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Abstract
Generalizing a result of Wulf-Dieter Geyer in his thesis, we prove that if K is a finitely generated extension of tran-
scendence degree r of a global field and A is a closed abelian subgroup of Gal(K), then rank(A) ≤ r + 1. Moreover,
if char(K) = 0, then Ẑr+1 is isomorphic to a closed subgroup of Gal(K).

1. Introduction

A consequence of class field theory appearing in [9, p. 302, Thm. 8.8(b)(iii)] says that the cohomological
dimension of every number field K which is not embeddable in R is 2. On the other hand, cd(Ẑ× Ẑ) = 2
[9, p. 217, Cor. 3.2 and p. 221, Prop. 4.4] and the group Ẑ occurs as a closed subgroup of Gal(Q) in
many ways [3, p. 379, Thm. 18.5.6]. One may therefore wonder whether Ẑ× Ẑ is isomorphic to a closed
subgroup of Gal(Q).

A somewhat surprising result of Geyer’s thesis says that this is not the case. Indeed, every closed
abelian subgroup of Gal(Q) is procyclic [4, p. 357, Satz 2.3] (see also [9, p. 306, Thm. 9.1]).

We generalize this result for every finitely generated extension K of transcendence degree r of a
global field. We prove that if a profinite group A is isomorphic to a closed abelian subgroup of Gal(K),
then rank(A) ≤ r + 1. In particular, Ẑr+2 is not a subgroup of Gal(K) (Proposition 4.3).

In the rest of this note, we abuse our language and write “A is a closed subgroup of Gal(K)” rather
than “A is isomorphic to a closed subgroup of Gal(K).”

It turns out that the latter inequality is sharp. Indeed, if char(K) = 0, then Ẑr+1 is a closed subgroup of
Gal(K), while if char(K) = p > 0, then Ẑ is a closed subgroup of Gal(K),

∏
l �=p Z

r+1
l is a closed subgroup

of Gal(K) if r ≥ 0 (Theorem 5.7), but Ẑr+1 is not a closed subgroup of Gal(K) if r ≥ 1 (Remark 5.8).
Here l ranges over the prime numbers. The exclusion of the factor Zp in the case when p > 0 and r ≥ 1
follows from the rule cdp(Gal(F)) ≤ 1 for each field F of characteristic p [9, p. 256, Thm. 3.3].

2. Preliminaries

One of the basic tools needed in the proof of the generalization of Geyer’s result is a special case of
the renowned Pontryagin–van Kampen theorem. Here, and in the rest of this note, l stands for a prime
number, Zl is the ring of l-adic numbers, viewed as a profinite abelian group or as a principal ideal
domain. We also write Ẑ := ∏

l Zl for the Prüfer group [3, p. 12]. Thus, Zl is the free pro-l cyclic group
and Ẑ is the free procyclic group.

Proposition 2.1 ([10, p. 129, Thm. 4.3.3]). Let A be a torsion-free abelian profinite group. Then A ∼=∏
l Z

rl
l , where rl is a cardinal number for each l.

C© The Author(s), 2024. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0017089524000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000028
https://orcid.org/0000-0001-5205-5319
mailto:jarden@tauex.tau.ac.il
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0017089524000028&domain=pdf
https://doi.org/10.1017/S0017089524000028


360 Moshe Jarden

The proof of Proposition 2.1 uses a special case of the Pontryagin–van Kampen duality theorem
saying that every locally compact abelian topological group A is canonically isomorphic to its double
dual group A∗∗, where A∗ = Hom(A, R/Z). The proof of that special case needed in our proposition,
dealing only with abelian profinite groups, appears in [10, Section 2.9]. It is much simpler than the
proof of the general theorem [5, p. 376, Thm. 24.2].

We denote the algebraic closure of a field K by K̃ and its separable algebraic closure by Ksep. We
write Gal(K) for the absolute Galois group Gal(Ksep/K) of K. If A is a closed subgroup of Gal(K), then
Ksep(A) denotes the fixed field of A in Ksep.

Lemma 2.2. Let K be a field and A a nontrivial finite subgroup of Gal(K). Then, A ∼=Z/2Z, char(K) = 0,
and the fixed field K̃(A) of A in K̃ is real closed. In addition, A is the centralizer of itself in Gal(K).

Proof. Let R = Ksep(A). Then, a theorem of Artin says that char(K) = 0, Ksep = K̃, and K̃ = R(
√−1)

[7, p. 299, Cor. 9.3]. Let τ be the unique element of order 2 of Gal(R) defined by τ (
√−1) = −√−1.

By [7, p. 452, Prop. 2.4], R is real closed. Let < be the ordering of K induced by the unique ordering
of R. If R′ is a real closed field extension of K in K̃ whose ordering extends <, then by [7, p. 455, Thm.
2.9], there exists a unique K-isomorphism R → R′.

Let σ be an element of the centralizer CGal(K)(A) of A in Gal(K). Then, σR is a real closure of
(K, < ) and Gal(σR) ∼=Z/2Z. Also, τ (σR) = τσR = στR = σR. By the preceding paragraph applied
to σR rather than to R, the restriction of τ to σR is the identity map. In other words, τ ∈ Gal(σR). Since
ord(τ ) = 2, the element τ generates Gal(σR), so R = σR. The uniqueness of the K-isomorphism of R
into R implies that σ ∈ Gal(R) = A, as desired.

Corollary 2.3. Let K be a field and A a closed abelian subgroup of Gal(K). Then, A ∼=Z/2Z or A ∼=∏
l Z

rl
l , where l ranges over all prime numbers and rl is a cardinal number.

Proof. If A has a non-unit element α of a finite order, then by Lemma 2.2, 〈α〉 ∼=Z/2Z and 〈α〉 is its
own centralizer in Gal(K). Since A is abelian, A is contained in that centralizer. Therefore, A = 〈α〉.

Otherwise, A is torsion-free. Hence, by Proposition 2.1, A has the desired structure.

Given a profinite group G and a prime number l, we write cdl(G) for the lth cohomology dimension
of G [9, p. 196, Def. 1.1]. Also, we write ζn for a primitive root of unity of order n.

Lemma 2.4. The following statements hold for prime numbers p, l, and a finite extension E of Qp:

(a) E contains only finitely many roots of unity.
(b) l∞|[E(ζlj )j≥1 : E].
(c) cdl(Gal(E(ζlj )j≥1)) ≤ 1.

Proof of (a). Let O be the ring of integers of E, Ē the residue field of E, π a prime element of O, U the
group of invertible elements of O, and U(1) = 1 + πO the subgroup of 1-units of O. Reduction modulo
πO yields the following short exact sequence

1 −→ U(1) −→ U −→ Ē× −→ 1,

where 1 is the trivial group. By [11, p. 213, Chap. XIV, Prop. 10], U(1) is isomorphic to a direct product
of a finite abelian group with a free abelian group. Since Ē× is also finite, the torsion group of U is finite.
That group is the group of roots of unity in E.

Proof of (b). By (a), E has only finitely many roots of unity of order lj with j ≥ 1. Thus, there exists a
non-negative integer j with ζlj ∈ E and ζlj+1 /∈ E. By [7, p. 297, Thm. 9.1], [E(ζlj+1 ) : E(ζlj )] = l. Apply the
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same argument to the field E1 := E(ζlj+1 ) to find an integer j2 > j1 := j such that ζlj2 ∈ E1 and ζlj2+1 /∈ E1,
so [E2 : E1] = l with E2 := E(ζlj1+1 , ζlj2+1 ). Continue to find a sequence j1 < j2 < j3 < . . . and fields E ⊂
E1 ⊂ E2 ⊂ E3 ⊂ · · · such that ζljn+1 ∈ En := E(ζlji+1 )n

i=1 and ζljn+1+1 /∈ En, so [En+1 : En] = l, for each n ≥ 1.
Hence, l∞|[E(ζlj )j≥1 : E].

Proof of (c). The claim follows from (b) and [9, p. 291, Cor. 7.4(i),(ii)].

Note that the citation in the proof of (c) relies on local class field theory.

3. Geyer’s theorem

We generalize Geyer’s theorem which asserts that every closed abelian subgroup of Gal(Q) is procyclic
[4, p. 357, Satz 2.3].

Lemma 3.1. Let F be a field of positive characteristic p. Then, no pro-p closed subgroup of Gal(F) is
isomorphic to Zp ×Zp.

Proof. Let G be a closed pro-p subgroup of Gal(F). By [9, p. 256, Thm. 3.3], cd(G) ≤ 1. On the other
hand, Zp is a free pro-p group of rank 1. Hence, by [9, p. 217, Cor. 3.2], cd(Zp) = 1. It follows from [9,
p. 221, Prop. 4.4] that cd(Zp ×Zp) = cd(Zp) + cd(Zp) = 2. Therefore, G �∼=Zp ×Zp, as claimed.

Lemma 3.2. Let K be a global field, l �= char(K) a prime number, and M a separable algebraic exten-
sion of K. Suppose that M contains all of the roots of unity of order li for i = 1, 2, 3, . . . . Then,
cdl(Gal(M)) ≤ 1. In particular, Gal(M) �∼=Zl ×Zl.

Proof. We distinguish between two cases:

Case A: K is a number field. We assume without loss that K =Q. By assumption, ζl2 ∈ M �R. Thus,
M cannot be embedded into R, that is M is totally imaginary. Hence by [9, p. 302, Thm. 8.8(a)],
cdl(Gal(M)) �= ∞.

Now we consider a prime number p, a valuation v of M lying over p, and the completion M̂v of M at
v. Then, ζli ∈ M ⊆ M̂v for each i. Hence, by Lemma 2.4(b), l∞|[M̂v : Qp]. Therefore, by [9, p. 302, Thm.
8.8(b)], cdl(Gal(M)) ≤ 1.

Finally, by [9, p. 217, Cor. 3.2 and p. 221, Prop. 4.4] and [9, p. 217, Cor. 3.2],

cdl(Zl ×Zl) = cdl(Zl) + cdl(Zl) = 1 + 1 = 2.

Hence, Gal(M) �∼=Zl ×Zl, as claimed.

Case B: K is a finite separable extension ofFp(t) with t transcendental overFp. We assume without loss
that K = Fp(t). By assumption, M contains the field L := Fp(ζli )i≥1, so L(t) ⊆ M. Since there are infinitely
many roots of unity ζli in F̃p and only finitely many of them belong to each finite field, L is an infinite
field. In addition, for each i ≥ 1 the extension Fp(ζli+1 )/Fp(ζli ) is cyclic of degree l or trivial. Hence,
Gal(L/Fp(ζl)) ∼=Zl. Therefore, L is contained in the maximal extension L′ of Fp(ζl) of an l’th power
degree. Since Gal(L′/Fp(ζl)) ∼=Zl, the restriction map Gal(L′/Fp(ζl)) → Gal(L/Fp(ζl)) is surjective, and
Zl is generated by one element, that map is an isomorphism [3, p. 331, Cor. 16.10.8]. It follows that
L = L′. Therefore, l does not divide the order of Gal(L).

By [9, p. 208, Cor. 2.3], cdl(Gal(L)) = 0. Hence, by [9, p. 272, Prop. 5.2], cdl(Gal(L(t))) = 1. Since
Gal(M) ≤ Gal(L(t)), we have by [9, p. 204, Prop. 2.1(a)], that cdl(Gal(M)) ≤ 1. As in Case A, this
inequality implies that Gal(M) �∼=Zl ×Zl, as claimed.

Here is the promised result of Geyer.
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Theorem 3.3. Let K be a global field and A a closed abelian subgroup of Gal(K). Then, A is procyclic.

Proof. We start the proof with the special case where the torsion group Ator of A is nontrivial. In
this case, there exists a non-unit τ ∈ A of finite order. By Lemma 2.2, char(K) = 0 and A ∼=Z/2Z. In
particular, A is procyclic.

We may therefore assume that A is a nontrivial torsion-free abelian profinite group. By Proposition
2.1, A ∼= ∏

l Z
rl
l , where l ranges over all prime numbers and for each l, rl is a cardinal number, so we may

assume that A ∼=Zr
l for a prime number l and a positive cardinal number r and prove that A ∼=Zl.

Otherwise, A contains a closed subgroup which is isomorphic to Zl ×Zl. Thus, we may assume that
A ∼=Zl ×Zl and prove that this assumption leads to a contradiction.

To this end, we denote the fixed field of A in Ksep by M and identify Gal(M) with A. By Lemma 3.1,
l �= char(K).

Claim: M contains a root of unity ζl of order l. Indeed, if l = 2, then ζl = −1 ∈ M. Otherwise, l > 2
and if ζl /∈ M, then [M(ζl) : M] is a divisor of l − 1 which is greater than 1. On the other hand, [M(ζl) : M]
divides the (profinite) order of A which is l∞, a contradiction.

Since Gal(M) ∼=Zl ×Zl, Lemma 3.2 implies that not all roots of unity of order li with i ≥ 1 belong
to M. Let n be the smallest positive integer such that M contains a root of unity of order ln−1 but does
not contain a root of unity of order ln. Choose a root of unity ζln and set M1 = M(ζln ). Then, ζ l

ln ∈ M but
ζln /∈ M. Hence, [M1 : M]|l and [M1 : M] �= 1 (by the Claim and [7, p. 289, Thm. 6.2(ii)]), so [M1 : M] = l.

Let U be the open subgroup of Zl of index l. Then, the index of each of the subgroups Zl × U and
U ×Zl of Gal(M) is l. We choose one of them which is different from Gal(M1) and denote its fixed field
in Ksep by M2. Then, M2 is a cyclic extension of M of degree l and M1 �= M2.

Since ζl ∈ M, [7, p. 289, Thm. 6.2(i)] implies the existence of a, x ∈ Ksep with M2 = M(x) and a := xl ∈
M. Choose b ∈ Ksep with bln−1 = x, so bln = a. In particular, M2 = M(bln−1

) ⊆ M(b) and [M(b) : M2] ≤ ln−1.
It follows from the preceding paragraph that

[M(b) : M] ≤ ln. (3.1)

Next choose σ ∈ A such that σ |M1 = id and σ |M2 �= id. In particular, σx �= x, so ζ := (σb)b−1 satisfies

ζ ln = σbln · b−ln = σa · a−1 = aa−1 = 1 and ζ ln−1 = σbln−1 · b−ln−1 = σx · x−1 �= 1,

thus ζ is a primitive root of 1 of order ln.
The definition of M1 implies that M1 = M(ζ ). But M(b) is a Galois extension of M (because

Gal(M) is abelian). Hence, ζ = (σb)b−1 ∈ M(b), so M1 ⊆ M(b). Since [M1 : M] = l, we have by (3.1)
that [M(b) : M1] ≤ ln−1. Since σ is the identity on M1, the latter inequality implies that ord(σ |M(b)) ≤ ln−1.

On the other hand, the relation σb = bζ implies by induction on i that σ ib = bζ i �= b for each
1 ≤ i ≤ ln−1. Hence, ord(σ |M(b)) > ln−1. This contradicts the conclusion of the preceding paragraph, as
required.

4. Generalization of Geyer’s theorem

The central part of the proof of Geyer’s theorem says that for each prime number l, the largest positive
integer n for which Zn

l is a closed subgroup of Gal(Q) or of Gal(Fp(t)) is 1. The next lemma will allow
us to generalize that statement to each finitely generated extension of a global field.

Remark 4.1. Let A be a finitely generated torsion-free abelian pro-l group for a prime number l. [3,
p. 519, Prop. 22.7.12(a)] allows us to also consider A as a finitely generated Zl-module. Since Zl is a
principal ideal domain, [7, p. 147, Thm. 7.3] implies that A =Zn

l is a finitely generated free Zl-module
of rank n for some non-negative integer n. Since Zl is generated, as a profinite group, by one element, n
is also the rank, rank(A), of A as a profinite group. In other words, rank(A) = rankZl (A).
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Lemma 4.2. Let K be a field, t an indeterminate, and l a prime number. Suppose that n is the largest
positive integer for which Zn

l is a closed subgroup of Gal(K). Then, the largest positive integer m for
which Zm

l is a closed subgroup of Gal(K(t)) does not exceed n + 1.

Proof. Suppose that A := Zn
′

l is a closed subgroup of Gal(K(t)) for some positive integer n′. Let
ϕ : Gal(K(t)) → Gal(K) be the restriction map. Then, Ker(ϕ) = Gal(Ksep(t)). Setting Ā = ϕ(A) and A0 =
Ker(ϕ) ∩ A, we get the following commutative diagram of profinite groups:

1 Gal(Ksep(t)) Gal(K(t))
ϕ

Gal(K) 1

0 A0 A Ā 0,

where 0 stands for the trivial group of an additive abelian group. Since Zl is a principal ideal domain
and A is a free Zl-module of rank n′, A0 is a free Zl-module, by [7, p. 146, Thm. 7.1]. Also, by [7, p. 148,
Lemma 7.4], Ā is a free Zl-module and n′ = rank(A0) + rank(Ā).

By [9, p. 272, Prop. 5.2], Gal(Ksep(t)) is a projective group, so also A0 is a projective group. In
other words, rank(A0) ≤ 1. Also, by Corollary 2.3 and the assumption of the lemma, Ā =Zm

l with
m ≤ n or l = 2 and Ā ∼=Z/2Z. In each case, rank(Ā) ≤ n, hence rank(A) = rank(Ā) + rank(A0) ≤ n + 1, as
claimed.

Proposition 4.3. Let K be a finitely generated extension with transcendence degree r of a global field
K0 and let A be a closed abelian subgroup of Gal(K). Then, A ∼=Z/2Z or A ∼= ∏

l Z
rl
l , where l ranges

over all prime numbers and rl ≤ r + 1 for each prime number l.

Proof. By Corollary 2.3, A ∼=Z/2Z or A ∼= ∏
l Z

rl
l , with cardinal numbers rl. Assume the latter case.

If K is a global field, then r = 0. Hence, by Theorem 3.3, rl ≤ 0 + 1 for each l.
Otherwise, r ≥ 1 and K is a finitely generated extension of transcendence degree 1 of a finitely gen-

erated extension K ′
0 of transcendence degree r − 1 of K0. By induction, for each prime number l, r is

the largest positive integer such that Zr
l is a closed subgroup of Gal(K ′

0). Hence, by Lemma 4.2, r + 1
is the largest positive number for which Zr+1

l is a closed subgroup of Gal(K). In particular, rl ≤ r + 1, as
claimed.

5. Realizing Ẑr+1 as a closed subgroup of Gal(K)

Let K be a finitely generated extension of Q of transcendence degree r. We complete Proposition 4.3 in
this section by proving that Ẑr+1 is a closed subgroup of Gal(K). An analogous result holds for a finitely
generated extension K of transcendence degree r of Fp(t), in which case

∏
l �=p Z

r+1
l replaces Ẑr+1.

Remark 5.1 (Valued fields). We denote the residue field of a valued field (F, v) by F̄v and its value group
by v(F×). In addition, we extend v to a valuation of Fsep that we also denote by v, consider its valuation
ring Ov,sep, and let Dv,sep = {σ ∈ Gal(F) | σOv,sep = Ov,sep} be the corresponding decomposition group.
Then, we let Fv be the fixed field of Dv,sep in Fsep. Abusing our notation, we also let v be the restriction of
v to Fv. Then, (Fv, v) is the Henselization of (F, v).

One knows that (Fv, v) has the same residue field and value group as those of (F, v) [2, p. 138,
Prop. 15.3.7]. Moreover, the valued fields (Fsep, v) and (Fv, v) depend on the extension of v to Fsep up to
isomorphism [2, p. 138, Cor. 15.3.6].

If v is a rank-1 valuation, then so is its extension to Fv. In this case, the completion (F̂v, v) of (F, v) is
also discrete with the same value group and residue field as those of (F, v). Moreover, (F̂v, v) is also the
completion of (Fv, v). By Hensel’s lemma, (F̂v, v) is also Henselian [2, p. 167, Cor. 18.3.2]. We embed
Fsep into F̂v,sep and observe that Fsep ∩ F̂v = Fv (since (Fsep ∩ F̂v, v) is an immediate separable algebraic
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extension of (Fv, v)) and FsepF̂v = F̂v,sep (by the Krasner-Ostrowski lemma [2, p. 172, Cor. 18.5.3]). Thus,
restriction gives an isomorphism Gal(F̂v) ∼= Gal(Fv) of the corresponding absolute Galois groups.

We denote the maximal unramified extension of Fv (resp. F̂v) by Fv,ur (resp. F̂v,ur) and the maximal
tamely ramified extension by Fv,tr (resp. F̂v,tr). These fields are Galois extensions of Fv (resp. F̂v). As in
[2, p. 133, p. 141, and p. 145], we set Z(v) = Gal(Fv) for the decomposition group, T(v) = Gal(Fv,ur) for
the inertia group, and V(v) = Gal(Fv,tr) for the ramification group of (F, v). The letters Z, T , and V are
borrowed from the German translations Zerlegsungruppe, Trägheitsgruppe, and Verzweigungsgruppe
of the English expressions decomposition group, inertia group, and ramification group,

F Fv

Z(v)

Fv,ur

T (v)

Fv,tr
V (v)

Fsep. (5.1)

Each of the fields Fv,ur, Fv,tr, and Fsep is a Galois extension of Fv. By [2, p. 199, Thm. 22.1.1] and [6,
Thm. 2.2] (resp. [2, p. 203, Thm. 22.2.1]) both restriction maps

Gal(Fv,tr/Fv) → Gal(Fv,ur/Fv) and Gal(Fv) → Gal(Fv,tr/Fv)

split. In particular, each closed subgroup of Gal(Fv,ur/Fv); hence, each closed subgroup of Gal(F̄v) is iso-
morphic to a closed subgroup of Gal(Fv,tr/Fv). Also, each closed subgroup of Gal(Fv,tr/Fv) is isomorphic
to a closed subgroup of Gal(Fv).

Note that E in Theorem 22.1.1 of [2] is Fsep, in our notation, so it satisfies the condition E = El for
all prime numbers l �= char(F̄v) needed in that theorem.

Notation 5.2. We denote the group of roots of unity in a field F by μ(F). If char(F) = p > 0 and F is
separably closed, then μ(F) = F̃×

p . If char(F) = 0 and F is algebraically closed, then μ(F) = μ(Q̃) and
Qab := Q(μ(Q̃)) is the maximal abelian extension of Q (by the theorem of Kronecker–Weber [8, p. 324,
Thm. 110]).

Remark 5.3. Given a field K, the field of formal power series K((t)) in the variable t with coefficients
in K, also called the field of Laurent series over K, is the field of all formal power series

∑∞
i=m aiti with

m ∈Z and ai ∈ K for all i ≥ m. If l < m, then
∑∞

i=m aiti is identified with
∑∞

i=l aiti with ai = 0 for each
l ≤ i < m. Summation and multiplication in K((t)) are defined by the following rules:

∞∑

i=m

ait
i +

∞∑

i=m
′
a′

it
i =

∞∑

i=min (m,m
′
)

(ai + a′
i)t

i,

( ∞∑

i=m

ait
i
)( ∞∑

j=m
′
a′

jt
j
) =

∞∑

k=m+m
′

( ∑

i+j=k

aia′
j)t

k.

Let v be the unique discrete valuation of K(t) with v(a) = 0 for each a ∈ K and v(t) = 1. Then,
(K((t)), v) is the completion of (K(t), v), where v(

∑∞
i=m aiti) = m whenever am �= 0. By [2, p. 167, Cor.

18.3.2], K((t)) is Henselian with respect to v.
By [1, p. 28, Cor. 2] (or [2, p. 141, Thm. 16.1.1]),

Gal(K((t))ur/K((t))) ∼= Gal(K).

Replacing K by Ksep, we have that Ksep((t))ur = Ksep((t)). Since the roots of unity of order n with char(K) � n
are in Ksep, we have that Ksep((t)) has a cyclic extension of degree n in Ksep((t))tr. Indeed, that extension
is Ksep((t1/n)).

Going to the limit of these extensions, we obtain with p := char(K) that Ksep((t))tr = ⋃
p�n Ksep((t1/n))

and Gal(Ksep((t))tr/Ksep((t))) ∼= ∏
l �=p Zl.
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Moreover, if char(K) = 0, then the ramification group Gal(K̃((t))tr) of K̃((t)) is trivial [2, p. 145, Thm.
16.2.3], so K̃((t))tr = K̃((t)). Thus, by the preceding paragraph, in this case, Gal(K̃((t))) ∼= Ẑ.

Lemma 5.4. Let K0 be a field of characteristic p, t an indeterminate, and r a positive integer. Suppose
that μ(K0,sep) ⊆ K0 and

∏
l �=p Z

r
l is a closed subgroup of Gal(K0). Then,

∏
l �=p Z

r+1
l is a closed subgroup

of Gal(K0(t)).

Proof. By assumption, the field K0 has a separable algebraic extension K with Gal(K) ∼= ∏
l �=p Z

r
l . Let

v be the discrete K-valuation of K(t) with v(t) = 1 and choose a Henselization M := K(t)v of K(t) with
respect to v. Then,

M̄ := K(t)v = K (5.2)

is the residue field of both K(t) and M with respect to v.

Claim: M is linearly disjoint from K̃ over K. Indeed, let K̃1, . . . , K̃n be linearly independent ele-
ments of K̃ over K. Assume toward contradiction that there exist m1, . . . , mn ∈ M not all zero with∑n

i=1 miK̃i = 0. Dividing m1, . . . , mn by the element with the least v-value, we may assume that the
v-residues m̄1, . . . , m̄n are elements of K and one of them is non-zero. Thus, �n

i=1m̄iK̃i = 0, contradicting
the assumption on K̃1, . . . , K̃n. This proves our claim.

By [2, p. 200, Cor. 22.1.2],

Z(v)/V(v) ∼= χ (v) � Gal(M̄)
(5.2)= χ (v) �Gal(K), (5.3)

where Z(v) = Gal(M) and V(v) are respectively the corresponding decomposition and the ramification
groups of M and

χ (v) = Hom(v(M×
sep)/v(M×), μ(K0,sep)). (5.4)

See [2, last line of page 144] with μ̄ in that line being μ(K0,sep), as introduced in the first paragraph of
[2, p. 143, Sec. 16.2].

The action of Gal(K) on χ (v) is given for each τ ∈ Gal(K), each homomorphism h : v(M×
sep)/v(M×) →

μ(K0,sep), and every γ ∈ v(M×
sep), by

τ (h)(γ + v(M×)) = τ (h(γ + v(M×))) = h(γ + v(M×)),

where the latter equality holds because μ(K0,sep) ⊆ K0 ⊆ K. In other words, that action is trivial. It follows
that

Gal(Mtr/M)
(5.1)∼= Z(v)/V(v)

(5.3)∼= χ (v) × Gal(K). (5.5)

By [2, p. 147, Cor. 16.2.7], there is a short exact sequence

1 −→ V(v) −→ T(v) −→ χ (v) −→ 1.

Hence, χ (v) ∼= T(v)/V(v).
By our choice of v, the completion of K(t) with respect to v (which is also the completion of the

Henselian field M) is the field K((t)) of formal power series in t with coefficients in K [2, p. 83, Example
9.2.2]. The maximal unramified extension of K((t)) is Ksep((t)) and by Remark 5.3, χ (v) ∼= T(v)/V(v) ∼=
Gal(Mtr/Mur) ∼= ∏

l �=p Zl.
By the definition of K, Gal(K) ∼= ∏

l �=p Z
r
l . Hence, by the preceding paragraph,

Gal(Mtr/M)
(5.5)∼= χ (v) × Gal(K) ∼=

∏

l �=p

Zl ×
∏

l �=p

Zr
l =

∏

l �=p

Zr+1
l .
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Since by [6, Thm. 2.2], the epimorphism Gal(M) → Gal(Mtr/M) splits,
∏

l �=p Z
r+1
l is a closed subgroup

of Gal(M). Since M is a separable algebraic extension of K0(t) [2, p. 137, Thm. 15.3.5],
∏

l �=p Z
r+1
l is

also a closed subgroup of Gal(K0(t)), as claimed.

Remark 5.5. Note that the references that support both (5.3) and (5.4) hold also in the case where
char(K0) = 0.

The following result will be needed in Theorem 5.7.

Lemma 5.6. Let L be a set of prime numbers and H an open subgroup of
∏

l∈L Zl. Then, H ∼= ∏
l∈L Zl.

Proof. We set Z := ∏
l∈L Zl and consider all the groups appearing in this proof as additive groups.

Since H is open in Z, its index n := (Z : H) is a positive integer. Since Z is abelian, H is normal in Z, so
nZ ≤ H

By [3, p. 13, Lemma 1.4.2(e)], nZl
∼=Zl for each l ∈ L. Hence, nZ = ∏

l∈L nZl
∼= ∏

l∈L Zl = Z.
Let n = ∏

l∈L
′ li(l) be the decomposition of n into a product of prime powers. If l and l′ are distinct prime

numbers, then l′ is a unit of the ring Zl, so l′Zl =Zl. Hence, nZ = ∏
l∈L∩L

′ li(l)Zl × ∏
l∈L � L

′ Zl. Therefore,
(Z : nZ) = ∏

l∈L∩L
′ (Zl : li(l)Zl) = ∏

l∈L∩L
′ li(l) ≤ n = (Z : H). Combining this result with the result of the first

paragraph of the proof, we have H = nZ. Therefore, by the second paragraph of the proof, H ∼= Z, as
claimed.

This brings us to the main result of the current section.

Theorem 5.7. Let F be a finitely generated extension of transcendence degree r ≥ 0 of a global field F0

of characteristic p and let F′ = F(μ(F0,sep)). Then,
∏

l �=p Z
r+1
l is a closed subgroup of Gal(F′), hence also

of Gal(F).

Proof. In the case where r = 0, F itself is a global field, hence Hilbertian [3, p. 242, Thm. 13.4.2].
Since F′ is an abelian extension of F, a theorem of Kuyk asserts that F′ is also Hilbertian [3, p. 333, Thm.
16.11.3]. Since F is countable, so is F′. By [3, p. 379, Thm. 18.5.6], for almost all σ ∈ Gal(F′) (in the
sense of the Haar measure of Gal(F′)) the closed subgroup 〈σ 〉 of Gal(F′) generated by σ is isomorphic
to Ẑ. Since

∏
l �=p Zl is a closed subgroup of

∏
l Zl and

∏
l Zl

∼= Ẑ [3, p. 15, Lemma 1.4.5],
∏

l �=p Zl is a
closed subgroup of Gal(F′).

Alternatively, by a theorem of Whaples, for each l �= p the field F′ has a Galois extension F′
l

with Gal(F′
l/F′) ∼=Zl [3, p. 314, Cor. 16.6.7]. Then, F′ ′ := ∏

l �=p F′
l is a Galois extension of F′ with

Gal(F′ ′/F′) ∼= ∏
l �=p Zl. Since

∏
l �=p Zl is projective [3, p. 507, Cor. 22.4.6], the restriction map Gal(F′) →

Gal(F′ ′/F′) splits [3, p. 506, Remark 22.4.2]. Hence, again,
∏

l �=p Zl is a closed subgroup of Gal(F′).
Next assume by induction that r ≥ 1 and the theorem holds for r − 1. Choose a finitely generated

extension Fr−1 of transcendence degree r − 1 of F0 in F and let F′
r−1 = Fr−1(μ(F0,sep)). Since F is finitely

generated over F0 of transcendence degree r, we may choose t in F which is transcendental over Fr−1

and [F : Fr−1(t)] < ∞. Then, F′ = F′
r−1F is a finite extension of F′

r−1(t). Let L be the maximal separable
extension of F′

r−1(t) in F′, so F′/L is a purely inseparable extension of L. Then, L is a finite separable
extension of F′

r−1(t).

Fr−1(µ(F0,sep)) =F ′
r−1 F ′

r−1(t) L F ′= F ′
r−1F

Fr−1 Fr−1(t) F

https://doi.org/10.1017/S0017089524000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000028


Glasgow Mathematical Journal 367

Hence,

Gal(L) is an open subgroup of Gal(F′
r−1(t)). (5.6)

By the induction hypothesis,
∏

l �=p Z
r
l is a closed subgroup of Gal(F′

r−1). Therefore, by (5.6), Lemma
5.4, and Lemma 5.6,

∏
l �=p Z

r+1
l is a closed subgroup of Gal(L). Since F′/L is a purely inseparable exten-

sion (in particular F′ = L if char(F0) = 0),
∏

l �=p Z
r+1
l is a closed subgroup of Gal(F′), hence also of

Gal(F), as claimed.

Remark 5.8. Let F be a field as in Theorem 5.7. If p = 0, then Ẑr+1 = ∏
l �=p Z

r+1
l . Hence, by that theorem,

Ẑr+1 is isomorphic to a closed subgroup of Gal(F).
If p �= 0 but r = 0, then F = F0 is a countable Hilbertian field and again, by [3, p. 379, Thm. 18.5.6],

for almost all σ ∈ Gal(F) we have 〈σ 〉 ∼= Ẑ.
However, by [9, p. 256, Thm. 3.3], cdp(Gal(F)) ≤ 1. On the other hand, by [9, p. 221, Prop. 4.4],

cdp(Zr+1
p ) = r + 1 ≥ 2 if r ≥ 1. Hence, Zr+1

p is isomorphic to no closed subgroup of Gal(F). Therefore,
Ẑr+1 is isomorphic to no closed subgroup of Gal(F).
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