

Groups whose Chermak–Delgado lattice is a subgroup lattice of an abelian group

Lijian An🕩

Abstract. The Chermak–Delgado lattice of a finite group *G* is a self-dual sublattice of the subgroup lattice of *G*. In this paper, we prove that, for any finite abelian group *A*, there exists a finite group *G* such that the Chermak–Delgado lattice of *G* is a subgroup lattice of *A*.

1 Introduction

Suppose that *G* is a finite group, and *H* is a subgroup of *G*. The Chermak–Delgado measure of *H* (in *G*) is denoted by $m_G(H)$, and defined as $m_G(H) = |H| \cdot |C_G(H)|$. The maximal Chermak–Delgado measure of *G* is denoted by $m^*(G)$, and defined as

$$m^*(G) = \max\{m_G(H) \mid H \le G\}.$$

Let

$$\mathcal{CD}(G) = \{H \mid m_G(H) = m^*(G)\}.$$

Then the set CD(G) forms a sublattice of $\mathcal{L}(G)$ (the subgroup lattice of *G*), which is called the Chermak–Delgado lattice of *G*. It was first introduced by Chermak and Delgado [9], and revisited by Isaacs [12]. In the last years, there has been a growing interest in understanding this lattice (see, e.g., [1–11, 13–17, 19–22]).

A Chermak–Delgado lattice is always self-dual. So the question arises: Which types of self-dual lattices can be Chermak–Delgado lattices of finite groups? In [5], it is proved that, for any integer n, a chain of length n can be a Chermak–Delgado lattice of a finite p-group.

A quasi-antichain is a lattice consisting of a maximum, a minimum, and the atoms of the lattice. The width of a quasi-antichain is the number of atoms. For a positive integer $w \ge 3$, a quasi-antichain of width w is denoted by \mathcal{M}_w . In [6], it was proved that \mathcal{M}_w can be a Chermak–Delgado lattice of a finite group if and only if $w = 1 + p^a$ for some positive integer a and some prime p.

An *m*-diamond is a lattice with subgroups in the configuration of an *m*-dimensional cube. A mixed *n*-string is a lattice with *n* components, adjoined end to end, so that the maximum of one component is identified with the minimum

Received by the editors January 22, 2022; revised June 13, 2022, accepted June 13, 2022.

Published online on Cambridge Core June 17, 2022.

This work was supported by NSFC (Grant No. 11971280).

AMS subject classification: 20D30, 20D15.

Keywords: Chermak–Delgado lattice, subgroup lattice, finite p-groups.

of the other component. The following theorem gives more self-dual lattices which can be Chermak–Delgado lattices of finite groups.

Theorem 1.1 [4] If \mathcal{L} is a Chermak–Delgado lattice of a finite p-group G such that both G/Z(G) and G' are elementary abelian, then so are \mathcal{L}^+ and \mathcal{L}^{++} , where \mathcal{L}^+ is a mixed 3-string with center component isomorphic to \mathcal{L} and the remaining components being m-diamonds, and \mathcal{L}^{++} is a mixed 3-string with center component isomorphic to \mathcal{L} and the remaining components being lattice isomorphic to \mathcal{M}_{p+1} .

By [18, Theorem 8.1.4], $\mathcal{L}(A)$ is always self-dual for any finite abelian group A. If A is a cyclic *p*-group, then $\mathcal{L}(A)$ is chain, and hence can be a Chermak–Delgado lattice of a finite *p*-group. In [2], it is proved that, if A is an elementary abelian *p*-group, then $\mathcal{L}(A)$ can be a Chermak–Delgado lattice of a finite *p*-group. In this paper, we prove that, for any finite abelian group $A, \mathcal{L}(A)$ can be a Chermak–Delgado lattice of a finite *p*-group. In this paper, we prove that, for any finite abelian group $A, \mathcal{L}(A)$ can be a Chermak–Delgado lattice of a finite group. The main results are the following theorems.

Theorem 1.2 For any finite abelian p-group A, there exists a finite p-group G such that CD(G) is isomorphic to $\mathcal{L}(A)$.

Theorem 1.3 For any finite abelian group A, there exists a finite group G such that CD(G) is isomorphic to $\mathcal{L}(A)$.

2 Preliminary

We gather next some basic properties of the Chermak–Delgado lattice, which will be used often throughout the paper without further reference.

Theorem 2.1 [9] Suppose that G is a finite group and $H, K \in CD(G)$.

- (1) $\langle H, K \rangle = HK$. Hence, a Chermak–Delgado lattice is modular.
- (2) $C_G(H \cap K) = C_G(H)C_G(K).$
- (3) $C_G(H) \in CD(G)$ and $C_G(C_G(H)) = H$. Hence, a Chermak–Delgado lattice is self-dual.
- (4) Let M be the maximal member of CD(G). Then M is characteristic in G and CD(M) = CD(G).
- (5) The minimal member of CD(G) is characteristic, abelian, and contains Z(G).

We also need the following lemmas.

Theorem 2.2 [7, Theorem 2.9] For any finite groups G and H, $CD(G \times H) = CD(G) \times CD(H)$.

Lemma 2.3 [2, Lemma 3.3] Suppose that G is a finite group and $H \leq G$ such that $G = HC_G(H)$. If $H \in CD(H)$, then H is contained in the unique maximal member of CD(G).

Lemma 2.4 [20, Lemma 5] *Let G be a finite p-group. Then* CD(G) = [G/Z(G)] *if and only if the interval* [G/Z(G)] *of* $\mathcal{L}(G)$ *is modular and* G' *is cyclic.*

In this section, we prove that, for any finite abelian group A, $\mathcal{L}(A \times A)$ can be a Chermak–Delgado lattice of a finite group. Although this result can be deduced from our main theorem, the proof is independent and short.

Lemma 2.5 Let A be a finite abelian p-group. Then there exists a finite p-group G such that CD(G) is isomorphic to $\mathcal{L}(A \times A)$.

Proof Assume that the type of *A* is $(p^{e_1}, p^{e_2}, ..., p^{e_m})$, where $e_1 \ge e_2 \ge \cdots \ge e_m$. Let *G* be the group generated by 2m elements $x_1, ..., x_m, y_1, ..., y_m$ subject to the defining relations:

$$[x_i, x_j] = [y_i, y_j] = [x_i, y_j] = 1 \text{ if } i \neq j,$$

$$x_i^{p^{e_i}} = y_i^{p^{e_i}} = z^{p^{e_1}} = 1, [x_i, y_i] = z^{p^{e_1 - e_i}}, [z, x_i] = [z, y_i] = 1 \text{ for } 1 \le i \le m.$$

Let $P_i = \langle x_i, y_i, z \rangle$. Then $Z(P_i) = \langle z \rangle$. Thus, *G* is also the central product of P_i . It is easy to see that $G' = Z(G) = \langle z \rangle$ and $G/Z(G) \cong A \times A$. By Lemma 2.4, $\mathcal{CD}(G)$ is just the interval [G/Z(G)]. Hence, $\mathcal{CD}(G) \cong \mathcal{L}(G/Z(G)) \cong \mathcal{L}(A \times A)$.

Theorem 2.6 For any finite abelian group A, there exists a finite group G such that CD(G) is isomorphic to $\mathcal{L}(A \times A)$.

Proof Let $A = A_1 \times \cdots \times A_n$, where A_i is the Sylow p_i -subgroup of A. By Lemma 2.5, there exist finite group P_i such that $CD(P_i)$ is isomorphic to $\mathcal{L}(A_i \times A_i)$. Let $G = P_1 \times \cdots \times P_n$. By Theorem 2.2,

$$\mathcal{CD}(G) = \mathcal{CD}(P_1) \times \cdots \times \mathcal{CD}(P_n)$$
$$\cong \mathcal{L}(A_1 \times A_1) \times \cdots \times \mathcal{L}(A_n \times A_n)$$
$$= \mathcal{L}(A \times A).$$

3 The groups G(p, e)

For any prime *p* and an integer $e \ge 1$, we use G(p, e) to denote the finite *p*-group generated by three elements *x*, *y*, *w* subject to the following defining relations:

•
$$[x, y] = z_1, [y, w] = z_2, [w, x] = z_3,$$

• $x^{p^e} = y^{p^e} = w^{p^e} = z_1^{p^e} = z_2^{p^e} = z_3^{p^e} = 1, \text{ and}$
• $[z_i, x] = [z_i, y] = [z_i, w] = 1 \text{ for all } i = 1, 2, 3.$

In this section, we prove that the Chermak–Delgado lattice of G(p, e) is isomorphic to a subgroup lattice of a cyclic group of order p^e . This group will be used to construct an example in the proof of Theorem 1.2. Let G = G(p, e). Then it is easy to check the following results:

•
$$d(G) = 3$$
, $\exp(G) = p^e$, $Z(G) = G' = (z_1, z_2, z_3)$, and

•
$$|Z(G)| = p^{3e}, |G/Z(G)| = p^{3e}, m_G(G) = m_G(Z(G)) = p^{9e}.$$

Lemma 3.1 Assume that G = G(p, e) and Z(G) < H < G.

- (1) If H/Z(G) is cyclic, then $m_G(H) < m_G(G)$.
- (2) If H/Z(G) is not cyclic, then $m_G(H) \le m_G(G)$, where " = " holds if and only if the type of H/Z(G) is $(p^{e_1}, p^{e_1}, p^{e_1})$ for some $1 \le e_1 < e$.

(1) Let $H = \langle h, Z(G) \rangle$ and H/Z(G) be of order p^{e_1} . Then we may let Proof

$$h = x^{k_1 p^{e-e_1}} y^{k_2 p^{e-e_1}} w^{k_3 p^{e-e_1}}$$

where $p + k_i$ for some *i*. Without loss of generality, we may assume that $p + k_1$. Replacing x with $x^{k_1}y^{k_2}w^{k_3}$, we have $h = x^{p^{e^{-e_1}}}$. It is easy to check that $C_G(H) =$ $\langle x, y^{p^{e_1}}, w^{p^{e_1}} \rangle Z(G)$. Since $|C_G(H)/Z(G)| = p^{3e-2e_1}$,

$$|H/Z(G)| \cdot |C_G(H)/Z(G)| = p^{3e-e_1} < p^{3e} = |G/Z(G)|.$$

Hence, $m_G(H) = |H| \cdot |C_G(H)| < |G| \cdot |Z(G)| = m_G(G)$.

(2) Let $H = (h_1, h_2, h_3)Z(G)$ and H/Z(G) be of type $(p^{e_1}, p^{e_2}, p^{e_3})$, where $e_1 \ge e_2 \ge e_3 \ge 0$. Since H/Z(G) is not cyclic, $e_2 \ge 1$. By a similar argument as (1), we may assume that $h_1 = x^{p^{e^{-e_1}}}$. We may let

$$h_2 = x^{k_1 p^{e-e_2}} y^{k_2 p^{e-e_2}} w^{k_3 p^{e-e_2}},$$

where $p + k_i$ for some $2 \le i \le 3$. Without loss of generality, we may assume that $p + k_2$. Replacing y with $x^{k_1}y^{k_2}w^{k_3}$, we have $h_2 = y^{p^{e^{-e_2}}}$. It is easy to check that

$$C_G(H) = C_G(h_1) \cap C_G(h_2) = \langle x^{p^{e_2}}, y^{p^{e_1}}, w^{p^{e_1}} \rangle Z(G).$$

Since $|H/Z(G)| = p^{e_1+e_2+e_3}$ and $|C_G(H)/Z(G)| = p^{3e-e_2-2e_1}$,

$$|H/Z(G)| \cdot |C_G(H)/Z(G)| = p^{3e+e_3-e_1} \le p^{3e} = |G/Z(G)|,$$

where "=" holds if and only if $e_3 = e_1$. Hence, $m_G(H) = |H| \cdot |C_G(H)| \le |G| \cdot |Z(G)| =$ $m_G(G)$, where " = " holds if and only if $e_1 = e_2 = e_3$.

Theorem 3.2 Let G = G(p, e). Then $G \in CD(G)$ and CD(G) is a chain of length e. Moreover, $H \in \mathcal{CD}(G)$ if and only if $H = \langle x^{p^{e^{-e_1}}}, y^{p^{e^{-e_1}}}, w^{p^{e^{-e_1}}} \rangle Z(G)$ for some $0 \leq e_1 \leq e$.

By Lemma 3.1, $m^*(G) = m_G(G) = p^{9e}$, and $H \in CD(G)$ if and only if the Proof type of H/Z(G) is $(p^{e_1}, p^{e_1}, p^{e_1})$ for some $0 \le e_1 \le e$. Hence, all elements of CD(G) are $\langle x^{p^{e-e_1}}, y^{p^{e-e_1}}, w^{p^{e-e_1}} \rangle Z(G)$ where $0 \le e_1 \le e$.

4 The proof of main results

For any prime p and an abelian p-group A with type $(p^{e_1}, p^{e_2}, \dots, p^{e_m})$, where $e_1 \ge e_2 \ge \cdots \ge e_m$, we use G_A to denote the finite *p*-group generated by 3m elements $x_1, \ldots, x_m, y_1, \ldots, y_m, w_1, \ldots, w_m$ subject to the following defining relations:

- $x_i^{p^{e_i}} = y_i^{p^{e_i}} = w_i^{p^{e_i}} = z_1^{p^{e_1}} = z_2^{p^{e_1}} = z_3^{p^{e_1}} = 1$ for $1 \le i \le m$, $[x_i, x_j] = [y_i, y_j] = [w_i, w_j] = [x_i, y_j] = [y_i, w_j] = [w_i, x_j] = 1$ if $i \ne j$,

Chermak–Delgado lattice is a subgroup lattice of an abelian group

• $[x_i, y_i] = z_1^{p^{e_1-e_i}}, [y_i, w_i] = z_2^{p^{e_1-e_i}}, [w_i, x_i] = z_3^{p^{e_1-e_i}}$ for $1 \le i \le m$, and • $[z_i, x_i] = [z_i, y_i] = [z_j, w_i] = 1$ for $1 \le i \le m$ and j = 1, 2, 3.

In this section, we require the following notation and straightforward results for a finite *p*-group $G = G_A$.

- $Z(G) = G' = (z_1, z_2, z_3)$ is of order p^{3e_1} .
- Let $P_i = \langle x_i, y_i, w_i \rangle$ for $1 \le i \le m$. Then $P_i \cong G(p, e_i)$, $|P_iZ(G)/Z(G)| = p^{3e_i}$, and *G* is the central product $P_1 * P_2 * \cdots * P_m$.
- Let $X = \langle x_1, x_2, \dots, x_m \rangle$, $Y = \langle y_1, y_2, \dots, y_m \rangle$, and $W = \langle w_1, w_2, \dots, w_m \rangle$. Then $X \cong Y \cong W \cong A$.
- Let $n = e_1 + e_2 + \dots + e_m$. Then $|A| = p^n$, $|G/Z(G)| = p^{3n}$, $|G| = p^{3n+3e_1}$, and $m_G(G) = p^{3n+6e_1}$.
- Let α , β , γ be isomorphisms from A to X, Y, W, respectively, such that $x_i^{\alpha^{-1}} = y_i^{\beta^{-1}} = w_i^{\gamma^{-1}}$ for all $1 \le i \le m$.
- For $a \in A$, let $a^{\varphi} = \langle a^{\alpha}, a^{\beta}, a^{\gamma} \rangle Z(G)$.
- For $B \leq A$, let $B^{\varphi} = \langle B^{\alpha}, B^{\beta}, B^{\gamma} \rangle Z(G) = \prod_{b \in B} b^{\varphi}$.

The proof of Theorem 1.2 Assume that the type of *A* is $(p^{e_1}, p^{e_2}, ..., p^{e_m})$, where $e_1 \ge e_2 \ge \cdots \ge e_m$. Let $G = G_A$. We will prove $\mathcal{CD}(G) \cong \mathcal{L}(A)$ in six steps.

(1) $G \in \mathcal{CD}(G)$ and $m^*(G) = p^{3n+6e_1}$.

By Theorem 3.2, $P_i \in CD(P_i)$. Since $G = P_iC_G(P_i)$, by Lemma 2.3, P_i is contained in the unique maximal member of CD(G). Hence, *G* is the unique maximal member of CD(G) and $m^*(G) = m_G(G) = p^{3n+6e_1}$.

(2) For any $a \in A$, there exists a subgroup C_a of A such that $C_X(a^\beta) = C_X(a^\gamma) = (C_a)^{\alpha}$, $C_Y(a^{\alpha}) = C_Y(a^{\gamma}) = (C_a)^{\beta}$, and $C_W(a^{\alpha}) = C_W(a^{\beta}) = (C_a)^{\gamma}$.

Notice that for $x \in X$, $[x, a^{\beta}] = 1$ if and only if $[x, a^{\gamma}] = 1$. We have $C_X(a^{\beta}) = C_X(a^{\gamma})$. Let $C_a = (C_X(a^{\beta}))^{\alpha^{-1}}$. Then $C_X(a^{\beta}) = C_X(a^{\gamma}) = (C_a)^{\alpha}$. Notice that for $c \in A$, $[c^{\alpha}, a^{\gamma}] = 1$ if and only if $[c^{\beta}, a^{\gamma}] = 1$. We have

$$c \in C_a \iff c^{\alpha} \in C_X(a^{\gamma}) \iff c^{\beta} \in C_Y(a^{\gamma}).$$

It follows that $C_Y(a^\gamma) = (C_a)^\beta$. By the symmetry, the conclusions hold.

(3) $C_G(a^{\varphi}) = (C_a)^{\varphi}$ and $a^{\varphi} \in \mathcal{CD}(G)$.

Suppose that *a* is of order p^t . Then $|a^{\varphi}/Z(G)| = p^{3t}$. Since $[a^{\alpha}, G] \leq \langle z_1^{p^{e_1-t}}, z_3^{p^{e_1-t}} \rangle$, the length of the conjugacy class of a^{α} does not exceed p^{2t} . Hence, $|C_G(a^{\alpha})| \geq p^{3n+3e_1-2t}$ and $|C_G(a^{\alpha})/Z(G)| \geq p^{3n-2t}$. Notice that

$$C_G(a^{\alpha})/Z(G) = XZ(G)/Z(G) \times C_Y(a^{\alpha})Z(G)/Z(G) \times C_W(a^{\alpha})Z(G)/Z(G),$$

 $|XZ(G)/Z(G)| = |X| = p^n$, and by (2),

$$|C_a| = |C_Y(a^{\alpha})| = |C_W(a^{\alpha})| = |C_Y(a^{\alpha})Z(G)/Z(G)| = |C_W(a^{\alpha})Z(G)/Z(G)|.$$

We have $|C_a| \ge p^{n-t}$. Hence, $|(C_a)^{\varphi}/Z(G)| \ge p^{3n-3t}$. By (2), $(C_a)^{\varphi} \le C_G(a^{\varphi})$. Hence,

$$|a^{\varphi}/Z(G)| \cdot |C_G(a^{\varphi})/Z(G)| \ge |a^{\varphi}/Z(G)| \cdot |(C_a)^{\varphi}/Z(G)| \ge p^{3n} = |G/Z(G)|.$$

It follows that

$$m_G(a^{\varphi}) = |a^{\varphi}| \cdot |C_G(a^{\varphi})| \ge |G| \cdot |Z(G)| = m^*(G).$$

Thus, " = " holds, $C_G(a^{\varphi}) = (C_a)^{\varphi}$, and $a^{\varphi} \in \mathcal{CD}(G)$.

(4) For any $B \leq A$, $B^{\varphi} \in CD(G)$ and there exists a subgroup C_B of A such that $C_G(B^{\varphi}) = (C_B)^{\varphi}$. Moreover, $|B| \cdot |C_B| = p^n$.

Let $C_B = \bigcap_{b \in B} C_b$. Since $B^{\varphi} = \prod_{b \in B} b^{\varphi}$, $B^{\varphi} \in CD(G)$ and

$$C_G(B^{\varphi}) = \bigcap_{b \in B} C_G(b^{\varphi}) = \bigcap_{b \in B} (C_b)^{\varphi} = (C_B)^{\varphi}.$$

Since $|B^{\varphi}/Z(G)| = |B|^3$ and $|(C_B)^{\varphi}/Z(G)| = |C_B|^3$, we have

$$|B|^3 \cdot |C_B|^3 = |B^{\varphi}/Z(G)| \cdot |(C_B)^{\varphi}/Z(G)| = |G/Z(G)| = p^{3n}.$$

Hence, $|B| \cdot |C_B| = p^n$.

(5) If $K \in CD(G)$, then there exists a subgroup *B* of *A* such that $K = B^{\varphi}$. Let $H = C_G(K)$. Then $H \in CD(G)$ and $K = C_G(H)$. Let

 $B_1 = \{a \in A \mid \text{there exist } y \in Y, w \in W, \text{ and } z \in Z(G) \text{ such that } a^{\alpha} ywz \in H\},\$

 $B_2 = \{a \in A \mid \text{there exist } x \in X, w \in W, \text{ and } z \in Z(G) \text{ such that } xa^\beta wz \in H\},\$

 $B_3 = \{a \in A \mid \text{there exist } x \in X, y \in Y, \text{ and } z \in Z(G) \text{ such that } xya^{\gamma}z \in H\}.$

Then B_1 , B_2 , and B_3 are subgroups of A and $|H/Z(G)| \le |B_1| \cdot |B_2| \cdot |B_3|$. By (2),

$$C_X(H) \leq C_X(B_2^\beta) = (C_{B_2})^\alpha.$$

Hence, $|C_X(H)| \le |C_{B_2}|$. Similarly, $|C_Y(H)| \le |C_{B_3}|$ and $|C_W(H)| \le |C_{B_1}|$. It follows that

$$|H/Z(G)| \cdot |K/Z(G)| \le |B_1| \cdot |B_2| \cdot |B_3| \cdot |C_{B_2}| \cdot |C_{B_3}| \cdot |C_{B_1}| = p^{3n} = |G/Z(G)|.$$

Since $H \in CD(G)$, " = " holds. Hence,

$$K = C_G(H) = \langle (C_{B_2})^{\alpha}, (C_{B_3})^{\beta}, (C_{B_1})^{\gamma} \rangle Z(G)$$

and

$$C_X(H) = (C_{B_2})^{\alpha}, C_Y(H) = (C_{B_3})^{\beta}, \text{ and } C_W(H) = (C_{B_1})^{\gamma}.$$

By the symmetry, we also have

$$C_X(H) = (C_{B_3})^{\alpha}, C_Y(H) = (C_{B_1})^{\beta}, \text{ and } C_W(H) = (C_{B_2})^{\gamma}.$$

It follows that $C_{B_1} = C_{B_2} = C_{B_3}$. Let $B = C_{B_1}$. Then $K = C_G(H) = B^{\varphi}$. (6) CD(G) is isomorphic to $\mathcal{L}(A)$. It is a direct result of (4) and (5).

The proof of Theorem 1.3 Let $A = A_1 \times \cdots \times A_n$, where A_i is the Sylow p_i -subgroup of A. By Theorem 1.2, there exist finite groups P_i such that $\mathcal{CD}(P_i)$ is isomorphic to $\mathcal{L}(A_i)$. Let $G = P_1 \times \cdots \times P_n$. By Theorem 2.2,

$$\mathcal{CD}(G) = \mathcal{CD}(P_1) \times \cdots \times \mathcal{CD}(P_n) \cong \mathcal{L}(A_1) \times \cdots \times \mathcal{L}(A_n) = \mathcal{L}(A).$$

448

-

Acknowledgment I cordially thank the referee for detailed reading and helpful comments, which helped me to improve the whole paper considerably.

References

- L. An, Groups whose Chermak–Delgado lattice is a quasi-antichain. J. Group Theory 22(2019), no. 3, 529–544.
- [2] L. An, Groups whose Chermak-Delgado lattice is a subgroup lattice of an elementary abelian p-group. Comm. Algebra 50(2022), no.7, 2846–2853.
- [3] L. An, Twisted centrally large subgroups of finite groups. J. Algebra 604(2022), 87–106.
- [4] L. An, J. Brennan, H. Qu, and E. Wilcox, Chermak-Delgado lattice extension theorems. Comm. Algebra 43(2015), no. 5, 2201–2213.
- [5] B. Brewster, P. Hauck, and E. Wilcox, *Groups whose Chermak–Delgado lattice is a chain.* J. Group Theory 17(2014), no. 2, 253–265.
- [6] B. Brewster, P. Hauck, and E. Wilcox, Quasi-antichain Chermak-Delgado lattices of finite groups. Arch. Math. 103(2014), no. 4, 301–311.
- [7] B. Brewster and E. Wilcox, Some groups with computable Chermak–Delgado lattices. Bull. Aust. Math. Soc. 86(2012), no. 1, 29–40.
- [8] E. Brush, J. Dietz, K. Johnson-Tesch, and B. Power, On the Chermak–Delgado lattices of split metacyclic p-groups. Involve 9(2016), no. 5, 765–782.
- [9] A. Chermak and A. Delgado, A measuring argument for finite groups. Proc. Amer. Math. Soc. 107(1989), no. 4, 907–914.
- [10] W. Cocke, Subnormality and the Chermak–Delgado lattice. J. Algebra Appl. 19(2020), no. 8, 2050141, 7 pp.
- [11] G. Glauberman, Centrally large subgroups of finite p-groups. J. Algebra 300(2006), 480–508.
- [12] I. M. Isaacs, *Finite group theory*, American Mathematical Society, Providence, RI, 2008.
- [13] R. McCulloch, Chermak–Delgado simple groups. Comm. Algebra 45(2017), no. 3, 983–991.
- [14] R. McCulloch, Finite groups with a trivial Chermak–Delgado subgroup. J. Group Theory 21(2018), no. 3, 449–461.
- [15] R. McCulloch and M. Tărnăuceanu, Two classes of finite groups whose Chermak–Delgado lattice is a chain of length zero. Comm. Algebra 46(2018), no. 7, 3092–3096.
- [16] R. McCulloch and M. Tărnăuceanu, On the Chermak–Delgado lattice of a finite group. Comm. Algebra 48(2020), no. 1, 37–44.
- [17] A. Morresi Zuccari, V. Russo, and C. M. Scoppola, *The Chermak–Delgado measure in finite p-groups*. J. Algebra 502(2018), 262–276.
- [18] R. Schmidt, Subgroup lattices of groups, Walter de Gruyter, Berlin, New York, 1994.
- [19] M. Tărnăuceanu, *The Chermak–Delgado lattice of ZM-groups*. Results Math. 72(2017), no. 4, 1849–1855.
- [20] M. Tărnăuceanu, A note on the Chermak–Delgado lattice of a finite group. Comm. Algebra. 46(2018), no. 1, 201–204.
- M. Tărnăuceanu, Finite groups with a certain number of values of the Chermak–Delgado measure.
 J. Algebra Appl. 19 (2020), no.5, 2050088, 7 pp.
- [22] E. Wilcox, Exploring the Chermak–Delgado lattice. Math. Magazine 89(2016), no. 1, 38–44.

Department of Mathematics, Shanxi Normal University, Linfen, Shanxi 041004, P. R. China e-mail: anlj@sxnu.edu.cn