
THE WIDTH OF A MODULE 
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Introduction. An i^-module N is said to have finite width n if n is the 
smallest integer such that for any set of n + 1 elements of N, at least one 
of the elements is in the submodule generated by the remaining n. The width 
of N over R will be denoted by W(R, N). 

The notion of width was introduced by Brameret [2, p. 3605]. However, 
Cohen [3] investigated rings of finite rank, which, in the case that R is a 
local Noetherian domain, is equivalent to width (Proposition 1.6). He showed 
that finite width of R was both equivalent to R having Krull dimension one, 
and to R having the restricted minimum condition (Theorem 1.12). 

In § 1, some general properties of modules of finite width will be established. 
Among these is a partial reduction of the theory to the local case (Theorem 1.9). 
It is shown that W(R, N) S JlmW(Rm,Nm), where m ranges over the 
maximal ideals of R, equality holding if R is Noetherian. Also, every module 
of finite width over a Noetherian ring is shown to be countably generated 
(Corollary 1.16). 

The motivation of § 2 was the question as to whether the existence of a 
faithful torsion i^-module of finite width implied that R had to have finite 
width. It turns out that if R is a local Noetherian domain with maximal 
ideal m, and if R* is the ra-adic completion of R, then there exists a 
faithful torsion i^-module of finite width if and only if there exists a 
prime ideal P of R* with P C\ R = 0 and Krull dimension R*/P = 1 
(Theorem 2.7). 

Finally, in § 3, a faithful torsion i?-module of width one over a Noetherian 
local ring is shown to be 5-isomorphic to Q/S, where 5 is a complete valuation 
ring dominating R, and Q is the quotient field of S. It follows that R must 
be a domain. 

Throughout this paper all rings will be commutative with unit, all modules 
will be unitary, and local rings will not necessarily be Noetherian. If N is 
an i?-module and elements of N, the i^-submodule of N 
generated by the xt will be denoted by (xi, . . . , xn). 

1. General properties. The statements in the following proposition are 
immediate consequences of the definition of width. 
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W I D T H OF A MODULE 103 

PROPOSITION 1.1. Let N be an R-module. 

(1) If W(R, N) = 0, then N = 0. 
(2) If M is a submodule of N, then W(R, M) S W(R, N). 
(3) If M is a homomorphic image of N, then W(R, M) ^ W(R, N). 
(4) If W(R, N) = n, then every finitely generated submodule of N is generated 

by n elements; in fact, every finite set of generators of a submodule M contains a 
set of n generators for M. 

(5) If R is a domain, then R is a valuation ring if and only if W(R, R) — 1. 
(6) If N is a simple R-module, then W(R, N) = 1. 
(7) IfR' is an R-algebra and N is an R;-module, then W(Rf, N) ^ W(R, N). 
(8) If W(R, N) < oo, then there is a finitely generated submodule M of N 

with W(R,M) = W(R,N). 

PROPOSITION 1.2. Let N be a submodule of an R-module M. If W(R, N) = n, 
and W(R, M/N) = I, then W(R, M) ^ I + n. 

Proof. Let ai, . . . , an+i and fei, . . . , bx be / + n + 1 elements of M. By 
hypothesis, there exists I of these elements, say bi, . . . , bh whose images in 
M/N generate the submodule generated by all the images of ai, . . . , an+i 
and bi, . . . ,bi in M/N. Thus, at = dt + et for suitable dt in N and et in 
(&i , . . . , fe , ) . 

Since W(R, N) = n, there exists n of the du say d\, . . . , dn, such that 
dn+i G (di, . . . , dn). Now di = at — et implies dn+i £ (fei, . . . , bh ax, . . . , a„), 
and thus an+i G (fei, . . . , fez, ax, . . . , aw). 

Definition. If iV is an i?-module of width w, then a set of elements Xi, . . . , xn 

in N such that x* $ (xi, . . . , xu . . . , xn), 1 ^ i ^ n, is said to be a set of 
width determiners of N. 

COROLLARY 1.3. If an R-module M is the direct sum of submodules Mif 

l g t g i , then W(R, M) = W(R, Mx) + . . . + W(R, Mk). 

Proof. We first show that 

W(R, M1 0 . . . 0 Mk) ^ W(R, Mi) + . . . + W(R, Mk). 

Let TF(i^, MO = n(i) and let {x*,i, . . . , xitn(i)} be a set of width determiners 
for Mu l t=î i S k. Then no element xifj of 

A = {#1 ,1 , . . . , Xi>n(i), . . . , Xfc.l, . . . , #fc,n(A;)} 

is a linear combination of the elements of A — {x^-} ; for the existence of 
such an ximi would contradict the choice of 

The proof of the reverse inequality is by induction. If k = 1, then M = Mi 
and thus W(R, M) = W(R, M{). 

Now assume the result for n < k. By Proposition 1.2, 

W(R, Mi © . . . 0 M») £ W(2?f Mi 0 . . . 0 M*_i) + W(2J, M») 

= W(2e, Mi) + . . . + TF(i?, ¥ « . : ) + T^(i?, M»). 
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PROPOSITION 1.4. If N is an R-module and S is a multiplicatively closed 
subset ofR, then W{S~lR, 5"W) ^ W(R, S~lN) ^ W(R, N). 

Proof. That W^^S^N) ^ W(R, S-W) follows from Proposition 1.1 
(7). 

Suppose now that W(R, N) — n, and let X\ — m\f s, . . . , xn+i — mn+i/s be 
n + 1 elements of S~1N, s £ S. There exists an index, say n + 1, and elements 
Yi G R such that mn+i — r^m\ + . . . + rnmn. Therefore, 

mn+1/s = rmi/s + . • • + rnmn/s, 

and thus T7(5-1iî, 5~W) g w. 

COROLLARY 1.5. If R is an integral domain and Rr is a non-zero R-submodule 
of the quotient field of R, then W(R, R) = W(R, R'). 

Proof. Let S = R — {0}. Since Rf contains an isomorphic copy of R and 
R' C S-W, we have W(R} R) ^ W(R, R') ^ W(R, S^R). By Proposition 1.4, 
WfàS-iR) ^ W(R,R). Thus, W(R,R) = W(R,R'). 

PROPOSITION 1.6. If R is a local ring and N is an R-module, then W(R, N) 
is the smallest integer n such that every finitely generated submodule of N is 
generated by n elements. 

Proof. If n is the smallest integer for which every finitely generated 
submodule of N is generated by at most n elements, then W(R, N) ^ n. 
On the other hand, a minimal set of generators can be extracted from any 
set of generators of a finitely generated submodule [8, p. 14, Statement 5.3]. 

If R is a Noetherian ring, the question as to whether a given module has 
finite width can be reduced to the local case. To this end we first state 
Brameret's theorem [2, p. 3607, Theorem 3]. 

THEOREM 1.7. Let Rbea ring, N an R-module, and P i D P2 D • • • D Pk D • • • 
a chain of submodules of N. Suppose for every finitely generated submodule P 
of N that Pi (P + Pi) = P, and that the numbers W(R, N/Pt) are bounded 
by n. Then W(R, N) S n. 

COROLLARY 1.8. If R is a Noetherian ring with Jacobson radical m, if N 
is a finitely generated R-module, and if N* and P* are the m-adic completions 
of N and R, respectively, then W(R, N) = W(R*, TV*). 

Proof. N/msN = N*/msR*N* is both an R and an P* isomorphism for 
each integer s. Thus, W(R, N/msN) = W(R*, N*/msR*N*) for every s. 
Since R is Noetherian and N is finitely generated, Theorem 1.7 applies. 

THEOREM 1.9. If N is an R-module, then W(R, N) ^ T,W(Rm,Nm), 
where m ranges over the maximal ideals of R, and equality holds if R is Noetherian. 

Proof. (1) We first show that W(R, N) ^ £ W{Rm, Nm). If £ W(Rm, Nm)=oo, 
our proof is complete. Thus suppose that W(Rmi, Nmi) = nt < GO for 
i = 1, . . . , k and that W(Rm, Nm) = 0 for m £ [m^. Let u = n\ + . . . + nk. 

https://doi.org/10.4153/CJM-1970-013-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-013-8


WIDTH OF A MODULE 105 

If xi, . . . , xu+i are any u + 1 elements of N, then nt of the images of the 
Xj in Nmi generate the i?wrsubmodule generated by all the images of the 
Xj in Nmi. Since n\ + . . . + nk = u, at least one of the xj1 say xu+i, does 
not need to be used as a generator in any of the Nmi, 1 ^ i ^ k, and since 
W(Rm, Nm) = 0 implies Nm = 0 (by Proposition 1.1 (1)), we see that xM_j_i 
is not needed for any Nm. 

Therefore, for each maximal ideal m there exists rt(m) £ R and 
s(m) £ R — m such that s(m)xu+i = £?=i rt{m)xt. Since s(m) € w for 
each ra, the ideal generated by all the s(m) contains the identity. Thus, 
there is a finite number of the q(m) in R such that 1 = 2] q(m)s(m). 

But then xM+i XI q(m)s(m) = ]L # ( W ) ]£ rt{m)xt implies W(R, N) = w, 
and thus W(R, N) = £ ^ ( ^ , #«)• 

(2) We shall now show that equality holds when R is Noetherian. 
Assume first that R is semi-local with maximal ideals mu and that N is 

finitely generated. Let / be the Jacobson radical of R, and let R* be the 
J-adic completion of R. Let Rmi* be the f»*i?mt-adic completion of i?mi. 

Since R* = 0 i C * [8, p. 56, Theorem 17.7], TV* = ®Nmi*, and thus 
W(R*, N*) = L W(R*, Nni*) by Corollary 1.3. Since Nm* viewed as an 
i?*-module is really an Rm*-modu\e, it follows that ^ W(R*, Nmi*) = 
L W(2^,*, #„.•*)• Thus, W(£, N) = £ ^ ( ^ * , #„,*) = Z ^ ( ^ - , iVmJ 
by Corollary 1.8. 

Now assume that R is semi-local but that N is arbitrary. If I^CR, N) = oo , 
our proof is complete, by part (1). Thus assume that W(R, N) < oo. Then 
since W(Rm, Nm) < oo by Proposition 1.4, and since R is semi-local, 
Proposition 1.1 (8) implies that we can choose a finitely generated submodule 
T of N for which W(R, N) = W(R, T) and W(Rm, Nm) = W(Rm, Tm) for 
every maximal ideal m. We then have by the finitely generated case that 
W(R, N) = W(R, T) = L W(Rm} Tm) = £ ^ ( ^ , Nn). 

Finally, let R be an arbitrary Noetherian ring. By part (1) W(R, N) ^ 
£ W(Rm, Nm). It remains to demonstrate the reverse inequality. 

If £ W(Rm, Nm) = oo, then given any integer k we can find a finite set of 
maximal ideals mi, . . . , mr such that £l=iWCRmi, Nmi) > k. If we set 
S = R— Uf =i Wj, then since S^R is semi-local, the previous case implies 
that Y.l=iW(Rmi, Nmi) = P F ( 5 - ^ , S^W). By Proposition 1.4, 

WiS-iRtS-W) S W(R,N). 

Therefore, W(R, N) = oo. 
If X WC^w, ^w) < °° , then iVm = 0 except for finitely many maximal 

ideals. Assume that Wi, . . . , mk are the only maximal ideals for which Nmi ^ 0 
and let S = R - U Î - i m , . Then £*=iIF(i?mi, Nm) = ^ ( 5 ~ ^ , 5"W) by 
the semi-local case; WÇS^R, 5~W) ^ W(R, N) by Proposition 1.4; 

W(R, N) S E , ^ ( ^ , Nm) 
by part (1). Thus, since Y,mW(Rm,Nm) = £ * = i ^ f c , #,*)» it follows 
that T7(i?, N) = £*=i ^ ( ^ - , #»<) = I , WCRm, JV«). 
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The following result is a partial generalization of Theorem 1.9. 

COROLLARY 1.10. An integrally closed domain R has finite width if and only 
if it is the intersection of a finite number of valuation rings, and then the width 
is equal to the number of maximal ideals of R. 

Proof. Let Rt be valuation rings such that Rt ^ Rjy i ^ j . Let 
5 = Ri r\ . . . H Rn. If the maximal ideal of Ri is mu then an ideal of 5 
is maximal if and only if it is of the form mt C\ S for some i, and Rt = Smir]S 

[8, p. 38, Theorem 11.11]. 

Therefore, by Theorem 1.9 and Proposition 1.1 (5), 

W(S, S) S £ W(Smins, Smns) = n. 

That W(S, S) ^ n follows from the following result. 

LEMMA 1.11. If 7i, . . . , I\ are ideals of a ring R with I\ $£ Dj^ilj, 1 S i S k, 
then W(R, R) ^ k. 

Proof. R/CMi is canonically isomorphic to a submodule of the direct sum 
of the R/Iij and intersects each summand non-trivially. Thus, W(R, R/f\It) ^ k 
by Corollary 1.3. The conclusion follows from Proposition 1.1 (3). 

THEOREM 1.12. A Noetherian ring has finite width if and only if it is semi-local 
of Krull dimension at most one. 

Proof. If R has finite width, then R is semi-local by Theorem 1.9; and 
if P is a prime of R, then R/P has Krull dimension at most one [3, pp. 28-29, 
Theorem 1 and Corollary 1 of Theorem 10]. 

Conversely, if R is semi-local of Krull dimension at most one, then by 
Theorem 1.9 we can assume that R is local. 

Let I be the intersection of the minimal primes of R. We have W(R, R/I) < 
oo since R/I is canonically isomorphic to a submodule of a finite direct sum 
of local domains of Krull dimension at most one, each of which has finite 
width [3, p. 35, Theorems 1 and 9]. 

By Proposition 1.2, it will suffice to show that W(R, I) < oo. Since V/V^ 
is a finitely generated i^-module, it has finite width since it is a homomorphic 
image of a finite direct sum of copies of R/I. Therefore, since I is nilpotent, 
Proposition 1.2 implies that W(R, I) < oo. 

Definition. A module is said to be faithful if it has zero annihilator. From 
now on, Ann N = Annihilator of N. 

PROPOSITION 1.13. / / N is a faithful finitely generated R-module of width n, 
then W(R, R) ^ n\ 

Proof. Since N is finitely generated, it is generated by n elements, say 
xi, . . . , xn. If we set At = Ann Rxu then W(R, R/At) ^ W(R, N) = n 
by Proposition 1.1 (2). 
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Now R is canonically isomorphic to a submodule of R/Ai © . . . @R/An, 
since N faithful implies C\Ai = 0. Therefore, by Proposition 1.1 (2) and 
Corollary 1.3, W(R, R) S £ W(R, R/Ai) ^ n\ 

Definition. If M is an P-module, ER(M) will denote the injective envelope 
of M. 

Theorem and Definition 1.14. If M is an R-module of finite width over a 
Noetherian ring R, then ER{M) is a finite direct sum of modules of the form 
ER(R/P), where W(R, R/P) < oo. The primes in the decomposition will be 
called the primes belonging to M. 

Proof. ER(M) = @ER(R/Pi) for some collection of prime ideals Pt 

[5, pp. 516-518, Theorem 2.5 and Proposition 3.1]. 
Since ER(M) is an essential extension of M, Nt = M Pi ER{R/Pt) ^ 0 

for every i. Further, i ranges over a finite index set since 

Z 1 ̂  WfaY.Ni) ^ W(R, M) < oo. 
i 

By [5, pp. 520-521, Theorems 3.4 and 3.6], R/P% is isomorphic to a 
submodule of Nit and thus W(R, R/P/) < oo. 

Definition. Let W\ and W% be submodules of an i^-module N and let / be 
an ideal of R. Then 

(Wi-.Wi) = {a Ç R\ aW2 C ^ } and (T7:J) = {x G iV| /x C W}. 

THEOREM 1.15. / / W(R, M) < oo for an R-module M over a Noetherian 
ring, then ER(M) is countably generated. 

Proof. By Theorem 1.14 we need only show that ER(R/P) is countably 
generated when W(R, R/P) < oo. 

Now ER{R/P) = Uz (0:P*), and (OrPOAOiP*"1) is a finite-dimensional 
vector space over the quotient field Q of R/P [5, p. 524, Theorem 3.9]. 

Therefore, it suffices to show that Q is countably generated over R/P. 
By Theorems 1.14 and 1.12, R/P is semi-local and of Krull dimension at 
most one. Thus, R/P localized by the powers of a non-zero element in the 
intersection of the maximal ideals of R/P must be all of Q. This implies 
that Q is countably generated over R/P. 

COROLLARY 1.16. A module of finite width over a Noetherian ring is countably 
generated. 

Proof. Over a Noetherian ring, any submodule of a countably generated 
module is countably generated. 

Definition. An P-module M is said to be a torsion R-module if Ann x ^ 0 
for all x in M. 

The following proposition yields a class of faithful torsion modules of 
finite width. 
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PROPOSITION 1.17. If R is an integral domain and Q is the quotient field of 
R, then Q/R is a faithful torsion R-module and W(R, R) = W(R, Q/R)> 

Proof. That Q/R is a faithful torsion ^-module is easy to check. 
Now since W(R, R) = W(R,Q) by Corollary 1.5, Proposition 1.1 (3) 

implies that W(R, R) è W(R, Q/R). 
To show the reverse inequality, let Xi, . . . , xn G R be a set of width 

determiners of R. Let ak = HJ9£kXj and suppose that l/at = Ylj^t rj/aj + c, 
where rj} c G R. Then Xi/TLxk = J2j^i rftj/Uxjc + c implies that 

Xi \z. \Xli • • • y Xij . . . , XnJ, 

a contradiction. Hence, W(R, R) ^ W(R, Q/R). 

PROPOSITION 1.18. Suppose that R is a ring and N is an R-module of width 
n < co. Let W = (xi, . . . , xn), where {xi, . . . , xn} is a set of width determiners. 
Then if 0 9e x 6 N, there exists b G R such that 0 ^ te Ç W. In particular, 
N/W is a torsion R-module. 

Proof. If x G W, take b = 1. If x € W, then, since {xi, . . . , xn, x} is a set 
of n + 1 elements, W(R, N) = n implies that there exists i such that 
xi = Hj^i rJxj + bx, r-,, b G R. Further, bx ^ 0 since xt (? (xi, . . . , xu . . . , xn). 

2. Thin modules. 

Definition. If R is a domain, a non-zero i^-module N will be called divisible 
if either of the following equivalent conditions are satisfied: 

(i) if r G R, then the endomorphism of Ngiven by x —*rx is an epimorphism; 
(ii) if W ?* N is a submodule of iV, then Ann N / W = 0. 
A divisible i^-module N will be called thin if M divisible implies W(R, M) ^ 

W(R,N). 

PROPOSITION 2.1. 7/ N is a divisible R-module, then N is faithful. If N is 
thin, then every non-zero homomorphic image N' of N is thin, and hence 
W(R,N) = W(R,Nf). 

Proof. By the definition of a divisible J?-module, N ^ 0 and Ann iV/0 = 0; 
thus N is faithful. 

If N is thin, then N is divisible, and thus any non-zero homomorphic 
image Nf of N is divisible. Thus by the definition of thin, W(R, N') ^ 
W(R, N). On the other hand, W(R, N) ^ W(R, N') by Proposition 1.1 (3), 
and thus Nf is thin. 

PROPOSITION 2.2. Let Rbea ring and N a module of with n. If W is a submodule 
of N such that W(R, N/W) = n, then W is contained in a finitely generated 
submodule of N. In particular, if R is Noetherian, then W is finitely generated. 

Proof. Let Xi, . . . , xn G ̂ V such that their images in N/W are width 
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determiners for N/W. Let x 6 W and consider {x, Xi, . . . , xn}. By hypothesis, 
there does not exist an index i and elements rj} a £ R such that 

Xf = 2—t J9^i ?j%j ~T~ &%> 

Therefore, W(R, N) = n implies that there exist rt Ç R with x = ]T} ri%u 
and thus W C (tfi, • • • , xn)> 

PROPOSITION 2.3. Le£ R be a local Noetherian domain with maximal ideal 
m, and let N be a thin torsion R-module of finite width. Then N = U(0:ra*). 

Proof. Let a Ç R be a zero divisor of iV and let W = (0:Ra). Since N is 
faithful by Proposition 2.1, W ^ iV. Since N is divisible, Ann (N/ W) = 0. 
Since N is thin, W(i?, iV/WO = W{R, N) by Proposition 2.1, and thus W 
is finitely generated by Proposition 2.2. Thus, if s is any non-zero element 
of m, then by Nakayama's lemma, sW C W and sW ^ W. Let y £ W — sW. 
Since siV = N, there is s £ iV — T^ with sz = y. Now s (? W7, thus az ^ 0, 
and then sz £ W implies asz = 0. 

Now, by Theorem 1.14 and Corollary 1.3, N thin implies EB(N) = ER{R/P) 
for exactly one prime P . Therefore, since ER{R/P) is an PP-module by 
[5, p. 521, Theorem 3.6], and since by [5, p. 518, Lemma 3.2] no element of 
R — P is a zero divisor of ER(R/P), we have P = m. 

THEOREM 2.4. If R is a domain for which there exists a faithful torsion R-module 
of finite width, then any faithful torsion R-module of minimum width among 
all faithful torsion R-modules is thin. 

Proof. Let N be a faithful torsion P-module of finite width whose width 
is minimum among all faithful torsion P-modules. We will first show that N 
is divisible with a proof by contradiction. 

If N is not divisible, there is a submodule W d N such that Ann N/W 5* 0. 
It follows that W is a faithful torsion i^-module since 

(Ann W) (Ann N/W) Ç Ann N = 0 

and Ann N/W ^ 0 implies Ann W = 0. Further, W(R, W) ^ W(R, N) by 
Proposition 1.1 (2), and W(R, W) ^ W(R, N) by the choice of N, implies 
W(R, W) = W(R,N). 

Now let W(R, N) = n, suppose that x (t W, and let {xi, . . . , xn) be any 
n elements of W. Then {xi, . . . , xn, x} is a set of n + 1 elements of PF + ifo. 
Now since W Q W + Rx Q N and T^(P, WQ = W(R, N) = n, we have 
W(R, W + Rx) = w. Since x g W, we have x (? (xi, . . . , xw). Therefore, 
T^(P, PF + i?x) = w implies that there exists xt with 

X i \Z \X 1 , . . . , X ^ , . . . , Xn, X y . 

Therefore, the image of x* in (W + Rx)/Rx is a linear combination of the 
images of Xi, . . . , xiy . . . , xn in ( W + Rx)/Rx. Therefore, xi, . . . , xn arbitrary 
implies W(R, (W + Rx)/Rx) < n. 
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Thus, if we show that (W + Rx)/Rx is a faithful torsion i?-module of 
finite width, we will have a contradiction to the choice of N. 

Now (W + Rx)/Rx has finite width by Proposition 1.1 (3), and 
(W + Rx)/Rx is a torsion i^-module since W + Rx is a submodule of the 
torsion i?-module N. Finally, (W + Rx)/Rx is a faithful i^-module since 
Ann{{W + Rx)/Rx)Atm(Rx) C Ann(W + Rx) = 0, and since Ann Rx j* 0 
for any element x of the torsion module N. 

To complete the proof we need to eliminate the possibility that there exists 
a thin i^-module which is not a torsion jR-module and which has width less 
than that of N. 

To this end, let M be a thin .R-module with width determiners Xi, . . . , xn. 
We need only show that M/(xi, . . . , xn) ^ 0, for this would then be a faithful 
torsion jR-module of finite width by Propositions 1.18 and 2.1. 

However, if M = (xi, . . . , xn), then R = M/(xi, . . . , xw_i), since Xi, . . . , xn 

width determiners implies xn $ (xi, . . . , x„_i), and since M divisible implies 
Ann M/(xi, . . . , xn-i) = 0. This in turn implies that R is a divisible i£-module 
and thus R must be a field, which is impossible since by hypothesis there 
exists a faithful torsion i^-module. 

THEOREM 2.5. If Ris a complete local No ether ian domain for which there exists 
a faithful torsion R-module of finite width, then W(R, R) < oo . If, furthermore, 
R has maximal ideal m and quotient field Q, then both Q/R and ER(R/m) are 
thin torsion R-modules, and the width of any thin R-module equals W(R, R). 

Proof. We first prove that Q/R is thin. 
By Theorem 2.4, there exists a thin torsion i^-module N. Thus, since Q/R 

is a faithful torsion i?-module, and since W(R, Q/R) = W(R, R) by 
Proposition 1.17, we need only show that W(R, R) ^ W(R, N). 

To do this, let m be the maximal ideal of R and let 0 ^ a £ m. Since N 
is faithful, there is an x0 G N with ax0 ^ 0, and since N is divisible, there 
exist xt G N with axt = x*_i, axx = x0. The set of all the xt generate N. 
For N = U(0:m*) by Proposition 2.3; thus a Xi — Xo 7e- 0, for all i, implies 
the submodule generated by the xt is not contained in (0:m*) for any i. 
However, any proper submodule of iVis finitely generated by Propositions 2.1 
and 2.2, and thus is contained in (O-.m1) for some i. 

Now let It = Ann Rxt. Since axt = x*_i, J ^ i 3 j ^ , and since N is faithful, 
C\Ii = 0. Therefore, there exist s(i) tending to infinity with i so that 
w s ( i ) ~D It [8, p. 103, Theorem 30.1]. Since R/It is isomorphic to a submodule 
of N, and since R/ms(i) is a homomorphic image of i?/i\-, Propositions 1.1 (2) 
and 1.1 (3) imply that W(R, R/ms^) ^ W(R, R/It) g WCR, N). Therefore, 
since s(i) tends to infinity, W(R, R) g TFCR, iV) by Theorem 1.7. 

Finally, we show that ER(R/m) is thin. We know that Q/R is a thin 
.R-module. Thus, if we show that ER{R/m) isani^-homomorphicimage of Q/R, 
we will see that ER{R/m) is a thin R-module by Proposition 2.1. 
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By [7, p. 571, Theorem 1], Q/R is Artinian. Thus, it is isomorphic to a 
submodule of a finite direct sum of copies of ER(R/m) [6, p. 497, Proposition 3]. 
Therefore, the projection onto one of the summands ER(R/m) restricted to 
Q/R is a thin P-submodule of ER(R/m) by Proposition 2.1. Since a thin 
module is divisible and ER(R/m) has no proper divisible submodules [7, p. 573, 
Proposition 2], the projection is onto. 

LEMMA 2.6. Let Rbe a local Noetherian domain, and let R* be the completion 
of R. If P is a prime ideal of R* with P P R = 0, if Krull dimension R*/P = 1, 
and if Q is the quotient field of R*/P, then N = Q/(R*/P) is a faithful torsion 
R-module of width W(R*/P, N). Further, R*/P is complete and dominates R. 

Proof. N is a faithful torsion R*/P-modu\e °f finite width by Theorem 1.12 
and Proposition 1.17. Therefore, since R*/P is complete, TV is a thin 
P*/P-module by Theorem 2.5. Since P P R = 0, we have R Ç R*/P9 and 
thus N is also a faithful P-module. 

By Proposition 2.3, N = U(0:wi*) where Wi is the maximal ideal of 
R*/P. If M = (0:mi*), then M is a module over (R*/P)/m1

i, but P -^ P* -» 
R*/P induces P / ra ' -> RÏ/m'R* -> (R*/P)/m1

i, the first of these maps 
being an isomorphism, the second an epimorphism. Hence, M is an 
R/m'-module, and, therefore, a torsion P-module. Further, 

W(R, M) = I^CR/m*, M) = J^((i?7P)/mi*, Af) 

= W(R*/P, M) S W(R*/P, N) 

by Proposition 1.1 (2). 
Thus, given more than W(R*/P, N) elements of N, they all lie in 

M = (0:wi*) for suitably large i, and thus one is an P-linear combination 
of the others. This proves that W(R, N) ^ W(R*/P, N). 

Since R C R*/P, we see that W(R, N) ^ W(R*/P, N) by Proposition 1.1 
(7). Therefore, W(R, N) = W(R*/P, N). 

If R*/P does not dominate R, then there is an element of the maximal 
ideal of R which is invertible in R*/P. However, this is impossible, because 
of the sequence R —» R*/P —» R*/mR* —> R/m, where m is the maximal 
ideal of R, since the second map is surjective. 

The next theorem is the main result of this section. 

THEOREM 2.7. Let Rbe a local Noetherian domain, and let R* be the completion 
of R. Then there exists a faithful torsion R-module of finite width if and only if 
there exists a prime ideal P of P* with P P R = 0 and Krull dimension 
R*/P = 1. 

If N is a thin R-module of finite width, then there is a complete local Noetherian 
domain S of finite width dominating R such that N is a thin torsion S-module 
of finite width. 
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Proof. If there exists a prime ideal P of R* with P H R = 0 and Krull 
dimension R*/P = 1, then there exists a faithful torsion P-module of finite 
width by Lemma 2.6. 

Conversely, if there is a faithful torsion R-module of finite width, then there 
is a thin torsion R-module N of finite width by Theorem 2.4. TV is an P*-module 
of finite width by Propositions 2.3 and 1.1 (7). 

We next show that the annihilator P of N as an P*-module is a prime ideal 
with P C\ R = 0, and thus, that N is a faithful torsion R*/P-modu\e of 
finite width. 

Suppose that a and b are elements of R* with abN = 0 and aN ^ 0. If 
aJSf = N, then 0 = baN = bN implies b G Ann B*N. 

If aN 5* iV, then 1/F(P, N/aN) = W(R, N) by Proposition 2.1. Therefore, 
by Proposition 2.2, aN is a finitely generated submodule of N. But then, 
since R is a domain and N is a torsion P-module, there exists 0 9e c in R with 
c(aN) = 0, a contradiction since TV being indivisible implies 0 = c(aN) = 
a(ciV) = aN. 

Therefore, the annihilator of N as an P*-module is a prime ideal P. Further, 
P r\ R = 0 since N is a faithful P-module. 

Therefore, W(R*/P, R*/P) < oo by Theorem 2.5, and since R*/P is not 
a field, Krull dimension R*/P = 1 by Theorem 1.12. 

By Lemma 2.6, we can let 5 = R*/P. 

Example 1. We can now show that there are rings R of infinite width for 
which there exist faithful torsion i?-modules of finite width. 

Let R = C[x, y](X,v), where C is the field of complex numbers and x and y 
are indeterminants. The completion of R is R* = C[[x, y]], the ring of formal 
power series in x and y over C. Let f(x) be a non-unit in C[[x]] such that 
f(x) is not algebraic over C(x), the quotient field of C[x]. Let / be the ideal 
in C[[x, y]] generated by y — f(x). Now I C\ R = 0; for if there exists g in 
C[[x, y]] such that h(x, y) = (y — fix)) g G C[x, y], then h(xyfix)) = 0 
implies h = 0; otherwise fix) would be algebraic over C(x). 

Since R has Krull dimension two, and since the maximal ideal of R* 
intersected with R is the maximal ideal of R, there is a minimal prime P 
containing I such that P P\ R = 0 and Krull dimension R*/P = 1. Therefore, 
by Theorem 2.7, there exists a faithful torsion .R-module of finite width. 
Finally, since the Krull dimension of R is two, R has infinite width by 
Theorem 1.12. 

Example 2. I t is natural to ask whether a module of finite width over a 
local Noetherian domain is a direct sum of thin modules. We will show that 
this is not so. 

Let R be a local Noetherian domain for which there exist two prime ideals 
Pi , P 2 of P* with Pi Pi R = 0 and Krull dimension R*/Pi = 1 (in Example 1, 
we could choose two elements of C[[x]] not algebraic over C(x) and generating 
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distinct prime ideals). By Lemma 2.6, if Qt is the quotient field of St = R*/Pu 

then Qi/Si is an P-module of finite width. Therefore, if E is the injective 
envelope of R*/m* where m* is the maximal ideal of P*, we see [5, pp. 520-521, 
remark following Theorem 3.4 and Theorem 3.5] that the submodules (0:Pi) 
and (0:P2) of E are faithful torsion P-modules of finite width. By [5, p. 18, 
Proposition 3.1], (0:Pi) ^ (0:P2). 

Since the submodule (0:Pi) + (0:P2) of E generated by (0:Pi) and (0:P2) 
is a homomorphic image of (0:Pi) + (0:P2), it has finite width by Corollary 1.3 
and Proposition 1.1 (3). 

If (0:Pi) + (0:P2) were thin, then (0:Pi) * (0:Pi) + (0:P2) would 
imply that (0:Pi) is finitely generated by Proposition 2.2, which is impossible 
since (0:Pi) is a faithful torsion P-module and R is a domain. 

Thus (0:Pi) + (0:P2) is not thin. On the other hand, it is indecomposable 
[5, p. 514, Proposition 2.2]. 

3. Torsion modules of width one. In this section we shall show that 
every faithful torsion module of width one over a Noetherian local ring R is 
of the form Q(S)/S, where 5 is a complete Noetherian valuation ring 
dominating P , and Q(S) is the quotient field of S. 

LEMMA 3.1. If Ris a Noetherian local ring and N is a faithful torsion R-module 
of width one, then N — U (0;w0, where m is the maximal ideal of R. 

Proof. First we show that if a £ mk — mk+1, b G P , and x Ç N with bx = 0 
and ax 9^ 0, then by £ mk+1y for all y £ N. 

For if by 9e 0, then Rx Ç Ry. Consider by and ay. Since N has width one, 
either (ay) Ç (by) or (Try) C (ay). If ay = cby, then (a — cb)y = 0 implies 
(a — cb)x = 0, which implies 0 ^ ax = côx = 0, a contradiction. Thus, 6y = 
cay. Furthermore, c is a non-unit, for otherwise c~lby = ay. Therefore, 
by Ç m^"1" .̂ 

Now suppose that x £ N and wwx ^ 0 for all n. There exists 0 ^ b Ç P 
such that &x = 0. By the above, it follows that by Ç ww+1y for all y in iV. 
Since R is Noetherian, PiwTCy = 0, and thus by — 0 for all y Ç N. But this 
implies that b = 0, a contradiction. 

LEMMA 3.2. Le/ Rbe a Noetherian local ring and N a faithful torsion R-module 
of width one. If W(R, R) = 1, then R is a domain. 

Proof. If m is the maximal ideal of P , then N = U(0:m*) by Lemma 3.1. 
It follows that m is not nilpotent. For if mn = 0, then N would be finitely 
generated by [5, p. 525, Theorem 3.11] and Theorem 1.14, hence, cyclic by 
Proposition 1.6. This contradicts the hypothesis that N is a faithful torsion 
P-module. 

We now show that R is a domain. 
Since P is Noetherian of width one, Proposition 1.6 implies that m is 

generated by one element, say b. But then, since every element in a Noetherian 
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ring can be written as a product of irreducible elements, W(R, R) = 1 implies 
that every element of R is of the form ubn, where u is a unit and n > 0. 

Thus, if cb = 0, setting c = uj)m and b = «2&
n implies that UiU2b

m+n = 0, 
which implies the contradiction that m is nilpotent. 

THEOREM 3.3. If R is a local Noetherian ring and N is a faithful torsion 
R-module of width one, then R is a domain and N is a thin R-module. 

Proof. If R* is the completion of R, then N is an i£*-module by Lemma 3.1. 
If we let I be the annihilator of N as an i£*-module, then R*/I is complete 
[8, p. 57, Corollary 17.9]. Further, I C\ R = 0 implies R C R*/I, and thus 
iV is a faithful torsion R*/I-module. Therefore, W(R*/I, R*/I) = 1 by 
Theorem 2.5, and thus i?*/J is a domain by Lemma 3.2. Thus, R C i ?* / / 
implies i? is a domain. 

That N is thin follows from Theorem 2.4. 

THEOREM 3.4. / / N is a faithful torsion module of width one over a local 
Noetherian ring R, then N is S-isomorphic to Q(S)/S, where S is a complete 
Noetherian valuation ring dominating R and Q (S) is the quotient field of S. 

Proof. By Theorem 3.3, N is a thin i^-module. Therefore, by Theorem 2.7, 
N is a thin torsion 5-module of width one, where S is a complete local 
Noetherian domain dominating R, and thus W(S, S) = 1 by Theorem 2.5. 

It follows from Corollary 1.3 that N is an indecomposable divisible torsion 
module over the discrete valuation ring 5, and thus N is isomorphic to SP(œ) = 
Q(S)/S (cf. [4, p. 10, Theorem 4]). 

THEOREM 3.5. Let R be a local Noetherian domain and N a faithful torsion 
R-module of width one. If R* is the completion of R, then R is a discrete valuation 
ring if and only if the annihilator of N as an R*-module is zero. 

Proof. First note that N is an i£*-module by Lemma 3.1. 
If the annihilator of N as an i£*-module is zero, then W(R*, R*) = 1 by 

Theorem 2.5, and thus W(R, R) = 1 by Corollary 1.8. Thus, R is a discrete 
valuation ring. 

Conversely, suppose that W(R, R) = 1 and that a*N = 0, where a* Ç R*. 
Let {ai] be a Cauchy sequence in R converging to a*. Now, since N = U (0:m*) 
by Lemma 3.1, and since every ideal of R is of the form m\ it follows that 
there exists xt 6 N with Ann Rxt = ml for arbitrarily large i. But then 
a*xt = 0 implies that aj G mi for sufficiently large j . Thus, a* = 0. 
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