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Abstract

We apply a mean-value inequality for positive subsolutions of the f -heat operator, obtained from
a Sobolev embedding, to prove a nonexistence result concerning complete noncompact f -maximal
spacelike hypersurfaces in a class of weighted Lorentzian manifolds. Furthermore, we establish a new
Calabi–Bernstein result for complete noncompact maximal spacelike hypersurfaces in a Lorentzian
product space.
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1. Introduction and statement of the main results

Let (Σ, g) be an n-dimensional complete Riemannian manifold. The Laplace operator
−∆ on Σ can be defined as the differential operator associated to the standard Dirichlet
form

Q(u) =

∫
Σ

|∇u|2 dV, u ∈ C∞c (Σ) ⊂ L2 (dV),

where | · | is the norm induced by the Riemannian inner product g = 〈· , ·〉 and dV
is the volume element on Σ. Let f ∈ C∞(Σ) be a weight function. If we replace the
measure dV with the weighted measure dµ = e− f dV in the definition of Q, we obtain a
new quadratic form Q f , and we denote by ∆ f the elliptic operator on C∞c (Σ) ⊂ L2 (dµ)
induced by Q f . Thus, ∆ f is a natural generalisation of the Laplacian. It is symmetric
and positive and extends to a positive operator on L2 (dµ). By Stokes’ theorem,

∆ f u = ∆u − 〈∇u,∇ f 〉.

Introducing a weight factor is the first step towards decoupling the leading term and
the lower order terms of the operator, which in the case of the Laplace operator are
completely determined by the metric of Σ.
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The triple (Σ, g, dµ) and the operator ∆ f defined above and acting over C∞(Σ) will
be called, respectively, the weighted manifold, Σ f , associated with (Σ, g) and f , and the
f -Laplacian. A notion of curvature for weighted manifolds goes back to Lichnerowicz
[14] and it was later developed by Bakry and Émery in their seminal work [4], where
they introduced the modified Ricci curvature

Ric f = Ric + Hess f . (1.1)

As is now common, we will refer to this tensor as the Bakry–Émery–Ricci tensor of Σ.
The interplay between the geometry of Σ and the behaviour of the weight function f
is mostly encoded in its Bakry–Émery–Ricci tensor Ric f . This curvature is related to
the f -Laplacian via the following Bochner formula:

1
2 ∆ f |∇u|2 = |Hess u|2 + 2〈∇u,∇∆ f u〉 + Ric f (∇u,∇u) for all u ∈ C∞(Σ). (1.2)

The Bakry–Émery–Ricci curvature tensor arises in scalar–tensor gravitation
theories in the conformal gauge known as the Jordan frame. In Lorentzian geometry,
Case [6] has shown that a sign condition on timelike components of the Bakry–
Émery–Ricci tensor, a so-called energy condition, will, in an analogous fashion to the
Riemannian case, imply that singularity theorems and the timelike splitting theorem
hold. Woolgar [20] used these theorems to obtain Jordan-frame singularity and
timelike splitting theorems for the Brans–Dicke family of scalar–tensor theories and
(1-loop) dilaton gravity, including totally skew torsion dilaton gravity. A connection
between the theory of black holes and a Lorentzian Bakry–Émery formulation was
established by Rupert and Woolgar [17]. Under an energy condition on the Bakry–
Émery–Ricci curvature, Galloway and Woolgar [10] obtained singularity theorems of
a cosmological type, for both zero and positive cosmological constant, that is, they
found conditions under which every timelike geodesic is incomplete. The singularity
theorems of general relativity (see, for instance, [12]) are some of the deepest
statements in modern science, because they imply that the universe has a finite history,
beginning in a so-called big bang singularity, provided that we can reliably extrapolate
certain features of the known laws of physics back to early times and high energy
scales.

In 1970, Calabi [5] stated the well-known Calabi–Bernstein theorem: The only
complete maximal surfaces in the three-dimensional Lorentz–Minkowski spacetime,
that is, spacelike surfaces with zero mean curvature, are the spacelike planes.

The nonparametric version of this theorem asserts that the only entire maximal
graphs in L3 are the affine functions. Cheng and Yau [8] extended this result to
complete maximal hypersurfaces in Ln+1. A natural generalisation of the Lorentz–
Minkowski spacetime is the class of Lorentzian product manifolds of the form −I × M,
where M is an n-dimensional Riemannian manifold and I ⊆ R is an open interval.
Several authors have obtained Calabi–Bernstein-type results for maximal spacelike
hypersurfaces in such Lorentzian manifolds (see, for instance, [2]).

Let (M, gM) be an n-dimensional connected Riemannian manifold and I ⊆ R an
open interval. Consider the product manifold M = I × M, and denote by πI and πM the
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projections onto the factors I and M, respectively. The class of Lorentzian manifolds
which will concern us is the one obtained by furnishing M with the Lorentzian metric

gp(v,w) = −(πI)∗(v)(πI)∗(w) +gM((πM)∗(v), (πM)∗(w))|πM(p)

for all p ∈ M and v,w ∈ TpM. A standard computation shows that ∂t is a globally
defined closed Killing vector field on M. The family of spacelike hypersurfaces
S t = {t} × M, t ∈ I constitutes a foliation of M by totally geodesic leaves that we call
slices.

Let S be an n-dimensional connected manifold. A smooth immersion ι : S → M is
said to be a spacelike hypersurface if S , furnished with the metric induced from g via
ι, is a Riemannian manifold. If this is so, we shall always assume that the metric on
S is the induced one. In this setting, it follows from the connectedness of S that we
can uniquely choose a globally defined timelike unit normal vector field N ∈ X(S )⊥,
having the same time orientation as ∂t, that is such that g(N, ∂t) ≤ −1. We say that N
is the future-pointing Gauss map of S . A function naturally attached to a spacelike
hypersurface S immersed into a Lorentzian product M is the height function defined
by h = πI |S . Inspired by Gromov [11], we define the f -mean curvature H f of S by

nH f = nH − g(∇ f ,N), (1.3)

where H stands for the mean curvature of S with respect to its Gauss map N. We will
say that S is f -maximal if H f ≡ 0.

From a splitting theorem due to Case (see [6, Theorem 1.2]), it follows that if M
is a weighted Lorentzian product space endowed with a weight function f bounded
from above such that Ric f (V,V) ≥ 0 for all timelike vector fields V , then f does not
depend on t. Motivated by this result, we will consider weighted Lorentzian products
M f = −I × M f , where the weight function f does not depend on the parameter t ∈ I
or, in other words, g(∇ f , ∂t) = 0. In the trivial case, f = constant, the assumption on
the Ricci tensor in [6] reduces to the so-called timelike convergence condition (which
means that the Ricci curvature is nonnegative on timelike directions) and the splitting
theorem generalises to a well-known one (see [9]).

In this setting, we prove the following nonexistence result.

Theorem 1.1. Let M f = −I × M f be a weighted Lorentzian product space whose fibre
M is noncomplete with nonnegative sectional curvature and such that the weight
function f is bounded and convex. Then there are no complete noncompact f -maximal
spacelike hypersurfaces immersed in M f .

Recall that the only functions convex and bounded from above on a complete
Riemannian manifold are the constant ones (see, for instance, [19, Corollary 6.2.5]).
On the other hand, taking into account examples given in [19, pages 84–86], we
see that there exist nonconstant convex and bounded functions on noncomplete
Riemannian manifolds.

The proof of Theorem 1.1 is presented in Section 3. As a consequence, we get the
following Calabi–Bernstein result.
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Theorem 1.2. Let M = −I × M be a Lorentzian product space whose fibre M
is complete with nonnegative sectional curvature. The only maximal noncompact
spacelike hypersurfaces of M are the slices.

Let Ω ⊆ M be a connected domain and let u ∈ C∞(Ω) be a smooth function such
that u(Ω) ⊆ I. We denote by S (u) the graph over Ω determined by u, that is,

S (u) = {(u(x), x) : x ∈ Ω} ⊂ −I × M.

The graph is said to be entire if Ω = M. The metric induced on Ω from the Lorentzian
metric of the ambient space via S (u) is

gS (u) = −du2 + gM .

It can be easily seen that a graph S (u) is a spacelike hypersurface if and only if
|Du|M < 1, Du being the gradient of u in M and |Du|M = gM(Du,Du)1/2.

It is interesting to observe that, in contrast to the case of graphs in a Riemannian
product space, an entire spacelike graph S (u) in a Lorentzian product space −I × M
is not necessarily complete, in the sense that the induced Riemannian metric is not
necessarily complete on M. For instance, Albujer [1, Section 3] obtained explicit
examples of noncomplete entire maximal graphs in −R × H2. However, it follows
from [2, Lemma 17] that when the fibre M is complete and |Du|M ≤ c, for a certain
constant c with 0 < c < 1, then S (u) must also be complete. On an entire graph S (u),
the existence of such a constant c prevents the tangent vector field to a divergent curve
in S (u) from asymptotically approaching a lightlike direction in the ambient space.

In this setting, we get the following nonparametric version of Theorem 1.2.

Corollary 1.3. Let M be an n-dimensional complete noncompact manifold with
nonnegative sectional curvatures. The only maximal entire functions into −I × M such
that |Du|M ≤ c, for some constant c ∈ (0, 1), are the constant ones.

2. Key lemmas

In this section, we present two key lemmas used in the proof of Theorem 1.1. Before
stating the first one, we recall some important facts.

Let (Σ, g, dµ = e− f dV) be an n-dimensional weighted complete Riemannian
manifold. Take any point x ∈ Σ and denote the volume form in geodesic polar
coordinates centred at x by

dV |expx(rξ) = J(x, r, ξ) dr dξ,

where r > 0 and ξ ∈ SxΣ is a unitary tangent vector at x. It is well known that if y ∈ Σ

is any point such that y = expx(rξ), then

∆ f d(x, y) =
J′f (x, r, ξ)

J f (x, r, ξ)
,
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where J f (x, r, ξ) := e− f J(x, r, ξ) is the f -volume form in geodesic polar coordinates.
For a fixed point p ∈ Σ and R > 0, define

A(R) := sup
Bp(3R)

| f (x)|. (2.1)

For a subset Ω ⊆ Σ, we will denote by V(Ω) the volume of Ω with respect to the
usual volume form dV , and by V f (Ω) the f -volume of Ω, V f (Ω) =

∫
Ω

e− f dV . If Σ

has nonnegative Bakry–Émery–Ricci curvature, then along any minimising geodesic
starting from x ∈ Bp(R),

J f (x, r2, ξ)
J f (x, r1, ξ)

≤ e4A
(r2

r1

)n−1
(2.2)

for any r1, r2 with 0 < r1 < r2 < R; in particular, for 0 < r1 < r2 < R,

V f (Bx(r2))
V f (Bx(r1))

≤ e4A
(r2

r1

)n
, (2.3)

where A = A(R) is defined in (2.1) (see [15, Lemma 2.1]). If Σ is noncompact, the
comparison inequality (2.2) guarantees that there exist constants ν > 2, C1 and C2,
depending only on n, such that for all φ ∈ C∞0 (Bx(r)) the following local Sobolev
inequality holds:(∫

Bx(r)
|φ|2ν/(ν−2) dµ

)(ν−2)/ν
≤ C1

eC2Ar2

V f (Bx(r))2/ν

∫
Bx(r)

(|∇φ|2 + r−2|φ|2) dµ, (2.4)

where x ∈ Bp(R) and 0 < r < R (see [7, Lemma 2.3]). Such a family of Sobolev
inequalities can be used to obtain a mean-value inequality for subsolutions to the f -
heat equation as in [18, Theorem 5.2.9] (see [7, Lemma 2.5]).

Lemma 2.1. Let (Σ, g, dµ = e− f dV) be an n-dimensional weighted complete
Riemannian manifold which satisfies the local Sobolev inequality (2.4) for all functions
φ ∈ C∞0 (Bo(ρ)) and 0 < ρ ≤ R, where o ∈ Σ is a fixed origin. Fix q ∈ (0,+∞) and let u
be a positive subsolution of the f -heat equation, that is,

Lu := ∆ f u +
∂u
∂t
≥ 0,

in the cylinder Q = Bo(r) × (s − r2, s) for some s ∈ R and 0 < r < R. Then, for
0 < δ < δ′ ≤ 1, there exist constants C3 = C3(n, sup | f |, ν, q) and C4 = C4(n, ν, q) such
that

sup
Qδ

uq ≤ C3
eC4A(R)

(δ′ − δ)ν+2r2V f (Bo(r))

∫
Qδ′

uq dµ dt,

where Qz = Bo(zr) × (s − zr2, s).

Our second key lemma gives sufficient conditions to guarantee that the Bakry–
Émery–Ricci curvature of an f -maximal spacelike hypersurface immersed in a
weighted Lorentzian product is nonnegative.
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Lemma 2.2. Let M f = −I × M f be a Lorentzian weighted product whose fibre M has
nonnegative sectional curvatures and with convex weight function. Let ι : S → M f be
an f -maximal spacelike hypersurface. Then the Bakry–Émery–Ricci curvature Ric f of
S is nonnegative.

Proof. The curvature tensor R of a spacelike hypersurface S immersed in M can be
described in terms of the shape operator A and the curvature tensor R of M by the
so-called Gauss equation given by

R(X,Y)Z = (R(X,Y)Z)> − gS (AX,Z)AY + gS (AY,Z)AX (2.5)

for all tangent vector fields X,Y,Z ∈ X(S ). The curvature tensor R is given by

R(X,Y)Z = ∇[X,Y]Z − [∇X ,∇Y ]Z,

where [· , ·] denotes the Lie bracket and X,Y,Z ∈ X(S ) (see [16]).
Consider X ∈ X(S ) and a local orthonormal frame {E1, . . . , En} of X(S ). It follows

from the Gauss equation (2.5) that

Ric(X, X) =

n∑
i=1

g(R(X, Ei)X, Ei) + nHgS (AX, X) + gS (AX, AX). (2.6)

Moreover,

R(X,Y)Z = RM(XM ,Y M)ZM ,

RM and (·)M being, respectively, the curvature tensor and the projection of a vector
field onto the fibre M (see [16, Proposition 7.42] for details). Hence,

g(R(X, Ei)X, Ei) = KM(XM , EM
i )(gM(XM , XM)gM(EM

i , E
M
i ) − gM(XM , EM

i )).

Since M is nonnegatively curved, substituting this equation into (2.6) gives

Ric(X, X) ≥ nHgS (AX, X) + gS (AX, AX). (2.7)

Since f is convex,

Hess f (X, X) = Hess f (X, X) − g(∇ f ,N)gS (AX, X) ≥ −g(∇ f ,N)gS (AX, X). (2.8)

Therefore, from (1.1), (1.3), (2.7) and (2.8),

Ric f (X, X) ≥ nH f gS (AX, X) + gS (AX, AX). (2.9)

The result follows from (2.9) taking into account the hypothesis that S is
f -maximal. �

https://doi.org/10.1017/S0004972717000296 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000296


[7] On the existence of f -maximal spacelike hypersurfaces 323

3. Proof of Theorem 1.1

Let S be a complete noncompact spacelike f -maximal hypersurface immersed in
M f = −I × M f . The height function, h, of S is an f -harmonic function. In fact, the
Laplacian of h on S is ∆h = −nHg(N, ∂t) (see, for instance, [3, Lemma 4.1]). In view
of (1.3), the f -Laplacian of h on S is ∆ f h = −nH f g(N, ∂t), and the f -harmonicity of h
follows from the hypothesis that S is f -maximal.

We claim that h must be bounded from above. We will argue as in the proof of [13,
Theorem 0.13]. Suppose otherwise. Then S ∩ S t , 0 for all t ∈ I. For a fixed t ∈ I, let
Σt := {p ∈ S : h(p) ≥ t}. By Sard’s theorem, we can suppose that t is a regular value of
h|int S , so that Σt is a smooth complete manifold with boundary ∂Σt = {p ∈ S : h(p) = t}
and exterior unit normal νt = −∇h/|∇h|. For any ε > 0, define hε on Σt by

hε = max{h, t + ε}.

Then hε is f -harmonic on Σt. Indeed, set

Σ1 = {p ∈ Σt : h(p) > t + ε},

Σ2 = {p ∈ Σt : h(p) = t + ε},

Σ3 = {p ∈ Σt : t < h(p) < t + ε}.

Then hε = h on Σ1 and hε is constant (equal to t + ε) on Σ3, so ∆ f hε = 0 on both Σ1 and
Σ3. The tranversality of S and ∂t, by which we mean the fact that the function g(N, ∂t)
is negatively signed globally on S , implies a certain kind of monotonic behaviour of
the height function h, which in turn guarantees that hε is smooth on Σ2 and on ∂Σt.
So, we also have ∆ f hε = 0 on both Σ2 and ∂Σt by continuity. On noting that hε ≡ t + ε
on ∂Σt, by the maximum principle for the f -Laplacian, we see that t ≤ h ≤ t + ε on
Σt. Since this holds for every ε > 0, we conclude that h ≡ t on Σt, contradicting the
assumption of h being unbounded from above. The same reasoning also proves that h
is bounded from below. We now observe that h has sublinear growth, that is,

lim
p→∞

|h|(p)
r(p)

= 0, (3.1)

where r(p) := d(p, p0) is the distance from a fixed point p0 ∈ S . This follows from the
noncompactness of S and from the fact just established that α := supS |h| < +∞, so that

0 ≤
|h|(p)
r(p)

≤
α

r(p)
→ 0 as p→∞.

From ∆ f h = 0, Lemma 2.2 and the weighted Bochner formula (1.2), we conclude
that |∇h|2 is f -subharmonic. By setting q = 1 in Lemma 2.1 and observing that an f -
subharmonic function is also a subsolution to the f -heat equation, we get the following
mean-value inequality:

sup
Bp(R/2)

|∇h|2 ≤
β

R2V f (Bp(R))

∫
Bp(R)
|∇h|2 dµ, (3.2)

where β is a constant depending only on n and supS | f |.
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We now follow the proof of [15, Theorem 3.2] and apply a standard cut-off

argument. Choose a cut-off function φ such that φ = 1 on Bp(R), φ = 0 on S n\Bp(2R)
and |∇φ| ≤ β/R. Integrating by parts and using ∆S

f h = 0 yields∫
S
|∇h|2φ2 dµ=−2

∫
S

hφ〈∇h,∇φ〉 dµ

≤ 2
∫

S
|h|φ|〈∇h,∇φ〉| dµ

≤ 2
(∫

S
|∇h|2φ2 dµ

)1/2(∫
S

h2|∇φ|2 dµ
)1/2

.

It follows that∫
S
|∇h|2φ2 dµ≤ 4

∫
S

h2|∇φ|2 dµ ≤
β2

R2

∫
Bp(2R)\Bp(R)

h2 dµ

≤
β2

R2

(
sup

Bp(2R)
h2

)
V f (Bp(2R)) ≤

γ

R2

(
sup

Bp(2R)
h2

)
V f (Bp(R))

for a positive constant γ, where in the last inequality we used (2.3).
Taking into account (3.1),

lim
R→∞

β

R2V f (Bp(R))

∫
Bp(R)
|∇h|2 dµ = 0,

so that, by (3.2), |∇h| = 0 on S , that is, S is a slice of M f . But, since we are assuming
that the fibre M is noncomplete, this cannot occur.

Remark 3.1. Munteanu and Wang [15] already established that an f -harmonic
function of sublinear growth in a complete noncompact weighted manifold with
bounded weight function f must be constant. They used a somewhat different mean-
value inequality (see [15, (3.14)]).
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