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SUMMARY

The age of an allele segregating in a finite population may be defined in
two ways. They are (1) the age of a mutant gene that has never reached
fixation in the population, and (2) the age including any fixation period in
the past. Theoretical expressions for these are derived on the assumption
that every mutant is unique.

The history of mutant genes in finite populations, such as the fixation probability
and the fixation time, has been extensively studied by numerous authors. These
theories play an important role in population genetics and evolutionary theory (see
Kimura & Ohta, 1971, for a review). This paper is to add a small piece of new
knowledge to the theory, the age of an allele whose gene frequency is specified. This
problem was first studied by Kimura & Ohta (1973). We assume that every mutant
is new to the population. Suppose that the gene frequency of a mutant allele is y.
Then there are two possibilities: (1) this allele has never reached fixation, and (2) it
has reached fixation previously and the frequency decreased to y at present. We will
treat two distinct situations. We first consider the average age under assumption (1)
and then the age including both possibilities (1) and (2). We call the former 'the age
before fixation' and the latter 'the age including fixation'. Kimura & Ohta (1973)
have obtained the age before fixation for a neutral mutant under the assumption of
low mutation rate. This paper uses the same method as that of Kimura and Ohta,
and obtains general formulas for both definitions of age without restriction of
mutation rate.

Let VSx and Mtx be respectively the variance and the mean of the change in the
gene frequency x in one generation, and let p(t, x, y) be the transition probability
that the gene frequency is x at time 0 and is y at time t. Then it is well known that
the p{t, x, y) satisfies ^ /. >

P 'd*'V =Lp(t,x,y), (1)

in which L is the operator

The partial differential equation (1) is called the Kolmogorov backward equation.
For fixed x and y, let . ^

B(x,y)=\ tp(t,x,y)dt.
Jo
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B(x> V) gives the average time it took to pass from x to y, times the probability of
being at y. Applying the operator L to B(x, y) and using (1), we have

LB(x ,y) = r
Jo

= tp(t,x,y)\Z- I™p(t,x,y)dt.
Jo

Note that tp(t,x,y)\% = 0 f"p(t,x,y)dt = <j>(x,y)
Jo

is the sojourn time at frequency y, and B{x,y)l<j){x,y) is the average interval since
the frequency was x. Thus

LB(x,y) = -t(x,y). (2)
Applying L to ${x, y),

,y) = j Lp(t, x, y) dt = ' dt = p(t, x, y)\™
Jo Jo ot

= -p(0,x,y) = -8(x-y), (3)
where S( •) is Dirac's delta function. This differential equation can be integrated:

4>{x,y) = -2H(S(V-y);x)+Ag(0,x)> (4)

in which
• • - i i

G(x) = exp j - 2 T ^ l d^},

g(x,y)s (V

J X

for an arbitrary function /(•)> and A is a constant to be determined from the
boundary condition on (f>{x, y)atx= 1. Note that the other boundary condition at
x = 0 is 0(0, y) = 0, because no reverse mutation occurs and therefore if the gene
frequency once becomes 0, it will never become non-zero again. The equation (3)
and the solution (4) are essentially due to Wright (1938), Kimura (1964, 1969) and
Ewens (1969). Using the <j>{x, y) of (4), the equation (2) can be solved:

B(x, y) = - 2H{4>{ri> y);x)+ Ag(0, x), (5)

in which A is constant to be determined from the boundary condition at x = 1. As
in (4), the other boundary is B{0, y) = 0.

We can determine the constant A in (4) and (5). For the age before fixation,
<fi(l,y) = 0shndB(l,y) = 0 for all 0 < y < 1. This is because the process (or a sample
path) is stopped as soon as it reaches the boundary, i.e. x = 1 is an absorbing state.
In this case, assuming u(x) = g(0,x)/g(0,1) exists,

f ° r y <X
y
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and Bfay) = 2u(x)H(^(V,y); l)-2H(</>(V,y); x),

where subscript 1 indicates 'before fixation'.
On the other hand, for the age including fixation, the process is considered even

after it reaches fixation until it eventually reaches extinction. In this case, as the
starting point x approaches 1, the fate of the gene frequency becomes the same as
that starting x = 1. Therefore <j>x{l, y) = 0 and Bx(l,y) = 0, where the subscript
x indicates the derivative with respect to the first variable. With these boundary
conditions,

v < xy < X~VSyG(y)

and Bz(x,y) = 2g(0,x) f 1 | ^ d | - 2H{^(V,y); x),
Jo K^(5)

where subscript 2 indicates 'including fixation'. The value of function <f>(x,y) is the
total number of generations in which the gene frequency is y if it starts from x, and
the B(x, y) gives the average time it took to pass from x to y times the probability of
being at y. Therefore if we consider many similar loci and assume that the population
is at steady state, A(l/2N,y) = B(l/2N,y)l<f>(l/2N,y) gives the average age of
alleles found in such a population.

Let N be the population size and u be mutation rate per gene per generation.
Since every mutant is unique, the average number of mutant to occur in each
generation is 2Nu. Therefore 2Nu times <j)x{ 1/2N, y) or ̂ 2( 1/2 JV, y) gives respectively
the density of the gene frequency distribution at equilibrium, among those alleles
which have never reached fixation and among those including any fixation period.
If all alleles are selectively neutral and if VSy = x(l — x)/2N and MSx = — ux which
are usually used,

( 1 \ _ 4N [ / l\n 4N F _ 2
^\^N'y) -yf^'y'W) \~y~F2N~y'

where F = 1 — 4Nu. Therefore,

On the other hand, the distribution including fixation period is

(9)

It is interesting to compare formulae (8) and (9). The former is linearly related to
mutation rate, whereas formula (9) is a non-linear function of F = 1 — ±Nu.

The ratio, <j>1{lj2N, y)l<j>2{ 1/2N, y), gives the probability that if a mutant is known
10 GRH 23
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to have frequency y, it has never been fixed. This probability for a neutral mutant
is equal to

U^Ny)
) (i V) '

provided F = 1 — iNu > 0, which is the condition that temporary fixation is
possible. If 4Nu tends to 0, the probability becomes (1 — y). On the other hand, if
iNu tends to 1, the probability becomes 1 for all y. The latter result is obvious,
because as <LNu becomes 1, fixation ceases to occur.

Returning to the main subject of this paper, we can obtain explicit formulae of
the average age before fixation and including fixation for some simple cases. As a
typical case, let VSx = x(l — z)/2N and MSx = —ux, where N is the population size
and u is mutation rate. Then, assuming ±Nu < 1 and ignoring a term of order 1/22V,
the age before fixation of a neutral mutant allele whose frequency is y, is

where F = 1 — 4Nu, and, as iNu approaches 0, the above formula becomes

1\2N'y) 1-y

This is the average age of a neutral mutant gene whose frequency is y, provided that
it has never reached fixation and that every mutant arises at a homallelic locus, i.e.
4Nu -4 1. Formula (10) is the same as (13a) of Kimura & Ohta (1973). However,
since we usually do not know whether a mutant gene has previously reached fixation
or not, the age including fixation is more important. The average age including
fixation of a neutral gene is

"1/(1 _ 11 _ C\F\ fl AC -\
(12)

where F = 1 -
The validity of formulae (11) and (12) were verified by computer simulation and

results agreed well with the theoretical expectations. We should first note that both
functions (10) and (12) are monotone, increasing so that the higher the frequency of
an allele the older we expect it to be. As y approaches unity, the value of Ax( 1/2N, y)
in (11) approaches 42V, which is in accord with the result of Kimura & Ohta (1969).
Upon substitution of y = 1/2 in Ax{lj2N, y) of (11), we have 4iVlog 2 « 2-8iV. Thus,
if mutation rate is low, the mutant allele of a polymorphic locus at which the gene
frequency is about 1/2 has been approximately 2-82V generations hi the population.
It is interesting to compare this with 22V generations, which is the time required for
a mutant gene to reach the gene frequency 0-5 for the first time.

Numerical values of formulae (10) and (12) are tabulated for wide ranges of value
of 42V« (Tables 1 and 2).

The tables reveal several biologically interesting facts of the age including
fixation. When 4Nu <̂  1, the age of an allele at high frequency is approximately
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Table 1. Numerical values of AX(1I2N, y)j4:N of (10), where A1(lj2N, y) is the average
age before fixation of a neutral gene whose frequency is y, and N is the population size

(The values for 4Nu > 1 are identical with those in Table 2.)

y

0001
0-01
0-03
0-1
0-2
0-3
0-5
0-7
0-9
0-999

1

0-0078
00561
0-1366
0-3418
0-5669
0-7528
10616
1-3203
1-5500
1-6458

0-9

00077
0-0544
01321
0-3306
0-5426
0-7160
1-0010
1-2362
1-4403
1-5330

0-7

00074
0-0521
0-1248
0-3074
0-4987
0-6529
0-9025
1-1059
1-2803
1-3591

0-5

0-0072
0-0499
0-1177
0-2873
0-4623
0-6017
0-8245
1-0038
11561
1-2267

0-3

0-0071
0-0482
0-1140
0-2704
0-4321
0-5595
0-7634
0-9240
1-0594
1-1219

0-1

00069
0-0456
01086
0-2593
0-4105
0-5283
0-7129
0-8585
0-9804
10366

0

0-0069
0-0450
0-1068
0-2536
0-4000
0-5136
0-6908
0-8298
0-9460
0-9995

Table 2. Numerical values of A2(1/2N', y)j4N of (12), where A2(1/2N, y) is the average
age including fixation of a neutral gene whose frequency is y and N is the population
size

4Nu

y

0-001
001
0-03
01
0-2
0-3
0-5
0-7
0-9
0-999

20

0-0040
0-0228
0-0448
0-0827
0-1105
0-1284
01523
01686
0-1810
01864

10

0-0047
00289
0-0604
0-1207
0-1692
0-2019
0-2471
0-2788
0-3033
0-3140

5

0-0054
0-0357
0-0787
0-1697
0-2500
0-3074
0-3904
0-4512
0-4995
0-5204

2

00065
0-0460
0-1080
0-2553
0-4019
0-5155
0-6926
0-8317
0-9477
0-9993

1

00074
0-0557
01361
0-3432
0-5666
0-7507
1-0553
1-3089
1-5298
1-6302

0-5

0-0089
00697
0-1778
0-4785
0-8297
1-1364
1-6755
2-153
2-5919
2-8051

0-2

00123
0-1042
0-2807
0-8189
1-5047
2-1422
3-3341
4-4560
5-5334
60614

0-1

00176
01569
0-4389
1-3450
2-5547
3-7144
5-9464
81039
10-2126
11-2478

005

0-0278
0-2588
0-7446
2-3635
4-5903
6-7661
11-0277
15-2115
19-3428
21-3762

0-01

O-108O
1-0608
3-1504
10-3821
20-6264
30-8186
51-1106
71-3214
91-4554
101-4366

Table 3. Numerical values of A1(lj2N, y)/4:N of (13), where A^l/2-N, y) is the
average age before fixation of an additive gene whose frequency is y

y

0001
001
003
01
0-2
0-3
0-5
0-7
0-9
0-999

100

00024
00113
00191
00302
0-0379
00432
00516
00601
0-0744
0-1027

50

00031
0-0158
0-0287
00487
00634
00737
00904
01078
01380
01780

20

0-0040
00230
0-0458
00866
01198
01442
01857
0-2312
0-3024
0-3513

10

0-0047
00295
00625
01288
0-1882
0-2344
0-3164
0-4028
0-5018
0-5526

5

0-0055
00368
00824
01837
0-2820
0-3607
0-4946
0-6147
0-7258
0-7772

2

00062
0-0436
01014
0-2372
0-3721
0-4778
0-6461
0-7817
0-8969
0-9484

1

00064
00453
0-1061
0-2504
0-3937
0-5053
0-6801
0-8183
0-9341
0-9857

0

0-0065
0-0460
0-1080
0-2553
0-4019
0-5155
0-6926
0-8317
0-9477
0-9992
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equal to the reciprocal of the mutation rate, and the age of a low frequency allele is
about y/u, where u is the mutation rate and y is the frequency. On the other hand,
when 4Nu >̂ 1, the age tends to be much less. The values of Table 1 show that the
age before fixation increases as the mutation rate increases. For example, the
fixation time is 4N generations if u = 0, but it is 1-6 x 4iV generations if 4:Nu = 1.
When iNu > 1, formula (10) becomes invalid. Analytically the age before fixation
and the age including fixation become identical, and they are given by formula (12).
The age before fixation therefore increases as £Nu increases to 1 and then decreases
as 4J$u becomes larger. The age has a maximum at 4Nu = 1.

The general formula obtained in this paper can be applied to a situation in which
one of the alleles at the locus in question is selectively different from the rest. We
will obtain the age before fixation for an allele with an additive effect on fitness.
Let s be the selection coefficient of the gene and ignore the subsequent mutation of
this allele. Then

Vgx = x(l- x)/2N and MSx = sx{ 1 - x),
and therefore

G{x) = exp (— iNsx) and g{y, x) = {exp (— 4Nsy) — exp (— 4:Nsx)}/4:Ns.

Substituting these functions into the general formulae we obtain the average age
before fixation of the mutant gene whose frequency is y:

(1 \ 4N fi

4N

where S = 4Ns. Note that this formula is independent of the sign of S — 4Ns. Thus
the average age of an additive gene is independent of the direction of selection
pressure. Numerical evaluation of formula (13) reveals that if \S\ < 1 the average
age is nearly equal to that of a neutral gene. As | S\ becomes much greater than unity,
the age of a gene whose frequency is not very small decreases almost as 1/\S\.
However, the value for a gene of very small frequency tends to stay closer to that
for a neutral gene even for large \8\. A few numerical values are given in Table 3.
It is interesting to note that the age including fixation of a neutral gene with
iNu = 2 is equal to the age before fixation of that with very small 4Ns (the column
under 4Nu = 2 of Table 1 and the column under |4i^s| = 0 of Table 3).

The above method can be extended to obtain the variance of the ages of alleles
whose gene frequency is specified. Let

C(x,y)s r^p(t,x,y)dt.
Jo

Then applying the operator L to C(x, y), we have

LC(x, y) = - 2 f° tp(t, x, y)dt = - 2B(x, y).
Jo

Thus integration of this equation yields a formula similar to (5) in which the (j>{rj, y)
is replaced by 2B(ij,y). The boundary condition for the C(x,y) is the same as that
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for B(x,y). The C(x,y)j(f>(x,y) is the second moment of A(x,y), and, in particular,
C(lj2N,y)l^>(lj2N,y) is the second moment of the ages of alleles with gene
frequency y.

I am greatly indebted to Professor Alan Robertson for many constructive comments,
including suggestion of some of the topics discussed in this paper. This study was supported
in part by U.S. Public Health Service Research Grants GM 19513 and GM 20293.
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SUMMARY

The age of an allele segregating in a finite population may be defined in
two ways. They are (1) the age of a mutant gene that has never reached
fixation in the population, and (2) the age including any fixation period in
the past. Theoretical expressions for these are derived on the assumption
that every mutant is unique.

The history of mutant genes in finite populations, such as the fixation probability
and the fixation time, has been extensively studied by numerous authors. These
theories play an important role in population genetics and evolutionary theory (see
Kimura & Ohta, 1971, for a review). This paper is to add a small piece of new
knowledge to the theory, the age of an allele whose gene frequency is specified. This
problem was first studied by Kimura & Ohta (1973). We assume that every mutant
is new to the population. Suppose that the gene frequency of a mutant allele is y.
Then there are two possibilities: (1) this allele has never reached fixation, and (2) it
has reached fixation previously and the frequency decreased to y at present. We will
treat two distinct situations. We first consider the average age under assumption (1)
and then the age including both possibilities (1) and (2). We call the former 'the age
before fixation' and the latter 'the age including fixation'. Kimura & Ohta (1973)
have obtained the age before fixation for a neutral mutant under the assumption of
low mutation rate. This paper uses the same method as that of Kimura and Ohta,
and obtains general formulas for both definitions of age without restriction of
mutation rate.

Let VSx and Mtx be respectively the variance and the mean of the change in the
gene frequency x in one generation, and let p(t, x, y) be the transition probability
that the gene frequency is x at time 0 and is y at time t. Then it is well known that
the p{t, x, y) satisfies ^ /. >

P 'd*'V =Lp(t,x,y), (1)

in which L is the operator

The partial differential equation (1) is called the Kolmogorov backward equation.
For fixed x and y, let . ^

B(x,y)=\ tp(t,x,y)dt.
Jo
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B(x> V) gives the average time it took to pass from x to y, times the probability of
being at y. Applying the operator L to B(x, y) and using (1), we have

LB(x ,y) = r
Jo

= tp(t,x,y)\Z- I™p(t,x,y)dt.
Jo

Note that tp(t,x,y)\% = 0 f"p(t,x,y)dt = <j>(x,y)
Jo

is the sojourn time at frequency y, and B{x,y)l<j){x,y) is the average interval since
the frequency was x. Thus

LB(x,y) = -t(x,y). (2)
Applying L to ${x, y),

,y) = j Lp(t, x, y) dt = ' dt = p(t, x, y)\™
Jo Jo ot

= -p(0,x,y) = -8(x-y), (3)
where S( •) is Dirac's delta function. This differential equation can be integrated:

4>{x,y) = -2H(S(V-y);x)+Ag(0,x)> (4)

in which
• • - i i

G(x) = exp j - 2 T ^ l d^},

g(x,y)s (V

J X

for an arbitrary function /(•)> and A is a constant to be determined from the
boundary condition on (f>{x, y)atx= 1. Note that the other boundary condition at
x = 0 is 0(0, y) = 0, because no reverse mutation occurs and therefore if the gene
frequency once becomes 0, it will never become non-zero again. The equation (3)
and the solution (4) are essentially due to Wright (1938), Kimura (1964, 1969) and
Ewens (1969). Using the <j>{x, y) of (4), the equation (2) can be solved:

B(x, y) = - 2H{4>{ri> y);x)+ Ag(0, x), (5)

in which A is constant to be determined from the boundary condition at x = 1. As
in (4), the other boundary is B{0, y) = 0.

We can determine the constant A in (4) and (5). For the age before fixation,
<fi(l,y) = 0shndB(l,y) = 0 for all 0 < y < 1. This is because the process (or a sample
path) is stopped as soon as it reaches the boundary, i.e. x = 1 is an absorbing state.
In this case, assuming u(x) = g(0,x)/g(0,1) exists,

f ° r y <X
y
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and Bfay) = 2u(x)H(^(V,y); l)-2H(</>(V,y); x),

where subscript 1 indicates 'before fixation'.
On the other hand, for the age including fixation, the process is considered even

after it reaches fixation until it eventually reaches extinction. In this case, as the
starting point x approaches 1, the fate of the gene frequency becomes the same as
that starting x = 1. Therefore <j>x{l, y) = 0 and Bx(l,y) = 0, where the subscript
x indicates the derivative with respect to the first variable. With these boundary
conditions,

v < xy < X~VSyG(y)

and Bz(x,y) = 2g(0,x) f 1 | ^ d | - 2H{^(V,y); x),
Jo K^(5)

where subscript 2 indicates 'including fixation'. The value of function <f>(x,y) is the
total number of generations in which the gene frequency is y if it starts from x, and
the B(x, y) gives the average time it took to pass from x to y times the probability of
being at y. Therefore if we consider many similar loci and assume that the population
is at steady state, A(l/2N,y) = B(l/2N,y)l<f>(l/2N,y) gives the average age of
alleles found in such a population.

Let N be the population size and u be mutation rate per gene per generation.
Since every mutant is unique, the average number of mutant to occur in each
generation is 2Nu. Therefore 2Nu times <j)x{ 1/2N, y) or ̂ 2( 1/2 JV, y) gives respectively
the density of the gene frequency distribution at equilibrium, among those alleles
which have never reached fixation and among those including any fixation period.
If all alleles are selectively neutral and if VSy = x(l — x)/2N and MSx = — ux which
are usually used,

( 1 \ _ 4N [ / l\n 4N F _ 2
^\^N'y) -yf^'y'W) \~y~F2N~y'

where F = 1 — 4Nu. Therefore,

On the other hand, the distribution including fixation period is

(9)

It is interesting to compare formulae (8) and (9). The former is linearly related to
mutation rate, whereas formula (9) is a non-linear function of F = 1 — ±Nu.

The ratio, <j>1{lj2N, y)l<j>2{ 1/2N, y), gives the probability that if a mutant is known
10 GRH 23
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to have frequency y, it has never been fixed. This probability for a neutral mutant
is equal to

U^Ny)
) (i V) '

provided F = 1 — iNu > 0, which is the condition that temporary fixation is
possible. If 4Nu tends to 0, the probability becomes (1 — y). On the other hand, if
iNu tends to 1, the probability becomes 1 for all y. The latter result is obvious,
because as <LNu becomes 1, fixation ceases to occur.

Returning to the main subject of this paper, we can obtain explicit formulae of
the average age before fixation and including fixation for some simple cases. As a
typical case, let VSx = x(l — z)/2N and MSx = —ux, where N is the population size
and u is mutation rate. Then, assuming ±Nu < 1 and ignoring a term of order 1/22V,
the age before fixation of a neutral mutant allele whose frequency is y, is

where F = 1 — 4Nu, and, as iNu approaches 0, the above formula becomes

1\2N'y) 1-y

This is the average age of a neutral mutant gene whose frequency is y, provided that
it has never reached fixation and that every mutant arises at a homallelic locus, i.e.
4Nu -4 1. Formula (10) is the same as (13a) of Kimura & Ohta (1973). However,
since we usually do not know whether a mutant gene has previously reached fixation
or not, the age including fixation is more important. The average age including
fixation of a neutral gene is

"1/(1 _ 11 _ C\F\ fl AC -\
(12)

where F = 1 -
The validity of formulae (11) and (12) were verified by computer simulation and

results agreed well with the theoretical expectations. We should first note that both
functions (10) and (12) are monotone, increasing so that the higher the frequency of
an allele the older we expect it to be. As y approaches unity, the value of Ax( 1/2N, y)
in (11) approaches 42V, which is in accord with the result of Kimura & Ohta (1969).
Upon substitution of y = 1/2 in Ax{lj2N, y) of (11), we have 4iVlog 2 « 2-8iV. Thus,
if mutation rate is low, the mutant allele of a polymorphic locus at which the gene
frequency is about 1/2 has been approximately 2-82V generations hi the population.
It is interesting to compare this with 22V generations, which is the time required for
a mutant gene to reach the gene frequency 0-5 for the first time.

Numerical values of formulae (10) and (12) are tabulated for wide ranges of value
of 42V« (Tables 1 and 2).

The tables reveal several biologically interesting facts of the age including
fixation. When 4Nu <̂  1, the age of an allele at high frequency is approximately
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Table 1. Numerical values of AX(1I2N, y)j4:N of (10), where A1(lj2N, y) is the average
age before fixation of a neutral gene whose frequency is y, and N is the population size

(The values for 4Nu > 1 are identical with those in Table 2.)

y

0001
0-01
0-03
0-1
0-2
0-3
0-5
0-7
0-9
0-999

1

0-0078
00561
0-1366
0-3418
0-5669
0-7528
10616
1-3203
1-5500
1-6458

0-9

00077
0-0544
01321
0-3306
0-5426
0-7160
1-0010
1-2362
1-4403
1-5330

0-7

00074
0-0521
0-1248
0-3074
0-4987
0-6529
0-9025
1-1059
1-2803
1-3591

0-5

0-0072
0-0499
0-1177
0-2873
0-4623
0-6017
0-8245
1-0038
11561
1-2267

0-3

0-0071
0-0482
0-1140
0-2704
0-4321
0-5595
0-7634
0-9240
1-0594
1-1219

0-1

00069
0-0456
01086
0-2593
0-4105
0-5283
0-7129
0-8585
0-9804
10366

0

0-0069
0-0450
0-1068
0-2536
0-4000
0-5136
0-6908
0-8298
0-9460
0-9995

Table 2. Numerical values of A2(1/2N', y)j4N of (12), where A2(1/2N, y) is the average
age including fixation of a neutral gene whose frequency is y and N is the population
size

4Nu

y

0-001
001
0-03
01
0-2
0-3
0-5
0-7
0-9
0-999

20

0-0040
0-0228
0-0448
0-0827
0-1105
0-1284
01523
01686
0-1810
01864

10

0-0047
00289
0-0604
0-1207
0-1692
0-2019
0-2471
0-2788
0-3033
0-3140

5

0-0054
0-0357
0-0787
0-1697
0-2500
0-3074
0-3904
0-4512
0-4995
0-5204

2

00065
0-0460
0-1080
0-2553
0-4019
0-5155
0-6926
0-8317
0-9477
0-9993

1

00074
0-0557
01361
0-3432
0-5666
0-7507
1-0553
1-3089
1-5298
1-6302

0-5

0-0089
00697
0-1778
0-4785
0-8297
1-1364
1-6755
2-153
2-5919
2-8051

0-2

00123
0-1042
0-2807
0-8189
1-5047
2-1422
3-3341
4-4560
5-5334
60614

0-1

00176
01569
0-4389
1-3450
2-5547
3-7144
5-9464
81039
10-2126
11-2478

005

0-0278
0-2588
0-7446
2-3635
4-5903
6-7661
11-0277
15-2115
19-3428
21-3762

0-01

O-108O
1-0608
3-1504
10-3821
20-6264
30-8186
51-1106
71-3214
91-4554
101-4366

Table 3. Numerical values of A1(lj2N, y)/4:N of (13), where A^l/2-N, y) is the
average age before fixation of an additive gene whose frequency is y

y

0001
001
003
01
0-2
0-3
0-5
0-7
0-9
0-999

100

00024
00113
00191
00302
0-0379
00432
00516
00601
0-0744
0-1027

50

00031
0-0158
0-0287
00487
00634
00737
00904
01078
01380
01780

20

0-0040
00230
0-0458
00866
01198
01442
01857
0-2312
0-3024
0-3513

10

0-0047
00295
00625
01288
0-1882
0-2344
0-3164
0-4028
0-5018
0-5526

5

0-0055
00368
00824
01837
0-2820
0-3607
0-4946
0-6147
0-7258
0-7772

2

00062
0-0436
01014
0-2372
0-3721
0-4778
0-6461
0-7817
0-8969
0-9484

1

00064
00453
0-1061
0-2504
0-3937
0-5053
0-6801
0-8183
0-9341
0-9857

0

0-0065
0-0460
0-1080
0-2553
0-4019
0-5155
0-6926
0-8317
0-9477
0-9992
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equal to the reciprocal of the mutation rate, and the age of a low frequency allele is
about y/u, where u is the mutation rate and y is the frequency. On the other hand,
when 4Nu >̂ 1, the age tends to be much less. The values of Table 1 show that the
age before fixation increases as the mutation rate increases. For example, the
fixation time is 4N generations if u = 0, but it is 1-6 x 4iV generations if 4:Nu = 1.
When iNu > 1, formula (10) becomes invalid. Analytically the age before fixation
and the age including fixation become identical, and they are given by formula (12).
The age before fixation therefore increases as £Nu increases to 1 and then decreases
as 4J$u becomes larger. The age has a maximum at 4Nu = 1.

The general formula obtained in this paper can be applied to a situation in which
one of the alleles at the locus in question is selectively different from the rest. We
will obtain the age before fixation for an allele with an additive effect on fitness.
Let s be the selection coefficient of the gene and ignore the subsequent mutation of
this allele. Then

Vgx = x(l- x)/2N and MSx = sx{ 1 - x),
and therefore

G{x) = exp (— iNsx) and g{y, x) = {exp (— 4Nsy) — exp (— 4:Nsx)}/4:Ns.

Substituting these functions into the general formulae we obtain the average age
before fixation of the mutant gene whose frequency is y:

(1 \ 4N fi

4N

where S = 4Ns. Note that this formula is independent of the sign of S — 4Ns. Thus
the average age of an additive gene is independent of the direction of selection
pressure. Numerical evaluation of formula (13) reveals that if \S\ < 1 the average
age is nearly equal to that of a neutral gene. As | S\ becomes much greater than unity,
the age of a gene whose frequency is not very small decreases almost as 1/\S\.
However, the value for a gene of very small frequency tends to stay closer to that
for a neutral gene even for large \8\. A few numerical values are given in Table 3.
It is interesting to note that the age including fixation of a neutral gene with
iNu = 2 is equal to the age before fixation of that with very small 4Ns (the column
under 4Nu = 2 of Table 1 and the column under |4i^s| = 0 of Table 3).

The above method can be extended to obtain the variance of the ages of alleles
whose gene frequency is specified. Let

C(x,y)s r^p(t,x,y)dt.
Jo

Then applying the operator L to C(x, y), we have

LC(x, y) = - 2 f° tp(t, x, y)dt = - 2B(x, y).
Jo

Thus integration of this equation yields a formula similar to (5) in which the (j>{rj, y)
is replaced by 2B(ij,y). The boundary condition for the C(x,y) is the same as that

https://doi.org/10.1017/S0016672300014750 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300014750


Age of an allele in a finite population 143

for B(x,y). The C(x,y)j(f>(x,y) is the second moment of A(x,y), and, in particular,
C(lj2N,y)l^>(lj2N,y) is the second moment of the ages of alleles with gene
frequency y.

I am greatly indebted to Professor Alan Robertson for many constructive comments,
including suggestion of some of the topics discussed in this paper. This study was supported
in part by U.S. Public Health Service Research Grants GM 19513 and GM 20293.
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