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Abstract

This paper is concerned with the study of the fine Selmer group of an abelian variety
over a Zp-extension which is not necessarily cyclotomic. It has been conjectured that these
fine Selmer groups are always torsion over Zp[[�]], where � is the Galois group of the Zp-
extension in question. In this paper, we shall provide several strong evidences towards this
conjecture. Namely, we show that the conjectural torsionness is consistent with the pseudo-
nullity conjecture of Coates–Sujatha. We also show that if the conjecture is known for the
cyclotomic Zp-extension, then it holds for almost all Zp-extensions. We then carry out a sim-
ilar study for the fine Selmer group of an elliptic modular form. When the modular forms are
ordinary and come from a Hida family, we relate the torsionness of the fine Selmer groups
of the specialization. This latter result allows us to show that the conjectural torsionness
in certain cases is consistent with the growth number conjecture of Mazur. Finally, we end
with some speculations on the torsionness of fine Selmer groups over an arbitrary p-adic Lie
extension.

2020 Mathematics Subject Classification: 11R23 (Primary); 11G05, 11S25 (Secondary)

1. Introduction

The fine Selmer group has been ever-present in Iwasawa theory. Namely, it has been an
object of frequent occurrence in the formulation (and proof) of the Iwasawa main conjecture
(see [18, 22, 45, 50]). Despite this, it was only until the turn of the millennium that a system-
atic study of the said group was first undertook by Coates and Sujatha [3, 4], and a little later
by Wuthrich [54, 55], where they named it as we know today. Initial studies mainly revolved
around fine Selmer groups attached to abelian varieties (see loc. cit.; also see [12, 23, 31]).
Subsequently, there have been much interest on the fine Selmer group of a modular form
(for instance, see [14, 16, 17]) or even more general classes of Galois representations (see
[21, 26, 27, 32]). A common feature in these cited works is that they are mainly concerned
with working over the cyclotomic Zp-extension.

Let p be an odd prime. The aim of the paper is to consider the case of a Zp-extension
which is not the cyclotomic Zp-extension. In this context, it has been conjectured that the
fine Selmer group should be cotorsion over the ring Zp[[�]], where � denotes the Galois
group of the Zp-extension (see [28, 45, 54]). This will be called Conjecture Y in the paper.
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One of our approaches towards studying this conjecture is guided by the following per-
spective which we now describe. Let L∞ be a Z2

p-extension of a number field F, which
is assumed to contain Fcyc, the cyclotomic Zp-extension of F. We shall write G for the
Galois group Gal(L∞/F). Let A be an abelian variety over F. A conjecture of Coates-Sujatha
[4, conjecture B] (also see body of this paper) then predicts that the Pontryagin dual of the
fine Selmer group, denoted by Y(A/L∞), over the Z2

p-extension L∞ is pseudo-null over the
ring Zp[[G]]. Roughly speaking, this conjecture is saying that Y(A/L∞) is “quite small”.
Therefore, in according to this conjecture of Coates–Sujatha, one would expect that the fine
Selmer group at each Zp-extension of F contained in L∞ should not be too “large”. More
concretely, we have the following observation.

PROPOSITION 1·1 (Proposition 3·8). Let A be an abelian variety defined over a num-
ber field F, and L∞ a Z2

p-extension of F which contains Fcyc. Denote by �(L∞/F) the
set of all Zp-extensions of F contained in L∞. Suppose that Y(A/L∞) is pseudo-null
over Zp[[Gal(L∞/F)]]. Then Y(A/L) is a torsion Zp[[Gal(L/F)]]-module for every L ∈
�(L∞/F).

Although there are some numerical examples where pseudo-nullity of Y(A/L∞) has been
verified (for instance, see [16, 24, 27]), the general statement remains wide open. The first
of our main result is the following, which gives a way of obtaining infinite classes of Zp-
extensions, where Conjecture Y is valid.

THEOREM 1·2 (Theorem 3·9). Let A be an abelian variety defined over a number field
F, and L∞ a Z2

p-extension of F which contains Fcyc. Suppose that Y(A/Fcyc) is torsion over
Zp[[Gal(Fcyc/F)]]. Then for all but finitely many L ∈ �(L∞/F), Y(A/L) is torsion over
Zp[[Gal(L/F)]].

The torsionness of Y(A/Fcyc) is known when A is an elliptic curve over Q and F is an
abelian extension of Q (see [18, 22]). Hence the above theorem applies in these cases,
where Conjecture Y is valid (also see Section 6 for some examples, where F is not nec-
essarily abelian over Q and the theorem applies). This therefore provides a strong evidence
to Conjecture Y, and at the same time, a weak partial support towards the pseudo-nullity
prediction of Coates–Sujatha.

As mentioned in the opening paragraph, there has been much interest in the study of the
fine Selmer group of a modular form (for instance, see [14, 16, 17]). This will be the next
theme of the paper which we describe briefly here.

Let f be a normalised new cuspidal modular eigenform of even weight k ≥ 2, level N
and nebentypus ε. Write Af for the Galois module attached to f (see body of the paper for
its precise definition) which is defined over the ring of integers of Kf ,p. Here Kf is the the
number field obtained by adjoining all the Fourier coefficients of f to Q, and Kf ,p is the
localisation of Kf at some fixed prime p of Kf above p. Let F∞ be a Zp-extension of F
with Fn being the intermediate subfield satisfying |Fn:F| = pn. We write R(Af /Fn) for the
fine Selmer group defined over the field Fn for 1 ≤ n ≤ ∞, and Y(Af /Fn) for its Pontryagin
dual. We then formulate an analogue of Conjecture Y for Y(Af /F∞), which will be called
Conjecture Yf (see Conjecture 4·1). Since an analogue of Conjecture B has been postulated
and studied by Jha [16], we therefore have a natural analogue of Proposition 3·8 for fine
Selmer groups of modular forms (see Proposition 4·3). This in turn inspires the analogue
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of Theorem 3·9 (see Theorem 4·4). The work of Kato [18] again supplies many classes of
examples, where Y(Af /Fcyc) is torsion, thus allowing one to apply Theorem 4·4 to obtain
validity of Conjecture Yf in these cases.

We then follow up the above discussion by proving the following control theorem.

THEOREM 1·3 (Theorem 4·6). Notations as above. Let S be the set of primes of F con-
taining those dividing pN and the infinite primes. Write Sfd for the set of primes in S which
is finitely decomposed in F∞/F. Suppose further that either of the following statements is
valid:

(i) for every prime v ∈ Sfd and prime vn of Fn above v, H0
(
Fn,vn , Af

)
is finite;

(ii) Kf ,p ∩Qp(μp∞) =Qp and H0(Fv, Af ) is finite for every prime v ∈ Sfd.

Then the restriction map

rn : R
(
Af /Fn

) −→ R
(
Af /F∞

)�n

has finite kernel and cokernel which are bounded independently of n.

For an abelian variety, a control theorem of such has been established by the author in [28,
theorem 3·3]. The above is therefore an analogue of this in the context of modular forms.
Note that in this modular form context, there is an extra finiteness hypothesis on H0(Fv, Af ),
and this arises due to a lack of an analogue of Mattuck’s theorem [35] for a modular form.
We do however remark that although a recent work of Hatley–Kundu–Lei–Ray [14] has
provided some sufficient conditions for this finiteness hypothesis to hold, it would seem
that the general situation seems out of reach at the moment. We also note that in the event
that the level N is not divisible by p, then the finiteness is valid for all primes v above p
(cf. [6]).

We say a little more on the finiteness hypothesis on H0(Fv, Af ). As mentioned in the
preceding paragraph, this is imposed on us by the lack of an analogue of Mattuck’s theo-
rem. In the proof of the control theorem, since we are estimating the kernel and cokernel at
every intermediate Fn, the situation necessitates us to work al prior with a possible stronger
hypothesis, namely, H0

(
Fn,vn , Af

)
is finite for every vn above v. As it turns out, in the event

that Kf ,p ∩Qp(μp∞) =Qp, the finiteness hypothesis at the base field suffices. In fact, we
shall show that finiteness hypothesis at the base field F will imply the finiteness hypothesis
at every intermediate subfield Fn (see Lemma 4·8 and proof of Theorem 4·6). This latter
observation seems interesting in its own right.

When the modular form arises from a specialization of an ordinary Hida deformation,
we attach a fine Selmer group to the Hida deformation (denoted by R(A/F∞); whose
Pontryagin dual is denoted by Y(A/F∞)) and formulate an analogous conjecture which
we call Conjecture Y (see Conjecture 5·2). Our main result in this context is the following
which can be thought as a “horizontal” variant of Theorems 3·9 and 4·3 (we refer readers
to the body of the paper for the definitions of the objects and hypotheses appearing in the
theorem).

THEOREM 1·4 (Theorem 5·3). Assume that (H1) and (H2) are valid. Suppose that there
exists η ∈Xarith

(
hord
F

)
which satisfies the following properties;
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(a) for every prime v ∈ S′
cd, we have H0

(
Fn,vn , Af

)
being finite:

(b) R(Afη/F∞) is cotorsion over Oη[[�]].

Then Conjecture Y is valid, or equivalently, R(A/F∞) is cotorsion over R[[�]].
Furthermore, for all but finitely many λ ∈Xarith

(
hord
F

)
, R

(
Afλ/F∞

)
is cotorsion over

Oλ[[�]].

Note that here again, the lack of an analogue of Mattuck’s theorem necessitates us to
work under assumption (a) (for a different set of primes). We should mention that the above
theorem is inspired by the work of Jha [16]. Now, looking at Theorems 4·3 and 5·3, one
can’t help posing the following question.

Question A. Is R(A/F∞)∨ pseudo-null over R[[�]]?

Unfortunately, we do not have an answer to this. In fact, to the best knowledge of the
author, even in the context of a cyclotomic Zp-extension Fcyc, the structure of R(A/Fcyc)
does not seem well-understood (but see a very recent work of Lei-Palvannan [25] for some
discussion in this direction).

It should be evident to the readers that much of the discussion in this paper may be
extended to fine Selmer groups attached to even broader classes of Galois representations
of interest as studied in [21, 27, 32]. We have decided to restrict our attention to the context
of the paper to simplify the presentation. Furthermore, we believe that even in the mod-
ular form or Hida deformation context, the occurrence of certain interesting phenomenon
deserves further future studies. (For instance, the lack of an analogue of Mattuck’s theorem
definitely requires further investigation and this sort of issues will naturally come up if one
wants to study fine Selmer groups of more general Galois representations.)

Although the focus of our paper is to formulate variants of Conjecture Y, we should
remark that it would be interesting to study the variation of the Iwasawa invariants of the
Zp-specialisations (either horizontally or vertically). We will not pursue this here but refer
readers to [7, 11, 20, 39] for some discussion in the vertical direction. While we have nothing
to say about this variational aspect, we shall end by formulating and investigating a gener-
alised Conjecture Y (see Conjecture 7·1) over an arbitrary p-adic Lie extension of dimension
> 1, and give some conceptual evidences towards the paucity of this generalised conjecture
(see Remark 7·2 and Proposition 7·5).

We now give an outline of our paper. In Section 2, we collect several results on modules
over regular local rings which will be required in our arithmetic discussion. In Section 3, we
introduce the fine Selmer groups of abelian varieties and establish Theorem 3·9. Section 4 is
where we study the fine Selmer group of a modular form. The control theorem for the fine
Selmer group of a modular form will be proved in this section. In Section 5, we investigate
the relationship between the Conjecture Y on the fine Selmer group for a Hida family and
the corresponding Conjecture Yf for the specialisations. We also discuss a situation showing
that the conjectural torsionness is consistent with a growth number conjecture of Mazur
(see Theorem 5·6). In Section 6, we give several examples to illustrate the results of the
paper. Finally, in Section 7, we formulate a generalised Conjecture Y for fine Selmer groups
over an arbitrary p-adic Lie extension which does not necessarily contain the cyclotomic
Zp-extension. Here we will show that this conjecture is consistent with the pseudo-nullity
conjecture of Coates–Sujatha (see Proposition 7·5).
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2. Review of some commutative algebra

We collect certain commutative algebraic results that will be required for the discus-
sion of the paper. Throughout this section, � will always denote a regular local ring. (For
our arithmetic purposes, we are usually concerned with regular local rings of the form
O[[T1, T2, ..., Tr]], where O is some integral domain which is finite flat over Zp.) It’s a
standard fact that � is therefore a unique factorisation domain (cf. [34, theorem 20·3]). In
particular, it follows from [34, theorem 20·1] that every prime ideal of � of height one is
principal.

Recall that a finitely generated �-module M is said to be torsion if for every element m ∈
M, there exists x ∈ � such that xm = 0. Equivalently, this is saying that Hom�(M, �) = 0.
The module M is said to be pseudo-null if the localisation Mp of M at every prime ideal p
of height ≤ 1 is trivial. The latter is equivalent to Exti�(M, �) = 0 for i = 0, 1 (for instance,
see [34, chapter. 5] or [40, chapter. V, section 1]).

We now present a useful lemma (compare with [44, section 1·3, lemme 4])

LEMMA 2·1. Let x be an element in � which is a generator of a prime ideal of � of
height one. Write �: = �/x for the quotient ring which is also a regular local ring. Then the
following statements are valid:

(i) if y is another prime element of � which is coprime to x, then �/(x, yn) is a torsion
�-module for every n ≥ 1;

(ii) if M is a pseudo-null �-module, then both M[x] and M/x are torsion over �;

(iii) if M is a �-module with M/x being torsion over �, then M is torsion over � and
M[x] is torsion over �.

Proof. We begin proving assertion (i). In fact, we shall establish a slightly stronger assertion:
namely, if z is an element of � which is coprime to x, then �/(x, z) is a torsion �-module.
Since z is coprime to x, it does not lie in the ideal (x). Hence z + (x) is a nonzero element of
�, and it plainly annihilates �/(x, z). Therefore, this proves our first assertion.

For the proof of (ii), we shall write N for either M[x] or M/x. Since the module N
is annihilated by x, it may be viewed as a �-module. Consider the following spectral
sequence

Exti�
(
N, Extj�(�, �)

) =⇒ Exti+j
� (N, �) (1)

(cf. [53, exercise 5·6·3]). From the �-free resolution

0 −→ � −→ � −→ � −→ 0

of �, we see that

Extj�(�, �) =
{

�, if j = 1,

0, otherwise.

Therefore, the spectral sequence (1) degenerates yielding the isomorphism

Exti�(N, �) ∼= Exti+1
� (N, �)
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for i ≥ 0. In particular, we have

Hom�(N, �) = Ext1�(N, �) = 0,

where the final zero follows from the assumption that M is pseudo-null over �. This in turn
implies that N is torsion over � and we have the second assertion.

The final assertion follows from [44, section 1·3, lemme 2] or [27, corollary 4·13].

Now, let M be a finitely generated torsion �-module. By [40, proposition 5·1·7], there is
a pseudo-isomorphism

ϕ : M −→
⊕
i∈I

�/xni
i , (2)

where I is a finite indexing set, each xi is a generator of a prime ideal of height one and ni is
a non-negative integer. Note that the prime ideals �xi and integers ni are determined by the
module M.

LEMMA 2·2. Notation as above. Suppose that x is a prime element in � which is coprime
to all the xi’s. Then M/x is a torsion module over the ring � = �/x.

Proof. Let P1 = ker ϕ, P2 = coker ϕ and Q = im ϕ, where ϕ is given as in (2). From which,
we have the following two short exact sequences

0 −→ P1 −→ M −→ Q −→ 0,

0 −→ Q −→
⊕
i∈I

�/xni
i −→ P2 −→ 0.

From which, we have

P1/x −→ M/x −→ Q/x −→ 0,

P2[x] −→ Q/x −→
⊕
i∈I

�/(xni
i , x) −→ P2/x −→ 0.

By Lemma 2·1, the modules P1/x, P2[x] and
⊕

i∈I �/(xni
i , x) are torsion over �. Putting

these observations into the above two exact sequences, we see that so is M/x.

3. Fine Selmer groups of abelian varieties
3·1. Fine Selmer groups

We begin reviewing the fine Selmer groups of abelian varieties following [3, 4, 12, 28, 31,
54–56]. Fix an odd prime p. Let A be an abelian variety defined over a number field F. Let S
be a finite set of primes of F containing the primes above p, the bad reduction primes of A and
the infinite primes. Denote by FS the maximal algebraic extension of F which is unramified
outside S. For every extension L of F contained in FS, we write GS(L) = Gal(FS/L), and
denote by S(L) the set of primes of L above S.
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Let L be a finite extension of F contained in FS. The fine Selmer group of A over L is
defined by

R(A/L) = ker

⎛
⎝H1(GS(L), A[p∞]) −→

⊕
v∈S(L)

H1(Lv, A[p∞])

⎞
⎠ .

We remark that the above definition is independent of the choice of S (see [31, lemma 4·1]).
Just as the classical p-primary Selmer group, the fine Selmer group sits in the following
analogous short exact sequence

0 −→M(A/L) −→ R(A/L) −→ Ж(A/L) −→ 0, (3)

where M(A/F) is the fine (p-)Mordell–Weil group and Ж(A/F) is the fine (p-) Tate–
Shafarevich group in the sense of Wuthrich [56]. The fine Mordell–Weil group M(A/F) is
defined to be the subgroup of A(F) ⊗Qp/Zp consisting of those elements which are mapped
to zero in A(Fv) ⊗Zp Qp/Zp for all primes v above p. It can be shown that M(A/F) injects
into R(A/F). The fine Tate–Shafarevich group Ж(A/F) is then defined to be the cokernel of
this injection (see [56, section 2] for details).

Let F∞ be a (not necessarily cyclotomic) Zp-extension of F, whose Galois group
Gal(F∞/F) will be denoted by �. If �n denotes the unique subgroup of � of index pn,
we write Fn for the fixed field of �n. The fine Selmer group of A over F∞ is defined to be
R(A/F∞) = lim−→

n

R(A/Fn) which comes naturally equipped with a Zp[[�]]-module structure.

The Zp[[�]]-modules M(A/F∞) and Ж(A/F∞) are similarly defined by taking limit of
the corresponding objects over the intermediate subfields. We shall write Y(A/F∞) for the
Pontryagin dual of R(A/F∞). Upon taking direct limit of the sequence (3) and following up
by taking Pontryagin dual, we obtain

0 −→ Ж(A/F∞)∨ −→ Y(A/F∞) −→M(A/F∞)∨ −→ 0. (4)

It is not difficult to verify that the modules occurring in the exact sequence are finitely
generated over Zp[[�]] (for instance, see [28, Lemma 3·2]). In fact, one expects more (see
[28, 45, 54]).

CONJECTURE 3·1 (Conjecture Y) Let A be an abelian variety defined over a number
field F and F∞ a Zp-extension of F. Then Y(A/F∞) is torsion over Zp[[�]].

Remark 3·2. (1) When F∞ is the cyclotomic Zp-extension, the above conjecture is a con-
sequence of a conjecture of Mazur [36] and Schneider [51] on the structure of the classical
Selmer groups. The latter is known when A is an elliptic curve over Q with good reduction
at p and F is an abelian extension of Q (see [18, 22]).

(2) Suppose that E is an elliptic curve defined over Q with complex multiplication given
by a imaginary quadratic field K at which p split completely in K/Q. Let K∞ be the Zp-
extension of K which is unramified outside one of the primes of K above p. Then the validity
of Conjecture Y is a consequence of a result of Coates (see [9, chapter IV, corollary 1·8];
also see the recent papers [1, 19]).

(3) Suppose that E is an elliptic curve defined over Q, and Kac the anti-cyclotomic Zp-
extension of an imaginary quadratic field K. Then the Zp[[Gal(Kac/K)]]-torsionness of
Y(A/Kac) is known in many cases (for instance, see [33, 47]).
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We record two results taken from [28] which serve as support for Conjecture Y, and will
play some role in the subsequent discussion of the paper.

THEOREM 3·3. Let A be an abelian variety defined over a number field F. Let F∞ be a
Zp-extension of F. If Y(A/F) is finite, then Y(A/F∞) is torsion over Zp[[�]].

Proof. See [28, corollary 3·5].

PROPOSITION 3·4. Let A be an abelian variety defined over a number field F, and F∞ a
Zp-extension of F. Suppose that Ж(A/Fn) is finite for every n. Then Ж(A/F∞) is a cotorsion
Zp[[�]]-module.

Proof. See [28, proposition 4·1].

We now record a corollary of the preceding proposition.

COROLLARY 3·5 Let A be an abelian variety defined over a number field F, and F∞ a
Zp-extension of F. Suppose that the following statements are valid.

(a) Ж(A/Fn) is finite for every n.

(b) A(F∞) is a finitely generated abelian group.

Then Y(A/F∞) is a torsion Zp[[�]]-module.

Proof. From Proposition 3·4, we see that Ж(A/F∞)∨ is torsion over Zp[[�]] under hypoth-
esis (a). Hypothesis (b) tells us that M(A/F∞)∨ is torsion over Zp[[�]]. The conclusion
follows from these and the short exact sequence (4).

3·2. Connection with the pseudo-nullity conjecture of Coates–Sujatha

We now study the relation between our Conjecture Y and the Conjecture B of Coates–
Sujatha [4, conjecture B]. As a start, we recall their conjecture, which for now is stated for
Z2

p-extensions; see Conjecture 7·4 below for the general version.

CONJECTURE 3·6 (Conjecture B). Let L∞ be a Z2
p-extension of F which contains Fcyc.

Then Y(A/L∞) is pseudo-null over Zp[[G]], where G = Gal(L∞/F).

Remark 3·7. In [4], they formulated their conjecture under the extra assumption which is
their so-called Conjecture A (see [4, conjecture A]). In this paper, we do not require this
extra hypothesis, and so the above formulation suffices.

Retaining the above notation, we denote by �(L∞/F) the set of all Zp-extensions of F
contained in L∞. For each L ∈ �(L∞/F), write �L = Gal(L/F) and HL = Gal(L∞/L). Fix
a topological generator hL of HL. Then hL − 1 generates a prime ideal of Zp[[G]] of height
one with

Zp[[G]]/(hL − 1) ∼=Zp[[�L]].

We can now establish the following observation as mentioned in the introduction.
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PROPOSITION 3·8. Let A be an abelian variety defined over a number field F, and L∞
a Z2

p-extension of F which contains Fcyc. Suppose that Conjecture B is valid for A over
L∞, or in other words, Y(A/L∞) is pseudo-null over Zp[[G]]. Then Y(A/L) is a torsion
Zp[[Gal(L/F)]]-module for every L ∈ �(L∞/F).

Proof. From the following commutative diagram

0 R(A/L)

s

H1 GS(L), A[p∞]
)

0 R(A/L∞)HL H1 GS(L∞), A[p∞]
)HL

we see that ker s is contained in H1(HL, A(L∞)) which is cofinitely generated over Zp. Upon
taking Pontryagin dual, we obtain a map

Y(A/F∞)HL −→ Y(A/L),

whose cokernel is finitely generated over Zp. Therefore, for a given L ∈ �(L∞/F), whenever
Y(A/L∞)HL is torsion over Zp[[�L]], so is Y(A/L).

Now, in view of the hypothesis that Y(A/L∞) is pseudo-null over Zp[[G]], we may apply
Lemma 2·1(ii) to conclude that Y(A/F∞)HL is torsion over Zp[[�L]]. Combining this with
the assertion in the previous paragraph, we have the conclusion.

We now state and prove the following.

THEOREM 3·9. Let A be an abelian variety defined over a number field F, and
L∞ a Z2

p-extension of F which contains Fcyc. Suppose that Y(A/Fcyc) is torsion over
Zp[[Gal(Fcyc/F)]]. Then for all but finitely many L ∈ �(L∞/F), Conjecture Y is valid for
Y(A/L) or, in other words, Y(A/L) is torsion over Zp[[�L]].

Proof. By [27, proposition 7·2], it follows from the Zp[[Gal(Fcyc/F)]]-torsionness of
Y(A/Fcyc) that Y(A/L∞) is torsion over Zp[[G]]. The structure theorem of Zp[[G]]-modules
(cf. [40, proposition 5·1·7]) then implies that there is a pseudo-isomorphism

Y(A/L∞) ∼
⊕
i∈I

Zp[[G]]/Qni
i

of Zp[[G]]-modules, where I is some finite indexing set and each Qi is a (principal) prime
ideal of Zp[[G]] of height one. Since there are only finitely many Qi’s, the element hL − 1
is coprime to these Qi’s for all but finitely many L ∈ �(L∞/F). For each of such element
hL − 1, it then follows from Lemma 2·2 that Y(A/L∞)HL = Y(A/L∞)/(hL − 1) is torsion
over Zp[[�L]]. By a similar argument to that in Proposition 3·8, we see that Y(A/L) is
torsion over Zp[[�L]] for every such L. This yields the required conclusion of the theorem.

We record one case, where we can obtain many cases of validity of Conjecture Y.

COROLLARY 3·10. Let E be an elliptic curve defined over Q and F a finite abelian
extension of Q. Let L∞ be a Z2

p-extension of F which contains Fcyc. Then for all but finitely
many L ∈ �(L∞/F), Y(E/L) is cotorsion over Zp[[�L]].
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Proof. A well-known theorem of Kato [18] (also see [22]) asserts that R(E/Fcyc) is cotor-
sion over Zp[[Gal(Fcyc/F)]]. The corollary is now an immediate consequence of this and
Theorem 3·9.

We also refer readers to Section 6 for examples, where F is not necessarily abelian over
Q but Theorem 3·9 applies.

4. Fine Selmer groups of elliptic modular forms

As before, p will denote a fixed odd prime. Let f be a normalised new cuspidal modular
eigenform of even weight k ≥ 2, level N and nebentypus ε. Let Kf be the number field
obtained by adjoining all the Fourier coefficients of f to Q. Throughout, we shall fix a prime
p of Kf above p, and let Vf denote the corresponding two-dimensional Kf ,p-linear Galois
representation attached to f in the sense of Deligne [8]. Writing O =OKf ,p for the ring of
integers of Kf ,p, we fix a Gal(Q̄/Q)-stable O-lattice Tf in Vf . We then set Af = Vf /Tf . Note
that Af is isomorphic to Kf ,p/O ⊕Kf ,p/O as O-modules.

Let F be a finite extension of Q. Denote by S a finite set of primes of F containing those
dividing pN and all the infinite primes. Let F∞ be a Zp-extension of F. Following [16,
17], we define the fine Selmer group of Af over F∞ to be lim−→

n

R(Af /Fn), where Fn is the

intermediate subfield of F∞/F with |Fn:F| = pn and R(Af /Fn) is defined by

R(Af /Fn) = ker

⎛
⎝H1(GS(Fn), Af ) −→

⊕
v∈S(Fn)

H1(Fn,v, Af )

⎞
⎠ .

The Pontryagin dual of R(Af /F∞) is then denoted by Y(Af /F∞). As before, one can
similarly show that Y(Af /F∞) is finitely generated over O[[�]]. The following conjecture is
the natural analogue of Conjecture Y for modular forms.

CONJECTURE 4·1 (Conjecture Yf ). Let Af be defined as above, and F∞ a Zp-extension
of a number field F. Denote by � the Galois group Gal(F∞/F). Then Y(Af /F∞) is torsion
over O[[�]].

We now present natural analogue of Proposition 3·8 and Theorem 3·9 for the fine Selmer
group of a modular form. As a start, we recall the following analogue of Conjecture B which
was first studied by Jha [16].

CONJECTURE 4·2. Let L∞ be a Z2
p-extension of F which contains Fcyc. Then Y(Af /L∞)

is pseudo-null over O[[G]], where G = Gal(L∞/F).

As in Section 3, denote by �(L∞/F) the set of all Zp-extensions of F contained in L∞.
For each L ∈ �(L∞/F), write �L = Gal(L/F) and HL = Gal(L∞/L). From which, a similar
argument to that in Proposition 3·8 yields the following.

PROPOSITION 4·3 Suppose that Y(Af /L∞) is pseudo-null over O[[G]]. Then Y(Af /L) is
a torsion O[[Gal(L/F)]]-module for every L ∈ �(L∞/F).

Similarly, we can establish the following by a similar argument to that in Theorem 3·9.
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THEOREM 4·4 Notations as above. Suppose that R(Af /Fcyc) is cotorsion over
O[[Gal(Fcyc/F)]]. Then for all but finitely many L ∈ �(L∞/F), Conjecture Yf is valid for
Y(Af /L).

Combining the above with Kato’ result [18], we have the following analogue of
Corollary 3·10.

COROLLARY 4·5. Suppose that F is an abelian extension of Q and L∞ a Z2
p-extension

of F which contains Fcyc. Then for all but finitely many L ∈ �(L∞/F), Y(E/L) is cotorsion
over O[[�L]].

We end the section by establishing a control theorem for the fine Selmer groups of elliptic
modular forms, which is the analogue to that in [28, theorem 3·3] proved for abelian vari-
eties. From now on, we let Sfd denote the set of primes in S which do not split completely in
F∞/F. We shall also write W(L) = WGal(FS/L) for any F ⊆ L ⊆ FS. Similarly, for each v ∈ S,
we write W(L) = WGal(F̄v/L) for any Fv ⊆ L ⊆ F̄v.

THEOREM 4·6. Let f be a normalized new cuspidal modular eigenform of even weight
k ≥ 2, level N and nebentypus ε. Write Af for the Galois module attached to f defined as
above. Let F∞ be a Zp-extension of F with Fn being the intermediate subfield satisfying
|Fn : F| = pn. Suppose that either of the following statements is valid.

(i) For every prime v ∈ Sfd and vn of Fn dividing v, then H0
(
Fn,vn , Af

)
is finite.

(ii) Kf ,p ∩Qp(μp∞) =Qp and H0(Fv, Af ) is finite for every prime v ∈ Sfd.

Then the restriction map

rn : R(Af /Fn) −→ R(Af /F∞)�n

has finite kernel and cokernel which are bounded independently of n.

Remark 4·7. In the case when p � N, one automatically has the finiteness of H0
(
Fn,vn , Af

)
for every vn above p (see [6]).

Before proving Theorem 4·6, we establish the following preliminary lemma.

LEMMA 4·8. Let M be a O[[�]]-module which is finitely generated over O. Suppose that
either of the following statements is valid:

(a) M�n is finite for every n;

(b) Kf ,p ∩Qp(μp∞) =Qp and M� is finite with rankO(M) < p − 1.

Then the homology group H1(�n, M) is finite with order bounded independently of n.

Proof. Suppose that hypothesis (a) is valid. Since M is plainly torsion as a O[[�n]]-module,
one therefore has

0 = rankO[[�n]](M) = rankO
(
M�n

) − rankO
(
M�n

)
, (5)

where the second equality follows from [40, proposition 5·3·20]. Combining these obser-
vations, we see that each M�n is finite. This in turn implies that M�n is contained in
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M[p∞]. But since M is finitely generated over O, the latter is finite, and hence we con-
clude that M�n is finite with order bounded independently of n. Finally, since �n ∼=Zp, we
have the identification M�n ∼= H1(�n, M), thus proving the lemma under the validity of the
hypothesis (a).

Now suppose that hypothesis (b) is valid. Identify O[[�]] with O[[T]] under a choice of
generator of �. Since M� is finite, we see that T has to be coprime to the characteristic poly-
nomial of M. Since Kf ,p ∩Qp(μp∞) =Qp, every other cyclotomic polynomial is irreducible
over O[[T]]. Since such a polynomial has degree ≥ p − 1, it has to be coprime to the char-
acteristic polynomial of M. Consequently, M�n is finite for every n. We are therefore in the
situation of hypothesis (a), and so the conclusion follows from the above discussion.

We can now give the proof of Theorem 4·6.

Proof of Theorem 4·6. Consider the following commutative diagram

0 R(Af/Fn)

rn

H1 GS(Fn), Af

)

hn

⊕
vn∈S(Fn)

H1(Fn,vn
, Af )

gn=⊕gn,vn

0 R(Af/F∞)Γn H1 GS(F∞), Af

)Γn

⎛
⎝ ⊕

w∈S(F∞)

H1(F∞,w, Af )

⎞
⎠

Γn

with exact rows. Since �n has p-cohomological dimension 1, the restriction-inflation
sequence tells us that hn is surjective and that ker hn = H1

(
�n, Af (F∞)

)
. It therefore remains

to show the finiteness and boundness of ker hn and ker gn.
We begin by showing the finiteness and boundness of ker gn. For each vn ∈ S(Fn), fix

a prime of F∞ above vn which is denoted by wn, and write v for the prime of F below
vn. Write �wn for the decomposition group of wn in �. By the Shapiro’s lemma and the
restriction-inflation sequence, we have

ker

⎛
⎝ ⊕

vn∈S(Fn)

gn,vn

⎞
⎠ =

⊕
vn∈S(Fn)

H1 (
�wn , Af (F∞,vn)

)
.

If v is a prime of F below wn such that v splits completely in F∞/F, then �wn = 0 and so one
has H1

(
�wn , Af

(
F∞,wn

)) = 0. Thus, it remains to consider the primes v ∈ S which do not
split completely in F∞/F. Since S is a finite set, the number of such possibly nonzero sum-
mands

⊕
H1

(
�wn , Af

(
F∞,wn

))
is therefore finite and bounded independently of n. Hence

it remains to show that each H1
(
�wn , Af

(
F∞,wn

))
is finite and bounded independently for

those primes lying above v which do not decompose completely in F∞/F. For this, one
just needs to verify that either (a) or (b) of Lemma 4·8 is valid. We note that hypothe-
sis (a) is a direct consequence of hypothesis (i) of the theorem. It remains to show that
hypothesis (ii) of our theorem yields (b) of the said lemma. For this, it suffices to show
that corankO

(
Af

(
F∞,wn

))
< p − 1. We first consider the case when v does not divide p.

In this setting, F∞,wn is the cyclotomic Zp-extension of Fv which is unramified. Since v
divides N, Af cannot be an unramified Gal(F̄v/Fv)-module and so Af cannot be realised over
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F∞,wn . Therefore, we must have corankO
(
Af

(
F∞,wn

)) ≤ 1. As the prime p is assumed to be
odd, this in turn implies that corankO

(
Af

(
F∞,wn

))
< p − 1. Now suppose that v divides

p. It is well-known that Fv(Af ) is a p-adic Lie extension of Fv of dimension at least 2
(see [49]). It follows from this that Af cannot be realised over F∞,wn , and so we have
corankO

(
Af

(
F∞,wn

)) ≤ 1.
We now show that ker hn = H1(�n, Af (F∞)) is finite and bounded independent of n. Now

since F∞/F is a Zp-extension, it must have at least one prime v above p which is ramified
in F∞/F. In view of the discussion in the preceding paragraph, we have H0(Fn,w, Af ) being
finite, where w is a prime of F∞ above v. This in turn implies that H0(GS(Fn), Af ) is finite
for every n. The desired conclusion is now a consequence of Lemma 4·8.

Theorem 4·6 has the following natural corollary.

COROLLARY 4·9. Retain the settings of Theorem 4·6. Assume further that R(Af /F) is
finite. Then Y(Af /F∞) is torsion over O[[�]].

5. Hida deformations

Let us briefly introduce certain notion and facts arising from the work of Hida [15].
Denote by �′ the group of diamond operators for the tower of modular curves {Y1(pr)}.
There is a natural identification of �′ with 1 + pZp which we denote by κ:�′ ∼−→ 1 + pZp.
For an integer N coprime to p, we write hord

F for the quotient of the universal ordinary Hecke
algebra with conductor N corresponding to an ordinary Zp[[�′]]-adic eigenform F . The ring
hord
F is a local integral domain which is finite flat over Zp[[�′]]. In [15], Hida constructed an

irreducible representation

ρ : Gal(Q̄/Q) −→ Authord
F

(TF )

which is unramified outside Np, and where TF is a finitely generated torsion-free module of
generic rank two over hord

F . We now impose two standing assumptions on the pair
(
TF , hord

F
)
.

(H1) The ring hord
F is isomorphic to O[[�′]] for the ring of integers O of a finite extension

of Qp.

(H2) Denote by m the maximal ideal of hord
F . The residual representation ρ̄ −→

Authord
F /m(TF/mTF ) is absolutely irreducible as a Gal(Q̄/Q)-module.

Under (H2), the module TF is free over hord
F (see [38, section 2, corollary 6]). Let

Xarith
(
hord
F

)
be the set consisting of Zp-algebra homomorphism λ:hord

F −→ Q̄p which sat-
isfies the property that there exists an open subgroup U of �′ and a non-negative integer w
such that λ(u) = κw(u) for every u ∈ U. For each of such λ, we shall write wλ for the integer
w appearing the above definition. We also write Pλ for the kernel of λ which is a princi-
pal prime ideal of hord

F of height one. In fact, identifying hord
F ∼=O[[T]] (recall that we are

assuming (H1)), the prime ideal Pλ can be viewed as lying above the prime ideal of Zp[[T]]
generated by (1 + p)wλ − (1 + T). We shall write pλ for a generator of the prime ideal Pλ.

By Hida theory, for each λ ∈Xarith
(
hord
F

)
, there exists a normalised cuspidal eigenform fλ

of weight wλ + 2 such that TF/Pλ
∼= Tfλ , where Tfλ is the lattice of the Galois representation

attached to fλ as in the sense of Deligne. Here Tfλ is a free Oλ-module of rank two, where
Oλ = hord

F /Pλ.
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From now on, to simplify notation, we sometimes write T for TF and R for hord
F . Recall

that R∼=O[[�′]] by our standing assumption (H1). Set A= T ⊗R (R∨). The next lemma
is left to the reader as an exercise.

LEMMA 5·1. One has A[pλ] ∼= Afλ , where Afλ is the Galois module attached to fλ as in
Section 4.

Let F be a finite extension of Q. Denote by S a finite set of primes of F containing those
dividing pN and all the infinite primes. For a Zp-extension F∞ of F, the fine Selmer group
R(A/F∞) of A over F∞ is defined to be lim−→

n

R(A/Fn), where Fn is the intermediate subfield

of F∞/F with |Fn:F| = pn and R(A/Fn) is given by

R(A/Fn) = ker

⎛
⎝H1(GS(Fn), A) −→

⊕
vn∈S(Fn)

H1(Fn,vn , A)

⎞
⎠ .

We can now state the following analogue of Conjecture Y for A.

CONJECTURE 5·2 (Conjecture Y) Retain settings as above. Denote by Y(A/F∞)
the Pontryagin dual of R(A/F∞). Then Y(A/F∞) is torsion over R[[�]], where � =
Gal(F∞/F).

We now prove a “hortizontal” analogue of Theorems 3·9 and 4·4. In the subsequent dis-
cussion, we write S′

cd for the set of primes of S which does not divide p and split completely
in F∞/F.

THEOREM 5·3. Assume that (H1) and (H2) are valid. Suppose that there exists η ∈
Xarith

(
hord
F

)
which satisfies all of the following properties:

(a) for every prime v ∈ S′
cd, the group H0(Fv, Afη ) is finite;

(b) Y(Afη/F∞) is torsion over Oη[[�]].

Then Conjecture Y is valid, or equivalently, Y(A/F∞) is torsion over R[[�]].
Furthermore, for all but finitely many λ ∈Xarith

(
hord
F

)
, Y

(
Afλ/F∞

)
is torsion over Oλ[[�]].

Proof. Consider the following commutative diagram

0 R(Afη
/F∞)

rη

H1 GS(F∞), Afη

)

hη

⊕
w∈S(F∞)

H1(F∞,w, Afη
)

l=⊕lw

0 R(A/F∞)[pη] H1 GS(F∞),A)
[pη]

⎛
⎝ ⊕

w∈S(F∞)

H1(F∞,w,A)

⎞
⎠ [pη]

with exact rows and vertical maps induced by the following short exact sequence

0 −→ Afη −→A pη−→A−→ 0.
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We shall first show that the kernel and cokernel of rη are cotorsion over Oη[[�]]. To start
off, we see that hη is surjective with ker hη =A(F∞)/Pη. Since A(F∞)/Pη is cofinitely
generated over Oη, it is cotorsion over Oη[[�]]. It therefore remains to show that ker l
is cotorsion over Oη[[�]]. For this, we decompose l = ⊕w∈S(F∞)lw = ⊕v∈S( ⊕w|v lw) and
show that ker

( ⊕w|v lw
)

is cotorsion over Oη[[�]] for each v ∈ S. For each w, we have
ker lw =A(F∞,w)/Pη. Now if v is finitely decomposed in F∞, then the sum ⊕w|v is finite,
and so ker

( ⊕w|v lw
)

is cofinitely generated over Oη for these v’s. Now suppose that v
splits completely in F∞. As noted in Remark 4·7, A(F∞,w)[pη] = Afη (F∞,w) is finite for
all v dividing p. For those primes not dividing p, the finiteness follows from assumption
(a). Consequently, A(F∞,w)/Pη is finite by Lemma 2·1(iii) and is hence annihilated by
some powers of p. This power of p annihilates ker

( ⊕w|v lw
)
. Therefore, we also have

ker
( ⊕w|v lw

)
being cotorsion over Oη[[�]] for these primes. Hence we have shown that

the kernel and cokernel of rη are cotorsion over Oη[[�]].
Combining this observation with hypothesis (b) of the theorem, we see that R(A/F∞)[pη]

is cotorsion over Oη[[�]]. It then follows from Lemma 2·1(iii) that R(A/F∞) is cotorsion
over R[[�]]. This proves the first assertion of the theorem.

In view of (H1), the ring R[[�]] is isomorphic to O[[W, T]], where 1 + W (resp., 1 + T)
corresponds to a topological generator of � (resp., a topological generator of �′). By the
structure theorem (cf. [40, proposition 5·1·7]), we then have a pseudo-isomorphism

Y(A/F∞)∨ ∼
⊕
i∈I

R[[�]]/Qni
i

of R[[�]]-modules, where I is some finite indexing set and each Qi is a principal prime
ideal of R[[�]] of height one. Since there are only finitely many Qi’s, for all but finitely
many λ ∈Xarith

(
hord
F

)
, we have Y(A/F∞)/Pλ being torsion over Oλ[[�]]. From the above

discussion, we see that

Y(A/F∞)/Pλ −→ Y(Afλ/F∞)

has cokernel which is torsion over Oλ[[�]]. It then follows that Y
(
Afλ/F∞

)
is torsion over

Oλ[[�]] for these λ’s.

The finiteness condition H0(Fv, Afη ) is known to hold in several cases (see [14, section
5·2]). In particular, if η comes from an elliptic curve, then this is always true, and so we
have the following.

COROLLARY 5·4. Assume that (H1) and (H2) are valid. Suppose that there exists η ∈
Xarith

(
hord
F

)
such that A[Pη] ∼= E[p∞] for some elliptic curve E with R(E/F∞) cotorsion

over Zp[[�]].
Then R(A/F∞) is cotorsion over R[[�]]. Furthermore, for all but finitely many λ ∈

Xarith
(
hord
F

)
, R

(
Afλ/F∞

)
is cotorsion over Oλ[[�]].

Proof. It remains to show that H0(Fv, E[p∞]) is finite, but this is an immediate consequence
of Mattuck’s theorem that E(Fv) is finitely generated over OFv (see [35]).

Comparing Theorems 4·3 and 5·3, one is naturally led to the following question.

Question A. Is Y(A/F∞) pseudo-null over R[[�]]?
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To the best knowledge of the author, the structure of R(A/F∞) does not seem to be well-
understood. Even in the context of a cyclotomic Zp-extension, it is still an open question
whether R(A/F∞)∨ is finitely generated over R (see [17, conjecture 1]). There are some
recent studies on this structure by Lei–Palvannan [25] in this direction. However, to the best
knowledge of the author, the subject of the fine Selmer group of a Hida deformation over
a general Zp-extension does not seem to be covered in the literature. We can only hope to
revisit this subject in a future study.

We end the section by specialising to the case of an imaginary quadratic field, where we
explain how a conjecture of Mazur implies the various Conjecture Y’s. As a start, we recall
the said conjecture of Mazur [37].

CONJECTURE 5·5 (Growth Number Conjecture). Let E be an elliptic curve defined over
Q and let K denote an imaginary quadratic field. The Mordell–Weil rank of E stays bounded
along any Zp-extension of K, unless the extension is anticyclotomic and the root number is
negative.

THEOREM 5·6. Assume that (H1) and (H2) are valid. Suppose that there exists η ∈
Xarith

(
hord
F

)
such that A[Pη] ∼= E[p∞] for some elliptic curve E. Let K be an imaginary

quadratic field and K∞ a Zp-extension of K. Suppose that all of the following statements are
valid.

(a) If K∞ is the anticyclotomic Zp-extension, assume further that the root number is
positive.

(b) The assertion of the growth number conjecture of Mazur is valid for the pair (E, K∞).
In other words, the Mordell-Weil rank of E stays bounded along the Zp-extension K∞.

(c) The fine Tate–Shafarevich group Ж(E/Kn) is finite for every n, where Kn is the
intermediate subextension of K∞/K with |Kn:K| = pn.

Then Y(A/K∞) is torsion over R[[�]]. Moreover, for all but finitely many λ ∈Xarith
(
hord
F

)
,

Y(Afλ/K∞) is torsion over Oλ[[�]].

Proof. The growth number conjecture of Mazur implies that E(K∞) is a finitely generated
abelian group. Therefore, taking assumption (c) into account, we may apply Corollary 3·5
to conclude that Y(E/F∞) is torsion over Zp[[�]]. The theorem is now a consequence of a
combination of this latter assertion and Corollary 5·4.

Remark 5·7. One can of course prove variants of Proposition 4·3 and Theorem 4·4 for fine
Selmer groups of A. We shall leave the details for the readers to fill in.

6. Examples

We give some examples to illustrate our results.

(i) Let E be the elliptic curve y2 + y = x3 − x. Let p = 5. It is well-known that
Sel(E/Q(μ5∞)) = 0 (cf. [5, theorem 5·4]), where Sel(E/Q(μ5∞)) is the classical
Selmer group. Let F be a finite Galois p-extension of Q(μ5). Then by [13, corollary
3·4], Sel(E/Fcyc) is cotorsion over Zp[[Gal(Fcyc/F)]]. Since the fine Selmer group
R(E/Fcyc) is contained in Sel(E/Fcyc), this in turn implies that R(E/Fcyc) is cotor-
sion over Z5[[Gal(Fcyc/F)]]. Therefore, Theorem 3·9 applies. In other words, for any
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given Z2
5-extension L∞ of F containing Fcyc, for all but finitely many Z5-extension

F∞ of F contained in L∞, we have that R(E/F∞) is cotorsion over Z5[[Gal(F∞/F)]].
In view of Conjecture Y, we expect that R(E/F∞) is cotorsion over Z5[[Gal(F∞/F)]]
for all Z5-extensions of F. But this seems to be out of reach in general. (Note that
Proposition 3·8 cannot apply here, since we do not have a good way of determining
pseudo-nullity at our current state of knowledge.)
We however describe how one may obtain the absolute validity of Conjecture Y for
the elliptic curve E in question over certain classes of 5-extensions of Q(μ5). Let F
be a finite Galois 5-extension of Q(μ5) such that every ramified prime v of F/Q(μ5)
outside 5 is neither a split multiplicative reduction prime of E nor a good reduction
prime of E with E(Q(μ5)v)[5] �= 0. By Kida’s formula for elliptic curves (cf. [13,
theorem 3·1]), Sel(E/Fcyc) is finite which in turn implies that R(E/Fcyc) is finite. It
then follows from [28, theorem 3·3] that so is R(E/F). Applying Corollary 3·3, we
see that Conjecture Y holds for every Z5-extension of F. Examples of such F’s are
Q(μ5n , 5−5m

).

(ii) The above discussion can also be applied to the elliptic curve E:y2 + xy = x3 − x − 1
and p = 7. Indeed, in this case, one has Sel(E/Q(μ7∞)) = 0 (cf. [5, theorem 5·31]).
For more examples where the discussion in (i) also applies, we refer readers to the
tables in [10] (basically look for those with LE(σ ) being a unit).

(iii) Even if Sel(E/Q(μp∞)) �= 0, there are many numerical examples (for instance, see
[10, 46]), where the group Sel(E/Q(μp∞)) can be shown to be cofinitely generated
over Zp. By virtue of [13, corollary 3·4], Sel(E/Fcyc) is cofinitely generated over Zp

for every finite Galois p-extension F of Q(μp) which in turn implies that R(E/F) is
cofinitely generated over Zp[[Gal(Fcyc/F)]]. Hence we can at least apply Theorem 3·9
for these examples. We mention that the data in [46] also consists of elliptic curves
with supersingular reduction at p, where the plus-minus Selmer groups in the sense
of Kobayashi [22] have been verified to be cofinitely generated over Zp. As the fine
Selmer group is contained in either of the plus-minus Selmer groups, the fine Selmer
group is also cofinitely generated over Zp. This cofinite generation of fine Selmer
group is preserved under p-base change of fields (for instance, see the proof of [31,
theorem 5·5]). Hence Theorem 3·9 applies for these examples.

(iv) Let E be any elliptic curve in 49a and F =Q(E[7]). Take p = 7. We shall show that
Conjecture Y is valid for every Z7-extension of F. Indeed, this is plainly true if the Z7-
extension is the cyclotomic Z7-extension by [48, corollary 8] and [4, corollary 3·6].
For a non-cyclotomic Z7-extension F∞ of F, the compositum of F∞ and Fcyc is a Z2

7-
extension of F. By [26, section 4, example (a)], Y(E/L∞) is pseudo-null. Therefore,
the torsionness of Y(E/F∞) follows from this and Proposition 3·8. For more of such
examples, we refer readers to [26, section 4, example (a)] and [48, table 2].

(v) Let E be any elliptic curve in 32a and F =Q(
√−43). Take p = 3. It has been verified

by Lei-Palvannan that R(E/L∞) is pseudo-null (see [24, section 8·4]), where L∞ is
the Z2

3-extension of F. Therefore, we may apply Theorem 3·8 to obtain the validity
of Conjecture Y for every Z3-extension of F. [24, table 2] provides more examples,
where Proposition 3·8 can be applied too.

(vi) Let E be the elliptic curve 79a1 of Cremona’s tables given by

y2 + xy + y = x3 + x2 − 2x.
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Let p = 3 and F =Q(μ3). It has been computed by Wuthrich (see [10, p. 253]) that
E(F) has Z-rank 1 and the Tate–Sharafevich group X(E/F)[3∞] is finite. Under these
observations, it follows from a similar argument to that in [2, theorem 12] that one
obtains H2(GS(F), E[3∞]) = 0. By [12, lemma 3·2], this in turn implies that R(E/F)
is finite. Let F∞ be any Z3-extension of F. Then Theorem 3·3 applies to yield the
torsionness of R(E/F∞). As noted in [16, p. 362], the residual representation E[3]
is irreducible. Let F be the Hida family associated to E. Applying Corollary 5·4,
we see that for all but finitely many λ ∈Xarith

(
hord
F

)
, R

(
Afλ/F∞

)
is cotorsion over

Oλ[[Gal(F∞/F)]].

7. Non-commutative speculation and further remarks

In this final section, we formulate an extension of Conjecture Y for a (possibly non-
commutative) p-adic Lie extension. To simplify the discussion and for better clarity of
the ideas behind, we shall restrict our attention to the context of the paper. However, it
should be evident that much of the discussion here carries over to broader classes of Galois
representations.

We shall let Ā denote either one of the following objects: A[p∞], Af , A, and R̄ the corre-
sponding coefficients rings of these objects; namely, resp., Zp, O, R. Note that in the context
of A, we still work under the hypotheses (H1) and (H2). Let F∞ be a p-adic Lie extension of
F such that G: = Gal(F∞/F) is pro-p with no p-torsion and that F∞/F is unramified outside
a finite set of primes of F. The fine Selmer group of Ā over F∞, which is defined similarly as
before, now has the structure of a R̄[[G]]-module. We note that the ring R̄[[G]] is Auslander
regular (cf. [52, theorem 3·26]; also see [27, theorem A·1]) and has no zero divisors (cf.
[41]). Therefore, there is a well-defined notion of torsion R̄[[G]]-modules and pseudo-null
R̄[[G]]-modules. For our purpose, a R̄[[G]]-module M is said to be torsion (resp., pseudo-
null) if Exti

R̄[[G]]
(M, R̄[[G]]) = 0 for i = 0 (resp., i = 0, 1). The following is then the natural

generalization of Conjecture Y for a p-adic Lie extension.

CONJECTURE 7·1 (Generalised Conjecture Y). For every p-adic Lie extension F∞ of F,
Y(Ā/F∞) is torsion over R̄[[G]].

For an abelian variety, the above conjecture was formulated in [23] for a Zd
p-extension

of F.

Remark 7·2. We now discuss a context closely related to the generalised Conjecture Y. Had
we replaced Ā in the definition of the fine Selmer group by Qp/Zp( − i) (i > 0), where ( − i)
denotes the ( − i)th Tate twist, we will obtain the so-called étale wild kernel (for instance,
see [42, 43]). In this context, the author has established the torsionness of this group over
every p-adic Lie extension (see [29, proposition 4·1·1] and [30, sections 3·2 and 3·3] for
details). Therefore, this provides some optimism towards the generalised Conjecture Y.

A similar argument to that in Theorem 3·9 yields the following.

THEOREM 7·3. Let d ≥ 2. Suppose that L∞ is a Zd
p-extension of F which contains Fcyc.

Denote by �d(L∞/F) the set of all Zd−1
p -extensions of F contained in L∞. Assume that

R(Ā/Fcyc) is cotorsion over R̄[[Gal(Fcyc/F)]]. Then for all but finitely many L ∈ �d(L∞/F),
R(Ā/L) is cotorsion over R̄[[Gal(L/F)]].
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We finally end by providing a conceptual explanation on why the postulation of
Conjecture Y over a general p-adic Lie extension is plausible. To give this explanation,
we now recall the generalised Conjecture B of Coates–Sujatha [4] and Jha [16].

CONJECTURE 7·4. If F∞ is a p-adic Lie extension of F of dimension > 1 containing Fcyc,
then Y(Ā/F∞) is pseudo-null over R̄[[G]].

PROPOSITION 7·5. Suppose that Conjecture 7·4 is valid for every p-adic Lie extension
of F of dimension > 1 containing Fcyc. Then the generalised Conjecture Y is valid for every
p-adic Lie extension of F of dimension > 1.

Proof. We first make the following remark. Let G be a compact p-adic Lie group and M a
R̄[[G]]-module. For every open subgroup G0 of G, we then have

Exti
R̄[[G]]

(
M, R̄[[G]]

) ∼= Exti
R̄[[G0]]

(
M, R̄[[G0]]

)
.

(cf. [40, proposition 5·4·17]). Therefore, the question of M being torsion (resp., pseudo-null)
over R̄[[G]] is equivalent to M being torsion (resp., pseudo-null) over R̄[[G0]].

Now let F∞ be a p-adic Lie extension of F of dimension > 1. If F∞ contains Fcyc, then
by the assumption of the proposition, Y(Ā/F∞) is pseudo-null over R̄[[G]], and hence is
also torsion over R̄[[G]]. Suppose that Fcyc is not contained in F∞. Then Fcyc ∩ F∞ is a
finite extension of F. In view of the the remark in the first paragraph, we see that neither the
hypothesis nor the conclusion is affected if we replace F by Fcyc ∩ F∞. Hence, upon rela-
belling, we might as well assume that F = Fcyc ∩ F∞. Therefore, writing L∞ = Fcyc · F∞,
we have G: = Gal(L∞/F) ∼= Z × G, where Z ∼= Gal(Fcyc/F). Let z be a topological genera-
tor of Z. Then for every R̄[[G]]-module M, we have MZ = M/(z − 1) which can be viewed
as a R̄[[G]]-module. As Z is central in G, MZ may also be viewed as a R̄[[G]]-module. In
particular,

0 −→ R̄[[G]] −→ R̄[[G]] −→ R̄[[G]] −→ 0

is a R̄[[G]]-free resolution of the R̄[[G]]-module R̄[[G]]. Via a spectral sequence argument
similar to that in Lemma 2·1, we obtain

Exti
R̄[[G]]

(Y(A/L∞)Z , R̄[[G]]) ∼= Exti+1
R̄[[G]]

(Y(A/L∞)Z , R̄[[G]]).

In particular, one has

HomR̄[[G]](Y(Ā/L∞)Z , R̄[[G]]) ∼= Ext1
R̄[[G]](Y(Ā/L∞)Z , R̄[[G]]).

Since Y(Ā/L∞) is pseudo-null over R̄[[G]] by hypothesis, the latter is zero. From which,
we see that Y(Ā/L∞)Z is torsion over R̄[[G]]. On the other hand, a descent argument as in
Theorem 3·9 yields a map

Y(Ā/L∞)Z −→ Y(Ā/F∞),

whose cokernel is a quotient of H1(Z, Ā(L∞))∨, where the latter is plainly finitely generated
over R̄. It then follows that Y(Ā/F∞) is torsion over R̄[[G]] as required.
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