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Abstract

Objectives: Advances in mobile apps, remote sensing, and big data have enabled remote
monitoring of mental health conditions, but the cost-effectiveness is unknown. This study
proposed a systematic framework integrating computational tools and decision-analytic mod-
eling to assess cost-effectiveness and guide emerging monitoring technologies development.
Methods: Using a novel decision-analytic Markov-cohort model, we simulated chronic depres-
sion patients’ disease progression over 2 years, allowing treatment modifications at follow-up
visits. The cost-effectiveness, from a payer’s viewpoint, of five monitoring strategies was
evaluated for patients in low-, medium-, and high-risk groups: (i) remotemonitoring technology
scheduling follow-up visits upon detecting treatment change necessity; (ii) rule-based follow-up
strategy assigning the next follow-up based on the patient’s current health state; and (iii–v) fixed
frequency follow-up at two-month, four-month, and six-month intervals. Health outcomes
(effects) were measured in quality-adjusted life-years (QALYs).
Results: Base case results showed that remotemonitoring technology is cost-effective in the three
risk groups under a willingness-to-pay (WTP) threshold of U.S. GDP per capita in year 2023. Full
scenario analyses showed that, compared to rule-based follow-up, remote technology is 74 per-
cent, 67 percent, and 74 percent cost-effective in the high-risk, medium-risk, and low-risk groups,
respectively, and it is cost-effective especially if the treatment is effective and if remotemonitoring
is highly sensitive and specific.
Conclusions: Remote monitoring for chronic depression proves cost-effective and potentially
cost-saving in the majority of simulated scenarios. This framework can assess emerging remote
monitoring technologies and identify requirements for the technologies to be cost-effective in
psychiatric and chronic care delivery.

Introduction

Recent advances in sensors, smartphones, and wireless networks have enabled a new generation of
remote healthcaremonitoring technologies that promise to improve patient outcomes (1). Remote
monitoring technology can potentially benefit ongoing mental health treatment with high per-
sonalization and adaptability (2). Examples includemonitoring for depression (3) andAlzheimer’s
disease (4). Technology has the potential to provide a feasible lower-cost alternative to routine
follow-up visits, with fewer constraints on patient scheduling and increased access to on-demand
care triggered by sensor devices and provided remotely through telehealth platforms (5). However,
with a wide range of commercial design specifications and intended usage scenarios, the cost-
effectiveness of this technology remains uncertain.

In this paper, we used chronic depression as a case study and explored under what conditions
a hypothetical remote monitoring technology can be cost-effective for managing ongoing
psychiatric treatment. Depression is a complex and dynamic mental disorder characterized by
emotional and physical symptoms that may result in disability, reduced quality of life and
productivity, and increased risk of death. In the year 2019, 7.8 percent of all American adults
had at least onemajor depressive episode, and 4.7 percent had regular feelings of depression (6;7).
Depression is often unrecognized and untreated, and even once treatment begins it is often
difficult to monitor its effectiveness (8). Treatment guidelines from several medical institutions
suggest a follow-up frequency of at least every 12 months for patients on maintenance therapy to
prevent the recurrence of major depression, and modifying treatment after a minimum of 4–
6 weeks for patients with insufficient response to treatment (9–12). How to optimally schedule
follow-up care for patients with partial response or to prevent relapse remains a significant
challenge.

Remote depression monitoring technology can enable personalized interventions by adap-
tively scheduling follow-up visits, leading to timely treatment modification. For example, a
mobile app, text messaging, or web site can prompt patients to complete a periodic (often
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bi-weekly) depression assessment, and a remote licensed therapist
can review new symptoms, give feedback, and schedule an
in-person follow-up if necessary (13). The patient’s health data
are continuously collected to develop a personalized depression
trajectory, and deviations can automatically generate an alert (14).
Moreover, digital healthcare platforms can empower patients to
monitor their health conditions and enable clinicians to address
treatment failures much sooner than fixed-frequency medical
follow-up (13). Research has also suggested that implementing
measurement-based care (15), however, data are collected, can
improve treatment effectiveness for major depression (16).

Cost-effectiveness analysis (CEA) is an economic evaluation
tool to systematically investigate the costs and outcomes of com-
parable healthcare interventions (17;18). It provides a way for
decision makers to use empirical data to best allocate scarce
resources by estimating an incremental cost-effectiveness ratio
(ICER) and comparing this ratio to a willingness-to-pay (WTP)
threshold (18;19). Combined with decision-analytic models and
simulation methods, CEA has been used to evaluate screening and
treatment routines for depression (20–22). It also has been used to
assess monitoring strategies for depression (23), diabetes (24), HIV
(25), asthma (26), and hypertension (27).

We designed a novel decision-analytic model to evaluate the
cost-effectiveness of remote monitoring technology for optimal
depression treatment follow-up. Our method contributes by defin-
ing a multi-period Markov state to outline health levels and the
short disease trajectory, guiding treatment modifications based on
the state interpretation, using one-step health boosts to simulate
treatment effects, and conducting sensitivity analyses for technol-
ogy development. We hypothesized that the technology could
schedule a patient’s next outpatient visit adaptively by detecting
changes in the patient’s depression severity. We compared the
remote monitoring strategy to four traditional nonremote follow-
up strategies. We hope our proposed technology assessment
method can be extended to evaluate other remote monitoring
technologies in advancing cost-effective psychiatric services (28).
The CHEERS 2022 statement was used to guide reporting for this
study.

Methods

Overview

We established the baseline depression progression of a patient
cohort using a data-informed simulation and then simulated
chronic depression patients’ disease progression for 2 years with
treatment assignment under five monitoring strategies. We devel-
oped a decision-analytic Markov-cohort model and calculated the
costs and QALYs accordingly. We used R and Python for the
analyses.

Patient cohort simulation

The data-informed simulation of depression progression was based
on an Electronic Health Record (EHR) data set (29). The data set is
drawn from the EHRof fourU.S. health systems participating in the
Mental Health Research Network (MHRN) (HealthPartners, and
the Colorado, Washington, and Southern California regions of
Kaiser Permanente). Cohorts are defined by age (base case, 45 years)
and sex (base case, 69 percent female). One of the most
common depression severity measurements is the Patient Health
Questionnaire-9 (PHQ-9) (30), a self-administered questionnaire

to diagnose depression. PHQ-9 scores range from zero to 27 with a
higher score denoting higher severity. Research has demonstrated
that, in addition to making criteria-based diagnoses of depressive
disorders, the PHQ-9 is a reliable and valid indicator of depression
severity. Its conciseness, combined with these qualities, makes the
PHQ-9 a valuable tool in both clinical and research environments
(31). Although it is not perfect, the PHQ-9 is frequently used as the
measurement of depression severity in clinical practice guidelines
for the management of major depressive disorder (32). The EHR
data set includes longitudinal PHQ-9 scores between the years 2007
and 2012; it also includes age range, sex, observation time interval,
and treatment status.

We selected patients receiving ongoing treatment, which was
defined as having had psychotherapy visits in the previous 90 days
or filled prescriptions for antidepressants in the previous 180 days.
We filtered patients having no fewer than six recorded PHQ-9
scores in an approximately one-year time window. This decision
omitted 1069 (70 percent) of participants from the data set. We
assigned twelve monthly periods for each patient by dividing their
total days into 12 segments and calculated the mean PHQ-9 score
for each month. The final data set contained 444 patients
(307 female and 137 male). About 38 percent of the PHQ-9 scores
were missing. We imputed missing data using the exponential
weighted moving average (EWMA) (33) method to obtain all
twelve monthly PHQ-9 scores for each patient. These scores
depicted the baseline trajectories of depression progression. We
clustered the 444 patients based on their PHQ-9 scores using the
k-means clustering method (34). We converted each patient’s
12 PHQ-9 scores into a 12-dimensional vector and clustered them
based on their Euclidean distances (35). Clustering results showed
three groups determined by the severity of depression in the
baseline trajectories: a high-risk group with 128 patients, a
medium-risk group with 192 patients, and a low-risk group with
124 patients.We used the Silhouette method to identify the optimal
number of clusters, evaluating each object’s similarity to its own
versus other clusters; although the highest silhouette scores were
obtained with two clusters, we chose three clusters to provide
deeper insights, as the silhouette scores between two and three were
close, and grouping into three risk categories – high risk, medium
risk, and low risk – is both functional and intuitive. We used the
trajectory in the clusters to simulate the baseline depression pro-
gressions for the patients with different severity of depression. We
further classified depression severity into three levels based on the
PHQ-9 score: healthy (H) with scores from zero to four; mild
depression (M) with scores from five to nine; and moderate and
severe depression (S) with scores from 10 to 27 (see
Appendix Table 1). Note that severity is a grouping reflection of
PHQ-9 scores; risk is a measure of how likely a patient was to have
severe depression, and trajectory is a history of PHQ-9 scores. The
mean trajectory of each risk group is shown in Figure 1. Although
the trajectory of the high-risk group shows a decreasing trend in
PHQ-9 scores, the scores still fall into the S level; thus the patients in
this remain at high risk of experiencing severe depression.

Disease progression simulation

We designed a decision-analytic Markov-cohort model with a
monthly cycle to simulate chronic depression patients’ disease
progression for 2 years.We defined a two-period combinedMarkov
state with the patients’ depression level in the last and current
month that captures a short-term trajectory that can be used to
determine treatment response under an established treatment-
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switching strategy as shown in Appendix Figure 1. The states
include HH, HM, HS, MH, MM, MS, SH, SM, and SS.

PHQ-9 scores greater than or equal to 10 have been found to be
88 percent sensitive and 88 percent specific for detecting major
depression (30). Response to treatment is defined as a PHQ-9 score
improvement of greater than 50 percent from baseline, and remis-
sion is defined as a PHQ-9 score of less than five maintained for at
least 1 month (9). Based on these definitions, HM, MM, HS, MS,
and SS are interpreted as nonresponse or relapse because these
states represent staying in groups with scores of five or above (M or
S) ormoving to a worse level from t� 1 period to t period. HH,MH,
SH, and SM show treatment responses because they involve
remaining at or moving to a healthier level. Response states are
further classified in two ways: (i) HH, MH, and SH stand for
remission in which a patient has a PHQ-9 score less than five for
at least 1 month; SM stands for a response without remission with
some improvement in PHQ-9 score; (ii) SH and SM stand for
unstable improvement because the patient was in S at the previous
month; HH and MH stand for stable remission, in which a patient
maintains a PHQ-9 score less than 10 for at least 2 months. We also
assume that patients can die in any period regardless of their
depression level.

Feasible state transitions are shown in Appendix Figure 1. The
Markov state-transition diagram is shown in Appendix Figure 2.
We estimated the baseline transition matrix based on numerical
frequencies, counting all the transitions in the imputed EHR data
set and calculating the transition probability from state a to state b
(36). We estimated three separate transition matrices for the three
risk groups (see Appendix Tables 2–4).

Treatment assignment simulation

A traditional follow-up involves an outpatient clinical visit with the
chance to change treatment. Remote monitoring indicates assessing
depression severity remotely, triggering a visit for assessment and
possible treatment change only when needed. We simulated nine
treatment lines in total (37). A treatment line can consist of anti-
depressants alone or in combination with psychotherapy. Patients
who failed to respond to the current treatment or relapsed can
change to the next treatment line at each scheduled follow-up; these
include patients who are in the HM, MM, HS, MS, or SS state. We
modeled the treatment effect to be a one-period boost in health (38),
represented by an increased probability of transitioning to a healthier

state. Specifically, at the time of a treatment change, patients receive
an additional probability (37) of transitioning to an H state in the
current period (remission) compared to the baseline transition and
an additional probability (37) of transitioning to an improved state in
the current period. For example, at a follow-up point, a patient in the
SS state maymove to SH ormove to SM. If the remission rate of that
treatment line is prrm, the response (excluding remission rate) is
prrsp, and the original proportion of state SS is pss; then after the
treatment boost, a proportion of prrm × pss of the cohort will
transition to state SH, and a proportion of prrsp × pss will transition
to state SM. Afterward, the patient reverts to the baseline transition
matrix until the next treatment change. To leave sufficient time for
treatment response, per consensus guidelines for treatment of
depression, there are no consecutive treatment changes
in 2 months in our simulation (37;39). We assumed if a patient fails
all nine treatment lines, then he/she receives no more health boost
from treatment and returns to their baseline progression.

Decision-analytic model

We compared five strategies: (i) adaptive remote monitoring tech-
nology with a false-negative rate of missing the next needed follow-
up and a false-positive rate of an unnecessary follow-up. A perfect
adaptive monitoring technology with 100 percent sensitivity and
100 percent specificity can immediately follow up patients in the
nonresponse or relapse states who need a treatment change.
(ii) rule-based follow-up strategy, which assigns a follow-up
in 2 months for patients in states HM, MM, HS, MS, or SS;
in 4 months for patients in state SH or SM; in 6 months for patients
in state HH or MH. (iii–v) Fixed-frequency follow-up strategy
regardless of patients’ health states. We evaluated the fixed two-
month, four-month, and six-month follow-ups. After exhausting
all nine treatment lines, patients in the rule-based and fixed-
frequency strategies are assigned a six-month follow-up frequency
(9–12). Remotemonitoring patients who exhaust all nine treatment
lines are assumed to continue monthly monitoring with no sched-
uled follow-up. We focused the investigation on how cost-effective
the remote monitoring technology is compared to the rule-based
follow-up strategy, which is the closest to the current practice
according to the depression guidelines (9–12).

The initial states of the Markov model are matched with the
group-specific initial health state distribution using the combin-
ation of severity levels in the first and second months in the
clustered EHR data as shown in Appendix Tables 5–7. We simu-
lated death at the beginning of each month. If it is not a follow-up
month, patients progress according to their group-specific transi-
tion matrix. If it is a follow-up month, some patients may drop out
of the follow-up. During a follow-up appointment, patients may
change treatment. After changing to a new treatment, patients may
discontinue the treatment due to adverse events. We assumed it
takes some time for the adverse event to happen; thus patients can
only discontinue treatment after 1month of being on the treatment.
Note that we incorporated the possibility of irregular use of remote
monitoring technology resulting in any missing observation as a
reduction in the technology’s sensitivity, and this impact is con-
sidered in our subsequent sensitivity analyses. The decision-
analytic model is shown in Figure 2.

Data and sources

Table 1 showsmodel input parameter values.We applied an annual
discount rate of 0.03. See Appendix 1 for detailed explanations.

Figure 1. The average PHQ-9 score trajectories for each group.
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Analysis

Outcomes include total discounted costs, quality-adjusted life-
years (QALYs) gained, and ICERs of the five strategies. We used
the 2023 GDP per capita in the U.S., $81,630, as theWTP threshold
(40). In the base case, we investigated which strategy is cost-
effective and found the frontiers among all five strategies in each
group. We further carried out sensitivity analysis on technology
factors while keeping all other parameters at base case value to
investigate under what ranges of sensitivity, specificity, and cost the
remote monitoring technology is cost-effective compared to the
rule-based strategy. We then kept the sensitivity, specificity, and
cost of the remote monitoring technology at base case value and
performed a deterministic sensitivity analysis for all the non-
technology-related parameters in one-way, two-way, and scenario
analyses.

Note that we did not include a probabilistic sensitivity analysis
(PSA) in our study. PSA involves simultaneously varying multiple
or all parameters using their respective uncertainty distributions to
assess the robustness of model results. We did not include a PSA
due to the hypothetical nature of the evaluated technology, which
we felt putting detailed distributional assumptions on all model
parameters would be somewhat arbitrary and give false confidence
in the robustness. Moreover, because we already conducted exten-
sive one-way, two-way, and multi-way sensitivity analyses, we do
not think adding a PSA would provide significant additional
insights.

Results

Base case

The costs, QALYs, and ICERs of the five strategies for each risk
group are shown in Appendix Tables 9–11. The adaptive monitor-
ing strategy has an ICER of $57,901/QALY, $74,830/QALY, and

$71,545/QALY compared to the next best alternative for the high-
risk, medium-risk, and low-risk groups, respectively. For the high-
risk group, only the fixed frequency 2-month follow-up strategy has
an ICER exceeding $81,630/QALY. For themedium-risk group, the
fixed frequency 6-month, 4-month follow-up, and adaptive tech-
nology are not dominated by other strategies (i.e., a strategy with
lower QALYs and higher cost compared to another strategy, or a
linear combination of other strategies are dominated). For the low-
risk group, fixed frequency 2-month is the only dominated strategy
by remote monitoring technology. ICER frontiers are shown in
Figure 3.

Sensitivity analysis of technology factors

We quantified the impact of sensitivity, specificity, and monitoring
cost on the cost-effectiveness of adaptive technology compared to
the rule-based strategy, which resulted in 11*11*3*3 = 1089 scen-
arios as shown in Appendix Table 12. The technology could be
(i) dominated by the rule-based follow-up strategy, which means
the QALYs of the technology are less than the QALYs of the rule-
based strategy; (ii) cost-saving, which means the technology has
higher or equal QALYs and a lower cost compared to the rule-based
strategy; (iii) with an ICER value. We are interested in the regions
where the technology could be cost-saving or cost-effective with an
ICER below $81,630/QALY.

We used heat maps to show these results (Figure 4) for a fixed
technology cost of $12 per month. Results for all settings are shown
in Appendix Figures 3–11. The heat map is used to visualize data in
two dimensions by color intensity (41). The x-axis shows specificity
from zero to one, and the y-axis shows sensitivity from zero to one.
We used the white color to represent the ICER values near theWTP
threshold of $81,630/QALY. The red colormeans the ICER is above
the threshold, which is not cost-effective; the blue color means the
ICER is below the threshold, which stands for cost-effective. Results
showed that within the same risk group, once the sensitivity reaches

Figure 2. Decision-analytic model of depression monitoring and treatment simulation.
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Table 1. Model input parameter values

Variable Base case (range) Reference

General input

Annual discount rate 0.03 (50)

Cohort characteristics

Age 45 (30–64) EHR (29)

Sex

Female 0.69 EHR (29)

Male 0.31 EHR (29)

Annual background death probability

Age 45 0.00225 (51)a

The mortality hazard ratio

Severe depression (S) 1.59 (1.113–2.067) (52)

Moderate depression (M) 1.52 (1.064–1.976) (52)

Minimal depression (H) 1.45 (1.015–1.885) (52)

Annual probability of follow-up discontinuationb 0.211 (0.069–0.309) (37;53)

Remote monitoring technology

Sensitivity 0.76 (0.64–0.95) (29)

Specificity 0.74 (0.43–0.82) (29)

Treatment effectiveness

Annual probability of treatment discontinuation due to adverse event 0.249 (0.151–0.391) (37;53)

Remission probability, per month

Treatment 1–3 0.397 (0.321–0.478) (37;54)

Treatment 4–6 (relative risk vs. treatment 1) 0.93 (0.86–1.00) (37;54)

Treatment 7–9 (relative risk vs. treatment 1) 0.77 (0.70–0.85) (37;54)

After treatment 9 0 (37;54)

Response probability, per month

Treatment 1–3 0.631 (0.553–0.703) (37;54)

Treatment 4–6 (relative risk vs. treatment 1) 0.77 (0.73–0.81) (37;54)

Treatment 7–9 (relative risk vs. treatment 1) 0.48 (0.44–0.53) (37;54)

After treatment 9 0 (37;54)

Costs, 2023$

Remote monitoring, per monthc 12 (0–24) (47;55)

Follow-up appointment, per time 131 (89–176) (56)

Background treatment, per monthd

Treatment 1–3 1532 (1435–1628) (57)

Treatment 4–6 1679 (1526–1831) (57)

Treatment 7–9 1794 (1557–2030) (57)

After treatment 9e 1669 (1505–1829) (57)

Drug, per month 57 (18–147) (58;59)

Health utility

Level Sf 0.49 (0.46 to 0.53) (60)

Level M 0.62 (0.58 to 0.65) (60)

Level H 0.7 (0.67 to 0.73) (60)

aSex difference is considered in the mortality rate, and the base case value is weighted by age proportion.
bWe computed the annual follow-up discontinuation probability to be the total discontinuation probability subtracted by the drug adverse event discontinuation.
cThe cost of remote monitoring is designed as a subscription or on-demand call fee, with the follow-up costs listed separately and not included in this remote monitoring cost.
dBackground treatment cost includes the drug cost.
eThe cost after treatment nine is computed as the average of treatment line 1–9.
fThe utility of level S is the average utility based on the PHQ-9 score range (60).
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above a certain threshold, the adaptive technology is no longer
dominated by the rule-based strategy. In the nondominated region,
remote monitoring technology is more cost-effective at higher
specificity and lower monitoring costs. Achieving high specificity
ismore important when the remotemonitoring cost is high, and the
technology could be cost-saving when the cost is free (or extremely
low, see Appendix Figures 3, 6, and 9). The increase in cost sharply
increases the requirement of sensitivity and specificity for the
technology to be cost-effective. Comparing the results of the three
groups, the technology required a higher sensitivity for sicker
patients to outperform the rule-based strategy and is more cost-
effective if it reaches the desired sensitivity in the higher-risk group.

Sensitivity analysis on all parameters

We further performed a deterministic sensitivity analysis for all
parameters not related to the technology itself in one-way, two-way,
and multi-way analyses (detailed combinations provided in
Appendix Table 13). We simulated 291 scenarios in total and
97 scenarios (including the base cases) for each group. For one-
way sensitivity analysis (see details inAppendix 2), group difference
appears in the follow-up cost: The technology is more cost-effective
at a higher follow-up cost in the high-risk group, whereas it is more
cost-effective at a lower follow-up cost in the low-risk group. The
rule-based strategy assigns very frequent follow-ups for high-risk
patients, but very few follow-ups for low-risk patients. This result
implies that when patients are sicker and need more frequent
follow-ups, the rule-based strategy is very aggressive in scheduling,
resulting in some unneeded follow-up visits (false positives), and

thus remote monitoring becomes more attractive when the cost of
follow-up is high. However, for the healthier group of patients who
do not need frequent follow-up, the remote technology may assign
more unnecessary follow-ups while the rule-based strategy is
already performing well. Therefore, remote monitoring becomes
more attractive under lower follow-up costs compared to rule-
based strategy.

The adaptive technology is cost-effective in 74 percent (72 out of
97) of the scenarios for the high-risk group, 67 percent (65 out of
97) of the scenarios for the medium-risk group, and 74 percent
(72 out of 97) of the scenarios for the low-risk group. Under various
parameter combinations, the significant parameters found in the
one-way sensitivity analysis remain the key factors. Thus, we con-
clude that adaptive remotemonitoring technology is generally cost-
effective compared to the rule-based strategy and is more robust for
high-risk and medium-risk groups. In addition, technology-related
factors (cost, sensitivity, and specificity) are the main drivers of
cost-effectiveness compared to other treatment and health-service-
related parameters.

Discussion

We assessed the cost-effectiveness of a hypothetical adaptive
remote monitoring technology with variable accuracy and cost
compared with a rule-based follow-up strategy that is similar to
current practice as well as three fixed-frequency follow-up strat-
egies. We simulated a cohort of chronic depression patients under-
going treatment for 2 years using a decision-analytic Markov-
cohort model with nine available treatment lines.

Figure 3. Base case cost-effectiveness frontiers for the three risk groups.

6 Sun, Wissow and Liu

https://doi.org/10.1017/S0266462324004677 Published online by Cambridge University Press

http://doi.org/10.1017/S0266462324004677
http://doi.org/10.1017/S0266462324004677
http://doi.org/10.1017/S0266462324004677
http://doi.org/10.1017/S0266462324004677
http://doi.org/10.1017/S0266462324004677
https://doi.org/10.1017/S0266462324004677


We found remote monitoring technology is robustly cost-
effective with appropriate technology factors: First, for the tech-
nology to be not dominated by another strategy, its sensitivity
needs to reach a certain threshold, which increases with the
patient’s baseline risk of severe depression. In addition to reaching
a sensitivity threshold, the next priority is to improve specificity.
Second, the most cost-effective technology does not align with
perfect sensitivity, rather it is at a combination of high sensitivity
and perfect specificity where the technology could be cost-saving
or very cost-effective. This implies that false positives are very
important factors to consider when designing a remote monitor-
ing technology to avoid costly over-intervention. The cost of the
technology can be higher only if both sensitivity and specificity are
sufficiently high. Third, given high accuracy, the technology can
be cost-effective under a variety of disease and treatment condi-
tions. The technology is more cost-effective for sicker patients,
lower cost for further treatment lines, higher treatment effective-
ness, and poorer quality of life for severe depression. Fourth,
patients may benefit more from the technology when the cost of
follow-up is high. The technology could potentially help with the
problems with the financing system that make outpatient follow-
up visits too expensive. Please note that our conclusions regarding
the cost-effectiveness of remote monitoring technology are based
on our chosen WTP threshold of $81,630, in line with the GDP-
based threshold. Different threshold choices may lead to varying
conclusions.

Our findings on remote monitoring technologies being gener-
ally cost-effective align with previous research on the economic
evaluations of remote monitoring strategies for chronic diseases.
For example, one study highlighted the cost-effectiveness of tele-
monitoring for chronic obstructive pulmonary disease (COPD),
showcasing its potential to reduce mortality and healthcare costs
(42). Another study focused on Home Blood Pressure Telemoni-
toring andCaseManagement for hypertension care, demonstrating
its effectiveness in improving care without increasing overall med-
ical costs (43). Similarly, a study comparing the costs of home blood
pressure telemonitoring with conventional officemonitoring found
telemonitoring to bemore costly but still provided valuable insights
into its cost-effectiveness (44). Additionally, a comparison of tele-
monitoring versus usual care for uncontrolled blood pressure man-
agement revealed that although telemonitoring was more effective,
it also incurred higher costs (45). Furthermore, findings from
another study emphasized the cost-effectiveness of remote moni-
toring for major adverse cardiovascular events in high-risk post-
myocardial infarction patients (46). Overall, these studies
collectively support the idea that remote monitoring holds promise
as a cost-effective strategy for managing chronic diseases, despite
some uncertainties, which aligns with our findings.

Note that patients withmore severe depression are likely to have
more frequent visits. Therefore, our filtering method that includes
only patients with at least six PHQ-9 scores in 12 months may
introduce a selection bias in the simulated cohort. Based on our

Figure 4. ICER for the technology versus rule-based strategy under $12 per month in three groups.
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results for the three risk groups, we observed that remote monitor-
ing technology is more cost-effective in the high-risk group. Thus,
we infer that the bias from our filtering method is likely to over-
estimate the cost-effectiveness of the monitoring technology if
applied uniformly to all groups. Nonetheless, we believe it is rea-
sonable to focus on patients with more severe depression when
discussing the development of technology, as these patients are
more critical in chronic disease management.

We considered sensitivity, specificity, and cost as important
technology factors in evaluating remote monitoring technologies.
However, variations in other technical aspects, such as user inter-
face design, convenience, and patient preference, can lead to dif-
ferences in patient adoption rate even with the same sensitivity and
specificity. For example, quality of the user experience can influence
the probability of patients discontinuing remote monitoring.
Although this may not be a direct technological factor, it is a vital
design consideration during technology development. We con-
ducted a sensitivity analysis on factors related to discontinuation
because an increase in discontinuation rate can be a proxy for poor
user experience. Additionally, a more complex mode of adminis-
tration may result in higher technology costs. We also performed a
sensitivity analysis on the cost of the technology that can account
for this variability.

To establish the base case sensitivity and specificity of the
technology, we derived estimates from a previous study (29) that
compared several machine-learning-based chronic depression
monitoring algorithms. We selected the sensitivity and specificity
of the best-performed method (29) as our base case. In the sensi-
tivity analysis for technological factors, we explored the full range of
sensitivity and specificity from 0 to 1, making it applicable to a wide
range of remote monitoring technologies. One example can be an
automatic telephonic assessment (ATA) system (47), from which
we estimated our baseline cost. This system integrates tasks and
alerts to providers, potentially enhancing the quality of depression
care and boosting provider productivity. It screens patients for early
detection of depressive episodes and conductsmonthlymonitoring,
including PHQ-9 assessments for symptom tracking. Monitoring
calls are scheduled at varying frequencies based on the severity of
PHQ-9 scores. Additionally, digital health platforms like Medixine
and CareClix facilitate remote patient monitoring and virtual
healthcare services. Patients input health data manually or through
devices, communicate with healthcare providers, receive personal-
ized care plans, and access educational resources. These platforms
monitor data for anomalies, generate alerts, and streamline health-
care management for patients and providers.

The main limitation of this study is our reliance on simulated
data. We made many assumptions in our simulated framework,
such as how the disease would progress and how treatment would
improve health (48). These assumptions need further validation
from clinical trials and observational studies. However, these stud-
ies cannot always fully evaluate future possible scenarios and out-
comes; they also take a long time and are expensive. Simulations
serve to supplement trials and propose potential trial designs. We
also assumed the PHQ-9 questionnaire results represent the true
health state of the patients, although the sensitivity and specificity
of the PHQ-9 questionnaire can be imperfect (49). We could have
incorporated the sensitivity and specificity of the PHQ-9 instru-
ment as two additional parameters in our model. However, because
we already modeled the sensitivity and specificity of remote moni-
toring, adding those of the PHQ-9 would introduce one more layer
that may be unnecessarily complex. Therefore, we consolidated
them into a single layer of parameters for remote monitoring

accuracy. The accuracy of the questionnaire should be taken into
consideration in future studies or other gold-standard measure-
ments should be used to represent the true health state. Also, note
that because we did not perform a PSA, we cannot make statements
about the probability of cost-effectiveness or the value of further
research to reduce uncertainty based on this deterministic analysis.

Our proposed model may be adapted to evaluate the cost-
effectiveness of various novel remote monitoring technologies for
other psychiatric services. Contributions from our modeling
method include defining a multi-period Markov state to describe
health levels that contain enough information to establish a short
disease trajectory, deciding on whether the patient needs treatment
modification based on the interpretation of the Markov states and
establishing a treatment assignment strategy accordingly, using a
one-step boost in health levels to simulate treatment effect empha-
sizing remission and response rates, and conducting extensive
sensitivity analyses on technology factors to guide technology
development requirement. Also, our study used a Markov-cohort
model that differentiated patients only into three risk groups. For
future research, we could incorporate additional patient character-
istics to represent a more diverse population, including various
demographic factors. Furthermore, we can explore the integration
of personalized prediction models for depression trajectory within
the framework to enhance treatment change detection. Addition-
ally, extending the simulation period could enable us to evaluate the
long-term cost-effectiveness and sustainability of remote monitor-
ing technologies beyond the two-year timeframe used in the current
study.

Conclusions

This study aims to propose a systematic technology assessment
method to guide the development of emerging monitoring tech-
nologies used in chronic disease care management through inte-
grated computational tools and decision-analytic modeling. We
identified several requirements for remote monitoring technology
to be a cost-effective way to deliver chronic depression care services.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0266462324004677.
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