧∈D

©«
�����𝑛−2∑︁
𝑗=0

𝑓
( 𝑗+1)
𝑟 (0)
𝑗 !

𝑧 𝑗

�����𝑝 +

�������
𝑛−1∑︁
𝑗=1

𝑗−1∑︁
𝑖=0

𝑗−𝑖−2∑︁
𝑡=0

(
𝐵
(𝑖)
𝑗
𝑓 ′𝑟

) (𝑡 )
(0)

(𝑛 − 𝑗 + 𝑖 + 𝑡)! 𝑧
𝑛− 𝑗+𝑖+𝑡

�������
𝑝ª®®®¬ ≤ 𝐶 𝑓 < ∞.

Using Lemma 2.5 again, we have

𝐼3 ≲
∫
D

(∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0
|𝐵0 (𝜉𝑛−1) | | 𝑓𝑟 (𝜉𝑛−1) | 𝑑𝜉𝑛−1 · · · 𝑑𝜉1

) 𝑝
𝑑𝐴𝛼 (𝑧) ≲ ∥ 𝑓𝑟 ∥ 𝑝D𝑝

𝛼

𝐶3,

where

𝐶3 =



∫
D

(∫ 𝑧

0

∫ 𝜉1
0 · · ·

∫ 𝜉𝑛−2
0

|𝐵0 ( 𝜉𝑛−1 ) |

(1−| 𝜉𝑛−1 |2 )
𝛼+2−𝑝
𝑝

𝑑𝜉𝑛−1 · · · 𝑑𝜉1
) 𝑝
𝑑𝐴𝛼 (𝑧), 𝑖 𝑓 𝑝 < 𝛼 + 2;∫

D

(∫ 𝑧

0

∫ 𝜉1
0 · · ·

∫ 𝜉𝑛−2
0 |𝐵0 (𝜉𝑛−1) |

(
log 2

1−| 𝜉𝑛−1 |2
) 𝑝−1

𝑝

𝑑𝜉𝑛−1 · · · 𝑑𝜉1
) 𝑝
𝑑𝐴𝛼 (𝑧), 𝑖 𝑓 𝑝 = 𝛼 + 2;∫

D

(∫ 𝑧

0

∫ 𝜉1
0 · · ·

∫ 𝜉𝑛−2
0 |𝐵0 (𝜉𝑛−1) | 𝑑𝜉𝑛−1 · · · 𝑑𝜉1

) 𝑝
𝑑𝐴𝛼 (𝑧) 𝑖 𝑓 𝑝 > 𝛼 + 2.

Consequently,

∥ 𝑓𝑟 ∥ 𝑝D𝑝
𝛼

≲
𝐶1 + 𝐼22 + 𝐼4 + 𝐼5
1 − 𝑑 (𝐶2 + 𝐶3)

< ∞,

which gives that 𝑓 ∈ D 𝑝
𝛼 as 𝑟 → 1− . This completes the proof. □

Proof of Theorem 1.2: Assume that 𝑓 is a solution of equation (1.1), then we have

𝑓
(𝑛)
𝑟 (𝑧) +

𝑛−1∑︁
𝑗=0

𝐵 𝑗 (𝑧) 𝑓 ( 𝑗 )𝑟 (𝑧) = 𝐵𝑛 (𝑧), 𝑧 ∈ D,

where 𝑓𝑟 (𝑧) = 𝑓 (𝑟𝑧), 𝐵 𝑗 (𝑧) = 𝐵 𝑗 (𝑧, 𝑟) = 𝑟𝑛− 𝑗𝐴 𝑗 (𝑟𝑧), 𝑗 = 0, · · · , 𝑛 − 1, 𝐵𝑛 (𝑧) =

𝑟𝑛𝐴𝑛 (𝑟𝑧), 0 ≤ 𝑟 < 1.
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By Lemma 2.1 and Lemma 2.2, we have

∥ 𝑓𝑟 ∥ 𝑝D𝑝
𝛼

≈
∫
D
| 𝑓 (𝑛)𝑟 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝𝑑𝐴𝛼 (𝑧) +

𝑛−1∑︁
𝑘=0

| 𝑓 (𝑘 )𝑟 (0) |𝑝

=

∫
D

�����𝐵𝑛 (𝑧) −
𝑛−1∑︁
𝑗=0

𝐵 𝑗 (𝑧) 𝑓 ( 𝑗 )𝑟 (𝑧)
�����𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝𝑑𝐴𝛼 (𝑧) +

𝑛−1∑︁
𝑘=0

| 𝑓 (𝑘 )𝑟 (0) |𝑝

≤
∫
D

(
|𝐵𝑛 (𝑧) | + |𝐵0 (𝑧) 𝑓𝑟 (𝑧) | +

𝑛−1∑︁
𝑗=1

|𝐵 𝑗 (𝑧) 𝑓 ( 𝑗 )𝑟 (𝑧) |
) 𝑝

(1 − |𝑧 |2) 𝑝𝑛−𝑝𝑑𝐴𝛼 (𝑧) +
𝑛−1∑︁
𝑘=0

| 𝑓 (𝑘 )𝑟 (0) |𝑝

≲
∫
D
|𝐵𝑛 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝𝑑𝐴𝛼 (𝑧) +

∫
D
|𝐵0 (𝑧) 𝑓𝑟 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝𝑑𝐴𝛼 (𝑧)

+
𝑛−1∑︁
𝑗=1

∫
D

���𝐵 𝑗 (𝑧) 𝑓 ( 𝑗 )𝑟 (𝑧)
���𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝𝑑𝐴𝛼 (𝑧) +

𝑛−1∑︁
𝑘=0

| 𝑓 (𝑘 )𝑟 (0) |𝑝

=𝐼1 + 𝐼2 + 𝐼3 + 𝐼4.

Applying Lemma 2.5 leads to

𝐼2 ≲


∥ 𝑓𝑟 ∥ 𝑝D𝑝

𝛼

∫
D |𝐵0 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝛼−2𝑑𝐴𝛼 (𝑧), 𝑖 𝑓 𝑝 < 𝛼 + 2;

∥ 𝑓𝑟 ∥ 𝑝D𝑝
𝛼

∫
D |𝐵0 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝

(
log 2

1−|𝑧 |2
) 𝑝−1

𝑑𝐴𝛼 (𝑧), 𝑖 𝑓 𝑝 = 𝛼 + 2;
∥ 𝑓𝑟 ∥ 𝑝D𝑝

𝛼

∫
D |𝐵0 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝𝑑𝐴𝛼 (𝑧) 𝑖 𝑓 𝑝 > 𝛼 + 2.

On the other hand,

𝐼3 ≤
𝑛−1∑︁
𝑗=1

(
sup
𝑧∈D

|𝐵 𝑗 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝 (𝑛− 𝑗 )
) ∫

D

��� 𝑓 ( 𝑗 )𝑟 (𝑧)
���𝑝 (1 − |𝑧 |2) 𝑝 𝑗−𝑝𝑑𝐴𝛼 (𝑧)

≤
𝑛−1∑︁
𝑗=1

∥𝐵 𝑗 ∥ 𝑝𝐻∞
𝑛− 𝑗

∥ 𝑓𝑟 ∥ 𝑝D𝑝
𝛼

.

Consequently, 𝐼3 ≲ 𝐾3∥ 𝑓𝑟 ∥ 𝑝D𝑝
𝛼

. It follows from the assumption that

∥ 𝑓𝑟 ∥ 𝑝D𝑝
𝛼

≲
𝐾1 + 𝐼4

1 − 𝑐(𝐾2 + 𝐾3)
< ∞,

for 0 ≤ 𝑟 < 1. Letting 𝑟 → 1− gives that 𝑓 ∈ D 𝑝
𝛼 . This completes the proof. □

Remark 3.1 Although the sufficient condition in Theorem 1.1 and 1.2 is more com-
plicated, in fact, we can illustrate the feasibility of that sufficient condition by some
examples. Let us consider the complex second-order equation

𝑓 ′′ + 𝐴(𝑧) 𝑓 = 0.

Fix a constant-valued function 𝐴(𝑧) = 𝑘 (𝑘 ∈ R) satisfying the condition∫
D
|𝐴0 (𝑧) |𝑝 (1 − |𝑧 |2)𝑝𝑑𝐴𝛼 (𝑧) <

1
𝑐
.
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If 𝑘 < 0, we can easily find that the solution to the equation 𝑓 ′′ + 𝑘 𝑓 = 0 has a solution
base { 𝑓1, 𝑓2}, where

𝑓1 (𝑧) = 𝑒
√
−𝑘𝑧 and 𝑓2 (𝑧) = 𝑒−

√
−𝑘𝑧 .

If 𝑘 > 0, then the equation 𝑓 ′′ + 𝑘 𝑓 = 0 has a solution base { 𝑓1, 𝑓2}, where

𝑓3 (𝑧) = cos(𝑘𝑧) and 𝑓4 (𝑧) = sin(𝑘𝑧).

It can be seen that 𝑓1, 𝑓2, 𝑓3 and 𝑓4 belongs to the weighted Dirichlet spaces D 𝑝
𝛼 (𝑝 >

𝛼 + 2).
On the other hand, if we consider the equation 𝑓 (𝑛) = 0, then it is easy to know that

all solutions of this equation are

𝑓 (𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + 𝑎3𝑧3 + · · · + 𝑎𝑛−1𝑧𝑛−1.

Obviously, 𝑓 ∈ D 𝑝
𝛼 .

Proof of Theorem 1.3: The proof can be accomplished by using Lemma 2.1, Lemma
2.4 and Lemma 2.7, and the similar proof of Theorem 1.1. □

Proof of Theorem 1.4: The proof can be accomplished by using Lemma 2.3, Lemma
2.4 and Lemma 2.7, and the similar proof of Theorem 1.2. □

The following two corollaries provide some stronger sufficient conditions making
the solutions of the equation 1.1 lie in weighted Dirichlet spaces.

The first one is a variant of Theorem 1.1.

Corollary 3.2 Let 0 < 𝑝 < ∞ and 𝛼 > −1. Let 𝑛 be a positive integer and 𝐴𝑖 ∈ 𝐻 (D),
𝑖 = 0, 1, · · · , 𝑛. Assume that the following statements hold:

𝐶1 :=
∫
D

����∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0
𝐴𝑛 (𝜉𝑛−1)𝑑𝜉𝑛−1 · · · 𝑑𝜉1

����𝑝 𝑑𝐴𝛼 (𝑧) < ∞,

𝐶2 :=
∫
D

©«
𝑛−1∑︁
𝑚=1

∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑚−1

0

���∑𝑚
𝑘=1 𝐴

(𝑚−𝑘 )
𝑛−𝑘 (𝜉𝑚)

���
(1 − |𝜉𝑚 |2)

𝛼+2
𝑝

𝑑𝜉𝑚 · · · 𝑑𝜉1
ª®®¬
𝑝

𝑑𝐴𝛼 (𝑧),

and

𝑂3 :=
∫
D

(∫ 𝑧

0

∫ 𝜉1

0
· · ·

∫ 𝜉𝑛−2

0

|𝐴0 (𝜉𝑛−1) |

(1 − |𝜉𝑛−1 |2)
𝛼+2+𝑝
𝑝

𝑑𝜉𝑛−1 · · · 𝑑𝜉1

) 𝑝
𝑑𝐴𝛼 (𝑧)

are two positive constants satisfying 𝐶2 + 𝑂3 < 1/𝑑, where 𝑑 > 0 is sufficiently large
and is only related to 𝑛, 𝑝 and the growth of functions in the weighted Dirichlet spaces.
Then all solutions of the equation (1.1) lie inD 𝑝

𝛼 .

The second one is a variant of Theorem 1.2.
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Corollary 3.3 Let 0 < 𝑝 < ∞ and 𝛼 > −1. Let 𝑛 be a positive integer and 𝐴𝑖 ∈ 𝐻 (D),
𝑖 = 0, 1, · · · , 𝑛. Assume that the following statements hold:

𝐾1 :=
∫
D
|𝐴𝑛 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝𝑑𝐴𝛼 (𝑧) < ∞,

𝑄2 :=
∫
D
|𝐴0 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝𝑛−𝑝−𝛼−2𝑑𝐴𝛼 (𝑧),

and

𝑄3 :=
𝑛−1∑︁
𝑖=1

∫
D
|𝐴𝑖 (𝑧) |𝑝 (1 − |𝑧 |2) 𝑝 (𝑛−𝑖)−(2+𝛼)𝑑𝐴𝛼 (𝑧)

are two positive constants satisfying 𝑄2 + 𝑄3 < 1/𝑐, where 𝑐 > 0 is sufficiently large
and is only related to 𝑛, 𝑝. Then all solutions of the equation (1.1) lie inD 𝑝

𝛼 .

Remark 3.4 Actually, in the proof of Theorem 1.2, by Lemma 2.6, we have

𝐼3 ≲ ∥ 𝑓𝑟 ∥ 𝑝D𝑝
𝛼

𝑛−1∑︁
𝑗=1

∫
D

��𝐵 𝑗 (𝑧)
��𝑝 (1 − |𝑧 |2) 𝑝 (𝑛− 𝑗 )−(2+𝛼)𝑑𝐴𝛼 (𝑧) ≤ 𝑄3∥ 𝑓𝑟 ∥ 𝑝D𝑝

𝛼

.

It is worth noting that the condition 𝑄3 in the above corollary is stronger than the
condition 𝐾3 in Theorem 1.2, which can be obtained by applying [43, Proposition 4.13]

| 𝑓 (𝑧) | (1 − |𝑧 |2) 𝑝 (𝑛−𝑖) ≲
∫
D
| 𝑓 (𝑤) |𝑝 (1 − |𝑤 |2) 𝑝 (𝑛− 𝑗 )−(2+𝛼)𝑑𝐴𝛼 (𝑤)

for any 𝑓 ∈ 𝐻 (D).
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comments. Qingze Lin is supported by STU Scientific Research Initiation Grant (No.
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