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Abstract

Let T be a tree on ¢ vertices. We prove that for every positive integer k and every graph G, either G contains
k pairwise vertex-disjoint subgraphs each having a T minor, or there exists a set X of at most #(k — 1)
vertices of G such that G — X has no T minor. The bound on the size of X is best possible and improves
on an earlier f(¢)k bound proved by Fiorini, Joret, and Wood (2013) with some fast-growing function f(¢).
Moreover, our proof is short and simple.
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1. Introduction

In 1965, Erdés and Pésa [6] showed that every graph G either contains k vertex-disjoint cycles or
contains a set X of O(k log k) vertices such that G — X has no cycles. The O(k log k) bound on the
size of X is best possible up to a constant factor. Using their Grid Minor Theorem, Robertson and
Seymour [9] proved the following generalisation: for every planar graph H, there exists a function
fr(k) such that every graph G contains either k vertex-disjoint subgraphs each having an H minor,
or a set X of at most f¢(k) vertices such that G — X has no H minor. For H = K3, this corresponds
to the setting of the Erd6s-Pdsa theorem.

The theorem of Robertson and Seymour is best possible in the sense that no such result holds
when H is not planar. The original upper bound of fg(k) on the size of X depends on bounds
from the Grid Minor Theorem and is large as a result (though it is polynomial in k if we use the
polynomial version of the Grid Minor Theorem, see [4]). Chekuri and Chuzhoy [3] subsequently
showed an improved upper bound of Oy (klog® k) for a fixed planar graph H, where ¢ is some
large but absolute constant. This was in turn improved to Og(k log k) by Cames van Batenburg,
Huynh, Joret, and Raymond [2], thus matching the original bound of Erdds and Pésa for cycles.

An Og(klog k) bound is best possible when H contains a cycle. However, when H is a forest, it
turns out that one can obtain a linear in k bound on the size of X, as proved by Fiorini, Joret, and
Wood [7]. Their proof gives an Oy(k) bound with a non-explicit constant factor that grows very
fast as a function of |V(H)|. This is due to the use of MSO-based tools in the proof, among others.
In this short note, we give a simple proof of their result with an optimal dependence on t and k
when H is a tree.
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Theorem 1. Let T be a tree on t vertices. For every positive integer k and every graph G, either G
contains k pairwise vertex-disjoint subgraphs each having a T minor, or there exists a set X of at
most t(k — 1) vertices of G such that G — X has no T minor.

Observe that the bound on the size of X in Theorem 1 is tight: if G is a complete graph on tk — 1

vertices, then G does not contain k pairwise vertex-disjoint subgraphs each having a T'minor, and

every set X of vertices such that G — X has no T minor has size at least |V(G)| — (t — 1) = t(k — 1).
Theorem 1 follows immediately from the following more general result for forests.

Theorem 2. Let F be a forest on t vertices and let t' be the maximum number of vertices in a compo-
nent of F. For every positive integer k and every graph G, either G contains k pairwise vertex-disjoint
subgraphs each having an F minor, or there exists a set X of at most tk — t' vertices of G such that
G — X has no F minor.

Let us also point out the following corollary of Theorem 1 (proved in the next section).

Corollary 3. For all positive integers p and k, and for every graph G, either G contains k vertex-
disjoint subgraphs each of pathwidth at least p, or G contains a set X of at most 2 - 3Pk vertices
such that G — X has pathwidth strictly less than p.

2. Proof

For a positive integer k, we use the notation [k] := {1,..., k}, and when k=0 let [k] := @.

Let G be a graph. We denote by V(G) and E(G), the vertex set and edge set of G, respectively.
Let X C V(G). Then G[X] denotes the subgraph of G induced by the vertices in X and G — X =
G[V(G) — X]. We define the boundary of X in Gtobe 3cX := {v€ X | vw € E(G), we V(G — X)}.
We omit the subscript G when the graph G is clear from the context.

A path decomposition of G is a sequence (By, By, . .., By) of vertex subsets of G called bags
satisfying the following properties: (1) every vertex of G appears in a non-empty set of consecutive
bags, and (2) for every edge uv of G, there is a bag containing both u and v. The width of the path
decomposition is the maximum size of a bag minus 1. The pathwidth pw(G) of G is the minimum
width of a path decomposition of G.

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting
edges. Robertson and Seymour [8] proved that there exists a function f : N — N such that for every
graph G and every forest F on t vertices, if pw(G) > f(t) then G contains F as a minor. Bienstock,
Robertson, Seymour, and Thomas [1] later showed that one can take f(t) =t — 1, which is best
possible. Diestel [5] subsequently gave a short proof of this result. Our proof of Theorem 2 builds
on the following slightly stronger result, which appears implicitly in Diestel’s proof [5].

Lemma 4 ([5]). Let G be a graph, let t be a positive integer, and let F be a forest on t vertices. If
pw(G) =t — 1, then there exists Y C V(G) such that

1. G[Y] has a path decomposition (By, . . ., By) of width at most t — 1 such that 3Y C B, and
2. G[Y] contains F as a minor.
We now turn to the proof of Theorem 2.

Proof of Theorem 2. We prove the following strengthening of Theorem 2: Let G be a graph,
let ¢ be a positive integer, let #; < - - - < £, be non-negative integers, let Ty, ..., T be trees with
|V(T;)| =t; for every i € [c], let x, . . ., x; be non-negative integers, at least one of which is non-
zero, and let I := {i € [c] | x; > 1}. Then either

1. G contains pairwise vertex-disjoint subgraphs {M;; | i € [c], j € [x;]} such that, for each i €
[c] and j € [x;], M;; contains a T; minor, or
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Figure 1. The set Y and the graph G, whose boundary in G is contained in B,.

2. there exists X C V(G) with |X| <) ,c; Xiti — tmax (1) and G — X does not contain T; as a
minor for some i € I.

We call the tuple (G, ¢, T1, . . ., T, X1, - - . » Xc) an instance. Theorem 2 follows by letting T4, . . ., T
be the components of the forest F and letting x; =x, =+ - - =x. = k.

Roughly, the proof describes an inductive procedure that attempts to find a pairwise disjoint
collection of models, where the number of models of each tree Tj is x;. Induction is on the number
> _icjq i of models still missing from the collection. Failing to find one of the missing models at
some step will establish (2).

Let (G,¢, T1, ..., Ty x1 .. ., xc) be an instance, and let m := min (I). Then T}, is a smallest tree
among T1, . . ., Tc such that x,, > 1, that is, such that we are still missing a model of T},. In the base
case, Zig[ ¢ %i = xm = 1, and either Ghasa T, minor and the first outcome of the statement holds,
or G has no such minor and the second outcome holds with X := @, since D, ; Xiti — tmax (1) =
tm — tm = 0.

For the inductive case, assume that } ;) x; > 2 and that the statement holds for instances
with smaller values of the sum. If, for every i € I, G has no T; minor, then the second outcome of
the statement holds with X := & again. Thus, we may assume that G has a T; minor for some i € I.

If G has pathwidth at least t,, — 1, apply Lemma 4 with t =t,, and F = T),, and let Y be the
resulting subset of vertices of G. If G has pathwidth less than f,, — 1, simply let Y:= V(G). In
either case, G[Y] has pathwidth at most ,, — 1 and has a path decomposition (B1, By, . .., By)
with |Bg| < t, for all £ € [g], and such that dgY C By. See Figure 1. Furthermore, observe that in
both cases G[Y] has a T; minor for some i € I, by our assumption on G.

Let £ € [g] be the smallest index such that G, := G[B; U - - - U Bg] contains a T; minor for some
i € I,and let i be an index in I such that

Gy contains a Tyminor. (%)
Observe that
G¢ — B¢ has no T; minor for everyi e I. (k)
We claim that
there is no edge in G between vertices of G, — B, and vertices of G — V(Gy). (Hekk)

To see this, suppose for a contradiction that uv is such an edge, with u e V(G,) — B, and
ve V(G) — V(Gy). First, note that ue B U - - - UBy_;. If v€ Y, then u and v appear together in
some bag B; of the path decomposition (By, By, . . ., By) of G[Y],and j > £ since v ¢ By U - - - U By.
However, since u € By U---UBy_; and u € Bj, we conclude that u belongs also to By, a con-
tradiction. If v¢ Y, then u€dY, and thus u € B;. Again, we deduce similarly that u € By, a
contradiction. This completes the proof of (xxx).

Let G':= G — V(Gy). Let x]:= x; for each i € [c] — {i'} and let x, := xy — 1. Let I' ={i € [c] |
x} > 1}. Apply induction to the instance (G', ¢, T1, . . ., T, X}, . . ., x..). If it results in a set of vertex-
disjoint subgraphs {M; i liel[cl, je [x]}, with M] j containing a T; minor for each i € [¢] and
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j € [x]], then we let M;;:= Ml/] for each i € [c] and j € [x]], and My ., := Gy, which using (x)
results in the desired collection of vertex-disjoint subgraphs. Otherwise, we obtain a set X" of at

most Y ;s X;ti — tmax (1) vertices such that G’ — X’ does not contain T, as a minor for some a € I'.
Let X := X' U By. Observe that

IX|=|X"| + |B¢| < Z Xiti — tmax (1) + tm < Z Xiti — (bmax (1) + t — tm)
iel iel

< Z Xiti — tmax (I)-

iel

To see why the last inequality holds, there are two cases to consider: (i) if max (I') = max (I), then
the inequality follows immediately since ¢ > t,,. (ii) If max (I') < max (I), then i/ = max (I) and
max (I') > min (I') = m, 50 tpax () + bt — tm 2ty = tmax (1)-

Now, let us show that G — X does not contain T; as a minor, for some i € I. Let a € I be such
that G’ — X’ does not contain T, as minor. We will show that we can take i = a. To do so, it is
enough to show that X meets every inclusion-wise minimal subgraph of G containing a T, minor.
Let M be such a subgraph of G. Note that M is connected, since T, is connected. Now, observe
that by (*%x), either M is contained in G, or M is contained in G; — By, or M contains a vertex
of By. In the first case, M contains a vertex of X’ C X, by the choice of a. The second case is ruled
out by (). In the third case, M contains a vertex of B; C X. Thus, we conclude that M contains a
vertex of X. This concludes the proof. U

We may now turn to the proof of Corollary 3. We will use the following lemma, which is a
special case of a more general result of Robertson and Seymour [Statement (8.7) in [9]].

Lemma 5. For every graph G, for every path decomposition (B1, By, . . ., By) of G, for every family
F of connected subgraphs of G, for every positive integer d, either:

1. there are d pairwise vertex-disjoint subgraphs in F, or

2. there is a set X that is the union of at most d — 1 bags of (B, By, . . ., By) such that V(F) N
X # & forevery F € F.

Proof of Corollary 3. It is known (and an easy exercise to show) that, for every positive integer
p, the complete ternary tree T}, of height p has pathwidth p. First, apply Theorem 1 on G with the
tree Tp. If G contains k vertex-disjoint subgraphs each containing a T, minor, we are done. So we
may assume that the theorem produces a set X; of at most |V(T})|(k — 1) < 3P+ (k — 1) vertices
such that G — X has no T), minor.

By Lemma 4, G — X has a path decomposition (By, B, . . ., B;) of width strictly less than 3p+L
It is easily checked that every inclusion-wise minimal subgraph of G — X; with pathwidth at least
p is connected. Apply Lemma 5 on G — X with the path decomposition (By, By, . . ., By), with
d =k, and with the family F of connected subgraphs of G — X; with pathwidth at least p. If 7
contains k pairwise vertex-disjoint members, we are done. So we may assume that the lemma
produces a set X, of at most 377! (k — 1) vertices such that X, hits every member of F. It follows
that G — X; — X, has pathwidth strictly less than p. Let X := X; U X;. Since |X]| < 3P (k—1)+
3PFL(k — 1) <2 - 3PT1k, the set X has the desired properties. 0
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