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Groups whose Chermak–Delgado lattice
is a subgroup lattice of an abelian group

Lijian An

Abstract. The Chermak–Delgado lattice of a finite group G is a self-dual sublattice of the subgroup
lattice of G. In this paper, we prove that, for any finite abelian group A, there exists a finite group G
such that the Chermak–Delgado lattice of G is a subgroup lattice of A.

1 Introduction

Suppose that G is a finite group, and H is a subgroup of G. The Chermak–Delgado
measure of H (in G) is denoted by mG(H), and defined as mG(H) = ∣H∣ ⋅ ∣CG(H)∣.
The maximal Chermak–Delgado measure of G is denoted by m∗(G), and defined as

m∗(G) =max{mG(H) ∣ H ≤ G}.

Let

CD(G) = {H ∣ mG(H) = m∗(G)}.

Then the set CD(G) forms a sublattice of L(G) (the subgroup lattice of G), which
is called the Chermak–Delgado lattice of G. It was first introduced by Chermak and
Delgado [9], and revisited by Isaacs [12]. In the last years, there has been a growing
interest in understanding this lattice (see, e.g., [1–11, 13–17, 19–22]).

A Chermak–Delgado lattice is always self-dual. So the question arises: Which types
of self-dual lattices can be Chermak–Delgado lattices of finite groups? In [5], it is
proved that, for any integer n, a chain of length n can be a Chermak–Delgado lattice
of a finite p-group.

A quasi-antichain is a lattice consisting of a maximum, a minimum, and the atoms
of the lattice. The width of a quasi-antichain is the number of atoms. For a positive
integer w ≥ 3, a quasi-antichain of width w is denoted by Mw . In [6], it was proved
that Mw can be a Chermak–Delgado lattice of a finite group if and only if w = 1 + pa

for some positive integer a and some prime p.
An m-diamond is a lattice with subgroups in the configuration of an

m-dimensional cube. A mixed n-string is a lattice with n components, adjoined
end to end, so that the maximum of one component is identified with the minimum
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of the other component. The following theorem gives more self-dual lattices which
can be Chermak–Delgado lattices of finite groups.

Theorem 1.1 [4] If L is a Chermak–Delgado lattice of a finite p-group G such that
both G/Z(G) and G′ are elementary abelian, then so are L+ and L++, where L+ is a
mixed 3-string with center component isomorphic to L and the remaining components
being m-diamonds, and L++ is a mixed 3-string with center component isomorphic to
L and the remaining components being lattice isomorphic to Mp+1.

By [18, Theorem 8.1.4], L(A) is always self-dual for any finite abelian group A. If A
is a cyclic p-group, then L(A) is chain, and hence can be a Chermak–Delgado lattice
of a finite p-group. In [2], it is proved that, if A is an elementary abelian p-group, then
L(A) can be a Chermak–Delgado lattice of a finite p-group. In this paper, we prove
that, for any finite abelian group A,L(A) can be a Chermak–Delgado lattice of a finite
group. The main results are the following theorems.

Theorem 1.2 For any finite abelian p-group A, there exists a finite p-group G such that
CD(G) is isomorphic to L(A).

Theorem 1.3 For any finite abelian group A, there exists a finite group G such that
CD(G) is isomorphic to L(A).

2 Preliminary

We gather next some basic properties of the Chermak–Delgado lattice, which will be
used often throughout the paper without further reference.

Theorem 2.1 [9] Suppose that G is a finite group and H, K ∈ CD(G).
(1) ⟨H, K⟩ = HK. Hence, a Chermak–Delgado lattice is modular.
(2) CG(H ∩ K) = CG(H)CG(K).
(3) CG(H) ∈ CD(G) and CG(CG(H)) = H. Hence, a Chermak–Delgado lattice is

self-dual.
(4) Let M be the maximal member of CD(G). Then M is characteristic in G and

CD(M) = CD(G).
(5) The minimal member of CD(G) is characteristic, abelian, and contains Z(G).

We also need the following lemmas.

Theorem 2.2 [7, Theorem 2.9] For any finite groups G and H, CD(G ×H) =
CD(G) × CD(H).

Lemma 2.3 [2, Lemma 3.3] Suppose that G is a finite group and H ≤ G such that
G = HCG(H). If H ∈ CD(H), then H is contained in the unique maximal member of
CD(G).

Lemma 2.4 [20, Lemma 5] Let G be a finite p-group. Then CD(G) = [G/Z(G)] if
and only if the interval [G/Z(G)] of L(G) is modular and G′ is cyclic.
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In this section, we prove that, for any finite abelian group A, L(A× A) can be a
Chermak–Delgado lattice of a finite group. Although this result can be deduced from
our main theorem, the proof is independent and short.

Lemma 2.5 Let A be a finite abelian p-group. Then there exists a finite p-group G such
that CD(G) is isomorphic to L(A× A).

Proof Assume that the type of A is (pe1 , pe2 , . . . , pem), where e1 ≥ e2 ≥ ⋅ ⋅ ⋅ ≥ em .
Let G be the group generated by 2m elements x1 , . . . , xm , y1 , . . . , ym subject to the
defining relations:

[x i , x j] = [y i , y j] = [x i , y j] = 1 if i ≠ j,

x pei

i = ypei

i = zpe1
= 1, [x i , y i] = zpe1−ei , [z, x i] = [z, y i] = 1 for 1 ≤ i ≤ m.

Let Pi = ⟨x i , y i , z⟩. Then Z(Pi) = ⟨z⟩. Thus, G is also the central product of Pi . It is
easy to see that G′ = Z(G) = ⟨z⟩ and G/Z(G) ≅ A× A. By Lemma 2.4, CD(G) is just
the interval [G/Z(G)]. Hence, CD(G) ≅ L(G/Z(G)) ≅ L(A× A). ∎

Theorem 2.6 For any finite abelian group A, there exists a finite group G such that
CD(G) is isomorphic to L(A× A).

Proof Let A = A1 ×⋯× An , where A i is the Sylow p i -subgroup of A. By Lemma
2.5, there exist finite group Pi such that CD(Pi) is isomorphic to L(A i × A i). Let
G = P1 ×⋯× Pn . By Theorem 2.2,

CD(G) = CD(P1) ×⋯ × CD(Pn)

≅ L(A1 × A1) ×⋯ ×L(An × An)

= L(A× A). ∎

3 The groups G(p, e)

For any prime p and an integer e ≥ 1, we use G(p, e) to denote the finite p-group
generated by three elements x , y, w subject to the following defining relations:
• [x , y] = z1, [y, w] = z2, [w , x] = z3,
• x pe

= ype
= w pe

= zpe

1 = zpe

2 = zpe

3 = 1, and
• [z i , x] = [z i , y] = [z i , w] = 1 for all i = 1, 2, 3.

In this section, we prove that the Chermak–Delgado lattice of G(p, e) is isomor-
phic to a subgroup lattice of a cyclic group of order pe . This group will be used to
construct an example in the proof of Theorem 1.2. Let G = G(p, e). Then it is easy to
check the following results:
• d(G) = 3, exp(G) = pe , Z(G) = G′ = ⟨z1 , z2 , z3⟩, and
• ∣Z(G)∣ = p3e , ∣G/Z(G)∣ = p3e , mG(G) = mG(Z(G)) = p9e .
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Lemma 3.1 Assume that G = G(p, e) and Z(G) < H < G.
(1) If H/Z(G) is cyclic, then mG(H) < mG(G).
(2) If H/Z(G) is not cyclic, then mG(H) ≤ mG(G), where “ = ” holds if and only if

the type of H/Z(G) is (pe1 , pe1 , pe1) for some 1 ≤ e1 < e.

Proof (1) Let H = ⟨h, Z(G)⟩ and H/Z(G) be of order pe1 . Then we may let

h = xk1 pe−e1 yk2 pe−e1 wk3 pe−e1 ,

where p ∤ k i for some i. Without loss of generality, we may assume that p ∤ k1.
Replacing x with xk1 yk2 wk3 , we have h = x pe−e1 . It is easy to check that CG(H) =
⟨x , ype1 , w pe1 ⟩Z(G). Since ∣CG(H)/Z(G)∣ = p3e−2e1 ,

∣H/Z(G)∣ ⋅ ∣CG(H)/Z(G)∣ = p3e−e1 < p3e = ∣G/Z(G)∣.

Hence, mG(H) = ∣H∣ ⋅ ∣CG(H)∣ < ∣G∣ ⋅ ∣Z(G)∣ = mG(G).
(2) Let H = ⟨h1 , h2 , h3⟩Z(G) and H/Z(G) be of type (pe1 , pe2 , pe3), where

e1 ≥ e2 ≥ e3 ≥ 0. Since H/Z(G) is not cyclic, e2 ≥ 1. By a similar argument as (1),
we may assume that h1 = x pe−e1 . We may let

h2 = xk1 pe−e2 yk2 pe−e2 wk3 pe−e2 ,

where p ∤ k i for some 2 ≤ i ≤ 3. Without loss of generality, we may assume that
p ∤ k2. Replacing y with xk1 yk2 wk3 , we have h2 = ype−e2 . It is easy to check that

CG(H) = CG(h1) ∩ CG(h2) = ⟨x pe2 , ype1 , w pe1
⟩Z(G).

Since ∣H/Z(G)∣ = pe1+e2+e3 and ∣CG(H)/Z(G)∣ = p3e−e2−2e1 ,

∣H/Z(G)∣ ⋅ ∣CG(H)/Z(G)∣ = p3e+e3−e1 ≤ p3e = ∣G/Z(G)∣,

where “= ” holds if and only if e3 = e1. Hence, mG(H) = ∣H∣ ⋅ ∣CG(H)∣ ≤ ∣G∣ ⋅ ∣Z(G)∣ =
mG(G), where “ = ” holds if and only if e1 = e2 = e3. ∎

Theorem 3.2 Let G = G(p, e). Then G ∈ CD(G) and CD(G) is a chain of length e.
Moreover, H ∈ CD(G) if and only if H = ⟨x pe−e1 , ype−e1 , w pe−e1 ⟩Z(G) for some
0 ≤ e1 ≤ e.

Proof By Lemma 3.1, m∗(G) = mG(G) = p9e , and H ∈ CD(G) if and only if the
type of H/Z(G) is (pe1 , pe1 , pe1) for some 0 ≤ e1 ≤ e. Hence, all elements of CD(G)
are ⟨x pe−e1 , ype−e1 , w pe−e1 ⟩Z(G) where 0 ≤ e1 ≤ e. ∎

4 The proof of main results

For any prime p and an abelian p-group A with type (pe1 , pe2 , . . . , pem), where
e1 ≥ e2 ≥ ⋯ ≥ em , we use GA to denote the finite p-group generated by 3m elements
x1 , . . . , xm , y1 , . . . , ym , w1 , . . . , wm subject to the following defining relations:

• x pei

i = ypei

i = w pei

i = zpe1

1 = zpe1

2 = zpe1

3 = 1 for 1 ≤ i ≤ m,
• [x i , x j] = [y i , y j] = [w i , w j] = [x i , y j] = [y i , w j] = [w i , x j] = 1 if i ≠ j,
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• [x i , y i] = zpe1−ei

1 , [y i , w i] = zpe1−ei

2 , [w i , x i] = zpe1−ei

3 for 1 ≤ i ≤ m, and
• [z j , x i] = [z j , y i] = [z j , w i] = 1 for 1 ≤ i ≤ m and j = 1, 2, 3.
In this section, we require the following notation and straightforward results for a
finite p-group G = GA.
• Z(G) = G′ = ⟨z1 , z2 , z3⟩ is of order p3e1 .
• Let Pi = ⟨x i , y i , w i⟩ for 1 ≤ i ≤ m. Then Pi ≅ G(p, e i), ∣Pi Z(G)/Z(G)∣ = p3e i , and

G is the central product P1 ∗ P2 ∗⋯ ∗ Pm .
• Let X = ⟨x1 , x2 , . . . , xm⟩, Y = ⟨y1 , y2 , . . . , ym⟩, and W = ⟨w1 , w2 , . . . , wm⟩. Then

X ≅ Y ≅W ≅ A.
• Let n = e1 + e2 +⋯+ em . Then ∣A∣ = pn , ∣G/Z(G)∣ = p3n , ∣G∣ = p3n+3e1 , and

mG(G) = p3n+6e1 .
• Let α, β, γ be isomorphisms from A to X , Y , W , respectively, such that xα−1

i = yβ−1

i =

wγ−1

i for all 1 ≤ i ≤ m.
• For a ∈ A, let aφ = ⟨aα , aβ , aγ⟩Z(G).
• For B ≤ A, let Bφ = ⟨Bα , Bβ , Bγ⟩Z(G) = ∏b∈B bφ .

The proof of Theorem 1.2 Assume that the type of A is (pe1 , pe2 , . . . , pem), where
e1 ≥ e2 ≥ ⋯ ≥ em . Let G = GA. We will prove CD(G) ≅ L(A) in six steps.

(1) G ∈ CD(G) and m∗(G) = p3n+6e1 .
By Theorem 3.2, Pi ∈ CD(Pi). Since G = Pi CG(Pi), by Lemma 2.3, Pi is contained

in the unique maximal member of CD(G). Hence, G is the unique maximal member
of CD(G) and m∗(G) = mG(G) = p3n+6e1 .

(2) For any a ∈ A, there exists a subgroup Ca of A such that CX(aβ) = CX(aγ) =
(Ca)α , CY(aα) = CY(aγ) = (Ca)β , and CW(aα) = CW(aβ) = (Ca)γ .

Notice that for x ∈ X, [x , aβ] = 1 if and only if [x , aγ] = 1. We have CX(aβ) =
CX(aγ). Let Ca = (CX(aβ))α−1

. Then CX(aβ) = CX(aγ) = (Ca)α . Notice that for
c ∈ A, [cα , aγ] = 1 if and only if [cβ , aγ] = 1. We have

c ∈ Ca ⇐⇒ cα ∈ CX(aγ) ⇐⇒ cβ ∈ CY(aγ).

It follows that CY(aγ) = (Ca)β . By the symmetry, the conclusions hold.
(3) CG(aφ) = (Ca)φ and aφ ∈ CD(G).
Suppose that a is of order pt . Then ∣aφ/Z(G)∣ = p3t . Since [aα , G] ≤ ⟨zpe1−t

1 , zpe1−t

3 ⟩,
the length of the conjugacy class of aα does not exceed p2t . Hence, ∣CG(aα)∣ ≥
p3n+3e1−2t and ∣CG(aα)/Z(G)∣ ≥ p3n−2t . Notice that

CG(aα)/Z(G) = XZ(G)/Z(G) × CY(aα)Z(G)/Z(G) × CW(aα)Z(G)/Z(G),

∣XZ(G)/Z(G)∣ = ∣X∣ = pn , and by (2),

∣Ca ∣ = ∣CY(aα)∣ = ∣CW(aα)∣ = ∣CY(aα)Z(G)/Z(G)∣ = ∣CW(aα)Z(G)/Z(G)∣.

We have ∣Ca ∣ ≥ pn−t . Hence, ∣(Ca)φ/Z(G)∣ ≥ p3n−3t . By (2), (Ca)φ ≤ CG(aφ). Hence,

∣aφ/Z(G)∣ ⋅ ∣CG(aφ)/Z(G)∣ ≥ ∣aφ/Z(G)∣ ⋅ ∣(Ca)
φ/Z(G)∣ ≥ p3n = ∣G/Z(G)∣.
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It follows that

mG(aφ) = ∣aφ ∣ ⋅ ∣CG(aφ)∣ ≥ ∣G∣ ⋅ ∣Z(G)∣ = m∗(G).

Thus, “ = ” holds, CG(aφ) = (Ca)φ , and aφ ∈ CD(G).
(4) For any B ≤ A, Bφ ∈ CD(G) and there exists a subgroup CB of A such that

CG(Bφ) = (CB)φ . Moreover, ∣B∣ ⋅ ∣CB ∣ = pn .
Let CB = ⋂b∈B Cb . Since Bφ = ∏b∈B bφ , Bφ ∈ CD(G) and

CG(Bφ) = ⋂
b∈B

CG(bφ) = ⋂
b∈B
(Cb)

φ = (CB)
φ .

Since ∣Bφ/Z(G)∣ = ∣B∣3 and ∣(CB)φ/Z(G)∣ = ∣CB ∣3, we have

∣B∣3 ⋅ ∣CB ∣
3 = ∣Bφ/Z(G)∣ ⋅ ∣(CB)

φ/Z(G)∣ = ∣G/Z(G)∣ = p3n .

Hence, ∣B∣ ⋅ ∣CB ∣ = pn .
(5) If K ∈ CD(G), then there exists a subgroup B of A such that K = Bφ .
Let H = CG(K). Then H ∈ CD(G) and K = CG(H). Let

B1 = {a ∈ A ∣ there exist y ∈ Y , w ∈W , and z ∈ Z(G) such that aα ywz ∈ H},

B2 = {a ∈ A ∣ there exist x ∈ X , w ∈W , and z ∈ Z(G) such that xaβwz ∈ H},

B3 = {a ∈ A ∣ there exist x ∈ X , y ∈ Y , and z ∈ Z(G) such that x yaγz ∈ H}.

Then B1, B2, and B3 are subgroups of A and ∣H/Z(G)∣ ≤ ∣B1∣ ⋅ ∣B2∣ ⋅ ∣B3∣. By (2),

CX(H) ≤ CX(Bβ
2 ) = (CB2)

α .

Hence, ∣CX(H)∣ ≤ ∣CB2 ∣. Similarly, ∣CY(H)∣ ≤ ∣CB3 ∣ and ∣CW(H)∣ ≤ ∣CB1 ∣. It follows
that

∣H/Z(G)∣ ⋅ ∣K/Z(G)∣ ≤ ∣B1∣ ⋅ ∣B2∣ ⋅ ∣B3∣ ⋅ ∣CB2 ∣ ⋅ ∣CB3 ∣ ⋅ ∣CB1 ∣ = p3n = ∣G/Z(G)∣.

Since H ∈ CD(G), “ = ” holds. Hence,

K = CG(H) = ⟨(CB2)
α , (CB3)

β , (CB1)
γ⟩Z(G)

and

CX(H) = (CB2)
α , CY(H) = (CB3)

β , and CW(H) = (CB1)
γ .

By the symmetry, we also have

CX(H) = (CB3)
α , CY(H) = (CB1)

β , and CW(H) = (CB2)
γ .

It follows that CB1 = CB2 = CB3 . Let B = CB1 . Then K = CG(H) = Bφ .
(6) CD(G) is isomorphic to L(A).
It is a direct result of (4) and (5). ∎

The proof of Theorem 1.3 Let A = A1 ×⋯× An , where A i is the Sylow p i -subgroup
of A. By Theorem 1.2, there exist finite groups Pi such that CD(Pi) is isomorphic to
L(A i). Let G = P1 ×⋯× Pn . By Theorem 2.2,

CD(G) = CD(P1) ×⋯ × CD(Pn) ≅ L(A1) ×⋯ ×L(An) = L(A). ∎
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