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Arithmetic of Degenerating Principal
Variations of Hodge Structure: Examples
Arising From Mirror Symmetry and Middle
Convolution

Genival da Silva Jr., Matt Kerr, and Gregory Pearlstein

Abstract. We collect evidence in support of a conjecture of Griõths, Green, and Kerr on the arith-
metic of extension classes of limitingmixedHodge structures arising from semistable degenerations
over a number ûeld. A�er brie�y summarizing how a result of Iritani implies this conjecture for a
collection of hypergeometric Calabi–Yau threefold examples studied by Doran andMorgan, the au-
thors investigate a sequence of (non-hypergeometric) examples in dimensions 1 ≤ d ≤ 6 arising
from Katz’s theory of the middle convolution. A crucial role is played by the Mumford-Tate group
(which is G2) of the family of 6-folds, and the theory of boundary components of Mumford–Tate
domains.

1 Introduction

Absolutely irreducibleQ-local systems can underlie atmost one polarized variation of
Hodge structure, which suggests that the asymptotics of such variations at a puncture
should exhibit interesting arithmetic. For variations of motivic origin, one envisions
arithmetic constraints on the extension classes (periods) of the limiting mixed Hodge
structures, (cf. Conjecture 2.4). _e Mumford–Tate group G of the VHS imposes
its own algebraic constraints upon these extensions, which can simplify the form of
the conjecture. Given a G-rigid local system, the middle convolutions of Katz [Ka]
give some hope for constructing a family of motives with the local system (and VHS)
appearing in its cohomology.

_is paper was motivated by the desire to check the conjectural property for
some local systems on the thrice-punctured sphere underlying motivic VHS of type
(1, 1, 1, 1) and (1, 1, 1, 1, 1, 1, 1) at a point of maximal unipotent monodromy. Variations
with extremal Hodge numbers 1 have for some time been called Calabi–Yau; when all
the Hodge numbers are 1, terminology from representation theory (“principal sl2”)
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suggests calling them principal. Robles’s recent classiûcation [Ro] of the correspond-
ingHodge representations rules out all exceptional groups except forG2 asMumford–
Tate group, which itself can only occur in the weight/level 6 case. Moreover, the ef-
fects ofG2 on the limiting MHS are well understood via boundary components [KP],
a story which is brie�y reviewed in Section 3.

Our ûrst main point is that a recent result of Iritani in mirror symmetry [Ir] al-
lows one to compute the limiting extension classes for many of the (1, 1, 1, 1) examples
classiûed by Doran and Morgan [DM]. If X○ is a complete intersection CY three-
fold in a weighted projective space with rank 4 even cohomology, we use Iritani’s Γ̂
integral structure on its quantum cohomology to give a straightforward computa-
tion of the (large complex structure) limiting period matrix Ωlim of the VHS arising
from H3 of the mirror family (cf. (4.1)). In particular, the nontorsion extension class
ε ∈ C/Q(3) ≅ Ext1MHS(Q(−3),Q(0)) is given by (∫X○ c3(X

○))ζ(3).
_e second point is that using middle convolution, one may construct interesting

motivic variations not treatable by mirror symmetry, but where the limiting periods
may be computed directly by a residue method. _is approach, which we apply in
Section 5 to two examples (including one with G2 monodromy) from the work of
Dettweiler andReiter [DR1], shows promisemore generally for cyclic covers branched
along a union of hyperplanes. Moreover, it gives a clearer picture of the origin of the
zeta values in limiting extension classes, which is buried in a deep mirror theorem in
Section 4. _e main idea is that Katz’s method builds a sequence of families Xd(t)
(d ≥ 1) of the form w2 = f (x1 , . . . , xd , t), whose logd t period in a neighborhood of
the point t = 0 of maximal unipotency is given by the iterative formula

π2 j(t) ∶= i ∫
1

t

π2 j−1(x) dx
√

x(1 − x)(1 − t
x )
, π2 j+1(t) ∶= i ∫

1

t

π2 j(x) dx

x
√

1 − t
x

,

where π1(t) ∶= 2 ∫
1
t

1
dx

√
(1−tx)(1−x)x

. _e top weight graded piece of Hd(Xd(t)) con-
tains a principal variation (at least, for d ≤ 7), and all the data of Ωlim for this VHS is
contained in the asymptotics of πd(t).
For d = 3, we are able to completely determine these asymptotics (_eorem 5.6),

and hence the extension class ε = −48ζ(3) ∈ C/Q(3). Our luck did not hold out
for d = 6 (Section 5.5), where we were only able to compute “part” of the integral;
however, this piece does contain a term of the form −72ζ(5) as expected (“towards”
the extension class in Ext1MHS(Q(−5),Q(0))), and Conjecture 5.7 represents an edu-
cated guess at the entire thing. Moreover, our partial computation contains a ravishing
number-theoretic tidbit (Lemma 5.5), which we call the G2-identity:

∑
′ ( 1

2 )k1(
1
2 )k2(

1
2 )a(

1
2 )b

(b − a + 1
2 )(b + k1 +

1
2 )(a + k1)(a + k2)

+∑
′ ( 1

2 )k1(
1
2 )k2(

1
2 )a(

1
2 )b

(b − a + 1
2 )(b + k1 +

1
2 )(b + k2 +

1
2 )(a + k1)

−∑
′ ( 1

2 )a(
1
2 )b

(b + a + 1
2 )(b +

1
2 )a2

=
64π
3

log3 2 + 2π3

3
log 2 − 12πζ(3).
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(Here∑
′

means to sum over tuples of non-negative integers for which the summand
is deûned.) _is identity is a consequence of the vanishing of the “third extension
class” in the maximal unipotent LMHS of a principal variation with G2 Mumford-
Tate group, and (bizarrely) it is needed to ûnish oò the d = 3 computation. Our
computations also make heavy use of some identities relating hypergeometric special
values and Riemann zeta values whose derivation is outlined in the Appendix.

In writing this paper we encountered several questions that merit further inves-
tigation. For example, is there a direct construction of “limiting data”, from a quasi-
unipotent G-rigid local system V over P1/pts., that does not pass through variations
of Hodge structure? Here the motivation is that there should exist a unique VHS
underlain by V, (cf. Remark 2.3). In the middle convolution case, is there a better
approach to computing the LMHS than direct computation of asymptotics of πd(t),
perhaps one extending the computation of the LMHS Hodge numbers in [DS]? Fi-
nally, can one use mirror symmetry to compute any limiting extension classes in
Ext1MHS(Q(−5),Q(0))? Here the problem is typically that some extension class in
Ext1MHS(Q(−3),Q(0)) is nonzero, and then one of the previous form is not well de-
ûned; but even in this case it would still be of interest to compute Ωlim (say, for CY 5-
or 6-folds).

2 Local Systems and Limiting Mixed Hodge Structures

Let S be a complex algebraic manifold and ûx a base point s0 ∈ S. Given an absolutely
irreducibleQ-local system V over S, put V ∶= Vs0 and deûne the monodromy group

Γ ∶= image( ρ∶ π1(S, s0) → GL(V)) .

_e geometricmonodromy groupΠ is the identity connected component of itsQ-Za-
riski closure.

Now suppose there exists a polarized variation of Hodge structure (PVHS) V =

(V,Q ,F●) over V of weight n.1

Proposition 2.1 Up to Tate twist, V is unique.

Proof Given V, V′ PVHS over V, V∨ ⊗ V′ is a PVHS over V∨ ⊗ V, and by Schur’s
lemma (V∨⊗V)Γ = Q⟨idV⟩. By the_eorem of the Fixed Part [Sc],Q⟨idV⟩ therefore
underlies a constant sub-VHS of V∨ ⊗V’ , rank 1 hence of type (p, p).

As Griõths puts it, Riemann would be proud: this sort of result goes back to his
characterization of the hypergeometric functions by their local monodromy about
0, 1,∞. Note that the existence ofV implies thatV is semisimple with quasi-unipotent
monodromies.

1V will also sometimes denote, by abuse of notation, the locally free sheaf V ⊗OS (or the corre-
sponding vector bundle).
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Assume now that S has a smooth compactiûcation Swith a holomorphic disk em-
bedding

S ⊂ S ∋ x
∪ ∪ ↑

∆∗
ȷ
⊂ ∆ ∋ 0

and let s be a choice of local coordinate on ∆. RestrictingV to ∆∗, we assume the local
monodromy T is unipotent and set

N ∶= log(T) = ∑
k≥1

(−1)k−1

k
(T − I)k

∈ End(V ,Q).

_ere exists a unique increasing ûltration W● =W(N)● on V such that (for all k),

N(WkV) ⊂WkV ,

N ℓ
∶GrWn+k V

≅
Ð→ GrWn−k V .

Moreover, the “untwisted” local system Ṽ ∶= ȷ∗(e−ℓ(s)NV) (where ℓ(s) ∶= log(s)
2πi )

extends to ∆. By the Nilpotent Orbit _eorem [Sc], the Hodge sheavesFp ⊂ V extend
to locally free subsheaves Fp

e ⊂ Ve ∶= Ṽ ⊗ O∆ on ∆, and the SL2-orbit _eorem [op.
cit.] implies the following proposition.

Proposition 2.2 (ψsV)x ∶= (Ṽ,W● ,F●e)∣x is a mixed Hodge structure polarized by
N, called the limiting mixed Hodge structure (LMHS).

Writing F●lim ∶= F●e ∣x , we will denote by Vnilp ∶= (V,Q , e−ℓ(s)NF●lim) the associated
nilpotent orbit, which is again a VHS over (a possibly smaller) punctured disk ∆∗.

We conclude that to an absolutely irreducible local system on S, point x ∈ S, and
local coordinate s ∈ O(∆), Schmid’s results associate a MHS. _e extension classes
inherent in the latter are thereby already in this sense invariants of the local system.

Remark 2.3 Of course, this begs the question as to which local systems underlie
a PVHS! It is expected (cf. [DR2]) that quasi-unipotency and G-rigidity2 (for some
G ≤ GL(V) containing Γ) suõce forV to underlie amotivic PVHS, that is, one arising
from a family of varieties over S. For S = P1/pts. and G = GL(V), this is proved by
Katz [Ka] using his middle convolution algorithm, which we touch on in Section 5.

Recall next that a motive over a ûeld k ⊆ C is, roughly speaking, a bounded com-
plex of smooth quasi-projective varieties with arbitrary maps between them, all de-
ûned over k. _rough a “realization” process similar to hypercohomology, one can
take the various cohomology groups of such a complex, which yields in particular
(from de Rham and Betti) a MHS we will say to be k-motivated.

2We say that V is G-rigid if the G-orbit of the associated monodromy representation ρ is open in
Hom(π1(S),G).
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Now assume that V = Rk f∗QX arises from the following situation, called a semi-
stable degeneration (SSD) over k:

X ↪ X ↩ X0 = f
−1
(x)

↓ f ↓ f ↓

S ↪ S ∋ x
↓ g
P1 ,

where f is proper and �at, f is smooth, g(x) = 0 with ordx(g) = 1, and X0 ∶=

(g ○ f )−1(0) = ∪Yi is a reduced SNCD. (_at is, the intersections YI ∶= ∩i∈IYi are
smooth and transversal.) Moreover, the entire diagram, and all inclusions YI ↪ YI/i ,
are deûned over k.

Conjecture 2.4 ([GGK]) Let s be the restriction of g to a disk about x. _en (ψsV)x
is k-motivated. In particular, the extension class ε ∈ C/Z(m) of any Tate subquo-
tient 0 → Z(0) → E → Z(−m) → 0 belongs to the image of motivic cohomology
H1

M(Spec(k),Z(m)) under the generalized Abel–Jacobi mapping.

If k = Q, this says that

ε ≡
⎧⎪⎪
⎨
⎪⎪⎩

log(a), a ∈ Q∗ (m = 1),
qζ(m), q ∈ Q (m > 1);

note that ζ(m) ∈ C/Z(m) is torsion if m is even. In what follows we will be working
with rational coeõcients, and hence interested only in odd m.

Remark 2.5 Several constructions of limitingmotives have recently appeared in the
literature, for instance [Le]. Conjecture 2.4 would probably follow from the assertion
(itself still conjectural) that the Hodge realization of Levine’s motive is the LMHS.

_e existence (up to torsion) of a Tate subquotient is an algebraic requirement; it
is useful at this point to consider what algebraic conditions might produce it, which
brings us to the next section.

3 Mumford–Tate Domains and Boundary Components

Let V be a (ûnite-dimensional) Q-vector space, Q∶V × V → Q a (−1)n-symmetric
nondegenerate bilinear form. Writing S1 < C∗ for the unit circle, consider a homo-
morphism ϕ∶ S1 → SL(VR) with ϕ(−1) = (−1)n ⋅ idV .

Deûnition 3.1 (i) (V ,Q , ϕ) is a polarized Hodge structure (PHS)3 if

ϕ(S1
) ⊂ Aut(V ,Q) and Q(v , ϕ(i)v) > 0 (∀v ∈ VC/{0}).

(ii)_eMumford–Tate group (MTG) Gϕ is theQ-algebraic group closure of ϕ(S1).
3It is implicit here that the PHS is “pure of weight n”, even though the deûnition only records the

parity of n.
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_e ϕ(S1)-ûxed points in the tensor spaces T k , lV ∶= V⊗k ⊗(V∨)⊗l are theHodge
tensors Hgk , lV .

Proposition 3.2 ([De]) Gϕ is the subgroup of GL(V) ûxing ⊕Hgk , lV pointwise.

_e Lie group of real points of the MTG acts by conjugation on ϕ, and the (con-
nected)Mumford–Tate domain (MTD) associated with ϕ is the orbit (under the iden-
tity connected component)

D ∶= Gϕ(R)
+ .ϕ ≅ Gϕ(R)

+
/Hϕ .

By taking V p,n−p
′ϕ ⊂ VC to be the zp−q-eigenspace for ′ϕ(z) (′ϕ ∈ D), D can be viewed

as (a connected component of) the locus in some period domain on which a ûnite
set of tensors in ⊕T k , lV becomes Hodge. Moreover, using the Hodge �ags F●′ϕVC =

⊕p≥●V p,n−p
′ϕ , wemay embedD in a product ofGrassmanians, where its Zariski closure

deûnes the compact dual

Ď = Gϕ(C).F●ϕ ≅ Gϕ(C)/PF●ϕ .

For a polarized variationV as in Section 2, the pointwiseMTG is equal to someG <

GL(V) on the complement of a countable union of proper analytic subvarieties, and
we call this the MTG of V. Since Π ⊴ Gder [An], we obtain (a�er possibly replacing
S by a ûnite cover) a period map Φ∶S → Γ/D. For studying the possible LMHS, it is
convenient to replace G by Gad, V by g = Lie(Gad), ϕ by the composition

S1 ϕ
→ G Ad

↠ Gad ,

Q by −B (B = Killing form), and the weight n by 0; then D is unchanged and no
information is lost [KP]. Assume now that this change has been made, and let N ∈

gQ/{0} be a nilpotent element (acting on V by ad).

Deûnition 3.3 ([KP]) _e pre-boundary component4

B̃(N) ∶= {F● ∈ Ď ∣
NF● ⊂ F●−1 ,

Ad(eτN)F● ∈ D for I(τ) ≫ 0 }

associated with N and D classiûes the possible LMHS (F● ,W(N)●) of period maps
into any quotient Γ/D. Let B̃R(N) ⊂ B̃(N) be the subset consisting of R-split
LMHS, and B(N) ∶= eCN/B̃(N) the set of nilpotent orbits. _e boundary com-
ponent associated with N , D, and a choice of Γ is then B(N) ∶= ΓN/B(N), where
ΓN ∶= Stab(CN) ∩ Γ.

Remark 3.4 One can think of the quotient by eCN as eliminating the dependence
of the LMHS on the scaling of the local coordinate. We will be interested below in
computing the point in B(N) associatedwith LMHS ofHodge–Tate type for principal

4It sometimes happens that B̃(N) as deûned is not connected; in this case, one should replace it by
a choice of connected component.
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VHSV, so that GrW(N)

k V is 0 for k odd andQ(− k
2 ) or 0 for k even. In this case, there

is an easy ûrst step. We can rescale (“canonically normalize”) the local coordinate to
eliminate the adjacent extensions (ofQ(p) byQ(p + 1)) in V .

_e terminology of “boundary component” comes from the appearance of B(N)

in partial compactiûcations of Γ/D, assuming it is nonempty. In this case, let M ≤

Aut(G , B) be the subgroup ûxing all Hodge tensors of all LMHS in B̃(N). (For a given
MHS on V , the Hodge tensors are the elements of ⊕p,k , l HomMHS(Q(p), T k , lV).)

Proposition 3.5 ([DK]) Let ZG(N) ≤ G denote the centralizer of N. _en M ≤

ZG(N) and ZG(N) share the unipotent radical U = exp{im(adN) ∩ ker(adN)}.
Writing GN for a choice of Levi subgroup of M(= GNU), M(R) (resp. GN(R)⋉U(C))
acts transitively on B̃R(N) (resp. B̃(N)). Assuming Γ is neat, there exists an iterated
generalized intermediate Jacobian ûbration

B(N) ↠ ⋅ ⋅ ⋅ ↠ B(N)(k) ↠ ⋅ ⋅ ⋅ ↠ B(N)(1) ↠ D(N) = ΓN/D(N),

where D(N) is a MTD for GN .

Wewill need a source of PHS ϕ with interestingMTG. LetG be aQ-simple adjoint
group of rank r such that GR has a compact Cartan subgroup. Let θ ∈ Aut(GR) be a
Cartan involution, K < GR the corresponding maximal compact subgroup, and TR <

K a Cartan subgroup (of dimension r). WritingR for the root lattice, ∆ (resp. ∆c), ∆n]
for the roots (resp. compact, noncompact roots), we have the Cartan decomposition

g = t⊕ ( ⊕
α∈∆c

gα) ⊕ ( ⊕
β∈∆n

gβ) .

Proposition 3.6 ([GGK2]) Given a homomorphism π ∶ R → 2Z with π(∆c) ∈ 4Z,
π(∆n) ⊂ 4Z + 2, there exists a unique weight 0 PHS (g,−B, ϕ) with dϕ/dz(1)∣R = π.
Moreover, provided TR (hence also θ) is suõciently general, the MTG Gϕ = G. _e
Hodge numbers of the Hodge structures on g parametrized by D = G(R)+ .ϕ are then

h j,− j
=

⎧⎪⎪
⎨
⎪⎪⎩

∣π−1(2 j)∣, j ≠ 0
∣π−1(0)∣ + r, j = 0.

In some cases, these constructions “li� to a standard representation”. Here are two
examples where this occurs, together with choices of N (with “maximally unipotent”
T = eN ) that produce nonempty boundary components and the pictures of (p, q)
types for the resulting LMHS.

Example 3.7 (g = sp4) With π as shown in Figure 1, D (of dimension 4) par-
ametrizes weight 3 PHS (of rank 4) on the standard representation V with Hodge
numbers (1, 1, 1, 1).

_e large dots on the le�-hand side are roots, with the boxed ones in ∆c ; the small
dots indicate the Cartan subalgebra t. On the right, the dots are weights of V . More-
over, there exist ϕ ∈ D and N ∈ gQ such that F●ϕ belongs to B̃(N), and the g−1,1

ϕ -com-
ponent N−1,1 is a linear combination of root vectors as shown on the le�-hand side
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−1,1

g V

N
N

N

π
π

3

−3

1

4
6

−6
−4

−2
0

2

−1

−1,1 −1,1

Figure 1

N

g V

Figure 2

(the arrows point to the corresponding roots) and operates on V as described by the
arrows on the right-hand side.

_e LMHS (F●ϕ ,W(N)●) on g and the induced LMHS on V take the form in
Figure 2, where the arrows describe the action of N . From the ûgure, one sees that
mQ/QN (m = Lie(M) corresponding to the circled types) is pure of rank one and type
(−3,−3); according to [KP] it follows that B(N) ≅ Ext1MHS(Z(−3),Z(0)) ≅ C/Z(3).
(Dividing out by (2πi)3, this is just C/Z.)

Turning to an exceptional group, we have the following example.
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Example 3.8 (g = g2) See Figure 3. Here D is of dimension 5, parametrizing weight
6 PHS on the 7-dimensional irreducible representation V ofG2 with Hodge numbers
(1, 1, 1, 1, 1, 1, 1).
For the LMHS, see Figure 4, fromwhichB(N) ≅ Ext1MHS(Z(−5),Z(0)) ≅ C/Z(5).

Henceforth we will be interested in the Hodge structures (and LMHS) on V rather
than g. Note that in both examples, these PHS are “Calabi–Yau” in the sense that the
leading Hodge number is 1. Moreover, g−1,1 has rank 2 and is nonabelian; therefore
Griõths transversality forces the image of a period map into Γ/D to be a curve.

π

g V

0 2
4 6

−2
−4−6

8

−8
−10

10

0 2 4 6

−2
−4−6

π

Figure 3

Vg

N

Figure 4
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Most importantly, they each give fertile testing-grounds for Conjecture 2.4. In
Sections 4 and 5, we will verify it (at x = 0) for some VHS over P1/{0, 1,∞} arising
from SSD’s overQ, which have MTG Sp4 or G2 and maximal unipotent monodromy
about 0. In both cases this boils down to checking that a single limiting period ξ ∈
C/Q takes a particular form.

In the Sp4 case, we can assume given a symplectic basis, so that the polarization
takes the form

(3.1) Q =

⎛
⎜
⎜
⎜
⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟
⎟
⎟
⎠

.

A�er conjugating by Sp4(Q) to have

N =

⎛
⎜
⎜
⎜
⎝

0 0 0 0
a 0 0 0
e b 0 0
f e −a 0

⎞
⎟
⎟
⎟
⎠

and canonically normalizing the local coordinate at 0, one knows that (cf. [GGK]) the
limiting period matrix takes the form

Ωlim =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
f

2a
e
a 1 0

ξ f
2a 0 1

⎞
⎟
⎟
⎟
⎟
⎠

(ξ ∈ C).

_e entries other than ξ are rational and correspond to torsion extension classes. _e
LMHS is Q-motivated if and only if ξ = q ζ(3)

(2πi)3 (q ∈ Q).
For G2, again a�er appropriate normalizations, one has

Ωlim =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
∗ ∗ 1 0 0 0 0
* ∗ ∗ 1 0 0 0
∗ * ∗ ∗ 1 0 0
ξ ∗ * ∗ ∗ 1 0
∗ ξ ∗ * ∗ 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where ∗ denotes rational numbers. In theQ-motivated scenario,

ξ = q ζ(5)
(2πi)5

(q ∈ Q).

For the same type of LMHS on V but with the larger M-T group SO(3, 4) (instead
of G2), the third extension class need not be trivial. _at is, it is G2, which forces the
circled entries to be rational.
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4 Calabi–Yau Variations from Mirror Symmetry

In this section we shall brie�y describe how a recent result of Iritani [Ir] allows one
to systematically compute LMHS of variations arising from families of anticanonical
toric complete intersections. Wewill carry this out for the 1-parameter, h2,1 = 1 hyper-
geometric families of complete intersection C-Y threefolds classiûed in [DM]. Each
family yields a semistable degeneration over Q (cf. Section 2) with X0 the (suitably
blown-up) “large complex structure limit” ûber.

Until recently, toric mirror symmetry (e.g., as described in [CK] or [Mo]) only
identiûed complex variations ofHodge structure arising from theA-model andB-mo-
del, because the Dubrovin connection on quantum cohomology merely provides a
C-local system on the A-model side. Iritani’s mirror theorem says that the integral
structure on this local system provided by the Γ̂-class (in the sense described below)
completes theA-modelC-VHS to aZ-VHSmatching the one arising fromH3 of ûbers
on theB-model side. _eupshot is that to computeΩlim (at 0) for a 1-parameter family
of toric complete intersection Calabi-Yau 3-folds Xt ⊂ P∆ over P1/{0, 1,∞}, we can
use what boils down to characteristic class data from the mirror X○ ⊂ P∆○ .

In each case, V ∶= Heven(X○ ,C) = ⊕3
j=0H j, j(X○) is a vector space of rank 4,

P ∶= P∆○ = WP(δ0 , . . . , δ3+r) is a weighted projective space5 (with δ0 = δ1 = 1),
and X○ ⊂ P is smooth6 of multidegree (dk)

r
k=1 with∑ dk = ∑ δ i =∶ m. Let H denote

the intersection with X○ of the vanishing locus of the weight 1 homogeneous coor-
dinate X0; write τ[H] ∈ H1,1(X○) for the Kähler class and q = e2πiτ for the Kähler
parameter. We now give a general recipe (following [DK, sec. 1]) for constructing a
polarized Z-VHS, over ∆∗ ∶ 0 < ∣q∣ < є, on V ∶= V ⊗O∆∗ .

_e easy parts are the Hodge ûltration and polarization. Indeed, we simply put

F p
∶= ⊕ j≤3−pH j, j

⊂ V and F
p
e ∶= F p

⊗O∆ ⊂ V ⊗O∆ =∶ Ve .

Similarly, Q on Ve is induced from the form on V given by the direct sum of pairings
Q j ∶H j, j × H3− j,3− j → C deûned by Q j(α, β) ∶= (−1) j

∫X○ α ∪ β. A Hodge basis
e = {e i}3

i=0 of Heven, with e i ∈ H3−i ,3−i(X○) and [Q]e of the form (3.1), is given by
e3 = [X○], e2 = [H], e1 = −[L], and e0 = [p]. Here L is a copy of P1 (parametrized by
[X0 ∶X1]) in X○ with L ⋅ H = p, and [H] ⋅ [H] = m[L]. _e {e i} give a Hodge basis7
for Ve .
For the local system, we consider the generating series8Φh(q) ∶= 1

(2πi)3 ∑d≥1 Ndq
d

of the genus-zero Gromov–Witten invariants of X○, and deûne the small quantum
product on V by e2 ∗ e2 ∶= −(m +Φ′′′

h (q))e1 and e i ∗ e j ∶= e i ∪ e j for (i , j) ≠ (2, 2).

5Technically, there are three exceptions to this amongst the examples we consider, which are
weighted projective spaces WP(δ0 , . . . , δn) for which the convex hull of {e1 , . . . , en ,−∑ δ i e i} is not
re�exive. As described in [DM], taking ∆ to be the convex hull of this set together with −en yields a
re�exive polytope, and P∆○ is the blow-up of theWP at a point not meeting (hence not aòecting) the
complete intersections we consider. Hence we may take X○ ⊂ P =WP(δ1 , . . . , δn).

6_e codimension of the singular locus in P is at least 4 in every case, so does not meet a suõciently
general X○.

7Note: in all bases we shall run the indices backwards (e = {e3 , e2 , e1 , e0}, etc.) for purposes of
writing matrices.

8derivatives Φ(k)h will be taken with respect to τ (= ℓ(q))
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_is gives rise to the Dubrovin connection

∇ ∶= idV ⊗d + (e2∗) ⊗ dτ,
which we view as a map from V ≅ V ⊗O∆∗ → V ⊗Ω1

∆∗ ≅ V⊗Ω1
∆∗ , and the C-local

system VC ∶= ker(∇) ⊂ V.
Now deûne a map σ̃ ∶ V → V ⊗O(∆) by

σ̃(e0) ∶= e0 , σ̃(e1) ∶= e1 , σ̃(e2) ∶= e2+Φ′′
h e1+Φ

′
he0 , σ̃(e3) ∶= e3+Φ′

he1+2Φhe0 .
For any α ∈ V , one easily checks that

σ(α) ∶= σ̃( e−τ[H]
∪ α) ∶= ∑

k≥0

(−1)kτk

k!
σ̃([H]

k
∪ α)

satisûes ∇σ(α) = 0, and hence yields an isomorphism σ ∶V ≅
→ Γ(H, ρ∗VC) (where

ρ∶H→ ∆∗ sends τ ↦ q). Writing9

Γ̂(X○
) ∶= exp(− 1

24
ch2(X○

) −
2ζ(3)
(2πi)3 ch3(X○

)) ∈ V ,

the image of
γ∶ Knum

0 (X○) Ð→ Γ(H, ρ∗VC)

ξ z→ σ( Γ̂(X○) ∪ ch(ξ))
deûnes Iritani’s Z-local system V underlying VC. _e ûltration W● ∶= W(N)● asso-
ciated with its monodromy T(γ(ξ)) = γ(O(−H) ⊗ ξ) satisûes

WkVe = ( ⊕
j≥3−k/2

H j, j
) ⊗O∆ .

In order to compute the limiting period matrix of this Z-VHS over ∆∗, we now
require a (multivalued) basis {γ i}

3
i=0 ofV satisfying γ i ∈W2i ∩V, γ i ≡ e i modW2i−2,

and [Q]γ = [Q]e . _e corresponding Q-basis of Ṽ∣q=0 =∶ Vlim is given by γlim
i ∶=

γ̃ i(0), where γ̃ i ∶= e−τNγ i ∈ Γ(∆, Ṽ). Of course, the e i are another basis of Vlim,C,
and Ωlim = γ lim[id]e . Note that since Nlim = −(2πi)Resq=0(∇) = −(e2∗)∣q=0 =

−(e2∪)∣q=0 , we have

[Nlim]e =

⎛
⎜
⎜
⎜
⎝

0 0 0 0
−1 0 0 0
0 m 0 0
0 0 1 0

⎞
⎟
⎟
⎟
⎠

.

A basis of the form we require is obtained by considering the Mukai pairing

⟨ξ, ξ′⟩ ∶= ∫
X○
ch(ξ∨ ⊗ ξ′) ∪ Td(X○

)

on Knum
0 (X○). Since ⟨ξ, ξ′⟩ = Q(γ(ξ), γ(ξ′)), any Mukai-symplectic10 basis of

Knum
0 (X○) of the form

(4.1)
ξ1 = O + AOH + BOL + COp , ξ2 = OH + DOL + EOp ,
ξ3 = −OL + FOp , ξ4 = Op ,

9cf. [DK, §1] for the more general deûnition of Γ̂(X○)
10_at is, ⟨ξ i , ξ3− j⟩ = 0 unless i = j, in which case it is +1 for i = 0, 1 and −1 for i = 2, 3.
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will produce γ i ∶= γ(ξ i) satisfying the above hypotheses. In this case, taking

σ∞(α) ∶= lim
q→0

σ̃(α), γ∞(ξ) ∶= σ∞( Γ̂(X○
) ∪ ch(ξ)) ,

we have γlim
i = γ∞(ξ i).

We now run this computation. Let c(X○) = 1 + a[L] + b[p] be the Chern class of
X○; note that there is no [H] term due to the fact that X○ is Calabi–Yau. Since the
Chern character is ch(X○) = 3 − a[L] + b

2 [p] and the Todd class is

Td(X○
) = 1 + a

12
[L], Γ̂(X○

) = 1 + a
24

[L] − bζ(3)
(2πi)3 [p].

_is yields

γlim
3 = e3 + Ae2 + (−B + m

2
A− a

24
) e1 + (C − B + 4m + a

24
A− b ζ(3)

(2πi)3 ) e0 ,

γlim
2 = e2 + (−D +

m
2
) e1 + (E − D +

4m + a
24

) e0 ,

γlim
1 = e1 + (F + 1)e0 , γlim

0 = e0 .

Imposing the symplectic condition produces constraints 1 + F + A = 0 and
a + 2m

12
− D + E − AD + B = 0.

A�er normalizing11 A = B = C = D = 0 (⇒ F = −1, E = − a+2m
12 ) in (4.1), expressing

each e i in terms of {γlim
i } gives the columns of

Ωlim =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
a
24 −m

2 1 0
bζ(3)
(2πi)3

a
24 0 1

⎞
⎟
⎟
⎟
⎟
⎠

.

To computeN (with these normalizations), we applyO(−H)⊗ to the ξ i inKnum
0 (X○);

then

[T]γ = [O(−H)⊗] ξ =

⎛
⎜
⎜
⎜
⎝

1 0 0 0
−1 1 0 0
0 m 1 0

− a+2m
12 m 1 1

⎞
⎟
⎟
⎟
⎠

,

whereupon taking log gives

[Nlim]γ lim = [N]γ =

⎛
⎜
⎜
⎜
⎝

0 0 0 0
−1 0 0 0
m
2 m 0 0
− a

12
m
2 0

⎞
⎟
⎟
⎟
⎠

.

_e data required to compute N and Ωlim for the complete intersection Calabi–Yau
(CICY) examples from [DM] is displayed in Table 1. Here, for example, “P5[3, 3]”
means that X○ is a complete intersection of bidegree (3, 3) in P5.

11A = 0 is the canonical normalization of the local coordinate; the remaining choices are made to
simplify the end result.

https://doi.org/10.4153/CJM-2015-020-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-020-4


Arithmetic of Degenerating Principal VHS 293

X○ m a b

P4[5] 5 50 -200

P5[2, 4] 8 56 -176

P5[3, 3] 9 54 -144

P6[2, 2, 3] 12 60 -144

P7[2, 2, 2, 2] 8 64 -128

WP4
1,1,1,2,5[10] 10 340 -2880

WP4
1,1,1,1,4[8] 8 176 -1184

WP51,1,2,2,3,3[6, 6] 36 792 -4320

WP51,1,1,2,2,3[4, 6] 24 384 -1872

WP4
1,1,1,1,2[6] 6 84 -408

WP51,1,1,1,1,3[2, 6] 12 156 -768

WP51,1,1,1,2,2[4, 4] 16 160 -576

WP51,1,1,1,1,2[3, 4] 12 96 -312

Table 1

Since X○ is smooth, the Chern numbers can be calculated using

c(X○
) =

c(P)∣X○
c(NX○/P)

=
∏

3+r
i=0(1 + δ i[H])

∏
r
k=1(1 + dk[H]).

Remark 4.1 An interesting case not included amongst the CICY examples is the
so called “14th case VHS”, labeled “I” in [loc. cit.]. It is shown in [CDLNT] that this
VHS arises from the GrW3 H3 of a subfamily contained in the singular locus of a larger
family of hypersurfaces in weighted-projective space. _e LMHS of this sort of exam-
ple is probably inaccessible to the above approach. _e technique of the next section
provides a possible approach to such examples.

5 Calabi–Yau Variations from Middle Convolutions

Middle convolution is a binary operation on local systems introduced by Katz [Ka]
to study the construction of rigid local systems on Zariski open subsets U ⊂ P1. Re-
cent work of Dettweiler and others (e.g., [D,DR1,DS]) has demonstrated the Hodge-
theoretic importance of this construction, of which we will give only the briefest de-
scription. _e main point for us is that it yields interesting Calabi–Yau type variation
for which the limiting invariant ξ above may be computed directly. In this way we
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can see where the rational multiples of ζ(3) (or ζ(5)) come from, in contrast to the
approach of the last section.

5.1 The Variations

If {a} and {b} are ûnite sets of points inA1, we deûne {c} = {a}∗{b} to be the set ob-
tained by taking all sums of pairs a j+bk from {a} and {b}. LetU1 = A1

x/{a1 , . . . , am},
U2 = A1

z/{b1 , . . . , bn}, and U3 = A1
y/{c1 , . . . , cp}. Let U ⊂ A2

(x ,y) be the Zariski open
where∏ j(x − a j)∏k((y − x) − bk)∏l(y − c l) does not vanish. We have a diagram

U3 × P1

π3
����

U2

U3 Uπ3
oo

π1

��

π2

>>

1 Q

ȷ
cc

U1

where π1(x , y) ∶= x, π2(x , y) ∶= y−x, and π3(x , y) = y. Given local systemsVi → U i
(i = 1, 2), their middle convolution is the local system on U3 deûned by

V1 ∗V2 ∶= R1
(π3)∗( ȷ∗(π∗1 V1 ⊗ π∗2V2)) .

Now suppose (following [D, sec. 2.6]) that the local systems are motivic, say

Vi = GrWd i PiRd i (ρ i)!QYi (i = 1, 2),

where Yi
ρ i
→ U i are smooth morphisms and Pi ∈ Q[Aut(ρ i)] idempotents. _e situa-

tion is described by the diagram

U2 Y2
ρ2oo G2gg

U3 U

π2

;;

oo

π1

��

Y1 ⊠ Y2 ∶oo

ρ3
vv π∗1 Y1 ×U π∗2Y2

U1 Y1 ,
ρ1oo G1hh

and the middle convolution is described by

V1 ∗V2 = GrWd1+d2+1(P1 × P2)Rd1+d2+1
(ρ3)!QY1⊠Y2 .

By iteratively alternating this construction with quadratic twists as described in
[DR1, sec. 2.3-4], we obtain a sequence of VHSVd over P1/{0, 1,∞} of weight d, with
hd ,0 = 1, for each d ∈ N. From the motivic perspective, for each iteration we begin
with a familyXd−1 = ∪t∈P1/{0,1,∞}Xd−1(t) of “singular Calabi-Yau” (d− 1)-folds (with
involution σ1) over U1 = P1/{0, 1,∞}, and the

√
z-double-cover Y2 (with involution

σ2) over U2 = P1/{0,∞}. Taking Y1 to be a quadratic twist (by
√

t or
√

1 − t) of
Xd−1/(Xd−1)

σ1 , we then apply to Y1 ⊠ Y2 the “projector” of quotienting by σ1 × σ2,
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producing Y3. _is has a natural compactiûcation to a family Xd of “singular C-Y”
d-folds with involution σ3 over U3, in which

Y3 = Xd/(Xd)
σ3 =∶ X−

d .

_e local system underlying Vd is just the σ3-anti-invariants in GrWd Rd(ρ3)!QY3 .
_e {Xd(t)} produced by this algorithm (which are singular for d ≥ 2) all take the

form w2 = fd(x1 , . . . , xd , t), and include the following12:
d = 1: w2 = (1 − tx)x(x − 1)

(Legendre elliptic curve)
d = 3: w2 = (1 − tx3)x3(x2 − x3)(x2 − 1)(x1 − x2)(x1 − 1)x1

(CY 3-fold family, cf. Remark 5.2)
d = 6: w2 = (1 − tx6)(1 − x6)(x5 − x6)x5(x4 − x5)(1 − x4)×

(x3 − x4)x3(x2 − x3)(1 − x2)(x1 − x2)x1(1 − x1).
Each has an obvious involution σ given by w ↦ −w. Write πd ∶X−

d → P1/{0, 1,∞} so
that Vd = (GrWd Rd(πd)!QX−

d
)−σ .

Proposition 5.1
(i) For 1 ≤ d ≤ 6, Vd is a VHS of weight d and rank d + 1, with Hodge numbers all 1.
(ii) [DR1] V6 has MTG G2.

Proof How (ii) follows from the results of [DR1] is explained in [KP, sec. 9], while
(i) follows from the proof of [DR1,_eorem 1.3.1]. In particular, the table in that proof
(with 0 and∞ swapped, as our 1/t is their P1 parameter) shows that the monodromy
at t = 0 is a single Jordan block U(d + 1), which can only happen for rank d + 1 if the
Hodge numbers are (1, 1, . . . , 1).

Remark 5.2 _e {X3(t)} are degree-8 hypersurfaces inWP(1, 1, 1, 1, 4) that areC-Y
3-folds a�er desingularization (or for purposes of computing (GrW3 R3(π3)!QX−

3
)−σ ).

Note that this is not the mirror family for which the LMHS was computed in Section
4. Its LMHS at t = 0 does not appear to be accessible by mirror symmetry, since it
belongs to the singular locus of a much larger variation and does not meet the large
complex structure limit of this larger family. We also note that while for d = 1, 2
the vanishing cycle period ∫µ t

ωt (Section 5.2) is a hypergeometric function (up to
quadratic twist), for d ≥ 3 this is not the case. So methods of computing LMHS using
Meijer G-functions [GL] would also not be applicable.

Remark 5.3 Referring to [DR1, p. 940] and accounting for the inversion and qua-
dratic twists, themonodromies ofVd are displayed in Table 2, in whichU(n) denotes
a Jordan block of rank n.
For the stalks, we have (writing Dt ∶= Xd(t)σ , X−

d (t) ∶= Xd(t)/Dt)

Vd ,t ≅ GrWd Hd
c (X−

d (t),Q)
−σ

≅ GrWd Hd(X−
d (t),Q(−d))−σ ,

V∨
d ,t ≅ GrW−d Hd(Xd(t),Dt ;Q)

−σ
≅ GrW−d Hd(Xd(t),Q)

−σ .

12Note that our parameter t is inverse to that in [DR1]; for odd d, we have also removed a ûnal
quadratic twist present in [op. cit.] (to rid fd of a factor of (1 − t)).
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at 0 at 1 at∞
d = 1 U(2) U(2) −U(2)
d = 3 U(4) −U(2) ⊕ 1⊕2 (−U(2))⊕2

d = 6 U(7) U(2)⊕2 ⊕U(3) (−1)⊕4 ⊕ 1⊕3

Table 2

On each Xd(t) there are obvious σ-anti-invariant topological d-cycles consisting of
two sheets (±w) bounding on components of Dt (e.g., µt and τt below); clearly such
cycles span (GrW−d)Hd(Xd(t),Q)−σ . By a topological argument (omitted here), these
may be moved oò Dt , and hence belong to the image of Hd(X−

d (t)) → Hd(Xd(t)).
_e resulting isomorphism Vd ,t

≅
→V∨

d ,t(−d) allows us to pair homology cycles in
GrW−d Hd(Xd(t),Q)−σ and write classes in Vd ,t ⊗ C in terms of them. _at is, in a
sense we may work as if Xd(t) were smooth, which is immensely convenient for the
computations that follow.

5.2 Cauchy Residue Method

In each case (d = 1, 3, 6), we are a�er the LMHS at t = 0. _e idea is to compute
Fd(Vd)nilp by Cauchy residue.

More precisely, assume 0 < t ≪ 1 and write

ωt =
2d−1

(2πi)d
dx1 ∧ ⋅ ⋅ ⋅ ∧ dxd

w
∈ Ωd(Xd(t))

for the “holomorphic form”13 and

τt = {(w , x1 , . . . , xd) ∈ Xd(R) ∣ 1 ≤ x1 ≤ x2 ≤ ⋅ ⋅ ⋅ ≤ xd ≤ t−1}

for a family of cycles (with two branches coming from ±w). Note that there exists a
family µt ∶= {(w , x1 , . . . , xd) ∈ Xd(R) ∣ 1

t ≤ xd ≤ ⋅ ⋅ ⋅ ≤ x1 < ∞} (0 < t ≪ 1) of vanish-
ing cycles with (µt , τt) = 1 and ∫µ t

ωt → 1 as t → 0 (for example, using ∫
∞

1
du

u
√

u−1
= π

and the residue approach below). Hence τt and µt are correctly normalized; that is,
they are the extremal members γd resp. γ0 of an integral symplectic basis {γ j}

d
j=0 of

Vd over a punctured disk, in which the monodromy about t = 0 takes the form14

[T]γ =

⎛
⎜
⎜
⎜
⎝

1 0 ⋅ ⋅ ⋅ 0
a 1 ⋱ ⋮

⋮ ⋱ ⋱ 0
⋅ ⋅ ⋅ ±a 1

⎞
⎟
⎟
⎟
⎠

.

13_e notation means that ωt pulls back to a holomorphic form on a desingularization of Xd(t); in
particular, it gives a class in Fd GrWd Hd

c (X−d (t),C)
−σ .

14_e “±” is (−1)d for d > 1.
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In this section, ∮∣t∣=є dt denotes integration counterclockwise from arg(t) = −π to
arg(t) = π. Recalling the notation ℓ(t) = (log(t))/(2πi), integration yields

(5.1) Πd(t) ∶= ∫
τ t

ωt = (−1)d
d
∑
j=0

ℓ j
(t) ∑

k≥0
a jk tk ,

whereupon

(5.2) 1
2πi ∮∣t∣=є

dt
t ∫τ t

ωt = (−1)d
d
∑
j=0
a j0ℓ j

(є)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Πnilp

d (є)

+O(є logd є)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0
with є

.

In the rest of this paper, “≡” shall be used to denote working modulo O(є logd є).
If ωnilp

t is the section of Fd(Vd)nilp with period 1 against µt , then Πnilp
d (є) in (5.2)

is its period at t = є against τє . Its full period vector takes the form

[ωnilp
є ]γ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
a(d−1)
10 ℓ(є) + a(d−1)

00
⋮

∑
d−1
j=0 a

(1)
j0 ℓ j(є)

∑
d
j=0 a j0ℓ j(є)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Applying eℓ(є)N to this must yield

(5.3) t( 1, a(d−1)
00 , . . . , a(1)00 , a00) ,

from which we deduce that ∓a(1)00 a = a10 and a(d−1)
10 = −a. So (5.3) is the ûrst col-

umn of Ωlim prior to canonically normalizing the local coordinate. To carry out this
normalization, we make the substitution t = αs in (5.1), where

ℓ(α) = −
a(d−1)
00

a(d−1)
10

=
a(d−1)
00

a
,

and rewrite the right-hand side in powers of s and ℓ(s). Writing ã jk (more generally
ã(i)jk ) for the modiûed coeõcients and

Π̃nilp
d (є) ∶= (−1)d

d
∑
j=0
ã j0ℓ j

(є)

(more generally ω̃nl p
є ) for themodiûed periods, we repeat the above computationwith

the result that (5.3) is replaced by

t( 1, ã(d−1)
00 , . . . , ã(1)00 , ã00) =

t
( 1, 0, . . . ,∓ ã10

a
, ã00) ,

which is now the correct ûrst column of Ωlim. (Equivalently, apply eℓ(α)N to (5.3).)
In particular, the extension class ξ ∈ C/Q from the end of Section 3 is given by ã00
(for d = 3) or −ã10/a (for d = 6). More information is contained in the following
proposition.
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Proposition 5.4 _e bottom row of the normalized Ωlim is

( ã00 ,−
1!ã10
2

, 2!ã20

22 , . . . , (d − 1)!ãd−1,0

(−2)d−1 , 1) .

Moreover, we have a = 2 and α = 4d+1.

Proof From the calculations we carry out for d = 1, 3 and 6 in Sections 5.3–5.5, it is
evident that

(ãd0 =) ad0 =
2d

d!
and ad−1,0 = −

2d(d + 1)
(d − 1)!

ℓ(4).

In order for ωnilp
t and its derivatives ∇t ∂

∂t
ωnilp

t to be single-valued, we must have

(ã(d−k)
k0 =) a(d−k)

k0 =
(−a)k

k!

(for 1 ≤ k < d) and ad0 = ad
d ! , so a = 2.

By Griõths transversality, the columns of the normalized Ωlim are given by

{
(2πi)k

k!a(d−k)
k0

eℓ(t)N( t ∂
∂t

)
k
[ω̃nilp

t ]γ}

d

k=0
.

In particular, the bottom row has entries

ãk0

a(d−k)
k0

=
k!ãk0

(−2)k (1 ≤ k < d).

Since normalization kills the k = d − 1 entry, we must have ãd−1,0 = 0. In order
for replacing ℓ(t) by ℓ(s) + ℓ(α) to eliminate the ℓd−1(t) term of Πnilp

d (t), we need
ℓ(α) = − ad−1,0

ad0d = (d + 1)ℓ(4).

_e main point is that Πnilp
d contains all the information in Ωlim, and the normal-

ization can be carried out using Πnilp
d alone: one just makes the substitution that kills

the ℓd−1(t) term. In our computations, this will simply mean replacing Πnilp
d (є) by

Π̃nilp
d (є) = Πnilp

d (4d+1є).

5.3 Computing the Extension Classes

For d = 1, the (normalized) ã00 is zero, but Conjecture 2.4 still has content: it says that
the unnormalized a00 ∈ C/Q should be (a rational multiple of) ℓ(q) for some q ∈ Q∗.
While the conjecture is known for elliptic curves (cf. [GGK, (III.B.11)]), checking it
gives an initial feasibility test for our Cauchy residue approach to Ωlim, and motivates
what will take place in higher dimension. Referring to (5.2),

1
2πi ∮∣t∣=є

dt
t ∫τ t

ωt =
2

(2πi)2 ∮∣t∣=є

dt
t ∫

1
t

1

dx
√
x(x − 1)(1 − tx)

.
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Substituting u =
(x−1)t

1−t yields

=
2

(2πi)2 ∮∣t∣=є

dt
t ∫

1

0

du
√

u(1 − u)(u + (1 − u)t)

=
1
πi ∫

1

0
(∮

∣t∣=є

1
√

u + (1 − u)t
dt

2πit
)

du
√

u(1 − u)
.

Let η = є
1+є . _en we have the power series expansions

1
√

u + (1 − u)t
=

1
√

u ∑m≥0
tm(

− 1
2

m
)
(1 − u)m

um

valid for u ∈ [η, 1], and

1
√

u + (1 − u)t
= ∑

m≥0
t−m− 1

2 (
− 1

2
m

)
um

(1 − u)m+ 1
2

valid for u ∈ [0, η]. In the former expansion, ∮ annihilates all but them ≥ 0 term; for
the latter, we use15

(5.4) ∮
∣t∣=є

t−(m+
1
2 )
dt

2πit
=

(−1)mє−(m+ 1
2 )

π(m + 1
2 )

.

Altogether, the above

=
1
πi ∫

1

η

du
u
√

1 − u
+

1
π2 i ∑m≥0

∣(
− 1

2
m )∣є−(m+ 1

2 )

(m + 1
2 )

∫

η

0

um− 1
2

(1 − u)m+1 du.

Working modulo O(є log є), this becomes

≡
1
πi

{∫

1

η

du
u
+∑

k≥1
∣ (
− 1

2
k
)∣ ∫

1

η
uk−1du}+ 1

π2 i ∑m≥0

∣(
− 1

2
m )∣є−(m+ 1

2 )

(m + 1
2 )

∫

η

0
um− 1

2 du

≡ −2ℓ(є) + 1
πi

{∑
k≥1

∣(
− 1

2
k )∣

k
+

1
π ∑m≥0

∣(
− 1

2
m )∣

(m + 1
2 )

2
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−a00

.

A short computation now shows that a00 = −2
2πi {log 4 + log 4} = ℓ( 1

44 ), and certainly
1
44 ∈ Q∗.
Essentially, the same thing happens in general: in computing Πnilp

d , one has to face
(for example, generalizing the ∫

1
η integral above)

(5.5) ∑
k1 , . . . ,kd≥0

(∏
j
∣ (
− 1

2
k j

)∣) ∫
[0,1]d∩{u1 ⋅⋅⋅ud>є}

(∏
j
uk j−1

j du j)

15Note: it is not correct to “go twice around the circle” and kill t−m− 1
2 . _e problem is that

∫ 1
0

du√
u(1−u)(u+(1−u)t) only matches the analytic continuation of ∫τ t

ωt for arg(t) ∈ (−π, π).
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and hence (as a byproduct) the constants

(5.6) γn ∶= ∑
k≥1

∣(
− 1

2
k )∣

kn =
1
2 n+2Fn+1(

1, . . . , 1, 3
2

2, . . . , 2 ∣ 1)

for n ≥ 1. _e key observation about them is that (while γ1 = log 4)

γn = qnζ(n) + “degenerate” terms,

where q2 = 1, q3 = 2, q4 =
9
4 , q5 = 6, q6 =

79
16 , etc. _e generalization of the ∫

η
0 integral

above is more complicated, with

(5.7) γ̃n ∶=
1
π ∑k≥0

∣(
− 1

2
k )∣

(k + 1
2 )

n+1
=

2n+1

π n+2Fn+1(
1
2 , . . . ,

1
2

3
2 , . . . ,

3
2

∣ 1)

as well as some very interesting multiple series appearing. See the Appendix for eval-
uation and discussion of the γn and γ̃n .

5.4 Computing the LMHS of V3

For d = 3, (5.2) is 23
(2πi)3 times

1
2πi ∮∣t∣=є

dt
t ∫

1
t

1
∫

x3

1
∫

x2

1

1
√
f3(x1 , x2 , x3 , t)

dx1dx2dx3 ,

which, upon substituting X̃ i =
(x i−1)t

1−t , becomes

=
1

2πi ∮
dt
t ∫

1

0
∫

X̃3

0
∫

X̃2

0

√
1 − t

√

F̃3(X̃1 , X̃2 , X̃3 , t)
dX̃1dX̃2dX̃3 ,

where

F̃3(X̃1 , X̃2 , X̃3 , t) =
3

∏
i=1

(1 − X̃ i)
2

∏
i=1

(X̃ i − X̃ i+1) ∏
i=1,3

{(1 − X̃ i)t + X̃ i} .

Note that the region of integration is now independent of t; moving the ∮ inside and
performing the further substitutions X̃3 = X3, X̃2 = X2X3, X̃1 = X1X2X3, the above
integral

(5.8) =∭
[0,1]×3

(∮
∣t∣=є

√
1 − t

√
F3(X1 , X2 , X3 , t)

dt
2πit

)dX1dX2dX3

where

F(X1 , X2 , X3 , t) =

{(1 − X3)t + X3}{(1 − X1X2X3)t + X1X2X3}X1X2

3

∏
i=1

(1 − X i).

Next, we break [0, 1]×3 in (5.8) into 4 regions according to whether (I) X1X2X3 >

η ∶= є
1+є , (IIa) X2X3 > η > X1X2X3, (IIb) X3 > η > X2X3, or (III) η > X3. _e
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expansion of F3(X1 , X2 , X3 , t)−
1
2 depends on the region:

∑
a ,b≥0

ta+b(−
1
2
a
)(
− 1

2
b

)
X−a

1 X−a
2 X−a−b

3 (1 − X3)
b− 1

2 (1 − X1X2X2)
a

√
(1 − X1)(1 − X2)

,(I)

∑
a ,b≥0

ta−b−
1
2 (
− 1

2
a
)(
− 1

2
b

)
Xb1 Xb2Xb−a3 (1 − X3)

a− 1
2 (1 − X1X2X3)

−b
√

(1 − X1)(1 − X2)
,(IIa,b)

∑
a ,b≥0

t−a−b(−
1
2
a
)(
− 1

2
b

)
Xa1 Xa2 Xa+b3 (1 − X3)

−a− 1
2 (1 − X1X2X3)

−b
√

(1 − X1)(1 − X2)
.(III)

For purposes of working modulo O(є log3 є), computation shows that we may re-
place

√
1 − t and (1 − X1X2X3) by 1; whereas (1 − X i)

− 1
2 is always expanded as16

∑k i≥0(
1
2 )k iX

k i
i . (_e special case (1 − X3)

a− 1
2 is expanded when a = 0 and replaced

by 1 when a > 0.) We may also replace η by є in the triple integrals, which become
(I) ∫

1
є ∫

1
є
X3
∫

1
є

X2X3
,

(IIa) ∫
1
є ∫

1
є
X3
∫

є
X2X3

0 ,

(IIb) ∫
1
є ∫

є
X3

0 ∫
1
0 , and

(III) ∫
є
0 ∫

1
0 ∫

1
0 .

Region (III) makes no contribution.
Performing the ∮ in region (I) kills all terms except (a, b) = (0, 0). So the portion

of (5.8) over region (I) is

∫

1

є
∫

1

є
X3

∫

1

є
X2X3

3

∏
i=1

X−1
i (1 − X i)

− 1
2 dX i =

∑
k1 ,k2 ,k3≥0

(
3

∏
i=1

(
1
2
)

k i
) ∫

1

є
∫

1

є
X3

∫

1

є
X2X3

(
3

∏
j=1

Xk j−1
j dX j) ,

which is now (5.5) with d = 3. Repeatedly applying the formula

−∫

1

µ
(logr x)xk−1dx =

⎧⎪⎪
⎨
⎪⎪⎩

1
r+1 log

r+1 µ, k = 0
∑

r
ℓ=0

(−1)ℓ µk r!
kℓ+1(r−ℓ)! log

r−ℓ µ + (−1)r+1 r!
kr+1 , k ≠ 0

and throwing out terms with positive powers of є, we arrive at

(5.9) −
1
6
log3 є + 3

2
γ1 log2 є + (3γ2 − 3γ2

1 ) log є + (γ3
1 − 6γ1γ2 + 3γ3).

For region (IIa,b), applying (5.4) and computing the triple integrals (and simplifying
results using (A.5)) yields

(5.10) γ1

2
log2 є − (2γ2

1 + β) log є + (γ3
1 − 2γ1γ2 + γ1β + ν − ψ)

for (IIa) and
(5.11) −δ log(є) + (γ1δ + ν′)

16the Pochhammer symbol ( 1
2 )k = ∣(

− 1
2
k )∣.
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for (IIb). _e meaning of the assorted Greek letters is

ν ∶= 1
π∑

′ ( 1
2 )k1(

1
2 )k2(

1
2 )a(

1
2 )b

(b − a + 1
2 )(b + k1 +

1
2 )(a + k1)(a + k2)

,

ν′ ∶= 1
π∑

′ ( 1
2 )k1(

1
2 )k2(

1
2 )a(

1
2 )b

(b − a + 1
2 )(b + k1 +

1
2 )(b + k2 +

1
2 )(a + k1)

,

β ∶= 1
π∑

′ ( 1
2 )a(

1
2 )b

(b + 1
2 )a(a + b +

1
2 )
, δ ∶= 1

π∑
′ ( 1

2 )a(
1
2 )b

(b + 1
2 )

2(a + b + 1
2 )
,

ψ ∶=
1
π∑

′ ( 1
2 )a(

1
2 )b

(b + 1
2 )a2(a + b + 1

2 )
,

where ∑
′

denotes summation over all 2, 3, or 4-tuples of non-negative integers for
which the denominator is nonzero.

Now it is easy to prove that β + δ = γ1γ̃1 + γ̃2 = 2γ2
1 + γ2. Adding (5.9), (5.10), and

(5.11), replacing log є by log s + 4γ1, and using (A.1)–(A.3) gives

−
1
6
log3 s + 2ζ(2) log s + (6ζ(3) − 2γ1ζ(2) −

8
3
γ3
1 + ν + ν′ − ψ) .

_e following lemma will be proved in Section 5.5.

Lemma 5.5 ν + ν′ − ψ = 8
3 γ

3
1 + 2γ1ζ(2) − 12ζ(3).

Reinstating the factor of 23
(2πi)3 , we have the following theorem.

_eorem 5.6 For d = 3, the canonically normalized Π̃nilp
d (s) is given by

−
4
3
ℓ3(s) + 16 ζ(2)

(2πi)2 ℓ(s)−48
ζ(3)

(2πi)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ã00

.

We conclude that the extension class ξ = ã00 ∈ C/Q satisûes Conjecture 2.3.

5.5 The G2-VHS V6

_e comparable simpliûcations on (5.2) for d = 6 lead to ( 26
(2πi)6 times)

∫
[0,1]×6

(∮
∣t∣=є

√
X5X6

√
1 − t

√
F6(X1 , . . . , X6 , t)

dt
2πit

)dX1 ⋅ ⋅ ⋅ dX6 ,

where

F(X1 , . . . , X6 , t) = X1X2

6

∏
i=1

(1 − X i) ∏
j=1,3,5

{(1 − X j ⋅ ⋅ ⋅X6)t + X j ⋅ ⋅ ⋅X6} .

_e region of integration breaks, as before, into (I) X1 ⋅ ⋅ ⋅X6 > η, (IIa,b) X3 ⋅ ⋅ ⋅X6 >

η > X1 ⋅ ⋅ ⋅X6, (IIIa,b) X5X6 > η > X3 ⋅ ⋅ ⋅X6, and (IVa,b) η > X5X6. Working modulo
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O(є log6 є), the region (I) integral again is just (5.5), and yields

1
720

log6 є − γ1

20
log5 є + {−

γ2

4
+
5γ2

1

8
} log4 є + {−γ3 + 5γ1γ2 −

10
3
γ3
1 } log3 є

+ {−3γ4 + 15γ1γ3 +
15
2
γ2
2 − 30γ2

1 γ2 +
15
2
γ4
1 } log2 є

+ {−6γ5 + 30γ1γ4 + 30γ2γ3 − 60γ1γ2
2 − 60γ2

1 γ3 + 60γ3
1 γ2 − 6γ51 } log є

+ {−6γ6 + 30γ1γ5 + 30γ2γ4 + 15γ2
3 − 20γ3

2 − 120γ1γ2γ3 − 60γ2
1 γ4

+ 90γ2
1 γ2

2 + 60γ3
1 γ3 − 30γ4

1 γ2 + γ6
1 } .

Notice (in view of (A.4)) the −36ζ(5) in the coeõcient of log є.
Unfortunately, other regions produce some series we are (at present) unable to

evaluate; for instance, the coeõcient of log є in the (IIb) integral contains the term

1
π∑

′ ( 1
2 )k1(

1
2 )k2(

1
2 )k3(

1
2 )k4(

1
2 )a1(

1
2 )a2(

1
2 )a3

(a3 − a2 − a1 + 1
2 )(k1 + a3 +

1
2 )

× (k2 + a3 +
1
2 )(k3 − k2 − a2)(k4 − k3)(k4 + a1)

.

So we will limit ourselves here to evaluating only the ûrst four terms of Π̃nilp
6 . Adding

the contributions from (IIa,b) to the ûrst line of the region (I) result, gives

1
6!

log6 є − 7γ1

5!
log5 є + {

49
48

γ2
1 −

5
24

ζ(2)} log4
(є)

+ {−
109
12

γ3
1 +

37
6

γ1ζ(2) − 2ζ(3) − ν + ν′ − ψ
6

} log3 є.

Normalizing this and multiplying by 1
(2πi)6 , modulo O(log2 s) we have

1
26 Π̃

nilp
6 (s) ≡

1
6!
ℓ6(s)− 5ζ(2)

24(2πi)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ã40/26

ℓ4(s) + 1
(2πi)3 (

4
9
γ3
1 +

1
3
γ1ζ(2) − 2ζ(3) − ν + ν′ − ψ

6
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ã30/26

ℓ3(s).

Referring to the end of Section 3, Proposition 5.4 now implies that ã40 , ã30 ∈ Q. For
ã40, this is clearly the case, but ã30 belongs to iR and somust be zero, proving Lemma
5.5. _is is particularly striking, as our knowledge that ã30 is rational depends on
Proposition 5.1(ii). So it is thanks to G2 that we can evaluate ν + ν′ − ψ, and with it,
the d = 3 LMHS.
For d = 6, we expect Conjecture 2.4 to remain true:

Conjecture 5.7 _e canonically normalized Π̃nilp
6 (s) is given by

4
45

ℓ6(s) + 5
9
ℓ4(s) + q2ℓ2(s) + q1

ζ(5)
(2πi)5

ℓ(s) + q0 ,

where q0 , q1 , q2 ∈ Q.
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Appendix A Some Hypergeometric Special Values

_e vanishing cycle periods ∫µ t
ωt (for each d ≥ 1) in Section 5.2 are close cousins of

the hypergeometric functions

d+1Fd(
1
2 , . . . ,

1
2

1, . . . , 1 ∣ t) =

2d−1

(2πi)d ∫0≤xd≤⋅⋅⋅≤x1≤1

dx1 ∧ ⋅ ⋅ ⋅ ∧ dxd
√

(∏
d
i=1 x i)(x1 − 1)(∏d−1

j=1 (x j+1 − x j))(1 − txd)
,

with themain discrepancy arising from the alternation between x i and (1−x j) (rather
than simply having ∏ x i) under the radical in our setup. So it is not surprising that
hypergeometric special values such as (5.6)–(5.7) appear in the coeõcients of powers
of log t in ∫τ t

ωt . In this appendix, we shall explain how to derive expressions for these
constants in terms of Riemann zeta values. Writing (by abuse of notation) ζ(1) ∶=

log 4, we have the following for (5.6):

γ1 = ζ(1),(A.1)

γ2 = ζ(2) − 1
2
ζ(1)2 ,(A.2)

γ3 = 2ζ(3) − ζ(2)ζ(1) + 1
6
ζ(1)3 ,(A.3)

γ4 =
9
4
ζ(4) − 2ζ(3)ζ(1) + 1

2
ζ(2)ζ(1)2

−
1
24

ζ(1)4 ,

γ5 = 6ζ(5) − 9
4 ζ(4)ζ(1) − 2ζ(3)ζ(2) + ζ(3)ζ(1)2 − 1

6 ζ(2)ζ(1)
3

+ 1
120 ζ(1)

5 ,(A.4)

γ6 =
79
16 ζ(6) − 6ζ(5)ζ(1) + 9

8 ζ(4)ζ(1)
2 − 2ζ(3)2 + 2ζ(3)ζ(2)ζ(1)

− 1
3 ζ(3)ζ(1)

3 + 1
24 ζ(2)ζ(1)

4 − 1
720 ζ(1)

6 .

We also record some values of (5.7):17

(A.5) γ̃0 = 1, γ̃1 = ζ(1), γ̃2 = ζ(2) + 1
2
ζ(1)2 , γ̃3 = 2ζ(3) + ζ(2)ζ(1) + 1

6
ζ(1)3 .

_e values γ4 , γ5 , γ6 , γ̃1 , γ̃2 , γ̃3 were computed using Mathematica [MATH], though
the method used below for γ1 , γ2 , γ3 would also suõce.

We shall proceed by expressing the associated hypergeometric function

hn(t) =
∞

∑
k=1

tk(−1/2
k

)k−n
= (−t/2) n+2Fn+1(

1, ⋅ ⋅ ⋅ , 1, 3
2

2, ⋅ ⋅ ⋅ , 2 ∣ −t)

in terms of polylogarithms for n ≤ 3. Since we are interested in γn = hn(−1), we
introduce the auxiliary function fn(u) = hn(u2 − 1). Manipulation of power series
shows that

dhn

dt
= (1/t)hn−1(t), hn(0) = 0,

17_ese suggest a delightful relation to the γn , which, in fact, fails for n ≥ 4.

https://doi.org/10.4153/CJM-2015-020-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-020-4


Arithmetic of Degenerating Principal VHS 305

and therefore
d fn
du

=
2u

u2 − 1
fn−1(u) = (

1
u − 1

+
1

u + 1
) fn−1(u).

In particular, since fn(1) = hn(0) = 0, we have an iterated integral formula

fn(u) = ∫
u

1

d fn
dv

dv = ∫
u

1
(

1
v − 1

+
1

v + 1
) fn−1(v) dv ,

which starts with
f0(u) = h0(u2

− 1) = 1/u − 1
by the binomial series.

Lemma A.1 f1(u) = −2(log(u + 1) − log(2)).

Proof By the above

f1(u) = ∫
u

1

2v
v2 − 1

(1/v − 1) dv = −2∫
u

1

dv
1 + v

,

which gives the result.

It follows that γ1(= f1(0)) = log(4), as desired.
At this point, we observe that the diòerential of f1(u) is −2/(u+ 1), so we are really

calculating a series of iterated integrals on P1 ∖ {1,−1,∞}. We therefore make the
change of variables 2w = v + 1 to obtain

fn(2u − 1) = ∫
u

1
(

1
w − 1

+
1
w
) fn−1(2w − 1) dw .

Integration either by hand or with Mathematica gives the following lemma.

Lemma A.2
f2(2w − 1) =2Li2(1 −w) − log2

(w)

f3(2w − 1) =2Li3(1 −w) − 2Li3(w) + 2ζ(3)

+ 2ζ(2) log(w) − log(1 −w) log2
(w) − (1/3) log3

(w).

To integrate f1(u) by hand to obtain f2(u), we observe that

f1(u) = 2
∞

∑
ℓ=1

(u − 1)ℓ(−1)ℓ

2ℓℓ

at u = 1. _is allows us to compute the integral of f1(u)/(u − 1) in terms of Li2. _e
integral of f1(u)/(u + 1) is elementary. To determine f3(u) we must integrate both
f2(v)/(v − 1) and f2(v)/(v + 1). To this end, we use the following identity that allows
us to interchange Li2(w) and Li2(1 −w).

Lemma A.3 We have that

Li2(w) + Li2(1 −w) = ζ(2) − log(w) log(1 −w)

and hence 2Li2(1/2) = ζ(2) − 1
4 ζ

2(1).
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Proof Diòerentiate both sides with help of the formulas:

d
dw

Li2(w) = −
log(1 −w)

w
, d

dw
Li2(1 −w) =

log(w)

1 −w
.

_e constant of integration ζ(2) is obtained by taking the limit at w → 1.

_e two remaining integrals needed to calculate f3 are given by the following
lemma.

Lemma A.4

∫
log2

(w)

w − 1
= log(1 −w) log2

(w) + 2 log(w)Li2(w) − 2Li3(w)

∫
log(w) log(1 −w)

w
dw = Li3(w) − Li2(w) log(w).

Proof Diòerentiate both sides of each equation using

d
dw

Li3(w) =
Li2(w)

w
, d

dw
Li2(w) = −

log(1 −w)

w
.

Remark A.5 Based on empirical evidence gathered using Mathematica, it appears
that

γd = ∑
P
cPζ(p1) ⋅ ⋅ ⋅ ζ(pr),

where the sum runs over all partitions P of d into a sum of positive integers, and the
coeõcients cP are determined as follows:
● _e coeõcient of ζ(d) in γd is

cd =
2d − 2
d

, d > 1.

● _e coeõcient of ζ(1)d in γd is (−1)d−1

d ! .
● If P = (p1 , . . . , pr) is a partition of d with all p j > 1, then

cP = (−1)r−1cp1 ⋅ ⋅ ⋅ cpr

assuming all p j ’s are distinct. More generally, if P contains elements withmultiplic-
ity m1 , . . . ,mk > 1, then

cP =
(−1)r−1

m1! ⋅ ⋅ ⋅mk !
cp1 ⋅ ⋅ ⋅ cpr

For example, ζ(a)ζ(b)2 appears with coeõcient 1
2 cac

2
b , while ζ(a)3 appears with

coeõcient 1
6 c

3
a .

● _e coeõcient of ζ(p1) ⋅ ⋅ ⋅ ζ(pr)ζ(1)c is equal to (−1)c

c! times the coeõcient of
ζ(p1) ⋅ ⋅ ⋅ ζ(pr). _is assumes all p j > 1.
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For example, using γ2, γ3 we compute that

γ4 =
7
2
ζ(4) − 2ζ(3)ζ(1) − 1

2
ζ(2)2

+
1
2
ζ(2)ζ(1)2

−
1
24

ζ(1)4 ,

where 7
2 ζ(4) −

1
2 ζ(2)

2 = 9
4 ζ(4). Likewise, to calculate the coeõcient of π6 in γ6, we

consider
31
3
ζ(6) − 7

2
ζ(4)ζ(2) + 1

6
ζ(2)3

=
79
16

ζ(6).

Acknowledgments MK thanks C. Doran, P. Griõths, and Y. Kovchegov for inter-
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