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Abstract
We prove a Poisson process approximation result for stabilising functionals of a determinantal point pro-
cess. Our results use concrete couplings of determinantal processes with different Palm measures and
exploit their association properties. Second, we focus on the Ginibre process and show in the asymptotic
scenario of an increasing observation window that the process of points with a large nearest neighbour
distance converges after a suitable scaling to a Poisson point process. As a corollary, we obtain the scaling
of the maximum nearest neighbour distance in the Ginibre process, which turns out to be different from
its analogue for independent points.
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1. Introduction
Determinantal point processes (DPPs) were introduced in quantum mechanics to study config-
urations of fermions [20]. Due to their repulsive nature, they play a fundamental role in applied
sciences, for example, as a model for base stations in a wireless network [21]. In mathematics,
DPPs arise naturally in different fields, such as eigenvalues of random matrices [11] and random
spanning trees [5]. DPPs have notable probabilistic properties. Amongst others, the (reduced)
Palm process of a DPP is again a determinantal process, and important quantities such as the
Laplace transform and Janossy densities admit closed-form expressions (see, e.g. [9]). A DPP on
R
d is determined by its correlation kernel K, which is a Hermitian function from R

d ×R
d to C.

An important DPP is the Ginibre process on R
2 with a Gaussian kernel given in Section 2.

We study the following model. Let η be a stationary DPP on R
d, and let g be a measurable

function from R
d ×N to {0, 1}, where we write N for the set of σ -finite point configurations on

R
d. For some measurableW ⊂R

d, let

�[η] :=
∑

x∈η∩W
g(x, η)δx,

where δx denotes the Dirac measure in x. Here, the function g has the effect of a thinning of η,
in the sense that � is the point process of all points x ∈ η in the set W, which satisfy g(x, η)= 1.
The random measure � is a flexible model, which appears in the study of random spatial graphs,
stochastic topology, and geometric extreme value theory.
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In this article, we study the distance (in an appropriate metric of point processes) of � and a
Poisson point process. To the best of our knowledge, this is the first paper that systematically stud-
ies Poisson approximation for determinantal processes. This continues the studies for stabilising
functionals of Poisson point processes [4,10,24], Poisson hyperplane processes [23], and Gibbs
point processes [16]. However, the repulsive behaviour of a DPP requires additional tools that are
not needed if Poisson input is considered in �. As main contributions, this article shows:

(i) If the correlation kernel K is fast decaying and if the thinning function g is stabilising and
satisfies some natural assumptions, the bound of the distance of� and a Poisson process is
comparable to the bounds obtained for thinned Poisson point processes (see [4] and [23]).

(ii) If η is the Ginibre process and if � is the point process of elements in η ∩W with a large
distance to its nearest neighbour, we prove, in an asymptotic scenario where the volume of
W tends to infinity, that an appropriate scaling of � converges to a Poisson process.

Our paper is organised as follows. In Section 2, we introduce DPPs and state Theorems 2.1 and
2.2 as our two main results. In Section 3, we introduce important notions such as Palm theory,
negative association, and correlation decay. The proof of Theorem 2.1 is given in Section 4. In
Section 5, we provide the proof of Theorem 2.2.

2. Model andmain results
Wework on the Euclidean spaceRd (d� 1) equipped with its Borel σ -field Bd, Lebesgue measure
λ, and Euclidean norm ‖ · ‖.We denote byN the space of all σ -finite countingmeasures onRd and
by N̂ the space of all finite counting measures on R

d and equipN and N̂ with their corresponding
σ -fields N and N̂ , which are induced by the maps ω �→ ω(B) for all B ∈ Bd. A point process is a
random element η ofN, defined over some fixed probability space (�,A, P). The intensity measure
of η is the measure E[η] defined by E[η](B) := E[η(B)], B ∈ Bd. For z ∈R

d and r > 0, let Br(z) be
the closed Euclidean ball with radius r around z. We denote |B| := λ(B) and write A⊕ B for the
Minkowski sum of A, B⊂R

d.
Let K : (Rd)2 →C be a complex function. We say that η is a determinantal point process with

correlation kernel K, if for every n ∈N and pairwise disjoint A1, . . . ,An ∈ Bd, we have that

E[η(A1) · · · η(An)]=
∫
A1×···×An

det(K(xi, xj))ni,j=1d(x1, . . . xn),

where d . . . denotes integration with respect to λ, (K(xi, xj))mi,j=1 is the m×m-matrix with entry
K(xi, xj) at position (i, j), and detM is the determinant of the complex-valued m×m-matrix M.
This says that η has correlation functions of all orders, that the mth order correlation function
ρ(m) is given by

ρ(m)(x1, . . . , xm)= det(K(xi, xj))mi,j=1, x1, . . . , xm ∈R
d, m ∈N,

and that it is locally integrable. In this article, we assume that K satisfies the following assumptions
(i)–(iv):

(i) K is Hermitian, that is, K(x, y)=K(y, x), x, y ∈R
d.

(ii) K is locally square integrable, that is, for every compact B ∈ Bd, the integral∫
B

∫
B

|K(x, y)|2dydx
is finite.

(iii) K is locally of trace class, that is, for every compact B ∈ Bd, the integral
∫
B K(x, x)dx is

finite.

https://doi.org/10.1017/S0963548325000082 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548325000082


Combinatorics, Probability and Computing 3

Under the assumptions (i)–(iii), it follows fromMercer’s theorem that for every compact B⊂R
d,

the restriction ηB of η to B is a determinantal point process whose kernel KB is for almost all
(x, y) ∈ B× B given by

KB(x, y)=
∞∑
k=1

λBkφ
B
k (x)φ

B
k (y),

where λBk ∈R, k ∈N, and the functions φB
k , k ∈N, form on orthonormal base of L2(B). Finally, we

assume that

(iv) 0� λBk � 1 for all k ∈N and all compact B ∈ Bd.

Under the assumptions (i)–(iv), there exists a unique (in distribution) determinantal point process
with correlation kernel K (see [[28], Theorem 3]).

For x ∈R
d, we call ηx a Palm version of the point process η at x, if for all measurable f :Rd ×

N→R+,

E

[ ∫
f (x, η)η(dx)

]
=

∫
E[f (x, ηx)]E[η](dx). (1)

Later, we will generalise this definition and define Palm processes of η with respect to �.
Let η be a stationary determinantal process satisfying (i)–(iv) with intensity ρ > 0. Let g :Rd ×

N→ {0, 1} be a measurable function (called score function), and let W ∈ Bd. Recall from the
Introduction that

�[ω]=
∑

x∈ω∩W
g(x,ω)δx, (2)

and set � := �[η]. Note that by (1), the intensity measure L of � is given by

L(A)= ρ

∫
W∩A

E[g(x, ηx)] dx, A ∈ Bd.

In this article, we study the Kantorovich–Rubinstein (KR) distance of � and a finite Poisson pro-
cess. We recall the definition of the KR distance from [10]. For finite point processes ζ and η on
R
d, let

dKR(ζ , η) := sup
h∈Lip

|Eh(ζ )−Eh(η)|,

where Lip is the class of all measurable 1-Lipschitz functions h : N̂→R with respect to the total
variation between measures ω1,ω2 on R

d given by
dTV(ω1,ω2) := sup |ω1(A)− ω2(A)|,

where the supremum is taken over all A ∈ Bd with ω1(A),ω2(A)< ∞. Under appropriate
conditions on η and g, we prove that � can be approximated by a Poisson process.

We suppose that there exists α ∈ (0,∞) such that for all A ∈ Bd and all ω ∈N,∑
x∈ω∩A

g(x,ω)< α|A|, (3)

and assume that g is monotonic in the sense that for all x ∈W, we have
g(x,ω1)� g(x,ω2) or g(x,ω1)� g(x,ω2), ω1 ⊂ ω2. (4)

We further assume that g is stabilising with respect to a Borel set S⊂R
d, by which we mean that

g(x,ω)= g(x,ω ∩ Sx)
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holds for any ω ∈N and any x ∈R
d, where Sx := x+ S.

Moreover, we assume that the kernel K : (Rd)2 →C satisfies

|K(x, y)|� φ(‖x− y‖), x, y ∈R
d, (5)

for some decreasing function φ :R+ →R+ with limr→∞ φ(r)= 0.

Theorem 2.1. Let � be the point process defined at (2) with compact W ⊂R
d. Let S, T ⊂R

d be
closed with o ∈ S and (S⊕ Tc)∩ S=∅. Suppose that g is stabilising with respect to S and satisfies
(3) and (4) with α > 0 and that (5) holds. Let ζ be a finite Poisson process on R

d with intensity
measureM. Then,

dKR(�, ζ )� dTV (L,M)+ 2(E1 + E2 + F)

with

E1 := ρ2
∫
W

∫
W∩Tx

E[g(x, ηx)]E[g(y, ηy)] dydx,

E2 :=
∫
W

∫
W∩Tx

E[g(x, ηx,y)g(y, ηx,y)]ρ(2)(x, y)dydx,

F := ‖K‖(1+ ρ + 35/2‖K‖)(α|S| + 1) max(|S|, 1)|W ⊕ S|2φ(d(S, Tc)),

where Tx := x+ T, ‖K‖ = supx,y∈Rd |K(x, y)|, and d(S, Tc) is the Hausdorff distance of S and Tc.

In the second part of this paper, we give an application of Theorem 2.1 for a concrete choice
of η and of g. Let η be the (infinite) Ginibre process ξ , which is a stationary determinantal point
process on C with correlation kernel given by

K(z,w)= π−1e−(|z|2+|w|2)/2ezw, z,w ∈C.

Hence, ξ has intensity ρ = π−1, and it holds that |K(z,w)|� φ(‖z −w‖) with φ(r) := π−1 exp(−
r2/2) for r > 0 and z,w ∈C.

In Theorem 2.2 below, we choose g depending on n ∈N. Let gn be the indicator function, which
is one if and only if the process ξ \ {x} is empty in a ball with a certain radius vn (chosen such that
vn → ∞ as n→ ∞) around x. This choice leads to the study of large nearest neighbour balls. It is
also an important prototype for more sophisticated models in stochastic geometry and has been
studied extensively for different point processes in various spaces (see [25]).

We consider ξ as a random set in R
2. Let Bn := Bn(o) the closed ball with radius n> 0 in R

2

centred at the origin o. We consider the process

�n :=
∑

x∈ξ∩Bn
1{ξ (Bvn(x) \ {x})= 0} δx. (6)

as well as the scaled process

�n :=
∑
y∈�n

δy/n =
∑

x∈ξ∩Bn
1{ξ (Bvn(x) \ {x})= 0} δx/n. (7)

In the following theorem, we compare �n with a Poisson process on the unit ball B1 in R
2.

Theorem 2.2. Let ν be a stationary Poisson process on R
2 with intensity τ > 0. There exists a

sequence (vn)n∈N with v4n ∼ 8 log n as n→ ∞ and a constant C > 0 such that for all n ∈N and
any ε > 0,

dKR(�n, ν ∩ B1)� Cnε−1/16.

As an application of the above theorem, we consider largest distances to the nearest neighbour.
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Corollary 2.3. We have as n→ ∞,
1

8 log n
max

x∈ξ∩Bn
min

y∈ξ\{x} ‖x− y‖4 P−→ 1.

The proof of Corollary 2.3 is quite standard (see, e.g. [[24], Corollary 4.2] or [[7], Corollary 1])
and therefore omitted.

Remark 2.4. (i) One should compare Theorem 2.1 with [[4], Theorem 4.1] (or the refined version
[[23], Theorem 4.1]) that discusses Poisson process approximation for score sums built on a Poisson
process. The terms E1, E2, and E3 in Theorem 2.1 are the analogues to the terms E1, E2, and E3
in [[4], Theorem 4.1]. Due to the spatial independence property of the Poisson process, there is no
analogue of the term F (which reflects the correlation decay of the determinantal process η) in [4]
and [23]. Note also that for a wide class of DPPs (including the Ginibre process), the β-mixing
coefficient does not decay exponentially fast (see [[26], Proposition 4.2]). Therefore, the exponential
decay dependence property from [8] is violated, and general results for Poisson approximation of
strongly mixing processes do not apply.

(ii) Note that the scaling of the maximum nearest neighbour ball in Corollary 2.3 is different
from its analogue for independent points, where the second power is proportional to log n as n→
∞ (see [6]). It seems interesting to investigate whether Theorem 2.2 can be extended to k-nearest
neighbour distances (k� 2). However, this extension would require delicate estimates on empty-
space probabilities of the Ginibre process, which are beyond the scope of this article.

3. Preliminaries
3.1 Palm calculus and negative associations
Following [[14], Chapter 6], we next introduce Palm measures and thereby generalise the defini-
tion given in (1). Let η be a stationary determinantal process as introduced in Section 2, and let �
be its thinned process with intensity measure L. Then there are point processes ηx,�, x ∈R

d, such
that for all measurable mappings f from R

d ×N to [0,∞),

E

[ ∫
f (x, η)�(dx)

]
=

∫
E[f (x, ηx,�)]L(dx). (8)

The processes ηx,�, x ∈R
d, are called Palm processes of η with respect to � at x, and the distri-

bution Px,� is called the Palm measure of η with respect to �. Since � is simple, ηx,� can be
interpreted as the process η seen from x and conditioned on � having a point in x. Since � ⊂ η,
it follows from [[14], Lemma 6.2 (ii)] that δx ∈ ηx,� a.s. This allows us to define the reduced Palm
process ηx!,� := ηx,� − δx with distribution Px!,�. If η = � (i.e. g ≡ 1 and W =R

d), we write ηx

for a Palm process of η (with respect to itself) at x (c.f. [1]) and ηx! for a reduced Palm process.
Recall that K is the correlation kernel of η and write P for its distribution. For x ∈R

d, let ηx!
be reduced Palm processes of η at x and denote their distribution by Px!. Then ηx!, x ∈R

d, are
determinantal processes with correlation kernel Kx, x ∈R

d, given by

Kx(z,w)=K(z,w)− K(z, x)K(x,w)
ρ

, z,w ∈R
d, (9)

(see [[27], Theorem 1.7]). By [[12], Theorem 3] (see also [22]), the process ηx! is stochastically
dominated by η (denoted by Px! � P) which means that

E[F(ηx!)]�E[F(η)] (10)

for each measurable F :N→R, which is bounded and increasing, by which wemean that F(ω1)�
F(ω2) if ω1 ⊂ ω2.
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For x ∈R
d let, ηx be a Palm process of η at x and ηx,� a Palm process of η with respect to � at

x. Then we have

E

[ ∫
f (x, η)�(dx)

]
=E

[ ∫
W

f (x, η)g(x, η)η(dx)
]
=

∫
W

E[f (x, ηx)g(x, ηx)]ρ(x)λ(dx)

=
∫
W

E[f (x, ηx,�)]E[g(x, ηx)]ρ(x)λ(dx).

(11)

An important property of DPPs is that they have negative associations (see [[19], Theorem 3.7]
or [[17], Theorem 3.2]), by which we mean that

E[F(η)G(η)]�E[F(η)]E[G(η)], (12)

for any real, bounded, and increasing functions F,G :N→R that are measurable with respect to
complementary subsets (see [17]).

Let F :N→R be measurable, bounded, and increasing and assume that g is measurable with
respect to S and increasing in the second argument. Then we find for almost all x ∈W from (11)
and (12) (applied to the determinantal point process ηx!) that

E[F(ηx,� ∩ Scx)]E[g(x, η
x)]=E[F(ηx ∩ Scx)g(x, η

x)]�E[F(ηx ∩ Scx)]E[g(x, η
x)], (13)

implying that Px!,�|Scx � Px!|Scx for λ-a.a. x ∈W. On the other hand, if g is measurable with respect
to S and decreasing in the second argument, then we find by taking −g in (12) that

E[F(ηx,� ∩ Scx)]E[g(x, η
x)]=E[F(ηx ∩ Scx)g(x, η

x)]�E[F(ηx ∩ Scx)]E[g(x, η
x)], (14)

implying that Px!|Scx � Px!,�|Scx for λ-a.a. x ∈W.

3.2 Fast decay of correlation
Let η be a stationary determinantal process on R

d with covariance kernel K that satisfies the con-
ditions (i)–(iv) and |K(x, y)|� φ(‖x− y‖) for some exponentially decreasing function φ (see [5]).
Then we have from [[3], Lemma 1.3] that the correlation functions ρ(m),m ∈N, of η satisfy

|ρ(p+q)(x1, . . . , xp+q)− ρ(p)(x1, . . . , xp)ρ(q)(xp+1, . . . , xp+q)|�m1+m
2 φ(s)‖K‖m−1, (15)

where m := p+ q, s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}) := infi∈{1,...,p},j∈{p+1,...,p+q} |xi − xj|, and
‖K‖ := supx,y∈Rd |K(x, y)|.

3.3 Poisson process approximation
The following Poisson approximation result is inspired by [[4], Theorem 3.1].

Proposition 3.1. Let the assumptions of Theorem 2.1 prevail. For x, y ∈W, let ηx be a Palm version
of η at x, let ηx,y be a Palm version of ηx at y, and let ηx,� ∼ Px,�|Scx be a Palm version of η with
respect to � at x, restricted to Scx. Let ζ be a finite Poisson process with intensity measure M. Then
we have

dKR(�, ζ )� dTV (L,M)+ 2(R1 + R2 + R3 + R4)
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with

R1 :=
∫
W

∫
Tx

E[g(x, ηx)]E[g(y, ηy)]ρ2dydx,

R2 :=
∫
W

∫
Tx

E[g(x, ηx,y)g(y, ηx,y)]ρ(2)(x, y)dydx,

R3 := ρ|W|ess supx∈WE[g(x, ηx)]E[(η�ηx,�)(W \ Tx)],

R4 := ρ|W|ess supx∈WE[g(x, ηx)]E
[ ∑
y∈η∩ηx,�∩W\Tx

|g(y, η)− g(y, ηx,�)|
]
,

where � stands for the symmetric difference.

Proof. Without loss of generality, we can assume that L=M (otherwise apply [[4], (2.6)]).
We adapt the proof of [[4], Theorem 3.1] to our setting. Let L be the generator of the Glauber
dynamics from [[4], (2.7)] with associated Markov semigroup Ps, and let DxPsh(ω) := Psh(ω +
δx)− Psh(ω) for ω ∈ N̂ and h ∈ Lip. By definition of KR distance and [[4], (3.1)], we have

dKR(�, ζ )= sup
h∈Lip

∣∣∣ ∫ ∞

0
E[LPsh(�)]ds

∣∣∣
= sup

h∈Lip

∣∣∣ ∫ ∞

0

∫
W

(
E[DxPsh(�)]−E[DxPsh(�x!)]

)
L(dx)ds

∣∣∣.
We can bound the absolute value of the last integrand by

E[|DxPsh(�)−DxPsh(�x!)|]=E[|Psh(� + δx)− Psh(�)− Psh(�x)+ Psh(�x!|]
�E[|Psh(� + δx)− Psh(� ∩ Tc

x + δx)| + |Psh(�)− Psh(� ∩ Tc
x)|]

+E[|Psh(�x! + δx)− Psh(�x! ∩ Tc
x + δx)| + |Psh(�x!)− Psh(�x! ∩ Tc

x)|]
+E[|Psh(� ∩ Tc

x + δx)− Psh(�x! ∩ Tc
x + δx)| + |Psh(� ∩ Tc

x)− Psh(�x! ∩ Tc
x)|]. (16)

By [[4], (2.9)] we have that |Psh(ω1)− Psh(ω1)|� e−s(ω1�ω2)(W) for ω1,ω2 ∈ N̂. Hence,

E[|Psh(� + δx)− Psh(� ∩ Tc
x + δx)| + |Psh(�)− Psh(� ∩ Tc

x)|]� 2e−s
E[�(Tx)],

E[|Psh(�x! + δx)− Psh(�x! ∩ Tc
x + δx)| + |Psh(�x!)− Psh(�x! ∩ Tc

x)|]� 2e−s
E[�x!(Tx)].

We now specify a coupling of � and �x! that we use to bound the third term in the right-hand
side of (16). Let η ∼ P and let ηx,� ∼ Px,�|Scx be a Palm version of η with respect to� at x, restricted
to Scx. Since (S⊕ Tc)∩ S=∅, we have Sy ∩ Sx =∅ for all y ∈ Tc

x. Hence, using that g stabilises with
respect to S, �[ηx,�]∩ Tc

x and �[η̂x,�]∩ Tc
x agree in distribution, where η̂x,� ∼ Px,�. Therefore,

it follows from the definition of Px,� that �[ηx,�]∩ Tc
x and �x! ∩ Tc

x agree in distribution. This
gives

E[|Psh(� ∩ Tc
x + δx)− Psh(�x! ∩ Tc

x + δx)|]� e−s
E[(�[η]��[ηx,�])(Tc

x)],
E[|Psh(� ∩ Tc

x)− Psh(�x! ∩ Tc
x)|]� e−s

E[(�[η]��[ηx,�])(Tc
x)].

From the particular form of the score functional �, we obtain for the last term on the right-hand
side above,

(�[η]��[ηx,�])(Tc
x)� (η�ηx,�)(W \ Tx)+

∑
y∈η∩ηx,�∩W\Tx

|g(y, η)− g(y, ηx!,�)| a.s.
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Hence, we have shown that

dKR(�, ζ )� 2
{ ∫

W
E[�(Tx)]+E[�x!(Tx)] L(dx)

+ ρ|W|ess supx∈WE[g(x, ηx)]E[(η�ηx,�)(W \ Tx)]

+ ρ|W|ess supx∈WE[g(x, ηx)]E
[ ∑
y∈η∩ηx,�∩W\Tx

|g(y, η)− g(y, ηx,�)|
]}

.

From here, the asserted bound follows from the observations that L(dx)= 1{x ∈
W}E[g(x, ηx)]ρdx and that∫

W
E[�x!(Tx)] L(dx)=

∫
W

E[(�[ηx,�]− δx)(Tx)] L(dx)

=E

[ ∫
W

(�[η]− δx)(Tx)�(dx)
]

=
∫
W

∫
Tx

E[g(x, ηx,y)g(y, ηx,y)]ρ(2)(x, y)dydx.
�

4. Proof of Theorem 2.1

Proof of Theorem 2.1. For x ∈W, let Sx := x+ S and Tx := x+ T. Let L be the intensity measure
of �. We apply Proposition 3.1. Since the terms R1 and R2 directly translate into E1 and E2, it
remains to bound R3 and R4.

Bounding R3.
Recall that P is the distribution of a determinantal process with correlation kernel K, that Px

is its Palm measure and that Px,� is the Palm measure with respect to �. The idea is to show the
existence of a construct (η, ηx,�) of P and Px,� for each x ∈W with a ’small’ symmetric difference
(η�ηx,�)(W \ Tx). We discuss the coupling for increasing and decreasing scores separately.

(i) Increasing scores. If g(x,ω1)� g(x,ω2) for ω1 ⊂ ω2, we have by (10) and (13) that Px! � P
and Px!,�|Scx � Px! for L-a.a. x ∈W, implying that Px!,�|Scx � P. By Strassen’s theorem (see [18]),
this implies that there are processes η ∼ P and ηx!,� ∼ Px!,�|Scx such that ηx!,� ⊂ η. Thus, we have

E[(η�ηx!,�)(W \ Tx)]=E[η(W \ Tx)]−E[ηx!,�(W \ Tx)]
= {

E[η(W \ Tx)]−E[ηx!(W \ Tx)]
} +E[ηx!(W \ Tx)]−E[ηx!,�(W \ Tx)].

(17)

The term in {· · · } on the right-hand side above is by (9), (5) and since φ is decreasing, given by

ρ−1
∫
W\Tx

|K(x, y)|2dy� ρ−1‖K‖
∫
W\Tx

φ(‖x− y‖)dy� ρ−1‖K‖|W| sup
y∈Tc

φ(‖y‖), x ∈W.

(18)

Next we consider the second term on the right-hand side in (17). By definition of the reduced
Palm process ηx!,�, we have for λ-almost all x ∈W,

E[g(x, ηx)]
{
E[ηx!(W \ Tx)]−E[ηx!,�(W \ Tx)]

}
=E[ηx(W \ Tx)]E[g(x, ηx)]−E[ηx(W \ Tx)g(x, ηx)]
= −Cov(ηx(W \ Tx), g(x, ηx)). (19)
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Now we use that the reduced Palm process ηx! is a determinantal process itself and therefore
has negative associations (see (12)). For k ∈N, we consider the auxiliary functions

f (k)(ω) := min{k,ω(Sx)− g(x,ω)}, f (ω) := ω(Sx)− g(x,ω), ω ∈N.

It is easy to see that f (k), k ∈N, and f are bounded and increasing. Since ηx! has negative
associations, we have that

Cov( min{k, ηx!(W \ Tx)}, f (k)(ηx!))� 0.

Hence, by monotone convergence,

Cov(ηx!(W \ Tx), ηx!(Sx))− Cov(ηx!(W \ Tx), g(x, ηx))
= Cov(ηx!(W \ Tx), f (ηx!))= lim

k→∞
Cov( min{k, ηx!(W\Tx)}, f (k)(ηx!))� 0.

This shows that (19) is bounded by

− Cov(ηx!(W \ Tx), ηx!(Sx))
=E[ηx!(W \ Tx)]E[ηx!(Sx)]−E[ηx!(W \ Tx)ηx!(Sx)]
�

∣∣E[ηx!(W \ Tx)]−E[η(W \ Tx)]
∣∣E[ηx!(Sx)] (20)

+ ∣∣E[ηx!(W \ Tx)ηx!(Sx)]−E[η(W \ Tx)]E[ηx!(Sx)]
∣∣. (21)

Here, we use (18) and E[ηx!(Sx)]�E[η(Sx)]= ρ|S| to obtain for (20)∣∣E[ηx!(W \ Tx)]−E[η(W \ Tx)]
∣∣E[ηx!(Sx)]� ‖K‖|W||S| sup

y∈Tc
φ(‖y‖).

Next we consider (21). We write ρ
(m)
x for the m-th correlation function of ηx! and find by [[27],

Lemma 6.4], by the definition of ηx! and by (15) that

ρ
(
E[ηx!(W \ Tx)ηx!(Sx)]−E[η(W \ Tx)]E[ηx!(Sx)]

)
= ρ

∫
Sx

∫
W\Tx

(ρ(2)
x (y, z)− ρx(y)ρ) dzdy

=
∫
Sx

∫
W\Tx

(ρ(3)(x, y, z)− ρ(2)(x, y)ρ) dzdy

� 35/2‖K‖2
∫
Sx

∫
W\Tx

φ(d({x, y}, {z})) dzdy
� 35/2‖K‖2|W||S|φ(d(S, Tc)).

Thus, since L(W)� ρ|W|, we can conclude that

R3 = ρ|W|ess supx∈WE[g(x, ηx)]E[(ηx�ηx!,�)(W \ Tx)]
� (1+ ρ|S|)‖K‖|W|2 sup

y∈Tc
φ(‖y‖)+ 35/2‖K‖2|W|2|S|φ(d(S, Tc))

� ‖K‖(1+ ρ + 35/2‖K‖) max (|S|, 1)|W|2φ(d(S, Tc)). (22)

(ii) Decreasing scores. If g(x,ω1)� g(x,ω2) for ω1 ⊂ ω2, we have by (10) and (14) that Px! �
P and Px!|Scx � Px!,�|Scx for λ-a.a. x ∈W. Let ηx ∼ Px. By Strassen’s theorem and [[13], Theorem
2.15], there exist point processes η ∼ P and ηx,� ∼ Px,�|Scx such that ηx! ⊂ η and ηx! ∩ Scx ⊂ ηx!,�.
This gives
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E[(η�ηx,�)(W \ Tx)]�E[(η \ ηx!)(W \ Tx)]+E[(ηx!,� \ ηx!)(W \ Tx)]
= {

E[η(W \ Tx)]−E[ηx!(W \ Tx)]
} +E[ηx!,�(W \ Tx)]−E[ηx!(W \ Tx)].

(23)
Here we bound the term in {· · · } as in (18). Moreover, we obtain

E[g(x, ηx)]
{
E[ηx!,�(W \ Tx)]−E[ηx!(W \ Tx)]

}
=E[ηx(W \ Tx)g(x, ηx)]−E[ηx(W \ Tx)]E[g(x, ηx)]
= Cov(ηx(W \ Tx), g(x, ηx)). (24)

Now we use that the reduced Palm process ηx! is a determinantal process itself and therefore
has negative associations (see [12]). For k ∈N, we consider the auxiliary functions

f (k)(ω) := min{k,ω(Sx)+ g(x,ω)}, f (ω) := ω(Sx)+ g(x,ω), ω ∈N.

It is easy to see that f (k), k ∈N, and f are bounded and increasing. Since ηx! has negative
associations, we have that

Cov( min{k, ηx!(W \ Tx)}, f (k)(ηx!))� 0.
Hence, by monotone convergence,

Cov(ηx!(W \ Tx), ηx!(Sx))+ Cov(ηx!(W \ Tx), g(x, ηx!))
= Cov(ηx!(W \ Tx), f (ηx!))
= lim

k→∞
Cov( min{k, ηx!(W\Tx)}, f (k)(ηx!))� 0.

This shows that (24) is bounded by −Cov(ηx!(W \ Tx), ηx!(Sx)). Therefore, we can proceed as for
increasing scores and obtain the same bound for R3 as in (22).

Bounding R4.
For each x ∈W, we have

E

[ ∑
y∈ηx,�∩η∩W\Tx

|g(y, ηx,�)− g(y, η)|
]

=E

[ ∑
y∈ηx,�∩η∩W\Tx

1{(ηx,��η)∩ Sx = ∅}|g(y, ηx,�)− g(y, η)|
]

�E

[ ∑
z∈(ηx,��η)∩(W⊕Sx)\Tx

∑
y∈ηx,�∩η∩Sz

|g(y, ηx,�)− g(y, η)|
]

�E

[ ∑
z∈(ηx,��η)∩(W⊕Sx)\Tx

max
ω∈{ηx,�,η}

∑
y∈ω∩Sz

g(y,ω)
]
.

Here we obtain from Condition (3) that the above is bounded by

α|S|E
[
(ηx,��η)((W ⊕ S) \ Tx)

]
.

Hence, we obtain from the estimate in (22) (withW replaced byW ⊕ S) that

R4 = ρ|W|ess supx∈WE[g(x, ηx)]E
[ ∑
x∈ηx,�∩η∩W\Tx

|g(x, ηx,�)− g(x, η)|
]

� α|S|‖K‖(1+ ρ + 35/2‖K‖) max(|S|, 1)|W ⊕ S|2φ(d(S, Tc)). (25)

�
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5. Proof of Theorem 2.2
In the proof of Theorem 2.2, we repeatedly use that the set of absolute values of the points of
the (infinite) Ginibre process ξ has the same distribution as a sequence (Xi)i∈N of independent
random variables with X2

i ∼Gamma(i, 1) (see [15] or [[1], Theorem 26]). This implies that the
mapping r �→ P(ξ (Br)= 0) is continuous and thatP(ξ (Br)= 0) ↓ 0 as r → ∞. Hence, for all τ > 0,
there exists an unbounded increasing sequence (vn)n∈N such that

Ln(A) := E[�n(A)]= |A∩ Bn|
π

P(ξ o!(Bvn)= 0)= τ |A∩ Bn|
n2

, n ∈N, A ∈ B2. (26)

To determine the asymptotic behaviour of vn as n→ ∞, we use that by [[1], Theorem 26],

P(ξ o!(Bvn)= 0)= ev
2
nP(ξ (Bvn)= 0). (27)

Moreover, by [[2], Proposition 7.2.1],

lim
r→∞

1
r4

log P(ξ (Br)= 0)= −1
4
.

Therefore, re-writing log P(ξ (Bvn)= 0) as

log(n2ev
2
nP(ξ (Bvn)= 0))− 2 log n− v2n,

we find from (26) and (27) that v4n
log n → 8 as n→ ∞.

Proof of Theorem 2.2. Given n ∈N, we choose ξ as the Ginibre process, let g(x,ω) :=
1{ω(Bvn(x)\{x})= 0}, S := Bvn := Bvn(o) and T := Blog n := Blog n(o). Note that g is stabilising
with respect to S. The idea is to apply Theorem 2.1 to the process �n defined at (6), where we
choose ζ as a stationary Poisson process with intensity τ

n2 . Then, ζ ∩ Bn has intensity measure Ln
given at (26). First, we check the Conditions (3) and (4). Note that for all ω ∈N and n ∈N,⋂

x∈�n[ω]
Bvn/2(x)= ∅.

Therefore, (3) holds with α := 1
π(vn/2)2

= 4
πv2n

� 4
πv21

. Moreover, it clearly holds that g(x,ω1)�
g(x,ω2) for ω1 ⊂ ω2, verifying (4).

Thus, by invariance of KR distance under scalings and Theorem 2.1, we have

dKR(�n, ν ∩ B1)= dKR(�n, ζ ∩ Bn)� 2(E1,n + E2,n + Fn), (28)

where the error terms E1,n, E2,n, and Fn depend on n.
Next we bound E1,n, E2,n, and Fn. Since ‖K‖ = π−1 and φ(r)= π−1 exp(− r2/2) for r > 0, we

obtain

Fn = 1
π2

(
1+ 1+ 35/2

π

)( 4
πv21

|Bvn | + 1
)
max(|Bvn |, 1)|Bn+vn |2 exp

(
− | log n− vn|2

2

)
.

Using here that v4n ∼ 8 log n, we obtain that Fn � 1/n for n large enough. Next we bound E1,n,
where we recall that ρ = π−1. From (26), we obtain

E1,n = 1
π2

∫
Bn

∫
Bn∩Blog n(x)

P(ξ x!(Bvn(x))= 0)P(ξ y!(Bvn(y))= 0)dydx

� τ 2

n4
|Bn| sup

x∈Bn
|Blog n(x)∩ Bn|� τ 2π2( log n)2

n2
.
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Thus, it remains to bound

E2,n =
∫
Bn

∫
Bn∩Blog n

E[1{ξ x,y(Bvn(x) \ {x})= ∅}1{ξ x,y(Bvn(y) \ {y})= ∅}]ρ(2)(x, y)dydx

=
∫
Bn

∫
Bn∩Blog n

E[1{ξ x!,y!(Bvn(x)∪ Bvn(y))= ∅}]1{‖x− y‖ > vn}ρ(2)(x, y)dydx, (29)

where ξ x!,y! := ξ x,y \ {x, y}. By [[27], Theorem 6.5], the reduced Palm process ξ x!,y! is a deter-
minantal process itself. Hence, we can conclude from [[19], Theorem 3.7] that ξ x!,y! has negative
associations, that is, that E[F(ξ x!,y!)G(ξ x!,y!)]�E[F(ξ x!,y!)]E[G(ξ x!,y!)] for every pair F,G of real
bounded increasing (or decreasing) functions that are measurable with respect to complemen-
tary subsets of Rd. We apply this with the decreasing functions F(μ)= 1{μ(Bvn(x))= 0} and
G(μ)= 1{μ(Bvn(y) \ Bvn(x))= 0}. This gives

P(ξ x!,y!(Bvn(x)∪ Bvn(y))= 0)� P(ξ x!,y!(Bvn(x))= 0) P(ξ x!,y!(Bvn(y) \ Bvn(x))= 0). (30)

To bound the first probability, we note that by [[12], Theorem 1], there is a reduced Palm process
ξ x!,y! of ξ x! such that ξ x!,y! ⊂ ξ x! and |ξ x! \ ξ x!,y!|� 1 a.s. This gives

P(ξ x!,y!(Bvn(x))= 0)� P(ξ x!(Bvn(x))� 1).

Now we apply the same argument to the determinantal process ξ x! and obtain the bound

P(ξ x!(Bvn(x))� 1)� P(ξ (Bvn(x))� 2)= P(ξ (Bvn)� 2),

where the last equality holds due to the stationarity of ξ . As mentioned at the beginning of this
section, the set of absolute values of the points of the Ginibre process ξ has the same distribution
as a sequence (Xi)i∈N of independent random variables with X2

i ∼Gamma(i, 1). Similarly to [[2],
Section 7.2], this gives

P(ξ (Bvn)� 2)= P(#{j ∈N : Xj � vn}� 2)
� P(#{j ∈ {1, . . . , v2n} : Xj � vn}� 2)

= P

( v2n⋃
i=1

v2n⋃
j=1
j=i

{∀k ∈ {1, . . . , v2n} \ {i, j} : Xk > vn}
)
.

In the above equation, with a slight abuse of notation, we have written v2n instead of �v2n�. The
union bound yields that the above is bounded by

v2n∑
i=1

v2n∑
j=1
j=i

P(∀k ∈ {1, . . . , v2n} \ {i, j} : Xk > vn)=
v2n∑
i=1

v2n∑
j=1
j=i

v2n∏
k=1
k=i,j

P(X2
k > v2n).

Let t < 1. The moment generating function MX2
k
(t)=E[etX

2
k ]= (1− t)−k of X2

k exists, and we
obtain from the Chernoff bound that

P(X2
k > r2)� e−tr2

E[etX
2
k ]= e−tr2 (1− t)−k.

For k< r2, this bound is maximised for t = 1− k
r2 , which gives

P(ξ (Bvn)� 2)�
v2n∑
i=1

v2n∑
j=1
j=i

v2n∏
k=1
k=i,j

e
−(1− k

v2n
)v2n−k log

(
k
v2n

)
=

v2n∑
i=1

v2n∑
j=1
j=i

v2n∏
k=1
k=i,j

e
−v2n+k−k log

(
k
v2n

)
.
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Using here that u �→ u− u log(u/r2) is increasing for u� r2, we find that

P(ξ (Bvn)� 2)�
v2n∑
i=1

v2n∑
j=1
j=i

v2n∏
k=3

e
−v2n+k−k log

(
k
v2n

)

� v4n
v2n∏
k=3

e
−v2n+k−k log

(
k
v2n

)

= v2ne
− 1

2 (v
2
n−3)(v2n−2)−v4n

∫ 1
3/v2n

u log(u)dx+O(v2n log vn)

= e−
1
4 v

4
n(1+o(1))

as n→ ∞, where we have used that
∫ 1
0 u log(u)dx= − 1

4 .
Next we bound the second probability in (30). By the same coupling argument as above, we

find that

P(ξ x!,y!(Bvn(y)\Bvn(x))= 0)� P(ξ (Bvn(y)\Bvn(x))� 2). (31)

Next we note that Bvn/2
(
y+ vn(y−x)

2|y−x|
)

⊂ Bvn(y) \ Bvn(x) if ‖x− y‖� vn. (This is sufficient, since
the integrand of (29) vanishes if ‖x− y‖ < vn.) Hence, (31) is for ‖x− y‖� vn bounded by

P

(
ξ
(
Bvn/2

(
y+ vn(y− x)

2|y− x|
))

� 2
)

= P(ξ (Bvn/2)� 2)� e−
1
4 (vn/2)

4(1+o(1))

by the same estimates as above (with vn/2 instead of vn). Since ρ(2)(x, y)� 1/π2 for all x, y ∈R
2,

we arrive for all ε > 0 at the bound

E2 =
∫
Bn

∫
Bn∩Blog n

E[1{ξ x!,y!(Bvn(x)∪ Bvn(y))= ∅}]1{‖x− y‖ > vn}ρ(2)(x, y)dydx

� n2( log n)2e−
1
4 v

4
n(1+o(1))e−

1
64 v

4
n(1+o(1)) � nε−1/16,

where we have used (26) and that v4n
log n → 8 as n→ ∞. Hence, the assertion follows from (28). �
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