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Abstract

Suppose that the function f is analytic in the open unit disk A in the complex plane. For each @ >0 a
function f1°1 is defined as the Hadamard product of f with a certain power function. The function f1°1
compares with the fractional derivative of f of order a. Suppose that f1%! has a limit at some point zy on
the boundary of A. Then wy = lim__,, f(z) exists. Suppose that @ is analytic in f(A) and at wy. We show
that if g = ®(f) then g[® has a limit at z.
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1. Introduction

Let A={ze€C:|z] <1} and let @ > 0. Suppose that the function f is analytic in A and,

for |z] < 1,
f@ =) a
n=0
We define f1?! by
T(n+1+a)
(el — —~ - = 1.1
) ; T (1.1)

for |z| < 1, where I" denotes the gamma function. For 8 > 0 and |z] < 1 let

1 N n
afﬁ=;M®«
Then
[(n+p)
L(B)n!
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for each nonnegative integer n. Thus fl% is the Hadamard product of f with the
function p where p(z) = I'(a@ + 1)/(1 — 2)®*! for |z| < 1. In [4] the authors obtained an
integral formula for £1%! in terms of f when 0 < a < 1.

The function f1%! compares with the fractional derivative of f of order a.. There are
a number of definitions of fractional derivatives. One that applies to the Taylor series
of a function analytic in A was introduced by Hadamard. It is defined by

@i o Tn+1) .,
Y2 =z 2 T+l a)anz (1.2)

for |z < 1. When « is a positive integer, f® equals the usual derivative of f of order a.
In general, a branch cut is needed to define an analytic branch of f®. The sequences

{F(n+1+a)} { Fn+1) }
—t and {———
I'n+1) I'n+1-a)
have asymptotic expansions
n“{co+ﬂ+c—§+-~}
non
as n — oo with ¢ # 0. Hence certain facts about f1! are equivalent to facts about f®.
If Rea > 0 and 7 is a nonnegative integer then

fl(l -0 dr = H@n!
0

T+ 1+a)
This formula and (1.1) yield

_ 1 ' a—1 pla]
f(Z)_%jo‘(l_t) S (tz) dt. (1.3)

Also, if 0 < @ < B and |z] < 1 then

1
e = ﬁ f (1= 0f ! fPez) d. (1.4)
- 0

We are concerned with the limit of f1%! as 7 — 75 where |zl < 1 and |zo| = 1.
Equation (1.4) and the Lebesgue convergence theorem imply that if lim,_,,, f¥!(z)
exists and 0 < a < B then lim__,,, f1%)(z) exists. A similar fact holds for fractional
derivatives defined by (1.2).

For each positive integer m we have

a o nly

") = @1 = 9. (1.5)

 (k!)(m — k)
If n is a positive integer then by applying (1.5) successively for m =n, n—1,
n-2,...,3,2,1, we see that Z"f"(z) is a linear combination of the functions
fim =t and f. Therefore lim,_,, f1")(z) exists if and only if lim,_,, f™(z)
exists.
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In this paper, we prove a theorem about the existence of lim,_,, gl®!(z) for the
composition g = ®(f) when lim,_,, f1%(z) exists and @ is analytic. This generalizes a
classical result about limits of nth derivatives of compositions.

In [2] Hardy and Littlewood obtain a number of results about fractional derivatives
and fractional integrals of analytic functions. A survey of the history and development
of the general theory of fractional calculus is contained in [5, 6].

2. The main results

THEOREM. Let f be analytic in the open unit disk A and a > 0, and suppose that
lim,_,,, f l@l(2) exists for some 7o € OA. Let wy = lim,_,, f(z). Let g(z) = ®(f(z)) for
7 € A, where ®@ is analytic in f(A) and at wy. Then lim,_,, g%\ (z) exists.

The proof of this theorem relies on three lemmas. We first state an important
corollary, which follows directly from the theorem and the following fact. If F is
defined in A and lim,,,, F(z) exists for all w on the boundary of A then F extends
continuously to the boundary.

CoroLLARY. Suppose that f is analytic in A, @ > 0, and © is analytic in a neighborhood
of f(A) Let g(z) = O(f(2) for |z| < 1. If f19 extends continuously to A, then so
does gl

3. Three lemmas

Lemma 3.1. Let ¢ be analytic and univalent in A and suppose that o(A) C A. Suppose
that ¢(A) is a Jordan domain whose boundary contains a closed arc A on OA.
There is a closed arc ¥ on A mapping onto A. If {y is in the interior of ¥ then
(A =N/ (1 = |Z)) is bounded in N N A where N is some neighborhood of {.

Proor. Since ¢(A) is a Jordan domain, ¢ extends continuously to A and ¢ is univalent
in A. There is a closed arc ¥ on 0A which is mapped bijectively onto A, and ¢ extends
analytically in a neighborhood of each point ¢ in the interior of P, with ¢’ # 0 at every
such point. By [3, Theorem 1.1] we have

" (D)

0.
“ e QR

liminf(1 —
minf(l ~ 1K) s

Therefore )
1- 1
i 1O
oo 1= e

exists, and so lim;_,;, ((1 — lo(O)1?)/(1 = |£1%)) exists. Hence there is a neighborhood N
of {p such that (1 — |p(0)])/(1 —|Z]) is bounded in N N A. O

Lemma 3.1 relates to the Julia—Carathéodory theorem (see [1, pages 23-32] and
[7, pages 57-71]). Part of that theorem asserts that the nontangential derivative of ¢
exists at {y if and only if the nontangential limit of (1 — |@({)])/(1 — |£]) exists as { = {p,
for suitable functions ¢.
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Lemmva 3.2. Let O < @ < B, |z0| = 1, and let N be a neighborhood of zy. Suppose that f
is analytic in A and there is a constant A such that

A
@ s —— 3.1)
/ (1= z?
for z€ NN A. Then there exist a neighborhood M of zy and a constant B such that
B
f@I < — (3.2)
/ (1=l

forze M NA.

Proor. Suppose that -1 <y < - 1. If 0 <r < 1 we have

f(l—t)y

dt—f(l—t)VZAn(ﬁ)z"r"dt

= Z An(ﬂ)f (1 -ty 7" dir”

B Ty +DI(n+1)
ZA"(ﬁ) T(n+2+7y) r

i A
o “,;; T+ A0+

There is a constant C such that A,(B)/A,(y +2) < CA,(B—vy —1) for every
nonnegative integer n. Therefore

La-nr C
Sl IZAn(ﬂ y- =

o d—rp 24 G-y @Y

The continuity of %! and (3.1) imply that such an inequality also holds for z € § =
{re :0 <r<1,|6 - 6| <1}, where zo = €%, 5 > 0 and 57 is sufficiently small. Suppose
thatz€ S. Then#z € § for 0 < ¢ < 1. Hence (1.3) implies that

(x 1
01 < s f (1- )Bdr,

and (3.3) implies that (3.2) holds for z € S. Hence there is a neighborhood M of z,
such that (3.2) holds forz € M N A. O

Lemma 3.3. Suppose that a > 0 and « is not an integer. Let p denote the greatest
integer in « and let g = p + 1. Suppose that f is analytic in A and let |zo| = 1. Then

lim,_,, fol t2(1 = 9771 fO(tz) dt exists if and only if lim,_,,, f9(z) exists.
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Proor. Equation (1.4) implies that
1 1
) = oo f (1 = )4 a1z . (3.4)
- 0

. . . 1 .
Suppose that lim,_,,, fl%(z) exists. Then lim,_, fo 12(1 — £)?==! flal(¢z) dt exists.
There are constants co, c1, . .. ¢4—1 such that

q
A0 = Q) + ) et ) (3.5)
k=1
for |2] < 1. Let Fy(@) = [, 1*(1 = %~ fle-Hl(zz) dt for 2] < 1 and k=0, 1,....q. To
show that |
lim | (1 -7 fDz) de (3.6)
720 0

exists, it is sufficient to show that for each k =0,1,...,¢9 — 1 the existence of
lim,_,,, Fr(z) implies the existence of lim,,,, Fi+1(z). From Equation (1.4) with

@=qg—k—1andf = q— k we obtain fla*1(z) = fol 5971 fla=Kl(57) ds. This implies

Fi1(2)= fol s 1F(sz) ds, which yields our conclusion.
Conversely, suppose that (3.6) holds. There are constants do, d, ..., d,— such that

q
7y = 279 (7) + Z dq_kzqfk fahz)

k=1

for |zl < 1. Let Gi(z) = fol (1 — P f4 Pz dt for |7/ <1 and k=0,1,...,q,
where =g —a - 1. To show that lim,_,, f19(z) exists, it is sufficient to show that
for each k=0,1,...,9—1 the existence of lim,_,;) Gi(z) implies the existence of
lim,,;, Gi+1(2)-

Let Hi(z) = f4P(z). Integrating along the line segment from 0 to z yields

Fa*D(z) = fa*=D0) + ¢ fol H;(sz) ds. Hence there is a constant b such that
1
Gin(@) = b +2 f I(s2) ds 37)
0
where I(z) = fol 12*1(1 = £ Hi(tz) dt. We claim that

1
I(2) = Gi(2) + cf u PG (uz) du (3.8)
0

where |z| < 1 and c is a constant. Let

Gi(2) = iAnz", Ii(z) = i B,Z",

n=0 n=0
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and Hy(z) = )", Cn2" for [z] < 1. Using the formula

L@ (w)
- dr =
f (=1 T+w)
for z and w in the right half-plane we find that
IMNa+n+2)IB+1)

r Hr 1
(@+nt DIB+D o o B, = o
IlNa+n+pB+2) INa+n+pB+3)

A, =

for every nonnegative integer n. This implies that

n+a+1
T n+a+p+2"

Setting ¢ = (@ + 8+ 2)/(a + 1), we see that

n+a+1
—— +C—
n+a+pf+2 n+a+p+2

and obtain
o0 (o) 1
I = A+ — A7,
K2 ; . c;n+a+,8+2 .

which yields (3.8).
Suppose that lim,_,,, G(z) exists. Then (3.8) implies that lim,_,, I;(z) exists. Hence
(3.7) implies that lim,_,,, G¢+1(2) exists. O

4. Proof of the main theorem

Case I. Suppose that @ = n is a positive integer. Faa di Bruno’s formula for the nth
derivative of a composition is

g _n.zq)(m){zrl - [f(k)]”} (4.1)

where the sum inside the braces is over all combinations of nonnegative integers

Jis J2, -+, jn such that
n n
ijkzn and ijzm
k=1 k=1

Suppose that lim,_,, f(z) exists. Then lim,_,, f®(z) exists fork = 1,2,...,n. Hence
the analyticity of @ and (4.1) imply that lim,_,,, g"”(z) exists. Therefore lim,_,,, g""(z)
exists.

Suppose that @ > 0 and lim,_,, f1?!(z) exists. Let wy, @, and g be defined as in the
theorem. For z € A let

h(z) = f1().
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There is a neighborhood N of zp such that 4 is bounded in N N A. Let ¢ be a
conformal mapping of A onto N N A and let ¥ denote the closed arc on dA such that
(W) =0N NIA. For [{] < 1 let

k(&) = h(@(£)). (4.2)
Then k is analytic and bounded in A. By the Schwarz—Pick lemma there is a constant
C such that c
KOl < —— (4.3)
Y=g

for |{| < 1. Henceforth we use C to denote a generic constant, and it is not the same
constant each time. From (4.2) we obtain

k') = h (@)’ (). (4.4)

Let |{o| = 1 such that ¢({y) = z¢. Since ¢ extends analytically to a neighborhood of ¢
and is univalent there, it follows that there exist a neighborhood M of {; and a positive
constant o such that

"Dl = o (4.5)
for £ € M N A. Hence (4.3)—(4.5) imply that
C
W@l < —— (4.6)
1-1¢]
where z = ¢({) and { € M N A. Lemma 3.1 and (4.6) imply that
Ih'(2)] < 4.7
1 -z

for z € PN A where P is some neighborhood of zy. Let zo = €/®. Then (4.7) implies
that such an inequality holds for some constant where z € S and S = {z = re” :
0<r<1,|0 -6y <6} for some 6 > 0.

For z € A let F(z) = (f)!")(z) = 302 bu2" and G(2) = (f19) (z) = X2 caz”". Then
b, =((n+1)/(n+ 1+ a))c, for each nonnegative integer n. Since (n + 1)/(n + 1 + @)
=1—-a/(n+ 1+ @) this implies that

1
F(2) =G(z) - a/f 1*G(tz) dt. (4.8)
0
From (4.7) and (4.8) we conclude that
I\ C
@ < —— 4.9)
1 -1z

where z € §. Such an inequality also holds for z € P N A where P is some neighborhood

of 20-
Case II.  Suppose that 0 < & < 1. Then (4.9) and Lemma 3.2 imply that

o< —C
@l oo

for z € O N A where Q is some neighborhood of zo. Hence such an inequality also
holds forz € T where T = {z=re?? : 0 <r < 1,|0 — 6| < €} for some € > 0.

(4.10)
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Suppose thatze T and 0 <t < 1. Thentz € T and f(z) — f(tz) = fo’(w) dw where
L is the line segment from #z to z. Since L is given by w = (1 — s)tz+ szfor0 < s < 1,
we obtain, using (4.10),

1
If(2) = f)l < (1 = t)fo If'[(1 = $)tz + sz]lds

1
1
Sc(l_[)fo T T

b
ZC(I—[) fo‘ md&’

Since 0 < @ < 1 the last integral exists, and so

If (@) - f)l < CA - n)* (4.11)

forzeTand0<r<1.
There is a number p > 0 such that ® is analytic in a neighborhood of {w : [w — wy|
< p). If lw — wy| < p then

27 i0
d(w) = 2 f Ol (4.12)
27T 0 § i’ %

where £ = wy + pe®. Let 0 < n < p. Then there exist a neighborhood N of 7z and a
number 7 such that 0 < 7 < 1 and

|f(22) —wol <7 (4.13)
forre NNAandt<t<1.1fze NN Athen (4.12) gives
2 i
P D()e

)= — ———db 4.14
8(2) 2ﬂj(; @ (4.14)

and hence ) .

T D)
g = p (g—)f'(z) de. (4.15)

2t Jy - f@)P
Let HR) = [ #*(1 - 1)™g/(t2) dt for z € A. Then (4.15) yields

i0
©©)e S f (1) d6 dt.

1 ~ p 2
H(Z):fT AT )y @ ra

By writing

1 _ { 1 B 1 } N 1
- f2))* (- f)? &-f@)2) &-f@)7
we have H(z) = I(z) + J(z) where I(z) = (o/2r) le fOZH 1(6,1,z)do dt,

Ot (1 — ™[ f(tz) = f(2L - f(2) — f(t)]f (12)
£ - f(D)PL - f(@)? ’

16,1,2) =
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and , Y
p [ D
J(2) = — —_—
O3l T ror
From (4.10), (4.11), and (4.13) we conclude that

1
def 1“0 -1 "f'(rz)dt forzeA.

C
@191 T (4.16)

for0<0<2m,t<t<l1l,andze NNA.Since 0 < a < 1 the integral fol (1/(1 =" dt
exists. By considering /(z) as a double integral we find that the conditions hold for
applying the Lebesgue convergence theorem. We conclude that lim,_,,, /(z) exists.
Also, lim,_,, J(z) exists because J(z) is the product of two integrals, each of which
has a limit. The second integral has a limit as a consequence of Lemma 3.3. We have
shown that lim,_,,, H(z) exists. Lemma 3.3 implies that lim,_,,, g!®!(z) exists. This
completes the proof of the Theorem when 0 < @ < 1.

Case I1l. Suppose that @ > 1 and « is not an integer. Let p denote the greatest integer
in o and let ¢ = p + 1. Since k is analytic and bounded in A, we have, for each positive

integer j,
: C
A - 4.17
KON < = (.17)
for || < 1. Since k() = h(¢(2)) for |{] < 1 and ¢ near ¢y, Faa di Bruno’s formula gives
K2 = Ki(Q) + B (@' OV (4.18)

where K;({) is the sum of the first j — 1 terms in that formula. Because ¢ is analytic in
a neighborhood of ¢y and |¢’({)| = o > O there, (4.18) and (4.17) provide an inductive
step for concluding that for each integer n > 0,

) ¢
I ()] < a—ar (4.19)

for || < 1 and ¢ near . In particular,

C
jACY - -
KON < =

for |£| < 1 and ¢ near ¢y. With z = ¢({), Lemma 3.1 yields

C
@) < ——— 4.20
@ (I -z (4:20)
for |z] < 1 and z near z.
Forze Alet F(z) = (f)(z) = ¥, byz" and G(z) = (1) D (z) = 32, ¢,2". Then

3 m+1)(n+2)---(n+q)
" nm+g+a)n+qgq-1+a)---(n+1+a) "

(4.21)
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for each nonnegative integer n. There are constants dy, d», . . ., d, such that

m+Dnr+2)---(n+q) 1+ dy N dy
n+g+a)n+gq-1+a)---(n+1+a) n+qg+a n+qg-l+a
dq
n+l+a

Hence

q 1
FQ =G+ Y d; [ oG
=1 0
Therefore (4.20) implies that

C
(9)yla] _
FNIS G

for z € A and z near zo. Lemma 3.2 implies that

C
Qs g (122

for z € A and z near zg. Since ¢ — @ < 1, this implies that f\)(z) is bounded for each
j=1,2,...,g—1and ze€ NN A, where N is a neighborhood of zy. In particular, the
boundedness of f’ yields

If(2) = fzr) < C(1 = 1) (4.23)

forze T and 0 <t < 1 as shown previously.
Let £ = wy + pe”. There is a neighborhood M of z, such that (4.13) holds and f(z)
is boundedin M N Afor j=1,2,...,g— 1. We have

_ @

TP
& o '@ 2(f'(2))*
2T =TT o Y e ror

and in general (d"/dz")(¢ — f(z))~" is given by Faa di Bruno’s formula for each positive
integer n. For n = g this gives

d -1
d—z({f—f(z))

_ f(‘f)(z)
(¢ - f(2))?

where R,(z, {) denotes the sum of the remaining g — 1 terms in that formula. Because
fP(z)isbounded forze MNAand j=1,2,...,qg—1and|f(z) — wo| < 1, we conclude

di
d_zq(g - fn™ +Ry(z.0) (4.24)

that

IRy(z, I < C
for 0 <6 <2r and z€ M N A. By replacing M by a smaller neighborhood of zy we
also have

IRy(tz, ) < C (4.25)
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for 7 <t < 1. From (4.14) and (4.24) we obtain

21 (q)
@y = L of _ST@)
9 =2 fo DQ)e {(g“—f(z))z +Rq(z,§)}d9 (4.26)

forze MNA. '
Let H(z) = [ 1°(1 — 1)9™*~" ¢D(1z) i for z € A. Then (4.26) yields

1 27 (q)
_ ar] _ png-a—1P wf JP2)
H() = f w1 2 fo 0| i + Rz 0 o

By writing

| | | |
£ - f(t2))> {(§ —f2)? (- f(Z))2} * ¢ - )

we obtain H(z) = 1(2) + J(2) + K(2) where I(z) = (o/2n) [ [ 1(8,1,2)dO d1,

Ot (1 — [ f(12) — fI2L - f(2) — ft)) fD(12)

1(0,t,2) =
6.52) - f@PK - [P
27 0 1
_r _P(De” f @1 _ na-a-1 @)
J(2) wl)y T-fon do ) (1 -1 [P(tz) dt,

and . 5
K(Z)=2£ f 19(1 — )11 f D()e "R, (tz,{)dOdt  for z € A.
T Jr 0

From (4.23), (4.22), and (4.13) we conclude that 1(6, ¢, 7) is bounded for 0 < 6 < 2,
7<t<1,and z€ M N A. Considering /(z) as a double integral, we see that we can
apply the Lebesgue convergence theorem to conclude that lim,_,,, I(z) exists. Also,
J(z) is the product of two integrals each of which has a limit. The second integral has
a limit as a consequence of Lemma 3.3. Hence lim,_,;, J(z) exists. From (4.25) and

the existence of fT 1(1 — 17! dt we also conclude that lim,_,,, K(z) exists. We have
shown that lim,_,,, H(z) exists. Lemma 3.3 implies that lim__,,, gl¥(z) exists.
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