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The application scopes of two different reductive perturbation methods to derive
the Korteweg–de Vries (KdV) equation and coupled KdV (CKdV) equation in
two-temperature-ion dusty plasma are given by using the particle-in-cell (PIC) numerical
method in the present paper. It suggests that the reductive perturbation method (RPM) is
valid if the amplitude of the CKdV solitary wave is small enough. However, for the KdV
solitary wave, RPM is valid not only if the amplitude of the KdV solitary wave is small
enough, but also if the nonlinear coefficient of the KdV equation is not tending to zero.
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1. Introduction

Dusty plasmas usually contain highly negatively charged dust particles, electrons, ions
as well as neutrals. Sometimes, there are different kinds of dust particles and different
kinds of ions in a dusty plasma. Tremendous progress in dusty plasmas has been made
to date (Kalman, Rosenberg & DeWitt 2000; Shukla 2001; Xie & He 2001; Wang & Wu
2002; Fortov et al. 2005; Shukla & Eliasson 2009; Teng et al. 2009; Couëdel et al. 2010;
Ghorui, Chatterjee & Wong 2013; Ghorui et al. 2014; Merlino 2014; Han et al. 2015;
Seadawy 2015). The remarkable feature of a dusty plasma is that there are low-frequency
waves (Rao, Shukla & Yu 1990; Shukla 1992; Barkan, Merlino & D’Angelo 1995; Pieper
& Goree 1996; Praburam & Goree 1996; Merlino et al. 1998; Bandyopadhyay et al. 2008;
Dubinov & Sazonkin 2013; Kumar Tiwari & Sen 2016; Verheest & Hereman 2019).

Many researchers focused on the nonlinear solitary waves in a dusty plasma (El-Labany
et al. 2004; Bandyopadhyay et al. 2008; Emamuddin, Yasmin & Mamun 2013). A solitary
wave was first discovered in 1834. Later, a Korteweg–de Vries (KdV) equation was
proposed in 1895 (Korteweg & De Vries 1895). However, until Kruskal and Zabusky
discovered a solitary wave solution from a KdV equation in 1965 (Zabusky & Kruskal
1965; Olivier, Verheest & Maharaj 2016), different methods such as the perturbation
method were used to study the nonlinear solitary waves. After that, solitary waves were
found nearly in all branches of physics, especially in plasma physics (Washimi & Taniuti
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1966), fluid dynamics (Ono 1991; Duan, Wang & Wei 1996), nonlinear lattice (Zabusky
& Kruskal 1965; Wadati 1990), Bose–Einstein condensates (Huang, Velarde & Makarov
2001), etc.

Recently, the application scope of the perturbation method (Lee 2012; Olivier et al.
2016) is studied by using the one-dimensional particle-in-cell (PIC) code (Qi et al. 2014;
Zhang et al. 2014, 2015; Gao et al. 2017; Zhang et al. 2017; Wang et al. 2018). A critical
point of the reductive perturbation parameter ε∗ is found. If the perturbation parameter ε <
ε∗, the reductive perturbation method is valid, while if ε > ε∗, the reductive perturbation
method is no longer reasonable (Qi et al. 2014; Zhang et al. 2014).

As is well known, many nonlinear equations can be reduced to a more simple nonlinear
equation, such as the KdV equation, by using the reductive perturbation method (RPM)
under small amplitude and long wavelength approximation. However, in some cases, the
reductive perturbation method is invalid to derive a KdV equation. In the present paper, we
will show that the reductive perturbation method is invalid when the nonlinear coefficient
of the KdV tends to zero. Due to this reason, we choose another different reductive
perturbation method to derive a coupled KdV (CKdV) equation. Furthermore, we find
that a larger amplitude of the solitary wave results in a greater deviation between the
numerical results and the theoretical results, i.e. the RPM is valid if the amplitude of the
CKdV solitary wave is small enough. However, for the KdV solitary wave, the RPM is
valid not only if the amplitude of the KdV solitary wave is small enough, but also if the
parameters have to be limited.

2. Theoretical model

We now focus on the dust acoustic waves in two-temperature-ion dusty plasma
containing highly negatively charged dust particles, electrons and two different kinds of
ions (high-temperature ions and low-temperature ions). Charge neutrality at equilibrium
reads nil0 + nih0 = Zd0nd0 + ne0, where nil0, nih0, ne0 and nd0 are the number densities of
unperturbed low-temperature ion, high-temperature ion, electron and the dust particles,
respectively. Here, Zd0 is the unperturbed number of charges residing on the dust grain
measured in the units of electron charge.

For convenience and generality, we assumed that the dusty plasma is unmagnetized and
collisionless. The waves propagate in the x direction. In this case, the dust fluid satisfies
the following equations:

∂nd

∂t
+ ∂(ndud)

∂x
= 0, (2.1)

∂ud

∂t
+ ud

∂ud

∂x
+ 1

ndmd

∂pd

∂x
= Zde

md

∂φ

∂x
, (2.2)

∂2φ

∂x2
= e

ε0
(Zdnd + ne − nil − nih) , (2.3)

where nd, md, ud and pd refer to the number density, the mass, the velocity and the
pressure of dust grain fluid, respectively. Here, Zd0 is the number of charge measured
in units of electron charge e when a dusty plasma is in the equilibrium state. We assume
Zd = Zd0. Additionally, φ is the electrostatic potential. We also assume that the electron
number density (ne), the low temperature ion number density (nil) and the high temperature
ion number density (nih) satisfy the Boltzmann distributions, i.e. ne = ne0 exp(eφ/kTe),
nil = nil0 exp(−eφ/kTil) and nih = nih0 exp(−eφ/kTih), where Te, Til, Tih and k refer to the
temperatures of the electrons, the low temperature ions, the high temperature ions and the
Boltzmann constant, respectively.
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Before normalization, we define an effective temperature as follows:

1
Teff

= 1
Zd0nd0

(
ne0

Te
+ nil0

Til
+ nih0

Tih

)
. (2.4)

All physical quantities are normalized as follows: the dust grain number density nd is
normalized by nd0, the electron number density and ion number density are normalized
by Zd0nd0, the pressure of dust grain fluid pd is normalized by Zd0nd0Td and the charge
of the dust grain is normalized by Zd0. The space coordinates x, time t, velocity ud and
electrostatic potential φ are normalized by the Debye length λD = (kε0Teff/nd0zd0e2)1/2,
the inverse of dust plasma frequency ω−1 = (ε0md/nd0Zd0

2e2)1/2, the dust-acoustic speed
cd = (kzd0Teff/md)

1/2 and kTeff/e, respectively. Here, Td is the temperature of the dust grain
fluid. We assumed that the equation of state of the dust grain fluid is pd = ndkTd and the
process is approximately adiabatic, i.e. pd = cnγ

d . Then (2.1)–(2.3) become

∂nd

∂t
+ ∂(ndud)

∂x
= 0, (2.5)

∂ud

∂t
+ ud

∂ud

∂x
+ γ ′

nd

∂nd

∂x
= ∂φ

∂x
, (2.6)

∂2φ

∂x2
= nd + ne − nil − nih, (2.7)

where γ ′ = γ Td/Zd0Teff. Here, ne = vesβ1φ , nil = μle−sφ and nih = μhe−sβ2φ refer
to the dimensionless number densities of electrons, lower temperature ions and
higher temperature ions, respectively, with ν = ne0/(Zd0nd0), μl = nil0/(Zd0nd0), μh =
nih0/(Zd0nd0), β1 = Til/Te, β2 = Til/Tih and s = 1/(vβ1 + μ1 + μhβ2).

3. Nonlinear waves
3.1. Derivation of the KdV equation

We now use the reductive perturbation method to study the dust acoustic solitary waves in
the limited case where the wave amplitude is small but finite, while the wavelength is long
enough.

We introduce new coordinates of ξ = ε(x − v0t) and τ = ε3t, where ε is a small
parameter characterizing the order of the wavenumber and v0 is the velocity of the
dust acoustic solitary waves. The physical quantities in the system are expanded as
follows: nd = 1 + ε2nd1 + ε4nd2 + · · · , ud = ε2ud1 + ε4ud2 + · · · and φ = ε2φ1 + ε4φ2 +
· · · . Substituting these expansions into normalized equations (2.5)–(2.7) and collecting
the terms in different powers of ε, we obtain the following equations: nd1 = −φ1, ud1 =
−v0φ1, v0

2 = 1 + γ ′ and the KdV equation

∂φ1

∂τ
+ Aφ1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ 3
= 0, (3.1)

where A = −(1/2v0)[3 + 2γ ′ + (vβ1
2 − μl − μhβ2

2)s2] and B = 1/2v0.
One of the important solutions of the KdV equation (3.1) is a single solitary wave

solution as follows:

φ1 = φmsech2 ξ − u0τ

W
, (3.2)
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FIGURE 1. Dependence of A on μl, where the parameters are Te = 5 eV, Til = 0.3 eV,
Tih = 4 eV, Td = 200 eV, Zd0 = 1000, nd0 = 1 × 1012 m−3 and nih0 = 1 × 1015 m−3.

where φm = 3u0/A and W = √
4B/u0. Rewriting (3.2) in experimental coordinates by ξ =

ε(x − v0t) and τ = ε3t, we have

φ1 = 3u0

A
sech2 x − (

v0 + u0ε
2
)

t√
4B

u0ε2

. (3.3)

We also know that nd1 = −φ1, ud1 = −v0φ1 and the physical quantities in the system
are expanded as follows: nd = 1 + ε2nd1 + ε4nd2 + · · · , ud = ε2ud1 + ε4ud2 + · · · and
φ = ε2φ1 + ε4φ2 + · · · . Then we consider the lower order terms, and we can obtain the
following equations:

φ = 3u0ε
2

A
sech2 x − (

v0 + u0ε
2
)

t√
4B

u0ε2

, (3.4)

nd = 1 − 3u0ε
2

A
sech2 x − (

v0 + u0ε
2
)

t√
4B

u0ε2

, (3.5)

ud = −v0
3u0ε

2

A
sech2 x − (

v0 + u0ε
2
)

t√
4B

u0ε2

, (3.6)

where φm = 3u0ε
2/A, W = √

4B/u0ε2 are the amplitude and the width of the KdV solitary
wave, respectively.

3.2. Derivation of the CKdV equation
It seems that the amplitude of the solitary wave solution of the KdV equation can be
infinity when A = 0. There is no physical meaning in this case. Therefore, the reductive
perturbation is invalid in this case. Due to this reason, figure 1 shows the dependence of A
on μl. Notice from figure 1 that A can be negative, zero and positive.

Because A can be zero, the KdV solitary wave solution may be invalid. Due to this
reason, we now try to use the other method to find the nonlinear wave solution when
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A = 0 or A tends to zero. For this purpose, we use the following expansions (Duan &
Shi 2003): nd = 1 + εnd1 + ε2nd2 + ε3nd3 + · · · , ud = εud1 + ε2ud2 + ε3ud3 + · · · , φ =
εφ1 + ε2φ2 + ε3φ3 + · · · . Substituting these expansions into (2.5)–(2.7) and collecting the
terms in different powers of ε, we obtain the following equations at the different orders:
nd1 = −φ1, ud1 = −v0φ1, v0

2 = 1 + γ ′ and a modified KdV (MKdV) equation as

∂φ1

∂τ
+ Cφ1

2 ∂φ1

∂ξ
+ B

∂3φ1

∂ξ 3
= 0, (3.7)

where B = 1/2v0, C = (1/2v0)(15 + 26γ ′ + 12γ ′2).
If A is small enough, but not zero, we use the same perturbation method as that to derive

the MKdV equation (Duan & Shi 2003). We then obtain a CKdV equation as follows:

∂φ1

∂τ
+ Aφ1

∂φ1

∂ξ
+ Cφ1

2 ∂φ1

∂ξ
+ B

∂3φ1

∂ξ 3
= 0, (3.8)

where A = −(1/2v0)[3 + 2γ ′ + (vβ1
2 − μl − μhβ2

2)s2], B = 1/2v0, C = (1/2v0)(15 +
26γ ′ + 12γ ′2) and B > 0, C > 0.

A single solitary wave solution of the CKdV equation is

φ1 = 1
a1 + a2 cosh[a3 (ξ − uoτ)]

, (3.9)

where a1 = A/6u0, a2 = √
A2 + 6Cu0/6u0 and a3 = √

u0/B.
Rewriting (3.9) in experimental coordinates, we have

φ1 = 1

A
6u0

+
√

A2 + 6Cu0

6u0
cosh

[√
u0ε

2

B

(
x − (

v0 + uoε2
)

t
)] . (3.10)

We also know that nd1 = −φ1, ud1 = −v0φ1 and the physical quantities in the system are
expanded as follows: nd = 1 + εnd1 + ε2nd2 + ε3nd3 + · · · , ud = εud1 + ε2ud2 + ε3ud3 +
· · · , φ = εφ1 + ε2φ2 + ε3φ3 + · · · . Then we consider the lower order terms, and we can
obtain the following equations:

φ = ε

A
6u0

+
√

A2 + 6Cu0

6u0
cosh

[√
u0ε

2

B

(
x − (

v0 + uoε2
)

t
)] , (3.11)

nd = 1 − ε

A
6u0

+
√

A2 + 6Cu0

6u0
cosh

[√
u0ε

2

B

(
x − (

v0 + uoε2
)

t
)] , (3.12)

ud = − v0ε

A
6u0

+
√

A2 + 6Cu0

6u0
cosh

[√
u0ε

2

B

(
x − (

v0 + uoε2
)

t
)] , (3.13)

where φm = ε/(A/6u0 + (
√

A2 + 6Cu0)/6u0) and W = √
B/u0ε2 are the amplitude and

the width of the CKdV solitary wave, respectively.
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Notice that the CKdV equation (3.8) becomes the MKdV equation (3.7) in the limited
case A = 0. Therefore, we mainly focus on the CKdV equation and its solutions in the
following sections. Then we will give the numerical results of the KdV equation and CKdV
equation by using the PIC numerical method in the following sections.

4. Numerical results

In this section, we will use the PIC numerical method to find the application scopes of
the perturbation methods. During simulation, the dust grains are represented by a limited
ensemble of super-particles (SPs), and both electrons and ions are treated as Boltzmann
distributed fluids. The weight factor of SPs is S which stands for the number of real
particles. Initially, SPs are uniformly distributed in the space, its initial weight parameters
S and the velocities of each SP are obtained from the initial conditions. Therefore, the
equation of motion of the system is Newton’s equation as follows (Qi et al. 2014; Zhang
et al. 2015, 2017):

msp
dvsp

dt
= qspE, (4.1)

dxsp

dt
= vsp, (4.2)

where msp, vsp, qsp and xsp are the mass, velocity, charge and position of the SPs,
respectively. In the PIC simulation, we divided the simulation region into several grid
cells. The dust particles constantly exchange information with the background grid, when
the dust particles move along their trajectories. At each time step, the positions and
the velocities of SPs are weighted to all the grids, then we can calculate the charge
density ρg (or electric current density Jg ). Once ρg is obtained, the Maxwell’s equations
(electromagnetic model) or Poisson–Boltzmann equation (electrostatic model) will be
solved numerically to derive the value of E at each grid. In the electrostatic model, Bg = 0.
Then the field imposed on each SP can be worked out and the electric field will drive each
SP according to (4.1) and (4.2), which can be solved numerically by using the leap-frog
algorithm. At last, the new positions and velocities are obtained, and the procedure will
repeat until the simulation is completed (Qi et al. 2014; Zhang et al. 2015). A summary of
a computational cycle of the PIC method is shown in figure 2.

4.1. Numerical results of the KdV equation
First we simulate the solitary wave solutions of the KdV equation. The initial conditions
are given by (3.5) and (3.6) at t = 0 as follows:

nd|t=0 = 1 − 3u0ε
2

A
sech2

[√
u0ε2

4B
(x − x0)

]
, (4.3)

ud|t=0 = −v0
3u0ε

2

A
sech2

[√
u0ε2

4B
(x − x0)

]
. (4.4)

The periodic boundary conditions are chosen. The simulation parameters are as follows:
the spatial step is �x = 0.2, the time step is �t = 0.004, the number of grid cells is
Nx = 40 000, the number of super particles contained in each cell is 100 and the total
length of the x-axis is Lx = �xNx, x0 = Lx/4.

Figure 3 shows the numerical results of the evolutions of the KdV solitary waves at
different time t, where A = 0.37. Notice that the solitary wave is a compressional one
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FIGURE 2. Summary of a computational cycle of the PIC method.

(a)

(b)

(c)

FIGURE 3. PIC simulation results of the evolution of the KdV solitary waves at different
times t = 19.9998/ω−1, 1599.98/ω−1, 3199.97/ω−1, where A = 0.37 and the other parameters
are ε = 0.05, γ = 3, u0 = 1, x0 = 2000, Te = 5 eV, Til = 0.3 eV, Tih = 5 eV, Td = 200 eV,
Zd0 = 1000, nd0 = 1.0 × 1012 m−3, nil0 = 1.0 × 1014 m−3 and nih0 = 1.0 × 1015 m−3.

since A > 0. The comparisons between PIC simulation results and the analytical ones at
different times for A = 0.37 are given in figure 4, which show good agreement between the
two. Moreover, the numerical results are also undertaken in figure 5 for the case A < 0, in
which the rarefactive solitary wave is obtained. Good agreements between PIC simulation
results and the analytical ones are also observed in figure 6 for the rarefactive solitary
wave. It indicates that our analytical results are valid. Namely, the perturbation method in
this case is valid.

We now focus on the question whether the KdV solitary wave expressed by (3.1) exists
when A = 0 or A tends to zero. Figure 7(a–d) shows the numerical results of the evolutions
of the waves at different time t with the initial conditions of (4.3) and (4.4), where A =
0.001, A = −0.001, A = 0.01 and A = −0.01, respectively. It seems that the KdV solitary
waves do not exist when A is close to zero. More numerical results suggest that the KdV
solitary waves exist when |A| > 0.06, but do not exist if |A| < 0.06.

https://doi.org/10.1017/S0022377823000296 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000296


8 H. Zhang and others

(a) (b) (c)

FIGURE 4. Comparisons between PIC simulation results and the analytical ones at different
times t = 19.9998/ω−1, 1599.98/ω−1, 3199.97/ω−1, where A = 0.37 and the other parameters
are ε = 0.05, γ = 3, u0 = 1, x0 = 2000, Te = 5 eV, Til = 0.3 eV, Tih = 5 eV, Td = 200 eV,
Zd0 = 1000, nd0 = 1.0 × 1012 m−3, nil0 = 1.0 × 1014 m−3 and nih0 = 1.0 × 1015 m−3.

(a)

(b)

(c)

FIGURE 5. PIC simulation results of the evolution of the KdV solitary waves at different times
t = 19.9986/ω−1, 999.93/ω−1, 1999.86/ω−1, where A = −1.23 and the other parameters are
ε = 0.1, γ = 3, u0 = 1, x0 = 1000, Te = 3 eV, Til = 0.5 eV, Tih = 3 eV, Td = 200 eV, Zd0 =
1000, nd0 = 1.0 × 1012 m−3, nil0 = 1.0 × 1015 m−3 and nih0 = 1.1 × 1015 m−3.

4.2. Numerical results of CKdV equation
If A = 0 or A tends to zero, the solution of the KdV equation is no longer valid, so we use
the solution of the CKdV equation. Now we consider whether the CKdV solitary wave
propagates when A = 0 or A tends to zero. The initial conditions are given by (3.12) and
(3.13) at t = 0 as follows:

nd|t=0 = 1 − ε

A
6u0

+
√

A2 + 6Cu0

6u0
cosh

[√
u0ε

2

B
(x − x0)

] , (4.5)
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(a) (b) (c)

FIGURE 6. Comparisons between PIC simulation results and the analytical ones at different
times t = 19.9986/ω−1, 999.93/ω−1, 1999.86/ω−1, where A = −1.23 and the other parameters
are ε = 0.1, γ = 3, u0 = 1, x0 = 1000, Te = 3 eV, Til = 0.5 eV, Tih = 3 eV, Td = 200 eV, Zd0 =
1000, nd0 = 1.0 × 1012 m−3, nil0 = 1.0 × 1015 m−3 and nih0 = 1.1 × 1015 m−3.

(a) (b)

(c) (d )

FIGURE 7. PIC simulation results of the evolution of the nonlinear waves at different times,
where (a) A = 0.001; (b) A = 0.01; (c) A = −0.001; (d) A = −0.01. The other parameters are
ε = 0.01, γ = 3, u0 = 1, x0 = 2000, Te = 5 eV, Til = 0.3 eV, Tih = 4 eV, Td = 200 eV, Zd0 =
1000, nd0 = 1.0 × 1012 m−3, nih0 = 1.0 × 1015 m−3, and nil0 = 1.277 × 1014 m−3, 1.254 ×
1014 m−3, 1.283 × 1014 m−3 and 1.31 × 1014 m−3 in panels (a,b,c,d), respectively.

ud|t=0 = − v0ε

A
6u0

+
√

A2 + 6Cu0

6u0
cosh

[√
u0ε

2

B
(x − x0)

] . (4.6)
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(a) (b)

(c) (d )

FIGURE 8. PIC simulation results of the evolution of the CKdV solitary waves at different
times, where (a) A = 0.001; (b) A = 0.01; (c) A = −0.001; (d) A = −0.01. The other
parameters are ε = 0.01, γ = 3, u0 = 1, x0 = 2000, Te = 5 eV, Til = 0.3 eV, Tih = 4 eV,
Td = 200 eV, Zd0 = 1000, nd0 = 1.0 × 1012 m−3, nih0 = 1.0 × 1015 m−3, and nil0 = 1.277 ×
1014 m−3, 1.254 × 1014 m−3, 1.283 × 1014 m−3 and 1.31 × 1014 m−3 in panels (a,b,c,d),
respectively.

The periodic boundary conditions are chosen. The simulation parameters are as follows:
the spatial step is �x = 0.5, the time step is �t = 0.01, the number of grid cells is Nx =
20000, the number of super particles contained in each cell is 100, the total length of the
x-axis is Lx = �xNx, γ = 3, x0 = Lx/5, u0 = 1 and ε = 0.01.

Figure 8(a–d) shows the numerical results of the evolutions of the CKdV solitary waves
at different time t, where A = 0.001, A = −0.001, A = 0.01 and A = −0.01, respectively.
It shows that the CKdV solitary wave can propagate stably when A = 0 or A tends to zero.

4.3. The application scope of the CKdV equation
To further understand the CKdV solitary wave propagation for different amplitudes, we
change the value of ε, and keep the other parameters constant (Lin & Duan 2005): γ = 3,
u0 = 1, x0 = 5000, Te = 5 eV, Til = 0.3 eV, Tih = 4 eV, Td = 200 eV, Zd0 = 1000, nd0 =
1.0 × 1012 m−3, nil0 = 1.28 × 1014 m−3 and nih0 = 1.0 × 1015 m−3. We will see how CKdV
solitary waves vary concerning the values of the parameter ε.

Figure 9(a) shows the numerical results of the evolutions of the CKdV solitary waves at
different time t when ε = 0.01, i.e. the wave amplitude is φm = 0.009. Figure 9(b) shows
the comparisons between PIC simulation results and the analytical ones at different times.

Notice that the amplitude of the solitary wave remains unchanged during its propagation.
Good agreements between PIC simulation results and the analytical ones are observed in
figure 9(b).
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(a) (b)

(i) (ii)

(iv)(iii)

FIGURE 9. (a) PIC simulation results of the evolution of the CKdV solitary waves at different
times, when ε = 0.01; (b) comparisons between PIC simulation results and the analytical ones
at different times, when ε = 0.01.

(a) (b)

(i) (ii)

(iii) (iv)

FIGURE 10. (a) PIC simulation results of the evolution of the CKdV solitary waves at different
times, when ε = 0.02; (b) comparisons between PIC simulation results and the analytical ones
at different times, when ε = 0.02.

For further study, figures 10(a) and 11(a) show the numerical results of the evolutions
of the CKdV solitary waves at different times when ε = 0.02 (φm = 0.018) and ε = 0.03
(φm = 0.027), respectively. The corresponding comparisons between numerical results
and the analytical ones are shown in figures 10(b) and 11(b). Good agreement between PIC
numerical results and the analytical ones is observed in figures 9(b) and 10(b). However,
in figure 11(b), differences between PIC numerical results and the analytical ones are
observed.

Though the solitary wave exists, it seems from figure 11 that there are some spatial
asymmetry especially for large perturbation amplitude and long-time simulation. This is
due to the following reason. The expression of the solitary wave from the RPM is only
valid for the small-amplitude and long-wavelength limitation. In the simulation, we use
the initial condition from the expression of the solitary wave from the RPM. If the limit
condition is not satisfied, for example, a large amplitude solitary wave, the real solitary
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(a) (b)

(i) (ii)

(iv)(iii)

FIGURE 11. (a) PIC simulation results of the evolution of the CKdV solitary waves at different
times, when ε = 0.03; (b) comparisons between PIC simulation results and the analytical ones
at different times, when ε = 0.03.

FIGURE 12. Numerical results and the analytical ones of the dependence of the propagation
velocity (V/Cd) of the CKdV solitary wave on the wave amplitude (φm/(kTeff/e)).

waveform is different from that of the expression of the solitary wave from the RPM.
Therefore, as the solitary wave propagates, the uncorrected initial form of the solitary
wave will evolve into a real solitary wave and some linear waves or radiations. Finally,
spatial asymmetry in the solitary wave propagation in PIC simulations appears for large
perturbation and long-time simulation.

To further understand how the differences between PIC numerical results and the
analytical ones depend on the parameter ε, or the wave amplitude, the variations of both
the numerical results and the analytical ones of the propagation velocity of solitary waves
with respect to different amplitudes of solitary waves are given in figure 12.

It is noted that when the amplitude of the solitary wave is small, i.e. the parameter ε is
small, the PIC numerical results are in good agreement with the analytical ones. However,
the differences between the two are observed when the wave amplitude is large enough.
Moreover, the difference between the two increases as the wave amplitude increases.
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5. Discussion and conclusion

In the present paper, two different reductive perturbation methods are used to derive the
KdV equation and the CKdV equation, respectively, in two-temperature-ion dusty plasma.
It is found by using the PIC numerical method that the reductive perturbation method to
derive the KdV equation is invalid when the nonlinear coefficient A of the KdV equation
tends to zero. The application scope of the perturbation method to derive the KdV equation
with respect to the nonlinear coefficient A is given. It is noted that the KdV solitary wave
does not exist when A < 0.06, while it exists when A > 0.06. However, from the numerical
results, it is found that under the same parameters of the plasma, the CKdV solitary wave
exists in the system even when the coefficient A is close to zero. Furthermore, we find
that a larger amplitude of the solitary wave results in a greater deviation between the
numerical results and the theoretical results, i.e. when the amplitude of the solitary wave
is small enough, the perturbation method to derive the CKdV equation is valid. However,
for the KdV solitary wave, the reductive perturbation method is only valid not only if the
amplitude of the KdV solitary wave is small enough, but also if A > 0.06.
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