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Abstract

In this paper we study the existence of higher dimensional arithmetic progressions in Meyer sets. We
show that the case when the ratios are linearly dependent over Z is trivial and focus on arithmetic
progressions for which the ratios are linearly independent. Given a Meyer set Λ and a fully Euclidean
model set�(W) with the property that finitely many translates of�(W) cover Λ, we prove that we can
find higher dimensional arithmetic progressions of arbitrary length with k linearly independent ratios inΛ
if and only if k is at most the rank of the Z-module generated by�(W). We use this result to characterize
the Meyer sets that are subsets of fully Euclidean model sets.
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1. Introduction

The Nobel Prize discovery of quasicrystals [19] sparked many questions regarding the
nature of solids with long-range aperiodic order. This discovery led to establishment
of a new area of mathematics, the area of aperiodic order. The goal of this new field is
to study objects that show long-range order, but are not necessarily periodic.

The best mathematical models for point sets that show long-range order and are
typically aperiodic were discovered in the earlier pioneering work of Meyer [13] and
have been popularized in the field by Moody [14, 15] and Lagarias [9, 10]. Called
model sets, they are constructed via a cut-and-project scheme, a mechanism that starts
with a lattice L in a higher dimensional space that sits at an ‘irrational slope’ with
respect to the real space Rd, cuts a strip around the real space Rd of bounded width W
(called the ‘window’) and projects it on the real space Rd (see Definition 2.13 for the
exact definition). Under various weak conditions, the high order present in the latticeL

The work was supported by NSERC with grant 2020-00038; we are grateful for the support.
© The Author(s), 2021. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

312

https://doi.org/10.1017/S1446788721000215 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1446788721000215
https://orcid.org/0000-0001-5833-5397
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788721000215&domain=pdf
https://doi.org/10.1017/S1446788721000215


[2] Higher dimensional progressions 313

shows in the resulting model set, typically via a clear diffraction diagram; for example,
see [5, 11, 17, 18] just to name a few.

Meyer sets are relatively dense subsets of model sets. As subsets of model sets
they inherit part of the high order present in the former, which is evident in their
characterization via discrete geometry, harmonic analysis and algebraic properties [9,
13, 14]. While they typically have positive entropy and hence are usually not pure point
diffractive (see [4]; compare [2] for a discussion), they still show a highly ordered
diffraction diagram [21, 23–25] with a relatively dense supported pure point spectrum
[20–22, 25].

In [8], we showed a different type of order in Meyer sets in the form of the existence
of arbitrarily long arithmetic progressions. More precisely, we proved that given a
Meyer set Λ ⊆ Rd, for all N ∈ N there exists some R > 0 such that the set Λ ∩ BR(x)
contains an arithmetic progression of length N for all x ∈ Rd. Moreover, we showed
that van der Waerden-type theorems hold in Meyer sets. More recently, related results
have been investigated in [1, 16].

Consider now a Meyer set Λ ⊆ Rd. While Λ spreads relatively densely in all
directions of Rd, any arithmetic progression is one-dimensional and hence only gives
partial information about the structure of Meyer sets. This suggests that one should
look for higher dimensional arithmetic progressions, which is the goal of this paper.
By an m-dimensional arithmetic progression we understand a set of the form

A = {s + c1r1 + · · · + cmrm : 0 ≤ cj ≤ Nj for all 1 ≤ j ≤ m}

for some fixed s, r1, . . . , rm ∈ Rd and N1, . . . , Nm ∈ N. The elements r1, . . . , rm are
called the ratios and �N = (N1, . . . , Nm) is the vector length of the progression. The
arithmetic progression is proper if all the elements s + c1r1 + · · · + cmrm are distinct.

By a standard application of the Chinese remainder theorem, we show in
Proposition 3.3 that for all n ∈ N and �N ∈ Nm, every Meyer set contains a proper
n-dimensional arithmetic progression of length �N. While the arithmetic progression
is proper, every pair of ratios is linearly dependent over Z and hence the arithmetic
progression is a subset of a one-dimensional affine Q-space.

To make the question more interesting and meaningful, we add the extra condition
that the ratios are linearly independent over Z (or equivalently over Q). Given a fully
Euclidean model set�(W) in a cut-and-project scheme (or simply a CPS) (Rd,Rm,L),
we show in Theorem 4.3 that �(W) has n-dimensional arithmetic progressions of
arbitrary length with linearly independent ratios if and only if n ≤ d + m.

Next, for any Meyer set Λ, it is well known that there exist some fully Euclidean
model set�(W) in some CPS (Rd,Rm,L) and a finite set F ⊆ Rd such that

Λ ⊆ �(W) + F. (1-1)

We show in Theorem 5.2 thatΛ has n-dimensional arithmetic progressions of arbitrary
length with linearly independent ratios if and only if n ≤ d + m. This implies that,
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while in general there exist multiple fully Euclidean model sets�(W) and finite sets F
such that (1-1) holds, m must be the same for all these model sets.

We complete the paper by answering the following question.

QUESTION 1.1. Which Meyer sets Λ ⊆ Rd are subsets of fully Euclidean model sets?

To our knowledge, no characterization for these sets (that we call fully Euclidean
Meyer sets) is known so far. We show in Theorem 6.1 that a Meyer set Λ ⊆ Rd is
a subset of a fully Euclidean model set if and only if it has n-dimensional arithmetic
progressions of arbitrary length with linearly independent ratios, where n is the rank of
the Z-module generated by Λ. The characterization is of number theory/combinatorics
origin, emphasizing once again the nice order present in Meyer sets and model sets.

The paper is structured in the following way. In Section 2.1, we give basic
definitions and prove a higher dimensional version of van der Waerden’s theorem
[26]. We prove, in Section 3, that Meyer sets Λ ⊂ Rd contain arithmetic progression of
arbitrary length and dimension, albeit with linearly dependent ratios. In Section 4, we
establish both the existence of arithmetic progressions with linearly independent ratios
and a higher-dimensional van der Waerden-type result for fully Euclidean model sets.
In Section 5, we extend these results to arbitrary Meyer sets in Rd. We complete the
paper by characterizing the fully Euclidean Meyer sets.

2. Preliminaries

In this section, we review the basic definitions and results needed in the paper.

2.1. Finitely generated free Z-modules. We start by recalling a few basic results
about finitely generated free Z-modules. First recall [7, Theorem VIII.4.12] that if M
is a free Z-module, then all the bases of M have the same cardinality. The common
cardinality of these bases is called the rank of M and is denoted by rank(M). Also, a
finitely generated Z-module is free if and only if it is torsion free [6, Theorem 12.5].

Next let us recall the following two results that we use a few times in the paper.

LEMMA 2.1 [7, Theorem VIII.6.1]. Let M be a free Z-module of rank k. If N is a
submodule of M, then N is free and

rank(N) ≤ rank(M).

In particular, Lemma 2.1 implies the following result.

COROLLARY 2.2. Let M be a free Z-module of rank k. If v1, . . . , vm ∈ M are linearly
independent over Z, then m ≤ k.

PROOF. v1, . . . , vm are a basis for the submodule of M generated by {v1, . . . , vm}. The
claim follows from Lemma 2.1. �

Next let us recall the following result about Z-submodules of the same rank as the
full module.

https://doi.org/10.1017/S1446788721000215 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000215


[4] Higher dimensional progressions 315

LEMMA 2.3. Let M be a finitely generated free Z-module and let N be a submodule of
M. If

rank(M) = rank(N),

then there exists some positive integer n such that

{nv : v ∈ M} =: n ·M ⊆ N.

PROOF. This follows from [7, Theorem VIII.6.1]. �

We complete the section by proving the following simple result. This result is surely
known, but we could not find a good reference for it.

LEMMA 2.4. Let M be a finitely generated free Z-module with k = rank(M) and let S be
a generating set for M. Then there exist k linearly independent elements v1, . . . , vk ∈ S.

PROOF. By a standard application of Zorn’s lemma, there exists some S′ =
{v1, . . . , vm} ⊆ S that is a maximal linearly independent subset. Let N be the submodule
of M generated by S′. Then rank(N) = m. To complete the proof, we show that m = k.
By [6, Theorem 12.4], there exist a basis y1, . . . , yk of M and n1, . . . , nm ∈ Z such that
n1y1, . . . , nmym is a basis for N.

Now assume by contradiction that m < k. Since S spans M, there exist elements
x1, . . . , xl ∈ S and k1, . . . , kl ∈ Z such that

yk = k1x1 + · · · + klxl.

Next note that for each 1 ≤ j ≤ l, we either have xj ∈ S′ or S′ ∪ xj is linearly
dependent. In both cases, there exists some nonzero fj ∈ Z such that fjxj ∈ N. Let
f = f1 · · · fl. Then f is a nonzero integer and

f yk ∈ N.

Since n1y1, . . . , nmym is a basis for N, f yk can be written as a linear combination of
n1y1, . . . , nmym. As f � 0, this gives that y1, . . . , ym, yk are linearly dependent over Z,
which is a contradiction. Thus, m = k. �

Note that one can alternatively prove the above lemma by embedding M into a
Q-vector space and looking at the subspace generated by S′.

2.2. Higher dimensional arithmetic progressions. In this section, we look at
higher dimensional arithmetic progressions. Let us start with the following definition.

DEFINITION 2.5. A higher dimensional arithmetic progression is a set of the form

A := {s + c1r1 + c2r2 + · · · + cnrn : 0 ≤ c1 ≤ N1, 0 ≤ c2 ≤ N2, . . . , 0 ≤ cn ≤ Nn}

for some fixed vectors s, r1, . . . , rn ∈ Rd and some arbitrarily fixed natural numbers
N1, . . . , Nn ∈ N. If the elements in A are distinct, then the progression is called proper.
We call n the dimension of the projection and �N = (N1, . . . , Nn) the vector length of the
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progression. The rank of the projection is the rank of the Z-module generated by the
ratios {r1, . . . , rn}. We say that the arithmetic progression is a li-arithmetic progression
if the ratios r1, . . . , rn are linearly independent over Z.

In the remainder of the paper, we simply refer to a higher dimensional arithmetic
progression simply as an ‘arithmetic progression’.

REMARK 2.6. The rank of a generalized arithmetic progression is simply the largest
cardinality of any Z-linearly independent subset of {r1, . . . , rn}. It is obvious that the
rank of any arithmetic progression is at most its dimension, with equality if and only
if the arithmetic progression is a li-arithmetic progression.

Next let us note here that since our goal is to study the existence of arithmetic
progressions of arbitrary length, �N = (N1, . . . , Nn), it is sufficient to restrict to the case
N1 = N2 = . . . = Nn =: N. In this case, we say that the length of the progression is
N ∈ N.

Next let us review some standard notation. As usual, for N ∈ N with N ≥ 1, we
denote by [N] the set

[N] := {0, 1, 2, . . . , N} = N ∩ [0, N].

Also, [N]d denotes the Cartesian product of d copies of [N], that is,

[N]d = {(k1, . . . , kd) : kj ∈ [N] for all 1 ≤ j ≤ d}.

We also need the following definition.

DEFINITION 2.7. A d-dimensional grid of depth n is a set of the form

[k1, . . . , kd; l1, . . . , ld; n] := {(l1 + m1k1, l2 + m2k2, . . . , ld + mdkd) : m1, . . . , md ∈ [n]}

for some fixed positive integers k1, . . . , kd and fixed l1, . . . , ld.

Note that a d-dimensional grid of depth n is simply an arithmetic progression inside
Zd of dimension d with the ratios

rj = kjej

for some kj ∈ N, where ej = (0, 0, . . . , 1, 0, . . . , 0) is the canonical basis.
We now prove the following higher dimensional version of van der Waerden’s

theorem. For the analogous statement of the one-dimensional version of this theorem,
we refer the reader to [8, 26]. Note that there are already higher dimensional
generalizations of van der Waerdens’s theorem, such as the Gallai–Witt theorem; see
[12] for a brief discussion and references therein.

THEOREM 2.8 (van der Waerden in Zd). Given any natural numbers k, r, d,
there exists a number W(r, k, d) such that, no matter how we colour Zd with r
colours, for each N ≥ W(r, k, d), we can find a monochromatic d-dimensional grid
[k1, . . . , kd; l1, . . . , ld; k] ⊆ [N]d of depth k.
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PROOF. We prove the claim via induction on d.
P(1): This is the standard van der Waerden theorem [26].
P(d)⇒ P(d + 1): Let r and k be given. Let A be the set of all d-dimensional grids

of depth k that are subsets of [W(r, k, d)]d. Now set

W(r, k, d + 1) = W(|A| · r, k, 1).

We show that this choice works. Note first that the van der Waerden theorem is
equivalent to the fact that given a set X with |A| · r elements, for any function v : N→ X
and any N ≥ W(|A| · r, k, 1), there exists an element x ∈ X such that

v−1(x) ∩ [N]

contains an arithmetic progression of length k.
Now consider any colouring of Zd+1 with r colours c1, . . . , cr. Let

N ≥ W(r, k, d + 1). Next, for each 1 ≤ j ≤ N, consider the colouring of Zd × {j} ⊆ Zd+1.
By P(d), the set [W(r, k, d)]d × {j} contains a monochromatic grid Mj of depth k. Let
c( j) be the colour of this grid. We can now define a function

v : [N]→ A × {c1, . . . , cr}
v(j) = (Mj, c(j)).

Then there exists some (M, cl) ∈ A × {c1, . . . , cr} such that

v−1(M, cl) ∩ [N]

contains an arithmetic progression of length k. Let ld+1, kd+1 be so that ld+1 + mkd+1 ∈
v−1(M, cl) ∩ [N] for all m ∈ [k]. Next, since M is a monochromatic grid of depth k,
there exists some k1, . . . , kd; l1, . . . , ld such that

M = [k1, . . . , kd; l1, . . . , ld; k] ⊆ [W(r, k, d)]d.

Then, by construction, the grid

[k1, . . . , kd, kd+1; l1, . . . , ld, ld+1; k] ⊆ [W(r, k, d)]d × [N] ⊆ [N]d+1

is monochromatic of colour cl. This proves the claim. �

REMARK 2.9. If we denote by W(r, k, d) the smallest value that satisfies Theorem 2.8,
then it is obvious that W(r, k, 1) = W(r, k). Moreover, the proof above yields the very
poor upper bound

W(r, k, d + 1) ≤ W(l, k, 1),

where l = |A| · r. Note that

|A| =
(W(n,k,d)∑

j=0

⌊W(n, k, d) − j
d

⌋)d
,
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which can be seen by observing that, for each 1 ≤ i ≤ d and for every particular choice
1 ≤ j ≤ W(n, k, d),

1 ≤ lj ≤
W(n, k, d) − j

d
.

2.3. Meyer sets and model sets. In this subsection, we review the notion of model
sets and Meyer sets in Rd. For a more detailed review of these definitions and
properties, we refer the reader to the monograph [3] and to [14, 15].

We start by reviewing some of the basic definitions for point sets.

DEFINITION 2.10. Let Λ ⊆ Rd be a point set. We say that Λ is:

• relatively dense if there exists some R > 0 such that for all x ∈ Rd, the setΛ ∩ BR(x)
contains at least one point;

• uniformly discrete if there exists some r > 0 such that for all x ∈ Rd, the set Λ ∩
Br(x) contains at most a point;

• Delone if Λ is relatively dense and uniformly discrete;
• locally finite if for all R > 0 and x ∈ Rd, the set Λ ∩ BR(x) is finite.

Relatively denseness and uniform discreteness are usually defined in arbitrary
locally compact Abelian groups (LCAGs) G, using compact sets and open sets,
respectively. It is easy to see that in the case of G = Rd, the usual definitions are
equivalent to Definition 2.10.

Next, in the spirit of [14], we introduce the following definition.

DEFINITION 2.11. We say that two Delone sets Λ1,Λ2 are equivalent by finite
translations if there exist finite sets F1, F2 such that

Λ1 ⊆ Λ2 + F2,
Λ2 ⊆ Λ1 + F1.

REMARK 2.12.

(a) It is easy to see that being equivalent by finite translations is an equivalence
relation on the set of Delone subsets of Rd.

(b) By replacing F1, F2 by F = F1 ∪ F2, one can assume without loss of generality
that F1 = F2.

Next we review the notion of cut-and-project schemes and model sets.

DEFINITION 2.13. By a cut-and-project scheme, or simply CPS, we understand a triple
(Rd, H,L) consisting of Rd, a LCAG H, together with a lattice (that is, a discrete
co-compact subgroup) L ⊂ Rd × H with the following two properties:

• the restriction πR
d |L of the canonical projection πR

d
: Rd × H → Rd to L is a

one-to-one function;
• the image πH(L) of L under the canonical projection πH : Rd × H → H is

dense in H.
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In the special case where H = Rm, then we refer to (Rd,Rm,L) as a fully Euclidean
CPS.

Next we define, in the usual way, L := πR
d
(L) and � : L→ H, known as the

�-mapping, by

� = πH ◦ (πR
d |L)−1.

This allows us rewrite

L = {(x, x�) : x ∈ L}.

Note that the range of the �-mapping is

�(L) =: L� = πH(L).

We can summarize the CPS in the diagram below.

Rd Rd × H H

πR
d
(L) L H

L L�

πR
d

πH

1−1
dense

�

⊃ ⊃ =

= ⊃

We can now review the definition of model sets.

DEFINITION 2.14. Given a CPS (Rd, H,L) and some subset W ⊆ H, we denote by
�(W) its preimage under the �-mapping, that is,

�(W) := {x ∈ L : x� ∈ W} = {x ∈ Rd : there exists y ∈ W such that (x, y) ∈ L}.

When W is precompact and has nonempty interior, the set �(W) is called a model
set. If furthermore H = Rm for some m, then �(W) is called a fully Euclidean model
set.

We want to emphasize here that the condition that W has nonempty interior is
essential later in the paper in the proof of Theorem 4.3.

Next let us recall the following result.

PROPOSITION 2.15 [14, Proposition 2.6] and [3, Proposition 7.5]. Let (Rd, H,L) be a
CPS and W ⊆ H.

(a) If W ⊆ H is precompact, then�(W) is uniformly discrete.
(b) If W ⊆ H has nonempty interior, then�(W) is relatively dense.

In particular, every model set is a Delone set.
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Next we review the concept of Meyer sets. We start by recalling the following
theorem.

THEOREM 2.16 [9, 13, 14]. Let Λ ⊆ Rd be relatively dense. Then the following are
equivalent.

(i) Λ is a subset of a model set.
(ii) There exist a fully Euclidean model set�(W) and a finite set F such that

Λ ⊆ �(W) + F.

(iii) Λ − Λ is uniformly discrete.
(iv) Λ is locally finite and there exists a finite set F1 such that

Λ − Λ ⊆ Λ + F1.

PROOF. The equivalence (i)⇔(iii)⇔(iv) can be found in [14], while (ii)⇔(iv) is [13,
Theorem IV]. �

The above theorem gives the concept of a Meyer set. More precisely, we have the
following definition.

DEFINITION 2.17. A relatively dense set Λ ⊂ Rn is called a Meyer set if it satisfies one
(and hence all) of the equivalent conditions of Theorem 2.16.

A relatively dense set Λ is called a fully Euclidean Meyer set if there exists some
fully Euclidean model set�(W) such that Λ ⊆ �(W).

One of the goals of this paper is to characterize fully Euclidean Meyer sets.
Next let us recall the following result from [14].

LEMMA 2.18. LetΛ ⊆ Rd be a Meyer set. Then the group 〈Λ〉 generated byΛ is finitely
generated. In particular, 〈Λ〉 is a free Z-module of finite rank.

PROOF. By [14, Theorem 9.1], 〈Λ〉 is finitely generated. It is therefore a finitely
generated Z-module. Moreover, since R is torsion free as a Z-module, so is 〈Λ〉.
Therefore, 〈Λ〉 is a free Z-module by [6, Theorem 12.5]. �

This allows us introduce the following definition.

DEFINITION 2.19. Let Λ ⊆ Rd be any Meyer set. We define the rank of Λ to be

rank(Λ) := rankZ(〈Λ〉).
We complete the section by showing that each Meyer set is equivalent by finitely

many translates with a fully Euclidean model set.

LEMMA 2.20. Let Λ be a Meyer set, F finite and �(W) a fully Euclidean model set
such that

Λ ⊆ �(W) + F.

Then Λ and�(W) are equivalent by finite translations.
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PROOF. Since�(W) is a Meyer set and F is finite,�(W) + F is also a Meyer set [13,
14]. The claim follows now from [23, Lemma 5.5.1]. �

3. Higher dimensional arithmetic progressions in Meyer sets

In this section we show that Meyer sets contain arithmetic progressions of arbitrary
dimensions and length. The proofs show that the existence of arithmetic progressions
of arbitrary length in Meyer sets is interesting only in the case of li-arithmetic
progressions. We study these in the subsequent sections.

We start by recalling the following well-known theorem.

LEMMA 3.1 (Chinese remainder theorem [6, Corollary 7.18]). If k1, . . . , kn are pair-
wise coprime and a1, . . . , an are integers, then there exists x ∈ Z+ such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x ≡ a1mod k1,
x ≡ a2mod k2,

...
x ≡ anmod kn.

Moreover, any two solutions are congruent modulo k1, k2, . . . , kn.

As an immediate consequence, we get the following result.

COROLLARY 3.2. For each n, N ∈ N, there exist m1, . . . , mn ∈ N such that
∑n

i=1 cimi

are distinct for all 0 ≤ ci ≤ N.

PROOF. Let p1, . . . , pn be distinct primes such that for all 1 ≤ i ≤ n, we have pi > N.
By the Chinese remainder theorem, there exist m1, . . . , mn such that for each 1 ≤ i ≤ n,{

mi ≡ 1 mod pi

mi ≡ 0 mod pj for all j � i.

Now, if
∑n

i=1 cimi =
∑n

i=1 c′imi, then, for all 1 ≤ k ≤ n,

n∑
i=1

cimi ≡
n∑

i=1

c′imi mod pk

and hence ck ≡ c′k mod pk. Since

0 ≤ ck, c′k ≤ N < pk,

we get ck = c′k for all 1 ≤ k ≤ n. �

We can now prove the following result.

PROPOSITION 3.3. Let n, N ∈ N and letΛ ∈ Rd be a Meyer set. Then there exists some
R > 0 such that Λ ∩ BR(x) contains a nontrivial and proper n-dimensional arithmetic
progression of length N for all x ∈ Rd.
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PROOF. Let n, N ∈ N be given. We show that, for some R > 0, there exist

s, r1, r2, . . . , rn ∈ Λ

such that

s +
n∑

i=1

ciri ∈ Λ ∩ BR(x) for all 0 ≤ ci ≤ N

and that the elements s +
∑n

i=1 ciri are distinct. Let m1, . . . , mn be as in Corollary 3.2
and set N′ = Nm1 + · · · + Nmn. By [8, Lemma 4.3], there exist an R > 0 and some
nonzero s, r ∈ Λ such that

s, s + r, . . . , s + N′r ∈ Λ ∩ BR(x).

Now define rj := mjr. It follows that, for 0 ≤ ∑n
i=1 cimi ≤ N′,

s +
n∑

i=1

ciri = s +
n∑

i=1

cimir ∈ Λ ∩ BR(x).

Moreover, by Corollary 3.2, the progression is proper. �

Note here in passing that, by construction, the arithmetic progression in Proposition
3.3 has rank one.

It becomes natural to ask if one can construct arithmetic progressions of higher
rank. It is easy to see that one can focus on li-arithmetic progressions. Indeed, exactly
as in Proposition 3.3, one can prove the following result.

LEMMA 3.4. Let Λ ⊆ Rd be any Meyer set and k ∈ N. Then Λ contains li-arithmetic
progressions of rank k and arbitrary length if and only if for each d ≥ k, Λ contains
arithmetic progressions of rank k, dimension d and arbitrary length.

Since the proof is similar to that of Proposition 3.3, we skip it.

4. Higher dimensional arithmetic progressions with linearly independent ratios

In this section, we discuss the existence of li-arithmetic progressions in fully
Euclidean model sets. We show that the maximal rank of any such progression is
the rank of the lattice in the CPS and that for this rank, we can find li-arithmetic
progressions of arbitrary length.

We start by proving the following result (compare [14, Proposition 2.6]).

LEMMA 4.1. Let (Rd,Rm,L) be a fully Euclidean CPS and let W ⊆ Rm be any set with
nonempty interior. Then�(W) generates L = πRd (L). In particular,

rank(�(W)) = d + m.

In particular, there exist vectors r1, . . . , rd+m ∈ �(W) that are linearly independent
over Z.
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PROOF. It suffices to show that �(W) −�(W) = �(W −W) generates L. Note that
0 is an interior point in W −W and hence we can find some r > 0 such that Br(0) ⊆
W −W.

Now let x ∈ L be arbitrary. Pick some n such that d(x, 0) < nr. Then (x/n) ∈ Br(0).
Note here that (x/n) ∈ Br(0) ∩ Bx/n(x/n). Since this set is open, by the density of
πRm (L) in Rm, there exist some (z, z�) ∈ L such that z� ∈ Br(0) ∩ Bx/n(x/n). Then
z ∈ �(W −W) and d(x�, nz�) < r and thus x� − nz� ∈ Br(0) ⊆ W −W. Therefore,

z ∈ �(W) −�(W),

x − nz ∈ �(W) −�(W).

This gives x ∈ 〈�(W)〉. The last claim now follows from Lemma 2.4. �

Next we prove the following generalization of [8, Proposition 4.2].

PROPOSITION 4.2. Let (Rd, H,L) be any CPS and let W ⊆ H be any set with nonempty
interior. Then, for all M ∈ N, we can find open sets UM , VM ⊂ H such that 0 ∈ VM and

�(UM) +�(VM) +�(VM) + · · · +�(VM)︸������������������������������������︷︷������������������������������������︸
M times

⊆ �(W).

PROOF. As W has nonempty interior, there exist nonempty open sets UM ⊆ H and
0 ∈ VM ⊆ H such that

UM + VM + VM + · · · + VM︸��������������������︷︷��������������������︸
M times

⊆ W.

Then

�(UM) +�(VM) +�(VM) + · · · +�(VM)︸������������������������������������︷︷������������������������������������︸
M times

⊆ �(UM + VM + VM + · · · + VM︸��������������������︷︷��������������������︸
M times

) ⊆ �(W).

This completes the proof. �

By combining Proposition 4.2 with Corollary 2.2, we get the following result.

THEOREM 4.3. Let�(W) be a model set in a fully Euclidean CPS (Rd,Rm,L). Then:

(a) any arithmetic progression of length N in�(W) has rank at most d + m;
(b) for each N, there exists some R > 0 such that the set �(W) ∩ BR(y) contains a

li-arithmetic progression of length N and rank d + m for all y ∈ Rd.

PROOF.

(a) For any arithmetic progression of rank k in�(W), the set {r1, . . . , rk}, with ri the
ratios of the progression, is Z-linearly independent in L. Therefore, by Corollary
2.2, we have k ≤ m + d. This proves (a).

(b) Let N be given. We show that there exists some R > 0 such that, for all y ∈
Rd, there exist some s ∈ �(W) and Z-linearly independent r1, . . . , rm+d with
s +
∑m+d

j=1 cjrj ∈ �(W) ∩ BR(y) for all 0 ≤ cj ≤ N.
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Set M := N · (m + d). By Proposition 4.2, there exist open sets UM , VM ⊆ Rm such
that 0 ∈ VM and

�(UM) +�(VM) +�(VM) + · · · +�(VM)︸������������������������������������︷︷������������������������������������︸
M times

⊆ �(W).

As UM has nonempty interior, by Proposition 2.15, there exists R′ > 0 such that
�(UM) + BR′(0) = Rd. Next, by Lemma 2.4, there exist Z-linearly independent vectors
r1, . . . , rm+d ∈ �(VM). Define

R := N · (‖r1‖ + · · · + ‖rm+d‖) + R′.

Let y ∈ Rd be arbitrary. By the definition of R′, there exists some s ∈ �(UM) ∩
BR′(y). Then, for all 0 ≤ ci ≤ N, as 0 ∈ �(VM),

s +
m+d∑
i=1

ciri = s + r1 + · · · + r1︸��������︷︷��������︸
c1 times

+ · · · + rm+d + · · · + rm+d︸���������������︷︷���������������︸
cm+d times

= s + r1 + · · · + r1︸��������︷︷��������︸
c1 times

+ · · · + rm+d + · · · + rm+d︸���������������︷︷���������������︸
cm+d times

+ 0 + · · · + 0︸������︷︷������︸
M−∑m+d

i=1 ci times

∈ �(UM) +�(VM) +�(VM) + · · · +�(VM)︸������������������������������������︷︷������������������������������������︸
c1 times

+�(VM) +�(VM) + · · · +�(VM)︸������������������������������������︷︷������������������������������������︸
c2 times

+ · · · +�(VM) +�(VM) + · · · +�(VM)︸������������������������������������︷︷������������������������������������︸
cm+d times

+�(VM) +�(VM) + · · · +�(VM)︸������������������������������������︷︷������������������������������������︸
M−∑m+d

i=1 ci times

= �(UM) +�(VM) +�(VM) + · · · +�(VM)︸������������������������������������︷︷������������������������������������︸
M times

⊆ �(W).

Moreover, for all 0 ≤ ci ≤ N,

d
(
s +

m+d∑
i=1

ciri, y
)
=

∥∥∥∥∥y −
(
s +

m+d∑
i=1

ciri

)∥∥∥∥∥ ≤ ‖y − s‖ +
∥∥∥∥∥

m+d∑
i=1

ciri

∥∥∥∥∥
≤ R′ +

m+d∑
i=1

‖ciri‖ = R′ +
m+d∑
i=1

ci‖ri‖ ≤ R′ +
m+d∑
i=1

N‖ri‖ = R.

This implies that, for each 0 ≤ ci ≤ N,

s +
m+d∑
i=1

ciri ∈ �(W) ∩ BR(y),

establishing the claim. �

Theorem 4.3 suggests the following definition.
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DEFINITION 4.4. Let Λ ⊆ Rd be a Meyer set.
The ap-rank of Λ, denoted by ap-rank(Λ), is the largest k ∈ N with the property

that, for all N ∈ N, there exists a li-arithmetic progression of length N and rank
k in Λ.

Note here in passing that by Lemma 3.4, the ap-rank of Λ is the largest positive
integer k such that for all N ∈ N, the set Λ contains an arithmetic progression of length
N and rank k.

The next result tells us that the definition of ap-rank makes sense.

LEMMA 4.5. Let Λ ⊆ Rd be any Meyer set. Then

1 ≤ ap-rank(Λ) ≤ rank(Λ).

PROOF. The lower bound follows immediately from [8]. Note here that any nontrivial
one-dimensional arithmetic progression in Rd has rank one.

Next consider any arithmetic progression of length N ≥ 2 and rank k in Λ and let
r1, . . . , rk be the linearly independent ratios. Then r1, . . . , rk are linearly independent
vectors in 〈Λ〉. The claim follows from Corollary 2.2. �

REMARK 4.6.

(a) Theorem 4.3 says that for a fully Euclidean model set �(W) in the CPS
(Rd,Rm,L),

rank(�(W)) = ap-rank(�(W)) = d + m.

(b) Since the ap-rank does not change under translates, but the rank changes for
translates outside the Z-module generated by the set, it is easy to construct
examples of translates of fully Euclidean model sets such that

rank(t +�(W)) = ap-rank(t +�(W)) + 1.

In Example 5.5, for each n ∈ N, we construct a Meyer set Λ such that

rank(Λ) = ap-rank(Λ) + n.

(c) If Λ ⊆ Rd is a Meyer set, we show in Corollary 5.4 that

ap-rank(Λ) ≥ d.

We complete the section by providing a colouring version of Theorem 4.3.

THEOREM 4.7. Let �(W) be a model set in a fully Euclidean CPS (Rd,Rm,L). Then,
for each r, k, there exists some R such that, no matter how we colour �(W) with r
colours, the set �(W) ∩ BR(y) contains a monochromatic li-arithmetic progression of
length k and rank d + m for all y ∈ Rd.
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PROOF. Let N be such that van der Waerden’s theorem (Theorem 2.8) holds for r, k
applied to [N]d+m. By Theorem 4.3, there exists some R > 0 such that, for all y ∈ R,
the set

�(W) ∩ BR(y)

contains a nontrivial li-arithmetic progression length N. We show that this R works.
Arbitrarily colour �(W) with r colours and let y ∈ Rd be given. By Theorem 4.3,

there exist s, r1, . . . , rm+d such that r1, . . . , rm+d are Z-linearly independent and, for all
0 ≤ ci ≤ N,

s +
m+d∑
i=1

ciri ∈ �(W) ∩ BR(y).

Colour the set [N]m+d by colouring (c1, . . . , cm+d) with the colour of s +
∑m+d

i=1 ciri. By
the choice of N, there exists a monochromatic grid

[k1, . . . , kd+m; l1, . . . , ld+m; k] ∈ [N]d+m

of length k and dimension d + m. Then, for all 1 ≤ mj ≤ k, the set

s +
m+d∑
j=1

(lj + mjkj)rj ∈ �(W) ∩ BR(y)

is monochromatic. Now set s′ := s +
∑m+d

j=1 ljrj and r′j := kjrj. Then, for all
(m1, . . . , mm+d) ∈ [k]m+d,

s′ +
m+d∑
j=1

mjr′j ∈ �(W) ∩ BR(y)

is a monochromatic li-arithmetic progression of length k and rank m + d. �

5. ap-rank of Meyer sets

In this section, we calculate the ap-rank of a Meyer set Λ. We know that Λ is
equivalent by finite translates to a fully Euclidean model set �(W) and we use this
to show that

ap-rank(Λ) = ap-rank(�(W)) = rank(�(W)).

We start by proving the following result.

LEMMA 5.1. Let Λ, Γ ⊆ Rd be Meyer sets that are equivalent by finite translates. Then

ap-rank(Λ) = ap-rank(Γ).

PROOF. By symmetry, it suffices to show that

ap-rank(Λ) ≤ ap-rank(Γ).

https://doi.org/10.1017/S1446788721000215 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000215


[16] Higher dimensional progressions 327

Let F = { f1, . . . , fr} be such that

Λ ⊆ Γ + F

and let k = ap-rank(Λ). We show that Γ contains arithmetic progressions of length N
and rank k.

First, colour F with r colours such that no two points of F have the same colour.
Next let N ∈ N be arbitrary and let N′ = W(|F|, N, d) be given by Theorem 2.8. Since
k = ap-rank(Λ), by definition, there exists a li-arithmetic progression

{s + c1r2 + · · · + ckrk : 0 ≤ cj ≤ N′}

of length N′ and rank k in Λ. Now, for each (c1, . . . , ck) ∈ [0, N′]k, there exists some
fj ∈ F so that

x := s + c1r2 + · · · + ckrk ∈
r⋃

j=1

Γ + fj.

Pick the smallest j such that x = y + fj for some y ∈ Γ. Colour (c1, . . . , ck) with the
colour of this fj ∈ F. Then, by Theorem 2.8, there exists a monochromatic grid
[c′1d1, . . . , c′kdk; k] ⊆ [N′]k of depth N. Define

s′ = s − fj,
r′j = djrj.

Then, for all 0 ≤ c′j ≤ N,

x = s′ + c′1r′1 + · · · + c′kr′k ∈ Γ

is a li-arithmetic progression of length N and rank k. Since N ∈ N is arbitrary, k ≤
ap-rank(Γ). �

Now, by combining all results so far, we get the following theorem, which is the
first main result in the paper.

THEOREM 5.2. Let Λ ⊆ Rd be a Meyer set, let�(W) be any fully Euclidean model set
in (Rd,Rm,L) and F ⊆ Rd be finite such that

Λ ⊆ �(W) + F.

Then

ap-rank(Λ) = d + m = ap-rank(�(W)) = rank(�(W)).

Moreover, for each N, there exists some R > 0 such that the set Λ ∩ BR(y) contains
a li-arithmetic progression of length N and rank d + m for all y ∈ Rd.
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PROOF. By Lemma 2.20, Λ and �(W) are equivalent by finite translates. Therefore,
by Lemma 5.1,

ap-rank(Λ) = ap-rank(�(W)).

Moreover, by Theorem 4.3,

rank(�(W)) = ap-rank(�(W)) = d + m.

Next, since Λ and�(W) are equivalent by finite translates, there exists some finite set
F = {t1, . . . , tr} such that

�(W) ⊆ Λ + F.

Colour F with r colours so that each point of F has a different colour. Let R′ be the
constant given by Theorem 4.7 for�(W) with r colours and length N. Define

R := max{R′ + ‖tj‖ : 1 ≤ j ≤ r}.

Colour�(W) the following way: for each x ∈ �(W), there exists some minimal j such
that x ∈ tj + Λ. Colour each x by the colour of tj for this minimal j. This gives an
r-colouring of �(W). Note here that any choice of tj works, but one needs to make a
choice in case some x ∈ �(W) belongs to tj + Λ for more than one j.

Now let y ∈ Rd be arbitrary. By Theorem 4.7, there exists a monochromatic
li-arithmetic progression s +

∑m+d
i=1 ciri ∈ �(W) ∩ BR′(y) of rank m + d for all

0 ≤ ci ≤ N.
Since the arithmetic progression is monochromatic, there exists some j such that,

for all 0 ≤ ci ≤ N,

s +
m+d∑
i=1

ciri ∈ tj + Λ.

Thus, for all 0 ≤ ci ≤ N,

s − tj +
m+d∑
i=1

ciri ∈ Λ,

which is a li-arithmetic progression of length N and rank m + d. Moreover, for each
0 ≤ ci ≤ N,

d
(
s − tj +

m+d∑
i=1

ciri, y
)
=

∥∥∥∥∥s +
m+d∑
i=1

ciri − tj − y
∥∥∥∥∥ ≤
∥∥∥∥∥s +

m+d∑
i=1

ciri − y
∥∥∥∥∥ + ‖tj‖ ≤ R.

This proves the last claim. �

We start by listing some consequences of this result.
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As a first immediate consequence, we get that if Λ is a Meyer set, �(W) a fully
Euclidean model set in (Rd,Rm,L) and F a finite set such that

Λ ⊆ �(W) + F,

then m is invariant for Λ.

COROLLARY 5.3. Let Λ ⊆ Rd be any Meyer set. If (Rd,Rm,L) and (Rd,Rn,L) are
two different CPSs, W ⊆ Rm, W ′ ⊆ Rn are precompact windows with nonempty interior
and F, F′ are finite sets such that

Λ ⊆ �(W) + F,

Λ ⊆ �(W ′) + F′,

then m = n.

PROOF. By Theorem 5.2,

ap-rank(Λ) = d + m,
ap-rank(Λ) = d + n.

Therefore, d + m = d + n and hence m = n. �

As an immediate consequence, we get the following improvement on the lower
bound from Lemma 4.5.

COROLLARY 5.4. Let Λ ⊆ Rd be any Meyer set. Then

ap-rank(Λ) ≥ d.

Next we show that in general there is no upper bound for ap-rank(Λ) in terms of
rank(Λ).

EXAMPLE 5.5. Let �(W) be any fully Euclidean model set and let r1, . . . , rk be such
that

〈�(W)〉 =
k⊕

j=1

Zrk.

Let s1, . . . , sn be such that r1, . . . , rk, s1, . . . , sn are linearly independent over Z and let
F = {s1, . . . , sn}. Then

Λ = �(W) + F

is a Meyer set and

ap-rank(Λ) = k,
rank(Λ) = k + n.
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REMARK 5.6. If �(W) is a fully Euclidean model set with k = ap-rank(Λ), then, by
Theorem 4.3, every li-arithmetic progression in�(W) has rank at most k. The same is
not true in Meyer sets.

Indeed, let k ≤ d and N be any positive integers. Let A be any li-arithmetic
progression of rank d and length N, and let�(W) be any fully Euclidean model set of
rank k such that 0 ∈ �(W). Then

Λ := �(W) + A

is a Meyer set, with ap-rank(Λ) = k, which contains the li-arithmetic progression A of
rank d and length N.

Note that ap-rank(Λ) = k means that for all d > k, if Λ contains li-arithmetic
progressions of rank d, then they are bounded in length. We see later in Corollary
6.3 that for fully Euclidean Meyer sets, the rank of every li-arithmetic progression is
also bounded by the ap-rank.

We complete the section by extending, as usual, Theorem 5.2 to colourings of Λ.

THEOREM 5.7. Let Λ ⊂ Rd be a Meyer set and let k = ap-rank(Λ). Then, for each
r, N, there exists some R such that, no matter how we colour Λ with r colours, the set
Λ ∩ BR(y) contains a monochromatic li-arithmetic progression of length N and rank k
for all y ∈ Rd.

PROOF. Pick N′ such that van der Waerden’s theorem holds for r, k applied to [N′]d+m.
By Theorem 5.2, there exists R > 0 such that for all y ∈ Rd, the set Λ ∩ BR(y) contains
an arithmetic progression of length N and dimension k. The rest of the proof is identical
to that of Theorem 4.7. �

6. A characterization of fully Euclidean Meyer sets

We complete the paper by characterizing fully Euclidean Meyer sets. To our
knowledge, this is the first result in this direction.

THEOREM 6.1. Let Λ ⊆ Rd be a Meyer set. Then Λ is a fully Euclidean Meyer set if
and only if

ap-rank(Λ) = rank(Λ).

PROOF. =⇒:
Let�(W) be a fully Euclidean model set such that

Λ ⊆ �(W).

Then rank(Λ) ≤ rank(�(W)). Therefore, by Lemma 4.5 and Theorem 5.2,

ap-rank(Λ) ≤ rank(Λ) ≤ rank(�(W)) = ap-rank(Λ).
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This gives

ap-rank(Λ) = rank(Λ).

⇐=:
Let k := ap-rank(Λ) = rank(Λ). By Theorem 2.16, there exist a CPS (Rd,Rm,L), a

window W ⊆ Rm and a finite set F = { f1, . . . , fl} such that

Λ ⊆ �(W) + F. (6-1)

Moreover, without loss of generality, we can assume that no proper subset F′ of F
satisfies (6-1). We start by showing that there exists some n so that nΛ ⊆ L = πRd (L).

First, note that by Theorem 5.2,

rank(�(W)) = rank(�(W −W)) = k.

By (6-1), we can partition Λ as

Λ = ·l⋃
j=1

Λj,

Λj ⊆ �(W) + fj.

Note that for all 1 ≤ j ≤ l,

Λj − Λj ⊆ �(W) −�(W)

and hence

Γ :=
l⋃

j=1

(Λj − Λj) ⊆ �(W) −�(W).

We claim that Γ :=
⋃l

j=1(Λj − Λj) is relatively dense. Indeed, set

J := {j : 1 ≤ j ≤ l,Λj � ∅}.

Then

Γ =
⋃
j∈J

(Λj − Λj).

Now, for each j ∈ J, fix some xj ∈ Λj, that exists by the definition of J. Let

F′ = {xj : j ∈ J}.
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Then

Λ =
⋃
j∈J
Λj =

⋃
j∈J

(Λj − xj + xj) ⊆
⋃
j∈J

(Λj − xj + F′)

=

(⋃
j∈J

(Λj − xj)
)
+ F′ ⊆

(⋃
j∈J

(Λj − Λj)
)
+ F′ = Γ + F′.

Since Λ is relatively dense, it follows immediately that Γ is relatively dense. In
particular, Γ is a Meyer set. Now, by Theorem 5.2,

ap-rank(Γ) = rank(�(W −W)) = k.

Since Γ ⊆ �(W −W),

k = ap-rank(Γ) ≤ rank(Γ) ≤ rank(�(W −W)) = k

and hence rank(Γ) = k.
Next let L1 = 〈Λ〉 and L2 = 〈Γ〉 be the Z-modules generated byΛ and Γ, respectively.

Since, for each 1 ≤ j ≤ l, we haveΛj ⊆ Λ and henceΛj − Λj ⊆ Λ − Λ ⊆ L1, we get that
L2 is a Z-submodule of L1.

Now recall that by Lemma 4.1,

L = 〈�(W)〉 = 〈�(W −W)〉.

Since Γ ⊆ �(W −W), we have Γ ⊆ L and hence L2 is a submodule of L. Moreover, by
the above,

rank(L1) = rank(L2) = k

and by Lemma 2.3 there exists some positive integer n such that nL1 ⊆ L2. Therefore,

nΛ ⊆ nL1 ⊆ L2 ⊆ L,

as claimed. Next let v1, . . . , vd+m be the vectors such that

L = Zv1 ⊕ · · · ⊕ Zvm+d.

Now, by enlarging the lattice L, we can make sure that Λ is inside the projection of
the lattice on Rd. Indeed, for each 1 ≤ j ≤ m + d, let

wj =
1
n

vj

and set

L′ := Zw1 ⊕ · · · ⊕ Zwm+d.

Then it is obvious that (Rd,Rm,L′) is a CPS and that

L′ = πRd (L′) = 1
m
πRd (L) =

1
n

L.
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Moreover, by construction, L ⊆ L′. This gives

Λ ⊆ 1
n

L = L′.

We complete the proof by showing that F ⊆ L′. The result follows from this.
Let f ∈ F be arbitrary. By the minimality of F,

Λ � �(W) + (F\{ f }).

Therefore, there exists some x ∈ Λ such that x � �(W) + (F\{ f }). However, as x ∈ Λ ⊆
�(W) + F,

x ∈ �(W) + f .

Thus, there exists some y ∈ �(W) such that x = y + f . It follows that

f = x − y ∈ Λ −�(W) ⊆ L′ − L ⊆ L′ − L′ = L′,

as claimed. Therefore, for all 1 ≤ j ≤ l, there exists some gj ∈ Rm such that ( fj, gj) ∈ L′.
Define

W ′ =
l⋃

j=1

gj +W ⊆ Rm.

Then W ′ is precompact and has nonempty interior.
We show that

Λ ⊆ {x ∈ L′ : there exists y ∈ W′such that (x, y) ∈ L′} =: �′(W ′),

which, as �′(W ′) is a fully Euclidean model set in the CPS (Rd,Rm,L′), completes
the proof.

Let x ∈ Λ be arbitrary. Then, as Λ ⊆ �(W) + F, there exist some y ∈ �(W) and
1 ≤ j ≤ l such that

x = y + fj.

Since y ∈ �(W), there exists some z ∈ W such that (y, z) ∈ L ⊆ L′. Then

(x, z + gj) = (y, z) + ( fj, gj) ∈ L +L′ ⊆ L′ +L′ = L′,
z + gj ∈ gj +W ⊆ W′

and hence x ∈ �′(W ′). �

REMARK 6.2. Theorem 6.1 can be equivalently stated as follows.
Let Λ ⊆ Rd be a Meyer set. Then Λ is a fully Euclidean Meyer set if and only if for

k = rank(Λ), for each N ∈ N, there exist some s, r1, . . . , rk ∈ Rd such that r1, . . . , rk are
linearly independent over Z and, for all 0 ≤ Cj ≤ N,

s + C1r1 + · · · + Ckrk ∈ Λ.
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Note here that if A is a li-arithmetic progression of length N ≥ 1 in a fully Euclidean
Meyer set �(W), with ratios r1, r2, . . . , rk, then r1, r2, . . . , rk ∈ 〈Λ〉, which gives k ≤
rank(�(W)). Therefore, we get the following.

COROLLARY 6.3. Let Λ ⊆ Rd be a fully Euclidean Meyer set with rank(Λ) = k. Then:

(a) every li-arithmetic progression in Λ of length N ≥ 1 has rank at most k;
(b) for each N ∈ N, there exists a li-arithmetic progression in Λ of rank k and

length N.

We complete the paper by giving an explicit example of a Meyer set Λ that is
not fully Euclidean and we explicitly construct a CPS that produces it as a not fully
Euclidean Meyer set. In fact, Λ is a regular model in this CPS.

EXAMPLE 6.4. Let Fib denote the well-known Fibonacci model set with its cor-
responding CPS (R,R,L), where L = Z(1, 1) ⊕ Z(τ, τ′). We refer the reader to [3]
for a full description. Note that Fib is a fully Euclidean regular model set within a
two-dimensional CPS.

Now take Λ = π + Fib; it follows that Λ is still relatively dense and thus a Meyer
set. As the ap-rank is invariant under translates,

ap-rank(Λ) = ap-rank(Fib) = 2.

Now, since τ is an algebraic integer and π is transcendental, 1, τ, π are linearly
independent over Z. It is easy to see that

1, τ, π ⊆ 〈π + Fib〉 ⊆ Z + Zτ + Zπ.

This immediately implies that 〈π + Fib〉 = Z + Zτ + Zπ and hence

rank(Λ) = 3.

Therefore, by Theorem 6.1, Λ is a Meyer set that is not fully Euclidean.
In fact, Λ is a regular model set. Indeed, consider

L := {m + nτ + kπ : m, n, k ∈ Z} ⊆ R × (R × (Zπ)).

Then it is easy to see that (R,R × (Zπ),L) is a CPS and

Λ = �([−1, τ − 1) × {π}).

REMARK 6.5. Suppose that we are given a CPS (G, H,L), a window W and some
a ∈ G. As usual, let us denote L = πG(L).

If a ∈ L, then a +�(W) = �(a� +W) is a model set in the same CPS.
Otherwise, it is shown implicitly in [23, Proposition 5.6.19] that one can make a +
�(W) into a model set in the following way.

Let H0 be the cyclic subgroup of G/L generated by a + L. Define

L′ := {(x + na, na + L, x�) : (x, x�) ∈ L, n ∈ Z}.
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Then (G, H × H0,L′) is a CPS and

a +�(W) = �′(W × {a + L}).

Let us note here in passing that H0 is a cyclic group of order at least two, so it is
isomorphic either to some Z/nZ or to Z.

REMARK 6.6. Let Λ ⊆ Rd be a Meyer set. Then, by [23, Corollary 5.9.20] and
the structure theorem for compactly generated LCAGs, there exist a cut-and-project
scheme(Rd,Rm × Zn × K,L), with K a compact Abelian group, and some compact
W ⊆ Rm × Zn × K such thatΛ ⊆ �(W).

Now let π : Rm × Zn × K→ Rm × Zn be the canonical projection and let

L′ := {(x, π(x�)) : (x, x�) ∈ L}.

Then (Rd,Rm × Zn,L′) is a CPS and

Λ ⊆ �(W) ⊆ �′(π(W)).

This shows that every Meyer set Λ ⊆ Rd is a subset of a model set in a CPS of the form
(Rd,Rm × Zn,L) for somen ≥ 0. If the Meyer set is not fully Euclidean, then every such
CPS must have n > 0. We suspect that the smallest possible value n can take among
all the CPSs of this form is exactly

n = rank(Λ) − ap-rank(Λ).
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