

Groups whose Chermak–Delgado lattice is a subgroup lattice of an abelian group

Lijia[n](https://orcid.org/0000-0001-9865-2557) An^o

Abstract. The Chermak–Delgado lattice of a finite group *G* is a self-dual sublattice of the subgroup lattice of *G*. In this paper, we prove that, for any finite abelian group *A*, there exists a finite group *G* such that the Chermak–Delgado lattice of *G* is a subgroup lattice of *A*.

1 Introduction

Suppose that *G* is a finite group, and *H* is a subgroup of *G*. The Chermak–Delgado measure of *H* (in *G*) is denoted by $m_G(H)$, and defined as $m_G(H) = |H| \cdot |C_G(H)|$. The maximal Chermak–Delgado measure of *G* is denoted by *m*∗(*G*), and defined as

$$
m^*(G) = \max\{m_G(H) \mid H \le G\}.
$$

Let

$$
\mathcal{CD}(G) = \{H \mid m_G(H) = m^*(G)\}.
$$

Then the set $CD(G)$ forms a sublattice of $\mathcal{L}(G)$ (the subgroup lattice of *G*), which is called the Chermak–Delgado lattice of *G*. It was first introduced by Chermak and Delgado [\[9\]](#page-6-0), and revisited by Isaacs [\[12\]](#page-6-1). In the last years, there has been a growing interest in understanding this lattice (see, e.g., [\[1](#page-6-2)[–11,](#page-6-3) [13–](#page-6-4)[17,](#page-6-5) [19–](#page-6-6)[22\]](#page-6-7)).

A Chermak–Delgado lattice is always self-dual. So the question arises: Which types of self-dual lattices can be Chermak–Delgado lattices of finite groups? In [\[5\]](#page-6-8), it is proved that, for any integer *n*, a chain of length *n* can be a Chermak–Delgado lattice of a finite *p*-group.

A quasi-antichain is a lattice consisting of a maximum, a minimum, and the atoms of the lattice. The width of a quasi-antichain is the number of atoms. For a positive integer $w \ge 3$, a quasi-antichain of width *w* is denoted by \mathcal{M}_w . In [\[6\]](#page-6-9), it was proved that \mathcal{M}_w can be a Chermak–Delgado lattice of a finite group if and only if $w = 1 + p^a$ for some positive integer *a* and some prime *p*.

An *m*-diamond is a lattice with subgroups in the configuration of an *m*-dimensional cube. A mixed *n*-string is a lattice with *n* components, adjoined end to end, so that the maximum of one component is identified with the minimum

Received by the editors January 22, 2022; revised June 13, 2022, accepted June 13, 2022.

Published online on Cambridge Core June 17, 2022.

This work was supported by NSFC (Grant No. 11971280).

AMS subject classification: **20D30**, 20D15.

Keywords: Chermak–Delgado lattice, subgroup lattice, finite *p*-groups.

of the other component. The following theorem gives more self-dual lattices which can be Chermak–Delgado lattices of finite groups.

Theorem 1.1 [\[4\]](#page-6-10) *If* L *is a Chermak–Delgado lattice of a finite p-group G such that both* $G/Z(G)$ *and* G' *are elementary abelian, then so are* \mathcal{L}^+ *and* \mathcal{L}^{++} *, where* \mathcal{L}^+ *is a mixed* 3*-string with center component isomorphic to* L *and the remaining components being m-diamonds, and* L++ *is a mixed* 3*-string with center component isomorphic to* \mathcal{L} and the remaining components being lattice isomorphic to \mathcal{M}_{p+1} .

By [\[18,](#page-6-11) Theorem 8.1.4], $\mathcal{L}(A)$ is always self-dual for any finite abelian group A. If A is a cyclic *p*-group, then $\mathcal{L}(A)$ is chain, and hence can be a Chermak–Delgado lattice of a finite *p*-group. In [\[2\]](#page-6-12), it is proved that, if *A* is an elementary abelian *p*-group, then $\mathcal{L}(A)$ can be a Chermak–Delgado lattice of a finite *p*-group. In this paper, we prove that, for any finite abelian group $A, \mathcal{L}(A)$ can be a Chermak–Delgado lattice of a finite group. The main results are the following theorems.

Theorem 1.2 *For any finite abelian p-group A, there exists a finite p-group G such that* $CD(G)$ *is isomorphic to* $\mathcal{L}(A)$ *.*

Theorem 1.3 *For any finite abelian group A, there exists a finite group G such that* $CD(G)$ *is isomorphic to* $\mathcal{L}(A)$ *.*

2 Preliminary

We gather next some basic properties of the Chermak–Delgado lattice, which will be used often throughout the paper without further reference.

Theorem 2.1 [\[9\]](#page-6-0) Suppose that G is a finite group and $H, K \in \mathcal{CD}(G)$.

- (1) ⟨*H*, *K*⟩ = *HK. Hence, a Chermak–Delgado lattice is modular.*
- (2) $C_G(H \cap K) = C_G(H)C_G(K)$.
- (3) $C_G(H) \in \mathcal{CD}(G)$ and $C_G(C_G(H)) = H$. Hence, a Chermak–Delgado lattice is *self-dual.*
- (4) *Let M be the maximal member of* CD(*G*)*. Then M is characteristic in G and* $CD(M) = CD(G)$.
- (5) *The minimal member of* $CD(G)$ *is characteristic, abelian, and contains* $Z(G)$ *.*

We also need the following lemmas.

Theorem 2.2 [\[7,](#page-6-13) Theorem 2.9] For any finite groups G and H, $CD(G \times H) =$ $CD(G) \times CD(H)$.

Lemma 2.3 [\[2,](#page-6-12) Lemma 3.3] Suppose that G is a finite group and $H \le G$ such that $G = HC_G(H)$ *. If* $H \in \mathcal{CD}(H)$ *, then* H is contained in the unique maximal member of $CD(G)$.

Lemma 2.4 [\[20,](#page-6-14) Lemma 5] Let G be a finite p-group. Then $CD(G) = [G/Z(G)]$ if *and only if the interval* $[G/Z(G)]$ *of* $\mathcal{L}(G)$ *is modular and* G' *is cyclic.*

In this section, we prove that, for any finite abelian group A, $\mathcal{L}(A \times A)$ can be a Chermak–Delgado lattice of a finite group. Although this result can be deduced from our main theorem, the proof is independent and short.

Lemma 2.5 *Let A be a finite abelian p-group. Then there exists a finite p-group G such that* $CD(G)$ *is isomorphic to* $\mathcal{L}(A \times A)$ *.*

Proof Assume that the type of *A* is $(p^{e_1}, p^{e_2}, \ldots, p^{e_m})$, where $e_1 \geq e_2 \geq \cdots \geq e_m$. Let *G* be the group generated by 2*m* elements $x_1, \ldots, x_m, y_1, \ldots, y_m$ subject to the defining relations:

$$
[x_i, x_j] = [y_i, y_j] = [x_i, y_j] = 1 \text{ if } i \neq j,
$$

$$
x_i^{p^{e_i}} = y_i^{p^{e_i}} = z^{p^{e_1}} = 1, [x_i, y_i] = z^{p^{e_1 - e_i}}, [z, x_i] = [z, y_i] = 1 \text{ for } 1 \leq i \leq m.
$$

Let $P_i = \langle x_i, y_i, z \rangle$. Then $Z(P_i) = \langle z \rangle$. Thus, *G* is also the central product of P_i . It is easy to see that $G' = Z(G) = \langle z \rangle$ and $G/Z(G) \cong A \times A$. By Lemma [2.4,](#page-1-0) $CD(G)$ is just the interval $[G/Z(G)]$. Hence, $CD(G) \cong \mathcal{L}(G/Z(G)) \cong \mathcal{L}(A \times A)$.

Theorem 2.6 *For any finite abelian group A, there exists a finite group G such that* $CD(G)$ *is isomorphic to* $\mathcal{L}(A \times A)$ *.*

Proof Let $A = A_1 \times \cdots \times A_n$, where A_i is the Sylow p_i -subgroup of A. By Lemma [2.5,](#page-2-0) there exist finite group P_i such that $CD(P_i)$ is isomorphic to $\mathcal{L}(A_i \times A_i)$. Let $G = P_1 \times \cdots \times P_n$. By Theorem [2.2,](#page-1-1)

$$
\mathcal{CD}(G) = \mathcal{CD}(P_1) \times \cdots \times \mathcal{CD}(P_n)
$$

\n
$$
\cong \mathcal{L}(A_1 \times A_1) \times \cdots \times \mathcal{L}(A_n \times A_n)
$$

\n
$$
= \mathcal{L}(A \times A).
$$

3 The groups $G(p, e)$

For any prime *p* and an integer $e \geq 1$, we use $G(p, e)$ to denote the finite *p*-group generated by three elements *x*, *y*,*w* subject to the following defining relations:

\n- \n
$$
[x, y] = z_1, [y, w] = z_2, [w, x] = z_3,
$$
\n
\n- \n $x^{p^e} = y^{p^e} = w^{p^e} = z_1^{p^e} = z_2^{p^e} = z_3^{p^e} = 1,$ \n and\n
\n- \n $[z_i, x] = [z_i, y] = [z_i, w] = 1 \text{ for all } i = 1, 2, 3.$ \n
\n

In this section, we prove that the Chermak–Delgado lattice of $G(p, e)$ is isomorphic to a subgroup lattice of a cyclic group of order *p^e* . This group will be used to construct an example in the proof of Theorem [1.2.](#page-1-2) Let $G = G(p, e)$. Then it is easy to check the following results:

•
$$
d(G) = 3
$$
, exp $(G) = p^e$, $Z(G) = G' = \langle z_1, z_2, z_3 \rangle$, and

•
$$
|Z(G)| = p^{3e}
$$
, $|G/Z(G)| = p^{3e}$, $m_G(G) = m_G(Z(G)) = p^{9e}$.

Lemma 3.1 Assume that $G = G(p, e)$ and $Z(G) < H < G$.

- (1) *If* $H/Z(G)$ *is cyclic, then* $m_G(H) < m_G(G)$ *.*
- (2) If $H/Z(G)$ *is not cyclic, then* $m_G(H) \leq m_G(G)$ *, where* " = " *holds if and only if the type of H*/*Z*(*G*) *is* ($p^{e_1}, p^{e_1}, p^{e_1}$) *for some* $1 \le e_1 < e$.

Proof (1) Let $H = \langle h, Z(G) \rangle$ and $H/Z(G)$ be of order p^{e_1} . Then we may let
 $h = x^{k_1 p^{e-e_1}} y^{k_2 p^{e-e_1}} w^{k_3 p^{e-e_1}}$,

$$
h = x^{k_1 p^{e-e_1}} y^{k_2 p^{e-e_1}} w^{k_3 p^{e-e_1}}
$$

,

where $p + k_i$ for some *i*. Without loss of generality, we may assume that $p + k_i$. where $p + k_i$ for some *i*. Without loss of generality, we may assume that $p + k_1$.
Replacing *x* with $x^{k_1} y^{k_2} w^{k_3}$, we have $h = x^{p^{e-e_1}}$. It is easy to check that $C_G(H)$ = $\langle x, y^{p^{e_1}}, w^{p^{e_1}} \rangle Z(G)$. Since $|C_G(H)/Z(G)| = p^{3e-2e_1}$,

$$
|H/Z(G)| \cdot |C_G(H)/Z(G)| = p^{3e-e_1} < p^{3e} = |G/Z(G)|.
$$

 $Hence, m_G(H) = |H| \cdot |C_G(H)| < |G| \cdot |Z(G)| = m_G(G).$

(2) Let $H = \langle h_1, h_2, h_3 \rangle Z(G)$ and $H/Z(G)$ be of type $(p^{e_1}, p^{e_2}, p^{e_3})$, where $e_1 \ge e_2 \ge e_3 \ge 0$. Since $H/Z(G)$ is not cyclic, $e_2 \ge 1$. By a similar argument as (1), (2) Let $H = \{h_1, h_2, h_3\} \ge \{C\}$ and $H/Z(G)$
 $e_1 \ge e_2 \ge e_3 \ge 0$. Since $H/Z(G)$ is not cyclic, e_1

we may assume that $h_1 = x^{p^{e-e_1}}$. We may let
 $h_2 = x^{k_1 p^{e-e_2}} y^{k_2 p^{e-e_2}}$

$$
h_2 = x^{k_1} p^{e-e_2} y^{k_2} p^{e-e_2} w^{k_3} p^{e-e_2}
$$
,

where $p \nmid k_i$ for some $2 \le i \le 3$. Without loss of generality, we may assume that *p* $\not\vdash k_i$ for some $2 \le i \le 3$. Without loss of generality, we may assum $p \nmid k_2$. Replacing *y* with $x^{k_1}y^{k_2}w^{k_3}$, we have $h_2 = y^{p^{e-e_2}}$. It is easy to check that

$$
C_G(H) = C_G(h_1) \cap C_G(h_2) = \langle x^{p^{e_2}}, y^{p^{e_1}}, w^{p^{e_1}} \rangle Z(G).
$$

Since $|H/Z(G)| = p^{e_1+e_2+e_3}$ and $|C_G(H)/Z(G)| = p^{3e-e_2-2e_1}$,

$$
|H/Z(G)|\cdot |C_G(H)/Z(G)|=p^{3e+e_3-e_1}\le p^{3e}=|G/Z(G)|,
$$

where " = " holds if and only if $e_3 = e_1$. Hence, $m_G(H) = |H| \cdot |C_G(H)| \le |G| \cdot |Z(G)| =$ $m_G(G)$, where " = " holds if and only if $e_1 = e_2 = e_3$.

Theorem 3.2 Let $G = G(p, e)$. Then $G \in \mathcal{CD}(G)$ and $\mathcal{CD}(G)$ is a chain of length e. **Theorem 3.2** Let $G = G(p, e)$. Then $G \in CD(G)$ and $CD(G)$ is a chain of length e.
Moreover, $H \in CD(G)$ if and only if $H = \langle x^{p^{e-e_1}}, y^{p^{e-e_1}} \rangle Z(G)$ for some $0 \leq e_1 \leq e$.

Proof By Lemma [3.1,](#page-3-0) $m^*(G) = m_G(G) = p^{9e}$, and $H \in \mathcal{CD}(G)$ if and only if the **Proof** by Lemma 5.1, $m(G) = m_G(G) = p$, and $H \in CD(G)$ if and only if the type of $H/Z(G)$ is $(p^{e_1}, p^{e_1}, p^{e_1})$ for some $0 \le e_1 \le e$. Hence, all elements of $CD(G)$ are $\langle x^{p^{e-e_1}}, y^{p^{e-e_1}}, w^{p^{e-e_1}} \rangle Z(G)$ where $0 \le e_1 \le e$.

4 The proof of main results

For any prime *p* and an abelian *p*-group *A* with type $(p^{e_1}, p^{e_2}, \ldots, p^{e_m})$, where $e_1 \geq e_2 \geq \cdots \geq e_m$, we use G_A to denote the finite *p*-group generated by 3*m* elements $x_1, \ldots, x_m, y_1, \ldots, y_m, w_1, \ldots, w_m$ subject to the following defining relations:

- $x_i^{p^{e_i}} = y_i^{p^{e_i}} = w_i^{p^{e_i}} = z_1^{p^{e_1}} = z_2^{p^{e_1}} = z_3^{p^{e_1}} = 1$ for $1 \le i \le m$,
- $[x_i, x_j] = [y_i, y_j] = [w_i, w_j] = [x_i, y_j] = [y_i, w_j] = [w_i, x_j] = 1$ if $i \neq j$,

Chermak–Delgado lattice is a subgroup lattice of an abelian group 447

 \bullet [x_i , y_i] = $z_1^{p^{e_1 - e_i}}$ $\begin{bmatrix} y_i \\ y_i \end{bmatrix}$ = *z p***e1**−**ei** $\binom{p}{2}$, $[w_i, x_i] = z$ *p***e1**−**ei** \int_3^p for $1 \le i \le m$, and • $[z_i, x_i] = [z_i, y_i] = [z_i, w_i] = 1$ for $1 \le i \le m$ and $j = 1, 2, 3$.

In this section, we require the following notation and straightforward results for a finite *p*-group $G = G_A$.

- $Z(G) = G' = \langle z_1, z_2, z_3 \rangle$ is of order p^{3e_1} .
- Let $P_i = \langle x_i, y_i, w_i \rangle$ for $1 \le i \le m$. Then $P_i \cong G(p, e_i)$, $|P_i Z(G)/Z(G)| = p^{3e_i}$, and *G* is the central product $P_1 * P_2 * \cdots * P_m$.
- Let $X = \langle x_1, x_2, \ldots, x_m \rangle$, $Y = \langle y_1, y_2, \ldots, y_m \rangle$, and $W = \langle w_1, w_2, \ldots, w_m \rangle$. Then $X \cong Y \cong W \cong A$.
- Let $n = e_1 + e_2 + \dots + e_m$. Then $|A| = p^n$, $|G/Z(G)| = p^{3n}$, $|G| = p^{3n+3e_1}$, and $m_G(G) = p^{3n+6e_1}$. • Let $n = e_1 + e_2 + \cdots + e_m$. Then $|A| = p$, $|G/Z(G)| = p$, $|G| = p$
- Let α , β , γ be isomorphisms from *A* to *X*, *Y*, *W*, respectively, such that $x_i^{\alpha^{-1}} = y_i^{\beta^{-1}} = w_i^{\gamma^{-1}}$ for all $1 \le i \le m$. $w_i^{y^{-1}}$ for all $1 \le i \le m$.
- For $a \in A$, let $a^{\varphi} = \langle a^{\alpha}, a^{\beta}, a^{\gamma} \rangle Z(G)$.
- For $B \le A$, let $B^{\varphi} = \langle B^{\alpha}, B^{\beta}, B^{\gamma} \rangle Z(G) = \prod_{b \in B} b^{\varphi}$.

The proof of Theorem 1.2 Assume that the type of *A* is $(p^{e_1}, p^{e_2}, \ldots, p^{e_m})$, where e_1 ≥ e_2 ≥ … ≥ e_m . Let *G* = *G_A*. We will prove $CD(G) \cong \mathcal{L}(A)$ in six steps.

(1) *G* ∈ $CD(G)$ and $m^*(G) = p^{3n+6e_1}$.

By Theorem [3.2,](#page-3-1) $P_i \in CD(P_i)$. Since $G = P_i C_G(P_i)$, by Lemma [2.3,](#page-1-3) P_i is contained in the unique maximal member of $CD(G)$. Hence, G is the unique maximal member of $CD(G)$ and $m^*(G) = m_G(G) = p^{3n+6e_1}$.

(2) For any $a \in A$, there exists a subgroup C_a of A such that $C_X(a^\beta) = C_X(a^\gamma) = C_A(a^\gamma)$ $(C_a)^{\alpha}$, $C_Y(a^{\alpha}) = C_Y(a^{\gamma}) = (C_a)^{\beta}$, and $C_W(a^{\alpha}) = C_W(a^{\beta}) = (C_a)^{\gamma}$.

(C_a), C_Y(a) = C_Y(a') = (C_a)', and C_W(a) = C_W(a') = (C_a)'.

Notice that for $x \in X$, $[x, a^{\beta}] = 1$ if and only if $[x, a^{\gamma}] = 1$. We have $C_X(a^{\beta}) = C_X(a^{\gamma})$.

Let $C_a = (C_X(a^{\beta}))^{\alpha^{-1}}$. Then $C_X(a^{\beta}) = C_X(a^{\gamma}) = (C_a)^{\alpha}$ $C_X(a^{\gamma})$. Let $C_a = (C_X(a^{\beta}))^{\alpha^{-1}}$. Then $C_X(a^{\beta}) = C_X(a^{\gamma}) = (C_a)^{\alpha}$. Notice that for $c \in A$, $[c^{\alpha}, a^{\gamma}] = 1$ if and only if $[c^{\beta}, a^{\gamma}] = 1$. We have

$$
c \in C_a \Longleftrightarrow c^{\alpha} \in C_X(a^{\gamma}) \Longleftrightarrow c^{\beta} \in C_Y(a^{\gamma}).
$$

It follows that $C_Y(a^{\gamma}) = (C_a)^{\beta}$. By the symmetry, the conclusions hold.

(3) $C_G(a^{\varphi}) = (C_a)^{\varphi}$ and $a^{\varphi} \in \mathcal{CD}(G)$.

Suppose that *a* is of order *p^t*. Then $|a^{\varphi}|Z(G)| = p^{3t}$. Since $[a^{\alpha}, G] \leq \langle z_1^{p^{e_1-t}} \rangle$ $\begin{matrix} p \\ 1 \end{matrix}$, z $p^{e_1 - t}$ $\frac{p}{3}$, the length of the conjugacy class of a^{α} does not exceed p^{2t} . Hence, $|C_G(a^{\alpha})| \ge$ *p*^{3*n*+3*e*₁−2*t*} and $|C_G(a^{\alpha})/Z(G)|$ ≥ *p*^{3*n*−2*t*}. Notice that

$$
C_G(a^{\alpha})/Z(G) = XZ(G)/Z(G) \times C_Y(a^{\alpha})Z(G)/Z(G) \times C_W(a^{\alpha})Z(G)/Z(G),
$$

 $|XZ(G)/Z(G)| = |X| = p^n$, and by (2),

$$
|C_a| = |C_Y(a^{\alpha})| = |C_W(a^{\alpha})| = |C_Y(a^{\alpha})Z(G)/Z(G)| = |C_W(a^{\alpha})Z(G)/Z(G)|.
$$

We have $|C_a| \ge p^{n-t}$. Hence, $|(C_a)^{\varphi}/Z(G)| \ge p^{3n-3t}$. By (2), $(C_a)^{\varphi} \le C_G(a^{\varphi})$. Hence,

$$
|a^{\varphi}/Z(G)| \cdot |C_G(a^{\varphi})/Z(G)| \geq |a^{\varphi}/Z(G)| \cdot |(C_a)^{\varphi}/Z(G)| \geq p^{3n} = |G/Z(G)|.
$$

It follows that

$$
m_G(a^{\varphi}) = |a^{\varphi}| \cdot |C_G(a^{\varphi})| \ge |G| \cdot |Z(G)| = m^*(G).
$$

Thus, " = " holds, $C_G(a^{\varphi}) = (C_a)^{\varphi}$, and $a^{\varphi} \in \mathcal{CD}(G)$.

(4) For any $B \le A$, $B^{\varphi} \in \mathcal{CD}(G)$ and there exists a subgroup C_B of A such that $C_G(B^{\varphi}) = (C_B)^{\varphi}$. Moreover, $|B| \cdot |C_B| = p^n$.

Let $C_B = \bigcap_{b \in B} C_b$. Since $B^{\varphi} = \prod_{b \in B} b^{\varphi}, B^{\varphi} \in \mathcal{CD}(G)$ and

$$
C_G\big(B^\varphi\big)=\bigcap_{b\in B}C_G\big(b^\varphi\big)=\bigcap_{b\in B}\big(C_b\big)^\varphi=\big(C_B\big)^\varphi.
$$

Since $|B^{\varphi}/Z(G)| = |B|^3$ and $|(C_B)^{\varphi}/Z(G)| = |C_B|^3$, we have

$$
|B|^3 \cdot |C_B|^3 = |B^{\varphi}/Z(G)| \cdot |(C_B)^{\varphi}/Z(G)| = |G/Z(G)| = p^{3n}.
$$

Hence, $|B| \cdot |C_B| = p^n$.

(5) If $K \in \mathcal{CD}(G)$, then there exists a subgroup *B* of *A* such that $K = B^{\varphi}$. Let $H = C_G(K)$. Then $H \in \mathcal{CD}(G)$ and $K = C_G(H)$. Let

*B*₁ = {*a* ∈ *A* | there exist *y* ∈ *Y*, *w* ∈ *W*, and *z* ∈ *Z*(*G*) such that *a^α ywz* ∈ *H*},

$$
B_2 = \{a \in A \mid \text{there exist } x \in X, w \in W, \text{ and } z \in Z(G) \text{ such that } xa^{\beta} wz \in H \},
$$

*B*₃ = {*a* ∈ *A* | there exist *x* ∈ *X*, *y* ∈ *Y*, and *z* ∈ *Z*(*G*) such that *xya^{<i>γ*} *z* ∈ *H*}.

Then B_1 , B_2 , and B_3 are subgroups of *A* and $|H/Z(G)| \leq |B_1| \cdot |B_2| \cdot |B_3|$. By (2),

$$
C_X(H) \leq C_X(B_2^{\beta}) = (C_{B_2})^{\alpha}.
$$

Hence, $|C_X(H)| \leq |C_{B_2}|$. Similarly, $|C_Y(H)| \leq |C_{B_3}|$ and $|C_W(H)| \leq |C_{B_1}|$. It follows that

$$
|H/Z(G)| \cdot |K/Z(G)| \le |B_1| \cdot |B_2| \cdot |B_3| \cdot |C_{B_2}| \cdot |C_{B_3}| \cdot |C_{B_1}| = p^{3n} = |G/Z(G)|.
$$

Since *H* ∈ $CD(G)$, " = " holds. Hence,

$$
K = C_G(H) = \langle (C_{B_2})^{\alpha}, (C_{B_3})^{\beta}, (C_{B_1})^{\gamma} \rangle Z(G)
$$

and

$$
C_X(H) = (C_{B_2})^{\alpha}, C_Y(H) = (C_{B_3})^{\beta}, \text{ and } C_W(H) = (C_{B_1})^{\gamma}.
$$

By the symmetry, we also have

$$
C_X(H) = (C_{B_3})^{\alpha}
$$
, $C_Y(H) = (C_{B_1})^{\beta}$, and $C_W(H) = (C_{B_2})^{\gamma}$.

It follows that $C_{B_1} = C_{B_2} = C_{B_3}$. Let $B = C_{B_1}$. Then $K = C_G(H) = B^{\varphi}$. (6) $CD(G)$ is isomorphic to $\mathcal{L}(A)$.

It is a direct result of (4) and (5) .

The proof of Theorem 1.3 Let $A = A_1 \times \cdots \times A_n$, where A_i is the Sylow p_i -subgroup of *A*. By Theorem [1.2,](#page-1-2) there exist finite groups P_i such that $CD(P_i)$ is isomorphic to $\mathcal{L}(A_i)$. Let $G = P_1 \times \cdots \times P_n$. By Theorem [2.2,](#page-1-1)

$$
\mathcal{CD}(G) = \mathcal{CD}(P_1) \times \cdots \times \mathcal{CD}(P_n) \cong \mathcal{L}(A_1) \times \cdots \times \mathcal{L}(A_n) = \mathcal{L}(A).
$$

Acknowledgment I cordially thank the referee for detailed reading and helpful comments, which helped me to improve the whole paper considerably.

References

- [1] L. An, *Groups whose Chermak–Delgado lattice is a quasi-antichain*. J. Group Theory **22**(2019), no. 3, 529–544.
- [2] L. An, *Groups whose Chermak–Delgado lattice is a subgroup lattice of an elementary abelian p-group*. Comm. Algebra **50**(2022), no.7, 2846–2853.
- [3] L. An, *Twisted centrally large subgroups of finite groups*. J. Algebra **604**(2022), 87–106.
- [4] L. An, J. Brennan, H. Qu, and E. Wilcox, *Chermak–Delgado lattice extension theorems*. Comm. Algebra **43**(2015), no. 5, 2201–2213.
- [5] B. Brewster, P. Hauck, and E. Wilcox, *Groups whose Chermak–Delgado lattice is a chain*. J. Group Theory **17**(2014), no. 2, 253–265.
- [6] B. Brewster, P. Hauck, and E. Wilcox, *Quasi-antichain Chermak–Delgado lattices of finite groups*. Arch. Math. **103**(2014), no. 4, 301–311.
- [7] B. Brewster and E. Wilcox, *Some groups with computable Chermak–Delgado lattices*. Bull. Aust. Math. Soc. **86**(2012), no. 1, 29–40.
- [8] E. Brush, J. Dietz, K. Johnson-Tesch, and B. Power, *On the Chermak–Delgado lattices of split metacyclic p-groups*. Involve **9**(2016), no. 5, 765–782.
- [9] A. Chermak and A. Delgado, *A measuring argument for finite groups*. Proc. Amer. Math. Soc. **107**(1989), no. 4, 907–914.
- [10] W. Cocke, *Subnormality and the Chermak–Delgado lattice*. J. Algebra Appl. **19**(2020), no. 8, 2050141, 7 pp.
- [11] G. Glauberman, *Centrally large subgroups of finite p-groups*. J. Algebra **300**(2006), 480–508.
- [12] I. M. Isaacs, *Finite group theory*, American Mathematical Society, Providence, RI, 2008.
- [13] R. McCulloch, *Chermak–Delgado simple groups*. Comm. Algebra **45**(2017), no. 3, 983–991.
- [14] R. McCulloch, *Finite groups with a trivial Chermak–Delgado subgroup*. J. Group Theory **21**(2018), no. 3, 449–461.
- [15] R. McCulloch and M. Tǎrnǎuceanu, *Two classes of finite groups whose Chermak–Delgado lattice is a chain of length zero*. Comm. Algebra **46**(2018), no. 7, 3092–3096.
- [16] R. McCulloch and M. Tǎrnǎuceanu, On the Chermak–Delgado lattice of a finite group. Comm. Algebra **48**(2020), no. 1, 37–44.
- [17] A. Morresi Zuccari, V. Russo, and C. M. Scoppola, *The Chermak–Delgado measure in finite p-groups*. J. Algebra **502**(2018), 262–276.
- [18] R. Schmidt, *Subgroup lattices of groups*, Walter de Gruyter, Berlin, New York, 1994.
- [19] M. Tǎrnǎuceanu, *The Chermak–Delgado lattice of ZM-groups*. Results Math. 72(2017), no. 4, 1849–1855.
- [20] M. Tărnăuceanu, A note on the Chermak–Delgado lattice of a finite group. Comm. Algebra. **46**(2018), no. 1, 201–204.
- [21] M. Tărnăuceanu, *Finite groups with a certain number of values of the Chermak–Delgado measure*. J. Algebra Appl. **19** (2020), no.5, 2050088, 7 pp.
- [22] E. Wilcox, *Exploring the Chermak–Delgado lattice*. Math. Magazine **89**(2016), no. 1, 38–44.

Department of Mathematics, Shanxi Normal University, Linfen, Shanxi 041004, P. R. China e-mail: anlj@sxnu.edu.cn