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1. Introduction

Dicks and Sunic gave an elegant way of totally ordering the vertex set of a directed tree
[9]. They applied this to give a simple proof of Vinogradov’s result that free groups, and
more generally, free products of left-orderable groups are left-orderable. The purpose of
this text is to describe a cyclically ordered counterpart.
Our basic observation is that:

Lemma 1.1. Let T = (V,E) be a tree. Suppose there is a cyclic order on link(v) for
each v ∈ V . Then there is an induced cyclic order on the directed edges of T.

Using this natural cyclic order, we examine graphs of groups and obtain:

Theorem 1.2. Let G split as a graph of groups with left-cyclically ordered vertex
groups and convex left-ordered edge groups. Then G is left-cyclically ordered in a manner
compatible with its vertex and edge groups.

This generalizes the result of Baik and Samperton that free products of left-cyclically
ordered groups are left-cyclically ordered [2]. Another recent study probing more deeply
than our own, was given by Clay and Ghaswala who characterized when an amalgam of
cyclically ordered groups is cyclically ordered [5]. The approach of Clay and Ghaswala
specializes to give a proof of the amalgamated product case of our result. Moreover, it
was pointed out to us that Calegari suggested a similar approach to cyclically ordering
the boundary of the Bass–Serre tree of an amalgamated product [4, Ex 2.116], from which
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2 H. J. McDonough and D. T. Wise

one can sometimes deduce a cyclic ordering on the amalgam after some additional care
and hypotheses.
There has been increased activity in the study of cyclically ordered groups, which are

a bit more general than ordered groups. Some perspective on the relationship between
them is given by the intriguing characterization that G is left-ordered if and only if G×Zn

is left cyclically ordered for each n [1]. Finally, we refer to [10] and [3] for surveys on
cyclically ordered groups.

2. Cyclic orders

Definition 2.1. (Cyclic order) A cyclic order on a set A is a function
Θ : A×A×A → {−1, 0, 1} satisfying the following conditions:

• Non-degeneracy: Θ(x, y, z) = ±1 if and only if x, y, z are pairwise distinct.
• Cyclicity: If Θ(x, y, z) = 1, then Θ(z, x, y) = 1.
• Asymmetry: Θ(x, y, z) = −Θ(y, x, z).
• Transitivity: If Θ(x, y, z) = 1 and Θ(x, z, w) = 1, then Θ(x, y, w) = 1.

We write [x, y, z] whenever Θ(x, y, z) = 1.

Definition 2.2. A strict total order is a binary relation ≺ on a set X satisfying the
following conditions for all x, y, z ∈ X:

• Irreflexivity: x 6≺ x for all x ∈ X.
• Comparability: if x 6= y then x ≺ y or y ≺ x.
• Transitivity: if x ≺ y and y ≺ z then x ≺ z.

The associated total order is denoted by x � y which means x ≺ y or x= y. We refer
to (X,�) as a totally ordered set, and (X,≺) as a strict-totally ordered set.

Remark 2.3. For a strict-totally ordered set (X,≺), an associated cyclic order on X
is defined by: [x, y, z] holds provided x ≺ y ≺ z or y ≺ z ≺ x or z ≺ x ≺ y.

Remark 2.4. Consider [0, 2π) with the usual total order. Identifying [0, 2π) with S 1

using θ 7→ eθi, and applying Remark 2.3 provides a cyclic order on S 1.

3. Cyclic orders on trees

A tree is a non-empty, connected, acyclic, simplicial graph. An edge with vertices u, v is
associated to two directed edges: (u, v) and (v, u).
In this section, we cyclically order the directed edges of a tree. We emphasize that each

edge corresponds to two directed edges. The cyclic ordering arises from the following
statement, which is illustrated in Figure 1.

Lemma 3.1. Let T be a finite tree embedded in the plane. There is an induced cyclic
ordering on the directed edges of T.
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Figure 1. A clockwise boundary path cyclically orders the directed edges.

Proof. Regarding T as a disc diagram, the clockwise boundary path ∂p(T ) pro-
vides an embedding of the directed edges into S 1, hence inducing a cyclic order via
Remark 2.4. Note that the boundary path traverses each edge twice: once in each
direction. �

Definition 3.2. A tree T = (V,E) is a c-tree if link(v) has a cyclic order for each
v ∈ V . Equivalently, there is a cyclic order on the edges adjacent to each vertex.

We emphasize that link(v) has a point for each edge containing v. We are not
considering directed edges here.

Definition 3.3. An embedding T → R2 of a locally finite c-tree is coordinated if for
each v ∈ V with adjacent edges e1 ≺ e2 ≺ · · · ≺ en ≺ e1, their images ē1 ≺ ē2 ≺ · · · ≺
ēn ≺ ē1 are in the same clockwise order about v̄ ∈ R2.

Lemma 3.4. Each (locally) finite c-tree T has a coordinated embedding T → R2.

Proof. We produce a ‘thickening’ of T into 0-handles and 1-handles to obtain a disk
as follows. Embed a valence n-vertex v with cyclically ordered edges e1, . . . , en in a unit
disk, by identifying v with 0 and identifying each edge with the segment joining 0 and

e
2π
n i. Join disks for adjacent vertices along neighbourhoods (consistently orientated) to

form a surface S homeomorphic to the unit disk, see Figure 2. �

Remark 3.5. The embedding of Lemma 3.4 is unique up to ambient isotopy. Hence,
for any finite subtrees Ta ⊂ Tb, a coordinated embedding of Ta is essentially the same
as an embedding of Ta induced by a coordinated embedding of Tb. Indeed, the way
Lemma 3.4 embeds Tb induces the way it embeds Ta simply by ‘forgetting’ Tb − Ta.
For any two finite subtrees, their embeddings agree with a coordinated embedding of

a larger finite tree containing them.

Theorem 3.6. Let T be a c-tree. There is an induced cyclic order on the set of directed
edges of T. It is uniquely determined by the cyclic orders on vertex links.

Proof. For a c-tree, take a coordinated embedding of a finite subtree T ′. Lemma 3.1
yields a cyclic order on the directed edges of T ′. This cyclic order is consistent for T ′ ⊂ T ′′

whenever T ′′ is a larger finite subtree. Hence, it induces a cyclic order on all directed
edges of T.
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Figure 2. Handlebody decomposition of a tree in R2.

Uniqueness holds since the cyclic order on each link(v) is determined by the cyclic
order of the outgoing directed edges at v. Note that in the cyclic ordering of the directed
edges of star(v), for each edge, its two directed edges are consecutive. �

Lemma 3.7. (G-invariance). Suppose G acts on a c-tree T so that cyclic orders
on vertex links are G-invariant. Then the induced cyclic order on directed edges of T is
G-invariant.

Proof. This holds by Theorem 3.6 since the induced cyclic order on directed edges of
T is determined by the cyclic orderings on vertex links. �

4. Cyclic orders and tree augmentation

We provide an alternate explanation of the cyclic ordering on directed edges of a c-tree
given in § 3. This approach constructs a correspondence between directed edges and spurs.

Definition 4.1. For vertices of a tree x, y, z ∈ V , the median m(x, y, z) is the vertex
equal to the intersection of geodesics xy ∩ yz ∩ zx.

Lemma 4.2. Let T = (V,E) be a c-tree, there is a cyclic order on the set L ⊆ V of
spurs of T.

Proof. When x, y, z ∈ L are distinct, the median m = m(x, y, z) has three distinct
edges adjacent to m pointing to x, y and z. These edges ex, ey and ez are cyclically ordered
around m. Declare a cyclic order on L via:

[x, y, z] in L ⇐⇒ [ex, ey, ez] in link(m).

Non-degeneracy, cyclicity and asymmetry all follow immediately as the link of the
median is cyclically ordered. For leaves x, y, z, w ∈ L, transitivity follows if m(x, y, z) =
m(x, z, w). Otherwise, let S be the smallest subtree containing {x, y, z, w}. S takes the
form of an ‘H’ with two leaves at m1 = m(x, y, z) and two leaves at m2 = m(x, z, w).
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Figure 3. This explains transitivity for Lemma 4.2.

Figure 4. The direction of e determines the position of the spur.

Via Lemma 3.4, we can embed S into the plane so that links of vertices are cyclically
ordered clockwise. If [x, y, z] and [x, z, w] hold, then [x, y, w] also holds, see Figure 3. �

Definition 4.3. (Augmented tree) Let T be a directed c-tree, the augmented tree T
is obtained by adding an augmented edge eaug at the barycentre of each directed edge e,
see Figure 4. More precisely, for each edge e ∈ E, let be be its barycentre and cut e
into two half edges, eout and ein. Orient the half edges so that ein and eout are incoming
and outgoing at be. Under this construction links of vertices in the original tree T are
unchanged, and the link of each barycentre vertex be is {ein, eout, eaug}. Cyclically order
link(be) using the rule [ein, eout, eaug]. Direct augmented edges away from barycentres,
and note that the augmented tree T is now a directed c-tree.

Theorem 4.4. There is an induced cyclic order on the set of directed edges of a
c-tree T.

Proof. Construct the augmented tree T and note that each directed edge of T is
associated to a spur of T . Apply Lemma 4.2 to cyclically order these spurs. �

5. Ordered and cyclically ordered groups

Definition 5.1. (Left-ordered group). A group G is left-ordered if there is a strict
total order (G,≺) such that for all x, y, g ∈ G we have:

x ≺ y =⇒ gx ≺ gy.
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G is left-ordered if and only if G = P t {1G} t N with PP ⊂ P and NN ⊂ N where
P = {g ∈ G : 1G ≺ g} and N = {g ∈ G : g ≺ 1G}. Then g ≺ h ⇐⇒ g−1h ∈ P .
The subset P is referred to as the positive cone.

Definition 5.2. (Left-cyclically ordered group). A group G is left-cyclically
ordered if there is a cyclic order on G that is left-invariant in the sense that:

[a, b, c] =⇒ [ga, gb, gc].

Remark 5.3. Let G act freely on a cyclically ordered set X. Cyclically order G via:

[a, b, c] in G ⇐⇒ [ax, bx, cx] in X.

The following well-known statements can be found in [8, § 1.1.3] and [11, Ex 2.116]
respectively.

Lemma 5.4. Let G act faithfully and order-preservingly on a strict-totally ordered set
(X,<). Then G has an induced left-order.

Proof. Choose a well-ordering ≺w on X. For g 6= h ∈ G, let p be ≺w-minimal with
gp 6= hp. Declare g ≺ h if gp< hp.
This relation is irreflexive as gp ≮ gp. Since G acts faithfully on X, for g 6= h ∈ G

there exists x ∈ X with gx 6= hx, so comparability holds. G-invariance holds since kgp <
khp ⇐⇒ gp < hp. Let p1 and p2 be ≺w-minimal with xp1 6= yp1 and yp2 6= zp2.
If p1 = p2 we are done. If p1 ≺w p2 then yp1 = zp1 and xp1 < zp1. If p2 ≺w p1 then
xp2 = yp2 and xp2 < zp2. Thus transitivity holds for (G,≺). �

Theorem 5.5. Let G act faithfully and order-preservingly on a cyclically ordered set
X. Then G has an induced left-cyclic order.

Proof. Let p ∈ X and Ẋ = X−{p}. Observe that Ẋ is totally ordered andH = stab(p)
acts faithfully on Ẋ. Via Lemma 5.4, H is left-ordered. There is a strict total order (gH,≺)
for each left coset, by declaring gα ≺ gβ ⇐⇒ α ≺ β. This is independent of the choice
g of representative, since (H,≺) is left H -invariant.
Our ordering on each coset provides a partial ordering on G = ∪gH. This partial order-

ing is G-invariant by definition. This partial ordering on G extends to a G-invariant cyclic
ordering by cyclically ordering the left cosets using their bijection with Gp. Specifically
[a, b, c] holds if either:

(1) a ≺ b ≺ c and ap = bp = cp,
(2) a ≺ b with ap = bp 6= cp, or b ≺ c with bp = cp 6= ap, or c ≺ a with cp = ap 6= bp,
(3) [ap, bp, cp] in X. �

6. Ordering collections of cosets

Definition 6.1. (Convex subgroup). A subgroup H of a left-ordered group (G,≺) is
convex if for all h1, h2 ∈ H and g ∈ G, if h1 ≺ g ≺ h2 then g ∈ H.
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Definition 6.2. (c-convex subgroup). A proper subgroup H of a left-cyclically
ordered group G is c-convex if there is a G-invariant cyclic order on its cosets G/H.

Two ways of defining c-convexity for subgroups of left-cyclically ordered groups appear
in [5] and [7]. We refer to these as c′-convexity and c′′-convexity and show they are both
equivalent to c-convexity.

Definition 6.3. (c′-convex subgroup). Let G be a left-cyclically ordered group and
H ⊂ G a proper subgroup. We say H is c′-convex if for every g /∈ H and f ∈ G and
h1, h2 ∈ H, if [h1, f, h2] and [h1, h2, g] then f ∈ H.

The definition of c′′-convexity requires the following preliminary notion.

Definition 6.4. Let G be a left-cyclically ordered group. A proper subgroup H ⊂ G
is left-ordered by restriction if for each h1, h2 ∈ H, if [h−1

1 , 1, h1] and [h−1
2 , 1, h2] then

[h−1
1 h−1

2 , 1, h2h1]. When H ⊂ G is left-ordered by restriction, there is an induced left-order
on H given by the following positive cone:

P = { h ∈ H : [h−1, 1, h] holds in G }.

Definition 6.5. (c′′-convex subgroup). Let G be a left-cyclically ordered group. A
proper subgroup H ⊂ G is c′′-convex if:

(1) Whenever h1, h2 ∈ H and f ∈ G, if [h1, 1, h2] and [h1, f, h2] then f ∈ H.
(2) H is left-ordered by restriction.

Theorem 6.6. For a proper subgroup H of a left-cyclically ordered group G, the
following are equivalent:

(1) c-convexity.
(2) c′-convexity.
(3) Property ( 1) of c′′-convexity.
(4) c′′-convexity.

Proof of (1) =⇒ (2). See [5, Lemma 5.1]. �

Proof of (2) =⇒ (3). We argue by contradiction. If Property (1) fails, there exists
h1, h2 ∈ H and g /∈ H with [h2, 1, h1] and [h2, g, h1]. Suppose [1, g, h1] and left-multiply
by h−1

1 to get [h−1
1 , h−1

1 g, 1]. Since [h1, h
−1
1 g, 1] and [h1, 1, g], c

′-convexity implies that
h−1
1 g ∈ H, a contradiction. The case [h2, g, 1] is analogous. �

Proof of (3) =⇒ (1). See [7, Proposition 2.4]. We note that Property (2) of
c′′-convexity is not used in that proof. �

Proof of (2) =⇒ (4). The proof that c′-convexity implies Property (2) of
c′′-convexity is shown in [5, Lemma 5.2]. �

Proof of (4) =⇒ (3). This is immediate. �
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For subsets U, V of an ordered set (X,≺), declare U � V if there exists v ∈ V with
u ≺ v for all u ∈ U . Note that within a left-ordered group (G,≺) we have U � V ⇐⇒
gU � gV for all g ∈ G.
The following property is well known.

Lemma 6.7. Let (G,≺) be an ordered group and H a convex subgroup. The relation �
restricts to a G-invariant strict total order on the collection G/H of left cosets.

Proof. Comparability of (G/H,�) holds as cosets are disjoint and H is convex.
Transitivity follows since (G,≺) is left-ordered. If U � U for some U ∈ G/H, then
there exists v ∈ U with u ≺ v for all u ∈ U , so v ≺ v which is impossible. �

Lemma 6.8. Let G be a left-cyclically ordered group. Let H ( K ( G be convex
subgroups. Then H � K (in the induced order on K).

Proof. Let (K,≺) be the induced left-order of Definition 6.4. Consider a coset kH 6=H.
If H 6� K, there exists h ∈ H with k ≺ h. By Lemma 6.7, k′ ≺ h′ for all k′ ∈ kH and
h′ ∈ H. In particular, k ≺ 1. Left multiplying gives 1 ≺ k−1. Since H 6� K, we have
k−1 ≺ h′′ for some h′′ ∈ H. Finally, 1 ≺ k−1 ≺ h′′ implies k−1 ∈ H by convexity, a
contradiction as k /∈ H. �

Lemma 6.9. Suppose H and K are convex subgroups of the left-cyclically ordered group
G. Either H ⊂ K or K ⊂ H.

Proof. If H 6⊂ K and K 6⊂ H then H ∩K ( H and H ∩K ( K. Thus, H ∩K � H
and H ∩ K � K by Lemma 6.8. Thus there exists h ∈ H and k ∈ K with α ≺ h and
α ≺ k for all α ∈ H ∩K. Note that h 6= k, as otherwise k ∈ H ∩K hence k ≺ k. Without
loss of generality, assume [1, h, k]. By convexity, h ∈ K. Thus, h ∈ H ∩ K so h ≺ h, a
contradiction. �

Corollary 6.10. Suppose K and H are convex subgroups of a left-cyclically ordered
group G. Let x, y ∈ G. If xK ∩ yH 6= ∅ then either xH ⊂ yK or yK ⊂ xH.

Proof. This follows from Lemma 6.9. �

Definition 6.11. It will be convenient to consider indexed collections of subsets
{Hi}i∈I allowing ‘repeats’ in the sense that Hi = Hj though i 6= j.

Although we will not use it, it seems worth articulating the following special case of
our preliminary goal, Theorem 6.13.

Lemma 6.12. Let (G,≺) be a left-ordered group and {Hi}i∈I an indexed collection
of convex subgroups. There is a G-invariant total order on the indexed collection of left
cosets {gHi : g ∈ G, i ∈ I}.
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Proof. Choose a strict total order ≺
I
on I. Let �

I
denote the relation defined by:

g1Hi �
I

g2Hj ⇐⇒

g1Hi 6= g2Hj and g1Hi � g2Hj

g1Hi = g2Hj and i ≺
I
j.

Transitivity and comparability of �
I
hold since (G,≺) and (I,≺

I
) are strict total orders.

It is impossible for g1Hi �I
g1Hi, as this would imply i ≺

I
i. Thus �

I
is irreflexive,

and therefore a strict total order.
Let g1Hi �I

g2Hj . If g1Hi 6= g2Hj , then G-invariance of (G,≺) ensures αg1Hi �I
αg2Hj for all α ∈ G. If g1Hi = g2Hj , the order depends only on (I,≺

I
), and αg1Hi �I

αg2Hj for all α ∈ G. Thus, �
I
is G-invariant. �

Theorem 6.13. Let G be a left-cyclically ordered group and let {Hi}i∈I be an indexed
collection of c-convex subgroups. There is a G-invariant cyclic order on the indexed
collection of left cosets {gHi : g ∈ G, i ∈ I}.

Proof. Choose a strict total order ≺
I
on I. For any finite subcollection of c-convex

subgroups {Hj}j∈J ⊆ {Hi}i∈I , by Lemma 6.9 there is a chain of inclusions. (We abuse
notation and regard J = {0, 1, . . . , n}.)

G = H0 ⊃ H1 ⊇ · · · ⊇ Hn.

This chain of inclusions determines a graph of groups, whose underlying graph is a
length-n subdivided interval. Direct all edges away from the root vertex v0, whose vertex
group is G. The edge ei terminates at the vertex vi, and Gei

= Gvi
= Hi. As this graph

of groups is telescopic its fundamental group is G.
Let T = (V,E) be the Bass–Serre tree corresponding to this graph of groups. The

vertex set V = tn
i=0{gHi : g ∈ G} consists of the indexed collection of left cosets of

vertex groups, see Figure 5.
There is a directed edge from g1Hk to g2Hk+1 when g1Hk ⊃ g2Hk+1. Under this

construction, each left coset gHj for j > 0 is represented by a directed edge.
We turn T into a directed c-tree. For the root vertex G, note that link(G) corresponds

to G/H1 which has a G-invariant cyclic order by c-convexity. For any other vertex gHk,
there is one incoming parent edge of link(gHk) and has outgoing edges representing
containment of left-subcosets of Hk+1. By Lemma 6.7, (Hk,�) induces a strict total
order on Hk/Hk+1. This extends to a strict total order on {Hk}tHk/Hk+1 by declaring
Hk minimal. Translating by g provides a total order on gHk and its left Hk+1 cosets. This
provides a cyclic order on link(gHk) by Remark 2.3.
Theorem 3.6 provides a cyclic order on directed edges of the c-tree T. Hence, this gives

a cyclic order on left cosets of {Hj}j∈J . This holds for any finite collection of convex
subgroups. The cyclic order is consistent for graphs of groups G′ ⊂ G′′ as defined above.
Hence, this induces a cyclic order on all left cosets in {gHi : g ∈ G, i ∈ I}. As G is the
fundamental group of this graph of groups, the cyclic order on the link of each vertex is
G-invariant. Hence, by Lemma 3.7 the cyclic order on left cosets is G-invariant. �
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10 H. J. McDonough and D. T. Wise

Figure 5. Part of a finite coset tree.

Remark 6.14. The referee suggests a more self-contained proof, using the fact that
G has a maximal c-convex subgroup H. The left cosets within H have a left-invariant
left-order by Lemma 6.12. And this can be extended to a cyclic order on the cosets in G
by combining this with cyclic order on G/H.

7. Groups acting on trees

7.1. Action on tree

Definition 7.1. An inclusion H → K of a left-ordered group into a left-cyclically
ordered group is order-preserving if

a ≺ b ≺ c in H =⇒ [a, b, c] in K.

Theorem 7.2. Let G act without inversions on a tree T = (V,E). Suppose:

(1) The stabilizer Gv is left-cyclically ordered for each vertex v ∈ V .
(2) The stabilizer Ge is left-ordered for each edge e ∈ E.
(3) The inclusion Ge ⊂ Gv is c-convex whenever v is a vertex of e.

Then there is a c-tree T̃ = (Ṽ , Ẽ) such that:

(1) There exists a spur ẽ ∈ Ẽ such that Gẽ is a free orbit.
(2) There is a G-invariant cyclic order on the orbit Gẽ that induces a cyclic order

on G.
(3) For each e ∈ E, the order on Ge is induced by the action of Ge on T̃ .

(4) For each v ∈ V , the cyclic order on Gv is induced by the action of Gv on T̃ .

Proof. Build T̃ from T as follows. For each v ∈ V add a spur to v for each element of
the stabilizer Gv. These spurs are in correspondence with cosets of the trivial subgroup
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of Gv which is a c-convex subgroup. Ge ⊂ Gv is c-convex by hypothesis. For each v ∈ V ,
cyclically order link(v) via Theorem 6.13. Thus T̃ is a c-tree.
Let ẽ be an added spur. Cyclically order the spurs and hence Gẽ by Theorem 4.4. By

Lemma 3.7, the cyclic order on Gẽ is G-invariant. Finally, since G acts freely on Gẽ,
Remark 5.3 provides a left-cyclic order on G. �

7.2. Graph of groups statement

Corollary 7.3. Let G split as a graph Γ of groups. Suppose each vertex group Gv

is left-cyclically ordered, and each edge group Ge is left-ordered. Suppose each inclusion
Ge ↪→ Gv of an edge group is c-convex. Then G has a left-cyclic order that restricts to
the cyclic order of each vertex group Gv.

Proof. Let T = (V,E) be the Bass–Serre tree over Γ, which we assume to be directed.
V consists of all left cosets of vertex groups of Γ in G, and E consists of left cosets of
edge groups of Γ in G. That is, allowing for repeats (of edge or vertex groups):

V = {gGv : g ∈ G, v ∈ Vertices(Γ)}
E = {gGe : g ∈ G, e ∈ Edges(Γ)}.

Varying g ∈ G, there is an edge gGe directed from gGu to gGv in T precisely when e is
directed from u to v in Γ.
The stabilizer of a vertex gGv equals gGvg

−1, and similarly the stabilizer of an edge
gGe equals gGeg

−1. Conjugation preserves the cyclic orders on Gv for each vertex, and
similarly preserves the orderings on Ge for each edge, thus vertex and edge stabilizers are
cyclically ordered. Let T̃ be the c-tree obtained from T by Theorem 7.2 and note that
the cyclic order on each vertex group is induced by its T̃ action. T̃ has a spur ẽ with a
free G-orbit which provides a cyclic order on G by Remark 5.3. �

We note that [6] contains an analogous result to Corollary 7.3 for a graph of groups
with left-orderable vertex groups and convex edge groups.

Remark 7.4. Every group acting faithfully without inversions on a c-tree arises as
in Corollary 7.3. The edge stabilizers are c-convex subgroups of the vertex stabilizers.
Indeed, for each edge e at a vertex v, the left cosets of stab(e) in Gv correspond Gv-
equivariantly to the edges in the Gv-orbit of e. The Gv-invariant cyclic order on the
edges yields a Gv-invariant cyclic ordering on the cosets. Finally, every action on a tree
arises as the Bass–Serre tree of a graph of groups.
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