THE WIDTH OF A MODULE
MICHAEL WICHMAN

Introduction. An R-module N is said to have finite width n if n is the
smallest integer such that for any set of # 4+ 1 elements of N, at least one
of the elements is in the submodule generated by the remaining #. The width
of N over R will be denoted by W(R, N).

The notion of width was introduced by Brameret [2, p. 3605]. However,
Cohen [3] investigated rings of finite rank, which, in the case that R is a
local Noetherian domain, is equivalent to width (Proposition 1.6). He showed
that finite width of R was both equivalent to R having Krull dimension one,
and to R having the restricted minimum condition (Theorem 1.12).

In § 1, some general properties of modules of finite width will be established.
Among these is a partial reduction of the theory to the local case (Theorem 1.9).
It is shown that W(R, N) = X, W(Rn, Nn), where m ranges over the
maximal ideals of R, equality holding if R is Noetherian. Also, every module
of finite width over a Noetherian ring is shown to be countably generated
(Corollary 1.16).

The motivation of § 2 was the question as to whether the existence of a
faithful torsion R-module of finite width implied that R had to have finite
width. It turns out that if R is a local Noetherian domain with maximal
ideal m, and if R* is the m-adic completion of R, then there exists a
faithful torsion R-module of finite width if and only if there exists a
prime ideal P of R* with PN R =0 and Krull dimension R*/P =1
(Theorem 2.7).

Finally, in § 3, a faithful torsion R-module of width one over a Noetherian
local ring is shown to be S-isomorphic to Q/.S, where .S is a complete valuation
ring dominating R, and Q is the quotient field of S. It follows that R must
be a domain.

Throughout this paper all rings will be commutative with unit, all modules
will be unitary, and local rings will not necessarily be Noetherian. If N is
an R-module and xi,...,x, are elements of N, the R-submodule of N
generated by the x; will be denoted by (x1, . . ., x,).

1. General properties. The statements in the following proposition are
immediate consequences of the definition of width.
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ProrosiTioN 1.1. Let N be an R-module.

(1) If W(R, N) =0, then N = 0.

(2) If M s a submodule of N, then W(R, M) £ W(R, N).

(3) If M is a homomorphic image of N, then W(R, M) < W(R, N).

(4) If W(R, N) = n, then every finitely generated submodule of N 1is generated
by n elements; in fact, every finite set of generators of a submodule M contains a
set of n generators for M.

(5) If R is a domain, then R is a valuation ring if and only if W(R, R) = 1.

(6) If N is a simple R-module, then W(R, N) = 1.

(7) If R' is an R-algebra and N is an R'-module, then W(R', N) < W(R, N).

(8) If W(R, N) < o, then there is a finitely generaied submodule M of N
with W(R, M) = W(R, N).

ProrosiTioN 1.2. Let N be a submodule of an R-module M. If W(R, N) = n,
and W(R, M/N) = 1, then W(R, M) £ 1 + n.

Proof. Let ay,...,ay41 and by,...,b; be I + n 4+ 1 elements of M. By

hypothesis, there exists [ of these elements, say by, . .., b;, whose images in
M/N generate the submodule generated by all the images of a1, ..., a1
and by, ...,0;in M/N. Thus, a; = d; + e; for suitable d; in N and e; in
(b1y ..y by).

Since W(R, N) = n, there exists # of the d;, say dy, ..., d,, such that
dpi1 € (dy,...,d,). Nowd; = a; — e;impliesd,11 € (b1, ..., 0501, ...,a,),
and thus a,p1 € (b1, ..., b 01, ..., ay).

Definition. If N is an R-module of width %, then a set of elements x4, . . . , %,
in N such that x; ¢ (x1,...,%;...,%,), 1 =4 = n, is said to be a set of

width determiners of N.

CoROLLARY 1.3. If an R-module M 1is the direct sum of submodules M,
1272k then WR, M) = W(R, M) + ...+ W(R, My).

Proof. We first show that
W(Ry Ml @‘ .. @Mk) g W(Ry Ml) + o + W(Rr Jl/[k)'

Let W(R, M;) = n(3) and let {x;,1, ..., X:.»n} be a set of width determiners
for M, 1 = ¢ = k. Then no element x,,; of
A. = {xl,l, ey XIn(d)y o ooy Xi1y o 0 0y ka(k)}

is a linear combination of the elements of 4 — {x; ;}; for the existence of
such an «x;; would contradict the choice of %1, ..., Xiu(s)-

The proof of the reverse inequality is by induction. If 2 = 1, then M = M,
and thus W(R, M) = W(R, M,).

Now assume the result for # < k. By Proposition 1.2,
WR,Mi@D... M) EWR, M1 D... D My—1) + W(R, My)

= W(QR, M) + ...+ WR, Mi_1) + W(R, M,).
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PropositioN 1.4, If N s an R-module and S is a multiplicatively closed
subset of R, then W(S™'R, S"IN) < W(R, S7IN) £ W(R, N).

Proof. That W(S—1R, S7'N) = W(R, S~'N) follows from Proposition 1.1

7).

Suppose now that W(R, N) = n, and let x1 = my/s, ..., X1 = Muy1/s be
n + 1 elements of S71V, s € S. There exists an index, say # 4+ 1, and elements
r; € R such that my1 = rymy + ... 4+ 7,m,. Therefore,

Musr/S = rimy/s + ... + ram,/s,
and thus W(S—1R, S"IN) = .

CoROLLARY 1.5. If R is an integral domain and R’ is a non-zero R-submodule
of the quotient field of R, then W (R, R) = W(R, R’).

Proof. Let S = R — {0}. Since R’ contains an isomorphic copy of R and
R C S7'R,wehave W(R,R) = W(R,R") = W(R, S7IR). By Proposition 1.4,
W(R,S™1R) = W(R, R). Thus, W(R, R) = W(R, R').

ProrosiTioN 1.6. If R is a local ring and N is an R-module, then W (R, N)
is the smallest integer m such that every finitely gemerated submodule of N is
generated by n elements.

Proof. 1f n is the smallest integer for which every finitely generated
submodule of NV is generated by at most z elements, then W(R, N) = n.
On the other hand, a minimal set of generators can be extracted from any
set of generators of a finitely generated submodule [8, p. 14, Statement 5.3].

If R is a Noetherian ring, the question as to whether a given module has
finite width can be reduced to the local case. To this end we first state
Brameret’s theorem [2, p. 3607, Theorem 3].

THEOREM 1.7. Let Rbe aring, N an R-module,and Py D Py D ... D P, D ...
a chain of submodules of N. Suppose for every finitely gemerated submodule P
of N that N(P + P;) = P, and that the numbers W(R, N/P;) are bounded
by n. Then W(R, N) < n.

CoroLLARY 1.8. If R is @ Noetherian ring with Jacobson radical m, if N
15 a finitely generated R-module, and if N* and R* are the m-adic completions
of N and R, respectively, then W(R, N) = W(R*, N*).

Proof. N/m*'N = N*/m*R*N* is both an R and an R* isomorphism for
each integer s. Thus, W(R, N/m*N) = W(R*, N*/m*R*N*) for every s.
Since R is Noetherian and NV is finitely generated, Theorem 1.7 applies.

TuEOREM 1.9. If N is an R-module, then W(R, N) = 3 W(Rn, Nn),
where m ranges over the maximal ideals of R, and equality holds if R ts Noetherian.

Proof. (1) Wefirst show that W(R, N) <Y W(Rp, Nu). If X W (R, Ny) =0,
our proof is complete. Thus suppose that W(Ru; Nu;) = n; < o for
1 =1,...,kand that W(R,, N,) = O0form ¢ {m}. Letu = n, + ... + n..
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If x1,..., %41 are any u + 1 elements of N, then #; of the images of the
x; in N, generate the R,;-submodule generated by all the images of the
%; in N,,. Since #y 4+ ... + n, = u, at least one of the x;, say x,41, does
not need to be used as a generator in any of the N,;, 1 <1 < k, and since
W(Ryu, Ny) = 0 implies N, = 0 (by Proposition 1.1 (1)), we see that x,4;
is not needed for any N,,.

Therefore, for each maximal ideal m there exists 7,(m) € R and
s(m) € R —m such that s(m)x,, = X i—1 r,(m)x, Since s(m) ¢ m for
each m, the ideal generated by all the s(m) contains the identity. Thus,
there is a finite number of the ¢(m) in R such that 1 = X q(m)s(m).

But then x,.1Y gim)s(m) = 3 qim) 3 r,(m)x, implies W(R, N) =< u,
and thus W(R, N) = X W(Ru, Nu).

(2) We shall now show that equality holds when R is Noetherian.

Assume first that R is semi-local with maximal ideals m;, and that NV is
finitely generated. Let J be the Jacobson radical of R, and let R* be the
J-adic completion of R. Let R,;* be the m;R,,-adic completion of R,,.

Since R* = @ R,,* [8, p. 56, Theorem 17.7], N* = @ N,*, and thus
W(R*, N*) = > W(R*, N,,;*) by Corollary 1.3. Since N, * viewed as an
R*-module is really an R, *-module, it follows that > W(R* N,*) =
Z W(Rmi*: Nmz*> Thus, W(R, N) = Z W(Rmi*» Nmz*) = Z W(-Rmiy Nrm)
by Corollary 1.8.

Now assume that R is semi-local but that N is arbitrary. If W(R, N) = o,
our proof is complete, by part (1). Thus assume that W (R, N) < co. Then
since W(Rp, N,) < ©© by Proposition 1.4, and since R is semi-local,
Proposition 1.1 (8) implies that we can choose a finitely generated submodule
T of N for which W(R, N) = W(R, T) and W(Ru, N») = W(Ry, T) for
every maximal ideal m. We then have by the finitely generated case that

Finally, let R be an arbitrary Noetherian ring. By part (1) W(R, N) £
> W(R,, N,). It remains to demonstrate the reverse inequality.

If 3 W(Rn, Nn,) = o, then given any integer £ we can find a finite set of
maximal ideals my, ..., m, such that >/_;W(Ryu;, Nu;) > k. If we set
S = R — U;=1m;, then since S™IR is semi-local, the previous case implies
that Y/ 1 W (Rpiy Nm;) = W(S™IR, S~1N). By Proposition 1.4,

W(S-R, S"IN) = W(R, N).
Therefore, W(R, N) = .

If > W(Rn, Nn) < oo, then N, = 0 except for finitely many maximal
ideals. Assume that m,, . . . , m; are the only maximal ideals for which N,,; £ 0
and let S =R — Uf_im; Then XF_iW(Rn: Nu;) = W(S~'R, S"IN) by
the semi-local case; W (SR, S"!N) < W(R, N) by Proposition 1.4;

W(R, N) £ 20 W(Rn, Nu)
by part (1). Thus, since Y W(Rp, Np) = S it W(Rniy Nui), it follows
that W(R, N) = Z?:l W(Rnir» Npi) = 22m W(Rny, Ni)-
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The following result is a partial generalization of Theorem 1.9.

CoROLLARY 1.10. An integrally closed domain R has finite width if and only
if it 1s the intersection of a finite number of valuation rings, and then the width
1s equal to the number of maximal ideals of R.

Proof. Let R, be valuation rings such that R, € R; 7 5 j. Let
S=R,N...N\ R, If the maximal ideal of R; is m,; then an ideal of S
is maximal if and only if it is of the form m; M S for some ¢, and R; = S,,;ns
(8, p. 38, Theorem 11.11].

Therefore, by Theorem 1.9 and Proposition 1.1 (5),
W(Sy S) _S_ Z W(SminSy Smins) = n.
That W(S, S) = » follows from the following result.

LeMMA 111 If Iy, ..., Iyaretdealsof aring Rwith I, & Njei I;,1 <1 < k,
then W(R, R) = k.

Proof. R/N1I; is canonically isomorphic to a submodule of the direct sum
of the R/I;, and intersects each summand non-trivially. Thus, W(R, R/NI,) =k
by Corollary 1.3. The conclusion follows from Proposition 1.1 (3).

TuroREM 1.12. 4 Noetherian ring has finite width if and only if it is semi-local
of Krull dimension at most one.

Proof. If R has finite width, then R is semi-local by Theorem 1.9; and
if P is a prime of R, then R/P has Krull dimension at most one [3, pp. 28-29,
Theorem 1 and Corollary 1 of Theorem 10].

Conversely, if R is semi-local of Krull dimension at most one, then by
Theorem 1.9 we can assume that R is local.

Let I be the intersection of the minimal primes of R. We have W(R, R/I) <
oo since R/I is canonically isomorphic to a submodule of a finite direct sum
of local domains of Krull dimension at most one, each of which has finite
width [3, p. 35, Theorems 1 and 9].

By Proposition 1.2, it will suffice to show that W(R, I) < co. Since Ii/I*+!
is a finitely generated R-module, it has finite width since it is a homomorphic
image of a finite direct sum of copies of R/I. Therefore, since I is nilpotent,
Proposition 1.2 implies that W(R, I) < .

Definition. A module is said to be faithful if it has zero annihilator. From
now on, Ann N = Annihilator of N.

ProrosiTIiON 1.13. If N s a faithful finitely generated R-module of width n,
then W(R, R) = n®

Proof. Since N is finitely generated, it is generated by # elements, say
X1,...,%. If we set A; = Ann Rx,, then W(R, R/4,) £ W(R,N) =n
by Proposition 1.1 (2).
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Now R is canonically isomorphic to a submodule of R/4:1 @ ... @ R/A4,,
since N faithful implies NA4; = 0. Therefore, by Proposition 1.1 (2) and
Corollary 1.3, W(R, R) < 3. W(R, R/4,) < n

Definition. If M is an R-module, Ex(M) will denote the injective envelope
of M.

Theorem and Definition 1.14. If M is an R-module of finite width over a
Noetherian ring R, then Er(M) is a finite direct sum of modules of the form
Er(R/P), where W(R, R/P) < oo. The primes in the decomposition will be
called the primes belonging to M.

Proof. Ex(M) = @ Ex(R/P;) for some collection of prime ideals P,
[5, pp. 516-518, Theorem 2.5 and Proposition 3.1].

Since Ez(M) is an essential extension of M, N; = M M Ez(R/P;) # 0
for every 7. Further, 7 ranges over a finite index set since

s W(R, 2 N,)) £ W(R, M) < .

By [5, pp. 520-521, Theorems 3.4 and 3.6], R/P; is isomorphic to a
submodule of N;, and thus W(R, R/P;) < .

Definition. Let W, and W, be submodules of an R-module NV and let I be
an ideal of R. Then

(Wiu:Ws) ={a € RlaW, S Wy} and (W:I) = {x € N|Ix & W}.

TueoreEM 1.15. If W(R, M) < oo for an R-module M over a Noetherian
ring, then Eg(M) is countably generated.

Proof. By Theorem 1.14 we need only show that Ez(R/P) is countably
generated when W(R, R/P) < 0.

Now Ex(R/P) = U, (0:P?), and (0:P?)/(0:P*1) is a finite-dimensional
vector space over the quotient field Q of R/P [5, p. 524, Theorem 3.9].

Therefore, it suffices to show that Q is countably generated over R/P.
By Theorems 1.14 and 1.12, R/P is semi-local and of Krull dimension at
most one. Thus, R/P localized by the powers of a non-zero element in the
intersection of the maximal ideals of R/P must be all of Q. This implies
that Q is countably generated over R/P.

COROLLARY 1.16. A module of finite width over a Noetherian ring is countably
generated.

Proof. Over a Noetherian ring, any submodule of a countably generated
module is countably generated.

Definition. An R-module M is said to be a torsion R-module if Ann x # 0
for all x in M.

The following proposition yields a class of faithful torsion modules of
finite width.
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PropositioN 1.17. If R is an integral domain and Q is the quotient field of
R, then Q/R is a faithful torsion R-module and W(R, R) = W(R, Q/R).

Proof. That Q/R is a faithful torsion R-module is easy to check.

Now since W(R, R) = W(R, Q) by Corollary 1.5, Proposition 1.1 (3)
implies that W(R, R) = W(R, Q/R).

To show the reverse inequality, let x;,...,%, € R be a set of width
determiners of R. Let a¢; = Il,4x; and suppose that 1/a;, = Y ,«;7;/a; + ¢,
where 7,, ¢ € R. Then x;/x, = 3,2, 72,/ Il + ¢ implies that

X € (X1, 00y, iy e e, %),
a contradiction. Hence, W (R, R) = W(R, Q/R).
ProrosiTiON 1.18. Suppose that R is a ring and N is an R-module of width
n<oo.Let W= (x1,...,%,), where {x1, . . ., x,} is a set of width determiners.

Then if 0 # x € N, there exists b € R such that 0 5% bx € W. In particular,
N/W is a torsion R-module.

Proof. If x € W, take b = 1. If x ¢ W, then, since {x1, ..., %, x} is a set
of n + 1 elements, W(R, N) = n implies that there exists ¢ such that
X;= 2 ei?iX;+ bx,7;,0 € R. Further, bx £ Osince x; € (X1,...,%5, ..., %,).

2. Thin modules.

Definition. If R is a domain, a non-zero R-module N will be called divisible
if either of the following equivalent conditions are satisfied:
(i) if r € R, then the endomorphism of N given by x — 7x is an epimorphism;
(ii) if W £ N is a submodule of N, then Ann N/W = 0.
A divisible R-module N will be called thin if M divisible implies W(R, M) =
W(R, N).

ProrosiTiON 2.1. If N is a divisible R-module, then N s faithful. If N is
thin, then every mnom-gzero homomorphic tmage N' of N 1is thin, and hence
W(R, N) = W(R, N').

Proof. By the definition of a divisible R-module, N % 0 and Ann N/0 = 0;
thus N is faithful.

If N is thin, then N is divisible, and thus any non-zero homomorphic
image N’ of N is divisible. Thus by the definition of thin, W(R, N') =
W(R, N). On the other hand, W(R, N) = W(R, N’) by Proposition 1.1 (3),
and thus N’ is thin.

ProposiTION 2.2. Let R be a ring and N a module of with n. If W is a submodule
of N such that W(R, N/W) = n, then W is contained in a finitely generated
submodule of N. In particular, if R is Noetherian, then W is finitely gemerated.

Proof. Let x1,...,%x, € N such that their images in N/W are width
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determiners for N/W. Let x € W and consider {x, 1, . . ., x,}. By hypothesis,
there does not exist an index ¢ and elements 7, ¢ € R such that

X; = Zj?fi rjxj + ax.

Therefore, W(R, N) = n implies that there exist r; € R with x = 3 7,
and thus W C (%1, ..., %,).

ProposiTioN 2.3. Let R be a local Noetherian domain with maximal ideal
m, and let N be a thin torsion R-module of finite width. Then N = U (0:m?).

Proof. Let @ € R be a zero divisor of N and let W = (0:Ra). Since N is
faithful by Proposition 2.1, W £ N. Since N is divisible, Ann(N/W) = 0.
Since N is thin, W(R, N/W) = W(R, N) by Proposition 2.1, and thus W
is finitely generated by Proposition 2.2. Thus, if s is any non-zero element
of m, then by Nakayama’s lemma, sW C Wand sW = W. Lety € W — sW.
Since sN = N, there is 2 € N — W with sz = y. Now 2z ¢ W, thus az # 0,
and then sz € W implies asz = 0.

Now, by Theorem 1.14 and Corollary 1.3, N thin implies Ex(N) = Ez(R/P)
for exactly one prime P. Therefore, since Ez(R/P) is an Rp-module by
[, p. 521, Theorem 3.6], and since by [5, p. 518, Lemma 3.2] no element of
R — P is a zero divisor of Ez(R/P), we have P = m.

THEOREM 2.4. If R is a domain for which there exists a faithful torsion R-module
of finite width, then any faithful torsion R-module of minimum width among
all faithful torsion R-modules is thin.

Proof. Let N be a faithful torsion R-module of finite width whose width
is minimum among all faithful torsion R-modules. We will first show that NV
is divisible with a proof by contradiction.

If N is not divisible, there is a submodule W C N such that Ann N/W # 0.
It follows that W is a faithful torsion R-module since

(Ann W)(Ann N/W) C Ann N =0

and Ann N/W 3 0 implies Ann W = 0. Further, W(R, W) < W(R, N) by
Proposition 1.1 (2), and W(R, W) =z W(R, N) by the choice of N, implies
W(R, W) = W(R, N).

Now let W(R, N) = n, suppose that x ¢ W, and let {x, ..., x,} be any
n elements of W. Then {xy, ..., x,, x} is a set of # 4+ 1 elements of W + Rx.
Now since W W+ Rx C N and W(R, W) = W(R, N) = n, we have
W(R, W 4+ Rx) = n. Since x ¢ W, we have x ¢ (xi1,...,x,). Therefore,
W(R, W 4+ Rx) = n implies that there exists x; with

xle (9C1,...,5&1,...,xn,x).

Therefore, the image of x; in (W + Rx)/Rx is a linear combination of the
imagesof x1, ..., %4 ..., %, in (W 4 Rx)/Rx. Therefore, 1, . . . , x, arbitrary
implies W(R, (W 4+ Rx)/Rx) < n.
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Thus, if we show that (W + Rx)/Rx is a faithful torsion R-module of
finite width, we will have a contradiction to the choice of N.

Now (W + Rx)/Rx has finite width by Proposition 1.1 (3), and
(W + Rx)/Rx is a torsion R-module since W 4 Rx is a submodule of the
torsion R-module N. Finally, (W 4+ Rx)/Rx is a faithful R-module since
Ann((W 4+ Rx)/Rx)Ann(Rx) C Ann(W + Rx) = 0, and since Ann Rx % 0
for any element x of the torsion module N.

To complete the proof we need to eliminate the possibility that there exists
a thin R-module which is not a torsion R-module and which has width less
than that of N.

To this end, let M be a thin R-module with width determiners xy, . . ., x,.
We need only show that M/ (xy, ..., x,) 5 0, for this would then be a faithful
torsion R-module of finite width by Propositions 1.18 and 2.1.

However,if M = (x1,...,%,),then R = M/(x1, ..., Xs_1), Since X1, . . . , Xy,
width determiners implies x, ¢ (x1, ..., %,—1), and since M divisible implies
Ann M/ (%1, ..., %,—1) = 0. Thisin turn implies that R is a divisible R-module
and thus R must be a field, which is impossible since by hypothesis there
exists a faithful torsion R-module.

THEOREM 2.5. If R is a complete local Noetherian domain for which there exists
a faithful torsion R-module of finite width, then W (R, R) < . If, furthermore,
R has maximal ideal m and quotient field Q, then both Q/R and Er(R/m) are
thin torsion R-modules, and the width of any thin R-module equals W (R, R).

Proof. We first prove that Q/R is thin.

By Theorem 2.4, there exists a thin torsion R-module N. Thus, since Q/R
is a faithful torsion R-module, and since W(R, Q/R) = W(R, R) by
Proposition 1.17, we need only show that W(R, R) £ W(R, N).

To do this, let m be the maximal ideal of R and let 0 # a € m. Since N
is faithful, there is an xo € N with ax, # 0, and since N is divisible, there
exist x; € N with ax; = x;_1, ax;1 = xo. The set of all the x; generate N.
For N = U(0:m?) by Proposition 2.3; thus a®x; = x, 5% 0, for all 7, implies
the submodule generated by the x; is not contained in (0:m?) for any 1.
However, any proper submodule of N is finitely generated by Propositions 2.1
and 2.2, and thus is contained in (0:m?*) for some 1.

Now let I; = Ann Rx,. Since ax; = x;,_1, I,_1 D I;, and since N is faithful,
NI; = 0. Therefore, there exist s(¢) tending to infinity with 7 so that
m*®D 2D I, [8, p. 103, Theorem 30.1]. Since R/I; is isomorphic to a submodule
of N, and since R/m*® is a homomorphic image of R/I;, Propositions 1.1 (2)
and 1.1 (3) imply that W(R, R/m*®) = W(R, R/I;) < W(R, N). Therefore,
since s(¢) tends to infinity, W(R, R) < W(R, N) by Theorem 1.7.

Finally, we show that Er(R/m) is thin. We know that Q/R is a thin
R-module. Thus, if we show that Ez(R/m) isan R-homomorphicimage of Q/R,
we will see that Eg(R/m) is a thin R-module by Proposition 2.1.
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By [7, p. 571, Theorem 1], Q/R is Artinian. Thus, it is isomorphic to a
submodule of a finite direct sum of copies of Eg(R/m) [6, p. 497, Proposition 3].
Therefore, the projection onto one of the summands Ez(R/m) restricted to
Q/R is a thin R-submodule of Ez(R/m) by Proposition 2.1. Since a thin
module is divisible and Ex(R/m) has no proper divisible submodules {7, p. 573,

Proposition 2], the projection is onto.

LEMMA 2.6. Let R be a local Noetherian domain, and let R* be the completion
of R. If P is a prime ideal of R* with P M R = 0, if Krull dimension R*/P = 1,
and if Q is the quotient field of R*/P, then N = Q/(R*/P) is a faithful torsion
R-module of width W(R*/P, N). Further, R*/P is complete and dominates R.

Proof. N is a faithful torsion R*/P-module of finite width by Theorem 1.12
and Proposition 1.17. Therefore, since R*/P is complete, N is a thin
R*/P-module by Theorem 2.5. Since P M\ R = 0, we have R C R*/P, and
thus NV is also a faithful R-module.

By Proposition 2.3, N = U (0:m1") where m; is the maximal ideal of
R¥/P. If M = (0:m1*), then M is a module over (R*/P)/m,?, but R — R* —
R*/P induces R/m®— R*/m'R* — (R*/P)/m," the first of these maps
being an isomorphism, the second an epimorphism. Hence, M is an
R/m*module, and, therefore, a torsion R-module. Further,

W(R, M) = W(R/m', M) = W((R*/P)/m:*, M)
= W(R*/P, M) < W(R*/P, N)

by Proposition 1.1 (2).

Thus, given more than W(R*/P, N) elements of N, they all lie in
M = (0:m,?) for suitably large 7, and thus one is an R-linear combination
of the others. This proves that W(R, N) < W(R*/P, N).

Since R C R*/P, we see that W(R, N) = W(R*/P, N) by Proposition 1.1
(7). Therefore, W(R, N) = W(R*/P, N).

If R*/P does not dominate R, then there is an element of the maximal
ideal of R which is invertible in R*/P. However, this is impossible, because
of the sequence R — R*/P — R*/mR* — R/m, where m is the maximal
ideal of R, since the second map is surjective.

The next theorem is the main result of this section.

TaEOREM 2.7. Let R be a local Noetherian domain, and let R* be the completion
of R. Then there exists a faithful torsion R-module of finite width if and only if
there exists a prime ideal P of R* with PN R =0 and Krull dimension
R*/P = 1.

If N is a thin R-module of finite width, then there is a complete local Noetherian
domain S of finite width dominating R such that N is a thin torsion S-module
of finite width.

https://doi.org/10.4153/CJM-1970-013-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-013-8

112 MICHAEL WICHMAN

Proof. 1f there exists a prime ideal P of R* with PN R = 0 and Krull
dimension R*/P = 1, then there exists a faithful torsion R-module of finite
width by Lemma 2.6.

Conversely, if there is a faithful torsion R-module of finite width, then there
is a thin torsion R-module N of finite width by Theorem 2.4. N is an R*-module
of finite width by Propositions 2.3 and 1.1 (7).

We next show that the annihilator P of N as an R*-module is a prime ideal
with P\ R = 0, and thus, that N is a faithful torsion R*/P-module of
finite width.

Suppose that ¢ and b are elements of R* with abN = 0 and aN = 0. If
aN = N, then 0 = baN = bN implies b € Ann g«N.

If aN % N, then W(R, N/aN) = W(R, N) by Proposition 2.1. Therefore,
by Proposition 2.2, aN is a finitely generated submodule of N. But then,
since R is a domain and N is a torsion R-module, there exists 0 # ¢ in R with
c(aN) = 0, a contradiction since N being R-divisible implies 0 = ¢(aN) =
a(cN) = aN.

Therefore, the annihilator of N as an R*-module is a prime ideal P. Further,
PN R = 0 since N is a faithful R-module.

Therefore, W(R*/P, R*/P) < o by Theorem 2.5, and since R*/P is not
a field, Krull dimension R*/P = 1 by Theorem 1.12.

By Lemma 2.6, we can let S = R*/P.

Example 1. We can now show that there are rings R of infinite width for
which there exist faithful torsion R-modules of finite width.

Let R = Clx, yl@.p», where C is the field of complex numbers and x and y
are indeterminants. The completion of R is R* = C[[x, y]], the ring of formal
power series in x and y over C. Let f(x) be a non-unit in C[[x]] such that
f(x) is not algebraic over C(x), the quotient field of C[x]. Let I be the ideal
in C[[x, y]] generated by ¥ — f(x). Now I M R = 0; for if there exists g in
Cllx, y]] such that A(x,y) = (y —f(x)) g € Clx,y], then h(x,f(x)) =0
implies # = 0; otherwise f(x) would be algebraic over C(x).

Since R has Krull dimension two, and since the maximal ideal of R*
intersected with R is the maximal ideal of R, there is a minimal prime P
containing I such that P M R = 0 and Krull dimension R*/P = 1. Therefore,
by Theorem 2.7, there exists a faithful torsion R-module of finite width.
Finally, since the Krull dimension of R is two, R has infinite width by
Theorem 1.12.

Example 2. 1t is natural to ask whether a module of finite width over a
local Noetherian domain is a direct sum of thin modules. We will show that
this is not so.

Let R be a local Noetherian domain for which there exist two prime ideals
Py, Py of R* with P; M\ R = 0 and Krull dimension R*/P,; = 1 (in Example 1,
we could choose two elements of C[[x]] not algebraic over C(x) and generating
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distinct prime ideals). By Lemma 2.6, if Q, is the quotient field of S; = R*/P,,
then Q,/S; is an R-module of finite width. Therefore, if E is the injective
envelope of R*/m* where m* is the maximal ideal of R*, we see [5, pp. 520-521,
remark following Theorem 3.4 and Theorem 3.5] that the submodules (0:P;)
and (0:P;) of E are faithful torsion R-modules of finite width. By [5, p. 18,
Proposition 3.1], (0:P;) 5= (0:P5).

Since the submodule (0:P;) + (0:P:) of E generated by (0:P;) and (0:P»)
is a homomorphic image of (0: P;) + (0:P,), it has finite width by Corollary 1.3
and Proposition 1.1 (3).

If (0:P;) + (0:P;) were thin, then (0:P;) # (0:P;) 4+ (0:P,) would
imply that (0:P,) is finitely generated by Proposition 2.2, which is impossible
since (0:P,) is a faithful torsion R-module and R is a domain.

Thus (0:P1) + (0:P,) is not thin. On the other hand, it is indecomposable
[5, p. 514, Proposition 2.2].

3. Torsion modules of width one. In this section we shall show that
every faithful torsion module of width one over a Noetherian local ring R is
of the form Q(S)/S, where S is a complete Noetherian valuation ring
dominating R, and Q(S) is the quotient field of S.

LemMmA 3.1. If R is a Noetherian local ring and N is a faithful torsion R-module
of width one, then N = U (0:m?), where m is the maximal ideal of R.

Proof. First we show that if ¢ € m*F — m*+1, b0 € R,and x € N withbx =0
and ax # 0, then by € m*tly for all y € N.

For if by 5 0, then Rx € Ry. Consider by and ay. Since N has width one,
either (ay) C (by) or (by) C (ay). If ay = cby, then (¢ — ¢b)y = 0 implies
(@ — ¢b)x = 0, which implies 0 # ax = cbx = 0, a contradiction. Thus, by =
cay. Furthermore, ¢ is a non-unit, for otherwise c¢~'by = ay. Therefore,
by € mFtly,

Now suppose that x € NV and m™x # 0 for all #. There exists 0 # b € R
such that bx = 0. By the above, it follows that by € m"*ly for all y in N.
Since R is Noetherian, Nm™y = 0, and thus by = 0 for all y € N. But this
implies that b = 0, a contradiction.

LeEMMA 3.2. Let R be a Noetherian local ring and N a faithful torsion R-module
of width one. If W(R, R) = 1, then R is a domain.

Proof. If m is the maximal ideal of R, then N = U (0:m%) by Lemma 3.1.
It follows that m is not nilpotent. For if m" = 0, then N would be finitely
generated by [5, p. 525, Theorem 3.11] and Theorem 1.14, hence, cyclic by
Proposition 1.6. This contradicts the hypothesis that IV is a faithful torsion
R-module.

We now show that R is a domain.

Since R is Noetherian of width one, Proposition 1.6 implies that m is
generated by one element, say b. But then, since every element in a Noetherian
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ring can be written as a product of irreducible elements, W(R, R) = 1 implies
that every element of R is of the form ub", where % is a unit and #» > 0.

Thus, if ¢b = 0, setting ¢ = ub™ and b = u.b" implies that uub™+* = 0,
which implies the contradiction that m is nilpotent.

TueoreM 3.3. If R is a local Noetherian ring and N is a faithful torsion
R-module of width one, then R is a domain and N is a thin R-module.

Proof. If R* is the completion of R, then N is an R*-module by Lemma 3.1.
If we let I be the annihilator of N as an R*-module, then R*/I is complete
[8, p. 57, Corollary 17.9]. Further, I \\ R = 0 implies R & R*/I, and thus
N is a faithful torsion R*/I-module. Therefore, W(R*/I, R*/I) =1 by
Theorem 2.5, and thus R*/I is a domain by Lemma 3.2. Thus, R & R*/I
implies R is a domain.

That N is thin follows from Theorem 2.4.

TaEOREM 3.4. If N is a faithful torsion module of width one over a local
Noetherian ring R, then N s S-isomorphic to Q(S)/S, where S is a complete
Noetherian valuation ring dominating R and Q(S) s the quotient field of S.

Proof. By Theorem 3.3, NV is a thin R-module. Therefore, by Theorem 2.7,
N is a thin torsion .S-module of width one, where S is a complete local
Noetherian domain dominating R, and thus W(S,.S) = 1 by Theorem 2.5.

It follows from Corollary 1.3 that N is an indecomposable divisible torsion

module over the discrete valuation ring S, and thus N is isomorphic to Sy, =
Q(S)/S (cf. [4, p. 10, Theorem 4]).

THEOREM 3.5. Let R be a local Noetherian domain and N o faithful torsion
R-module of width one. If R* is the completion of R, then R is a discrete valuation
ring if and only if the annihilator of N as an R*-module is zero.

Proof. First note that N is an R*-module by Lemma 3.1.

If the annihilator of N as an R*-module is zero, then W(R*, R*) = 1 by
Theorem 2.5, and thus W(R, R) = 1 by Corollary 1.8. Thus, R is a discrete
valuation ring.

Conversely, suppose that W (R, R) = 1 and that a*N = 0, where a* € R*.
Let {a;} be a Cauchy sequence in R converging to a*. Now, since N = U (0:m?)
by Lemma 3.1, and since every ideal of R is of the form m? it follows that
there exists x; € N with Ann Rx, = m® for arbitrarily large 7. But then
a*x; = 0 implies that a; € m® for sufficiently large j. Thus, a* = 0.
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