
Journal of the Economic Science Association (2023) 9:337–349
https://doi.org/10.1007/s40881-023-00141-7

EXPER IMENTAL TOOLS

stratEst: a software package for strategy frequency
estimation

Fabian Dvorak1

Received: 18 August 2021 / Revised: 8 June 2023 / Accepted: 4 August 2023 /
Published online: 8 October 2023
© The Author(s) 2023

Abstract
stratEst is a software package for strategy frequency estimation in the freely available
statistical computing environment R (R Development Core Team in R Foundation
for Statistical Computing, Vienna, 2022). The package aims at minimizing the start-
up costs of running the modern strategy frequency estimation techniques used in
experimental economics. Strategy frequency estimation (Stahl and Wilson in J Econ
Behav Organ 25: 309–327, 1994; Stahl and Wilson in Games Econ Behav, 10: 218–
254, 1995) models the choices of participants in an economic experiment as a finite-
mixture of individual decision strategies. The parameters of the model describe the
associated behavior of each strategy and its frequency in the data. stratEst provides
a convenient and flexible framework for strategy frequency estimation, allowing the
user to customize, store and reuse sets of candidate strategies. The package includes
useful functions for data processing and simulation, strategy programming, model
estimation, parameter testing, model checking, and model selection.

Keywords Strategy frequency estimation · Software · Repeated games

JEL Classification C72 · C87 · C90

1 Introduction

The analysis of heterogeneity in decision making has a long tradition in experimental
economics. Stahl andWilson (1994, 1995) pioneered the use of finite-mixture models
to study the decision strategies of participants in economic experiments. In an influen-
tial paper, Dal Bó and Fréchette (2011) estimated the frequencies of a set of candidate
strategies to explain participants’ choices in a repeated prisoner’s dilemma experi-

B Fabian Dvorak
fabian.dvorak@uni-konstanz.de

1 Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Box 146, 78457
Konstanz, Germany

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40881-023-00141-7&domain=pdf
https://www.cambridge.org/core

338 F. Dvorak

ment. In recent years, strategy frequency estimation has become increasingly popular
in experimental economics and several model extensions have been proposed.1

stratEst is a software package for the freely available statistical computing environ-
ment R (R Development Core Team, 2022) that significantly reduces the start-up costs
of performing strategy frequency estimation. Programming strategy frequency estima-
tion code from scratch usually requires considerable effort on the part of the analyst.
Before model parameter optimization routines can be used, code must be written to
compute the probability that a given sequence of decisions is generated by a particular
strategy. Since each candidate strategy is different, this task must be performed for
each strategy, which can be tedious, especially if the set of candidate strategies is large
and the strategies are complex. An additional problem is the difficulty of adapting
strategy estimation code to other data; the close correspondence between candidate
strategies and data usually requires substantial revision of the code.

The stratEst package allows strategies to be generated, stored, and adjusted without
the need for strategy-specific code to calculate the probability of certain decisions.
Using the stratEst strategy generation function, the analyst can conveniently create
customized strategies with little effort. A guiding principle of the package is that
strategies are Markov strategies, represented as finite-state automata, and stored as
dataframe-like objects that can be reloaded and adapted for later use. In the automa-
ton representation, choice probabilities are determined by the internal state of the
automaton, not by the history of the game. This guarantees that strategies are con-
cisely represented even when the number of game histories is large or potentially
infinite.

The simplicity of the automaton representation facilitates the programming and
organization of strategies but also makes it easy to adapt existing strategies to other
data. At the same time, it does not limit the complexity of strategies. Finite-state
automata can mimic complex patterns of behavior based on deterministic sequences
of state transitions triggered by inputs from the choice environment. It is important
to note that the determinism of the automata concerns only the transitions between
states, not the choices of the strategy. Thismeans that it is possible to generate behavior
strategies and define (or alternatively estimate) their state-specific choice probabilities.

Another potential obstacle for the analyst who wants to perform strategy estimation
is transforming the data into a format suitable for analysis. The package includes a
function to create the inputs for the strategies to facilitate the transformation of the
data. This makes it easy to perform strategy estimation on a wide variety of data, and

1 Experimental studies of the repeated prisoner’s dilemma that use the strategy frequency estimationmethod
include: Aoyagi et al. (2019); Arechar et al. (2017); Backhaus and Breitmoser (2018); Camera et al. (2012);
Embrey et al. (2017); Frechette and Yuksel (2017); Kartal and Müller (2022); Kasberger et al. (2023);
Kayaba et al. (2020); Kloosterman (2020); Rand et al. (2015); Sherstyuk et al. (2013). Yaroslav Rosokha
maintains an online repository of strategy estimation code for the repeated prisoner’s dilemma developed for
Romero and Rosokha (2018, 2019), which can be found on GitHub: https://github.com/yaroslavrosokha/
sfem. Fudenberg et al. (2012) introduce lenient and forgiving strategies for analyzing the repeated prisoner’s
dilemmawith imperfect publicmonitoring. Breitmoser (2015) theoretically derives and estimates the choice
probabilities of behavior strategies andBland (2020) extends the error specification of the strategy frequency
estimation model by estimating individual-specific trembles. Dvorak and Fehrler (2018) add individual-
level covariates to explain individuals’ strategy choices, and Embrey et al. (2013) use strategy frequency
estimation to explain choices in a repeated partnership game with more than two alternatives.

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

https://github.com/yaroslavrosokha/sfem
https://github.com/yaroslavrosokha/sfem
https://www.cambridge.org/core

stratEst: a software package for strategy... 339

Fig. 1 Stage game of Dal Bó
and Fréchette (2011). The stage
game features two choices,
cooperation (c) and defection
(d). R varies across
experimental treatments and is
either 32, 40, or 48

c d

c R,R 12,50

d 50,12 25,25

can sometimes be used to analyze new data with just a few lines of code. The package
includes a number of helpful functions for data processing and simulation, parameter
testing, model checking, and model selection, further reducing the start-up costs of
performing strategy estimation.

The estimation function of the package returns the maximum likelihood parame-
ters of a strategy estimation model based on the expectation-maximization algorithm
(Dempster et al., 1977) and the Newton–Raphson method. The package speeds up
the estimation procedure by integrating C++ and R with the help of the R packages
Rcpp (Eddelbuettel & François, 2011) and the open-source linear algebra library for
the C++ language RppArmadillo (Sanderson & Curtin, 2016). Package development
is supported by the R packages devtools (Wickham et al., 2020), testthat (Wickham,
2011), roxygen2 (Wickham et al., 2020), and Sweave (Leisch, 2002). The strategies
are plotted with the packages DiagrammeR (Iannone, 2020) and DiagrammeRsvg
(Iannone, 2016).

The purpose of this paper is to introduce the scope and general principles of the
stratEst package. The detailed package vignette is available on the author’s website.2

The package is available for download from the Comprehensive R Archive Network
and is continuously tested for functionality on Windows, MacOS, and Linux.3 Non-
commercial use of stratEst is free of charge. However, the author kindly asks all users
of the package to cite this article in publications or presentations of their research.

2 Amotivating example

This example illustrates how the package can be used to replicate the results of the
influential strategy estimation study by Dal Bó and Fréchette (2011). The study exam-
ines the evolution of cooperation in the indefinitely repeated prisoner’s dilemma across
six experimental treatments. The six treatments differ in the reward offered for mutual
cooperation R and the continuation probability δ of the repeated game. The stage game
is shown in Fig. 1. The parameter R is either 32, 40, or 48. For each value of R, there
are two treatments with continuation probabilities δ of 1/2 or 3/4, resulting in a 2× 3
between-subjects design with six treatments.

To follow along in R, all commands in italics after the command prompt R> can
be executed in the R console. The complete code for generating all the output and
figures presented below is also available as supplementary material. The following

2 http://fdvorak.com/stratEst-vignette.pdf.
3 http://CRAN.R-project.org/package=stratEst.

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

http://fdvorak.com/stratEst-vignette.pdf
http://CRAN.R-project.org/package=stratEst
https://www.cambridge.org/core

340 F. Dvorak

Fig. 2 The strategy Tit-For-Tat. Left part shows the strategy TFT printed to the R console. Rows represent
the two states of the automaton. Columns show the defection, cooperation and tremble probabilities in
each state, as well as the deterministic state transitions between states. Right part shows the graphical
representation of TFT. States are depicted as nodes, deterministic state transitions as arrows between
nodes. Colors indicate the predicted action in each state

two commands will install the latest CRAN version of the stratEst package and load
it into memory:

R> install.packages("stratEst")
R> library(stratEst)

Strategies
Dal Bó and Fréchette (2011) fit the same strategy estimation model to the data of each
treatment. This model features six strategies: Always Defect (ALLD), Always Cooper-
ate (ALLC), Tit-For-Tat (TFT), Grim-Trigger (GRIM), Win-Stay-Lose-Shift (WSLS),
and a trigger strategy with two punishment periods (T2). The package includes the
predefined list strategies.DF2011, which contains the six strategies used by
Dal Bó and Fréchette (2011). Each element of this list represents a strategy, encoded
as a finite-state automaton.

The left panel of Fig. 2 shows the result of printing the element TFT of the list
strategies.DF2011 to theRconsole. The strategyTFT is a finite-state automaton
with two states, represented by the two rows of the printed object. In each state, the
strategy defects or cooperates, with probabilities defined in the first two columns
prob.d and prob.c. Since these probabilities are either zero or one, there is a
column tremble for each state. The tremble probabilities define the probability of
the action not predicted in this state. For the strategy TFT (and all other strategies
in the list strategies.DF2011), the tremble probabilities are not available (NA),
which tells the estimation function that these probabilities should be estimated from
the data.

The remaining four columns define a matrix of deterministic state transitions trig-
gered by four different strategy inputs in the two different states. Since the data come
from a repeated prisoner’s dilemma, the four inputs cc, cd, dc, and dd reflect the
four possible combinations of one’s own action and the action of the other player in
the previous period.

All state transitions must be integers that indicate the future state of the strategy
after receiving the input. The interpretation of these transitions is as follows: the value
1 in row one and column tr(cc) means that whenever the strategy is in the first

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

stratEst: a software package for strategy... 341

state (row one) and the input in the current period is cc, the strategy will remain in
that first state, and the players will cooperate if no tremble occurs in the period. If the
input is cd instead, the strategy will transition to the second state and cooperate only
if a tremble occurs in that period. By definition, the first row is always the start state of
the automaton in the first period; this can also be used to specify a particular behavior
in the first period.4

Understanding the behavior of complex strategies based on a matrix of determin-
istic state transitions can be difficult. A more convenient way to examine the behavior
associated with the strategy TFT is to plot the strategy. The right panel of Fig. 2 shows
the results of plotting the strategy with the function plot().5 In the graphical rep-
resentation, each state is represented by a node, and arrows indicate the deterministic
state transitions triggered by the different inputs. Different colors are used to indicate
the predicted action in each state. The graphical representation of TFTmakes it fairly
easy to understand the behavior of the strategy.

Data
To fit the strategies to the data, the stratEst package requires data in the long format
with one row for each decision. The object DF2011 is loaded with the package and
contains the data used in Dal Bó and Fréchette (2011). The data set has three columns
named id, game, and period, with integers that uniquely identify the subject and
indicate the order of the games and the periods in each game. The data set also includes
a column named choice, which contains the individual’s choice encoded as a factor
with two levels (c and d), and a column named other.choice, which identifies
the choice of their partner in the same period. Readers can also use their own data, in
the format discussed, and follow along from here.

What is missing in the data set DF2011 is a column with the strategy inputs
received at the beginning of each period that trigger the deterministic state transitions.
The inputs are the crucial information that allows the package’s estimation function to
determine the current state of each strategy for each observation in the data. The data
function of the package can be used to facilitate the generation of the input variable.
R> data.DF2011 <- stratEst.data(data = DF2011, choice = "choice",

input = c("choice","other.choice"),
input.lag = 1)

R> head(data.DF2011)

treatment id game period choice other.choice input
1 D5R32 1 62 1 d d <NA>
2 D5R32 1 63 1 d d <NA>
3 D5R32 1 63 2 c d dd
4 D5R32 1 63 3 d c cd
5 D5R32 1 64 1 d d <NA>
6 D5R32 1 64 2 c d dd

Theoptionsinput = c("choice", "other.choice") andinput.lag
= 1 create the input variable by concatenating the players’ choices in the preceding

4 For this to be the case, the input must be NA in the first period, and all state transitions must be greater
than one. This ensures that the strategy starts in the first state and never returns to it.
5 To plot strategies, the R package DiagrammeR (Iannone, 2020) must be installed with the command
install.packages("DiagrammeR").

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

342 F. Dvorak

period. The generated object data.DF2011 contains all the information necessary
for fitting the strategies. The levels c and d of the variable choice correspond to the
choice probabilities prob.c and prob.d in the first two columns of each strategy
object. The levels of the variable input cc, cd, dc and dd correspond to columns
tr(cc), tr(cd), tr(dc), and tr(dd), respectively. The input is not available
(NA) in the first period because a lag of one period was used. Whenever the input is
unavailable, the strategy will revert to the first state, which is, by definition, the start
state of the automaton.

Model fitting
The command below replicates the strategy estimation results reported by Dal Bó and
Fréchette (2011):

R> model.DF2011 <- stratEst.model(data = data.DF2011,
strategies = strategies.DF2011,
sample.id = "treatment")

Choosing the option sample.id = "treatment" estimates a model with
treatment-specific parameters. This means that, for each treatment in the data,
one vector of shares and one tremble parameter is estimated. The command
summary(model.DF2011) prints a summary of the fitted model to the R con-
sole. The estimated shares are the strategy shares reported in Table 7 on page 424 of
Dal Bó and Fréchette (2011). The treatment-specific parameters of the fitted model
can also be accessed separately. For example, the strategy shares for the data of the
treatment with δ = 0.5 and R = 32 rounded to two digits are

R> round(model.DF2011$shares$treatment.D5R32, digits = 2)

ALLD ALLC GRIM TFT WSLS T2
treatment.D5R32 0.92 0 0 0.08 0 0

The fitted strategies can plotted, printed to the console or stored for later use. For
example, the TFT strategy fitted to the data of the treatment with δ = 0.5 and R = 32
looks like this:

R> print(model.DF2011$strategies$treatment.D5R32$TFT)

prob.d prob.c tremble tr(cc) tr(cd) tr(dc) tr(dd)
1 0 1 0.06 1 2 1 2
2 1 0 0.06 1 2 1 2

The maximum likelihood estimate of the treatment-specific tremble probability
implies that the fitted TFT strategy randomly selects the action not predicted with a
probability of 6%. Accounting for trembles, the effective cooperation probabilities in
the two states are 0.94 and 0.06.

Parameter estimates and standard errors
The estimated parameters and standard errors of a fitted model are stored in
objects with the extensions .par and .se. The estimated shares of the fitted
model model.DF2011 can be inspected with the command print(model.DF20
11$shares.par). Perhaps somewhat surprisingly, the object model.DF2011
$shares.par does not indicate which parameter belongs to which strategy. The
reason for this is that restricted model specifications can be estimated in which the

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

stratEst: a software package for strategy... 343

shares of some strategies are determined by the same share parameter. Another option
is to define strategy shares that are not estimated from the data. These possibilities
preclude a one-to-one mapping of estimated share parameters and strategies.

The object shares.indices can be used to find the share parameter of a certain
strategy. For example, the code below retrieves the estimated share of ALLD for the data
of the first treatment. The same logic can be used to retrieve the estimated parameters
and standard errors of trembles and response probabilities.
R> index.ALLD.D5R32 <- model.DF2011$shares.indices[,"treatment.D5R32"]["ALLD"]
R> Estimate <- model.DF2011$shares.par[index.ALLD.D5R32]
R> Std.Error <- model.DF2011$shares.se[index.ALLD.D5R32]
R> share.ALLD.D5R32 <- round(cbind(Estimate, Std.Error), 3)
R> print(share.ALLD.D5R32)

Estimate Std.Error
[1,] 0.92 0.043

By default, the standard errors of the parameters and the quantiles of their sampling
distribution are obtained using the empirical observed information matrix (Meilijson,
1989). The estimation based on the empirical observed informationmatrix creates little
computational overhead. However, the method may produce downward biased stan-
dard errors for parameters close to the boundary of the parameter space. For statistical
testing, it is, therefore, recommended to estimate standard errors using a nonparame-
teric block-bootstrap. The bock-bootstrap procedure takes the dependence of choices
made by participants with the same id into account. The following code illustrates
how block-bootstrapped standard errors are obtained. To keep the computation time
short, we only use the data from the first treatment.
data.DF2011.D5R32 <- data.DF2011[data.DF2011$treatment == "D5R32",]
model.DF2011.D5R32 <- stratEst.model(data = data.DF2011.D5R32,

strategies = strategies.DF2011,
se = "bootstrap", bs.samples = 1e+4,
quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95))

index.ALLD.D5R32 <- model.DF2011.D5R32$shares.indices["ALLD",]
Estimate <- model.DF2011.D5R32$shares.par[index.ALLD.D5R32]
Std.Error <- model.DF2011.D5R32$shares.se[index.ALLD.D5R32]
quantiles.ALLD.D5R32 <- model.DF2011.D5R32$shares.quantiles[index.ALLD.D5R32,]
share.ALLD.D5R32 <- round(cbind(Estimate, Std.Error), 3)
print(share.ALLD.D5R32)

Estimate Std.Error
[1,] 0.92 0.043

Bootstrapping produces the same standard error of the share of ALLD in the first
treatment. The estimated quantiles of the sampling distribution are
R> print(quantiles.ALLD.D5R32, digits = 3)

5% 25% 50% 75% 95%
0.847 0.895 0.921 0.955 0.981

Adaptation
A key contribution of the package is that it allows users to perform different variants
of strategy estimation with little effort. Some examples are given below. Perhaps most
importantly, the package allows users to build and maintain an archive of customized
strategies. For example, the following code generates the strategy known as Semi-Grim
(Breitmoser, 2015; Backhaus & Breitmoser, 2018):

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

344 F. Dvorak

Fig. 3 The strategy Semi-Grim. Left part shows the strategySGRIM printed to theR console. Rows represent
the three states of the automaton. Columns show the defection, cooperation and tremble probabilities in each
state, aswell as the deterministic state transitions between states. Right part shows the graphic representation
of SGRIM. States are depicted as nodes, deterministic state transitions as arrows between nodes. Colors
indicate the predicted action in each state

R> SGRIM <- stratEst.strategy(choices= c("d","c"),
inputs = c("cc","cd","dc","dd"),
prob.choices = c(0,1,NA,NA,1,0),
tr.inputs = rep(c(1,2,2,3), 3),
num.states = 3)

The argument choices made available using the strategy generation function
can be used to specify the choice alternatives of the strategy. This creates the
columns prob.d and prob.c in the left panel of Fig. 3. The specified inputs cre-
ate the columns with the state transitions tr(cc)-tr(dd). The values passed to
prob.choices are filled row by row into the columns prob.d and prob.c. The
result is that the strategy will have players cooperating in the first state and defecting
in the third state. The use of NA for the choice probabilities after the inputs cd and
dc indicates that these are the parameters that should be estimated from the data.
The argument tr.inputs is used to specify the deterministic state transitions of
SGRIM. The transitions must be integers between one and the total number of states,
which is defined by the argument num.states. Since the integers are also filled
into the columns row by row, we can replicate the vector c(1,2,2,3) three times
to generate transitions that do not depend on the current state. The right panel of Fig. 3
shows the plotted results of the strategy SGRIM.

Below are examples of various adaptations of the strategy estimation model avail-
able to analysts:

• Adjust the set of candidate strategies, adding the behavior strategy SGRIM, and
estimate its cooperation probability after histories cd and dc from the data.

R> my.strategies <- c(strategies.DF2011[c("ALLD","ALLC","GRIM","TFT")],
list("SGRIM" = SGRIM))

R> my.model <- stratEst.model(data = data.DF2011,
strategies = my.strategies,
sample.id = "treatment")

R> print(my.model$strategies$treatment.D75R48$SGRIM)

prob.d prob.c tremble tr(cc) tr(cd) tr(dc) tr(dd)
1 0.000 1.000 0.022 1 2 2 3
2 0.537 0.463 NA 1 2 2 3
3 1.000 0.000 0.022 1 2 2 3

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

stratEst: a software package for strategy... 345

• Select a subset of the strategies that provide the best explanation of the data accord-
ing to the Bayesian information criterion (Schwarz, 1978).

R> select.model <- stratEst.model(data = data.DF2011,
strategies = my.strategies,
select = "strategies", crit = "bic",
sample.id = "treatment")

R> select.model.shares <- round(do.call(rbind, select.model$shares), 2)
R> print(select.model.shares)

ALLD TFT SGRIM
treatment.D5R32 0.91 0.07 0.02
treatment.D5R40 0.81 0.15 0.04
treatment.D5R48 0.52 0.21 0.27
treatment.D75R32 0.63 0.15 0.22
treatment.D75R40 0.11 0.24 0.66
treatment.D75R48 0.00 0.30 0.70

• Estimate the overall strategy shares by pooling the data of all treatments, keeping
the tremble probabilities treatment specific.

R> pooled.model <- stratEst.model(data = data.DF2011,
strategies = my.strategies,
sample.id = "treatment",
sample.specific = "trembles")

R> print(round(pooled.model$shares, digits = 2))

ALLD ALLC GRIM TFT SGRIM
share 0.51 0.04 0.04 0.19 0.23

• Fix selected model parameters, like the tremble probabilities of TFT, mixed coop-
eration probabilities of SGRIM, and the strategy shares.

R> my.strategiesTFTtremble <- c(0.1,0.2)
R> my.strategies$SGRIM$prob.c <- c(0.95,1/3,0.05)
R> my.strategies$SGRIM$prob.d <- 1 - c(0.95,1/3,0.05)
R> fixed.shares <- c(0.3,0.1,0.1,0.2,0.3)
R> model.fixed <- stratEst.model(data = data.DF2011,

strategies = my.strategies,
shares = fixed.shares)

• Transform the data. For example, imagine that the data set DF2011 contains
second-mover decisions of a sequential game; second-mover strategies should
react to the player’s own action in the previous period and the action of the first
mover in the current period.

R> second.mover.data <- stratEst.data(data = DF2011, choice = "choice",
input = c("choice","other.choice"),
input.lag = c(1,0))

R> second.mover.model <- stratEst.model(data = second.mover.data,
strategies = strategies.DF2011)

3 Workflow

The core of the stratEst package is a collection of functions for strategy generation,
data processing and simulation, model fitting, parameter testing, and model checking.

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

346 F. Dvorak

fit and check

1

cc, dc

2cd, dd

cc, dc cd, dd

1

cc, dc

2cd, dd

cc, dc cd, dd

1

cc

2cd, dc, dd

cc, cd, dc, dd

simulate and test
stratEst.simulate(),

stratEst.model(), stratEst.test()
stratEst.data(), stratEst.model(),
stratEst.check(), stratEst.test()

1

cc, cd, dc, dd

1

cc, cd, dc, dd

stratEst.strategy()

create strategies

Fig. 4 stratEst workflow

Figure4 outlines the recommended workflow when using the package and highlights
the functions involved in each step. A detailed description of each function can be
found in the package’s R documentation or, alternatively, in the package vignette.

In the first step, the user collects or creates a set of candidate strategies based on
prior knowledge or theoretical considerations. All strategies must assign probabilities
to the action space observed in the data and respond to the same set of inputs. Thus,
identifying a set of common inputs is often the initial task for the analyst and is ideally
guided by theory.

As a second step, it is generally useful to simulate data for the set of candidate
strategies. By fitting the correct model to simulated data, the analyst can verify that all
model parameters are recovered. These checks are generally recommended because
the parameters of the mixture model may not be identified. For example, it is not
possible to recover the shares of a mixture of the grim trigger strategy and a strategy
that always cooperates in the repeated prisoner’s dilemma if both strategies are error
free. When working with more complex strategies, identification problems may arise
that are much harder to anticipate but easy to detect using simulated data.

If all the model parameters can be recovered from the simulated data, the analyst
can proceed to the third step of preparing the experimental data and fitting the model.
After the estimation, the fitted model should be tested for misspecification.

4 Limitations and future development

The current version of the package has several limitations. First, the action space of all
strategies must be discrete. Choices are modeled as independent draws from a multi-
nomial distribution defined by the strategy’s state-specific choice probabilities; that is,
it is not possible to estimate strategies with continuous choices. Another limitation is
that the state transitions must be deterministic and specified by the user. This excludes
the possibility of fitting Markov strategies with probabilistic state transitions (Hidden
Markov Models) or estimating state transitions from data.

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

stratEst: a software package for strategy... 347

The package will be further developed to address its limitations. One restriction
that will be relaxed in future versions of the package is that all model strategies must
respond to the same set of inputs. For example, for data from the prisoner’s dilemma,
it is typically assumed that all candidate strategies are responses to the players’ actions
in the previous period. Thus, all strategies are automata reacting to five inputs, the four
possible combinations of actions in the last round and the empty history in the first
period. In most cases, it will be possible to represent all model strategies as automata
that satisfy this restriction. However, the representation of some strategies may be
unnecessarily complex in this case, making strategy programming more difficult than
it should be.

5 Conclusions

This article introduces the R software package stratEst, for strategy frequency estima-
tion. The stratEst package provides a free and easy-to-use framework for performing
the modern strategy frequency estimation techniques used in experimental economics.
The estimation function of the package fits a finite-mixture model of customized indi-
vidual choice strategies and returns several values, including maximum likelihood
estimates and standard errors of all model parameters. The package also includes sev-
eral helpful functions to facilitate strategy programming, data processing and data
simulation, model selection, and model checking, as well as model checks and statis-
tical tests of fitted model parameters.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s40881-023-00141-7.

Acknowledgements Support from the German Research Foundation (DFG) through research unit FOR
1882 “Psychoeconomics” is gratefully acknowledged. Iwould like to thankYongpingBao,YvesBreitmoser,
Karsten Donnay, Urs Fischbacher, Wieland Müller, Konstantin Käppner, and Susumu Shikano as well as
two anonymous reviewers for helpful comments. I am grateful to Zhijian Wang, Bin Xu, and Hai-Jun Zhou
for sharing their data and granting permission to include the data in the package. I am especially grateful
to Sebastian Fehrler for many stimulating discussions.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability Replication material for the study is available at https://doi.org/10.17605/OSF.IO/JEH82.

Declarations

Conflict of interest The author declares no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

https://doi.org/10.1007/s40881-023-00141-7
https://doi.org/10.1007/s40881-023-00141-7
https://doi.org/10.17605/OSF.IO/JEH82
http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core

348 F. Dvorak

References

Aoyagi, M., Bhaskar, V., & Frechette, G. R. (2019). The impact of monitoring in infinitely repeated games:
Perfect, public, and private. American Economic Journal: Microeconomics, 11(1), 1–43. https://doi.
org/10.1257/mic.20160304

Arechar, A. A., Dreber, A., Fudenberg, D., & Rand, D. G. (2017). I’m just a soul whose intentions are
good?: The role of communication in noisy repeated games. Games and Economic Behavior, 104,
726–743. https://doi.org/10.1016/j.geb.2017.06.013

Backhaus, T., & Breitmoser, Y. (2018). God does not play dice, but do we? on the determinism of choice
in long-run interactions [Discussion Paper]. TRR190 Working Paper, 96.

Bland, J. R. (2020). Heterogeneous trembles and model selection in the strategy frequency estimation
method. Journal of theEconomic ScienceAssociation, 6(2), 113–124. https://doi.org/10.1007/s40881-
020-00097-y

Breitmoser, Y. (2015). Cooperation, but no reciprocity: Individual strategies in the repeated prisoner’s
dilemma. American Economic Review, 105(9), 2882–2910. https://doi.org/10.1257/aer.20130675

Camera, G., Casari, M., & Bigoni, M. (2012). Cooperative strategies in anonymous economies: An exper-
iment. Games and Economic Behavior, 75(2), 570–586. https://doi.org/10.1016/j.geb.2012.02.009

Dal Bó, P., & Fréchette, G. R. (2011). The evolution of cooperation in infinitely repeated games: Exper-
imental evidence. American Economic Review, 101(1), 411–429. https://doi.org/10.1257/aer.101.1.
411

Dempster, A., Laird, N., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society Series B, 39(1), 1–38. https://doi.org/10.2307/
2984875

Dvorak, F., & Fehrler, S. (2018). Negotiating cooperation under uncertainty: Communication in noisy,
indefinitely repeated interactions. IZA Working Paper, https://doi.org/10.2139/ssrn.3273737

Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless r and c++ integration. Journal of Statistical
Software, 40(8): 1–18, https://doi.org/10.18637/jss.v040.i08

Embrey, M., Frechette, G.R., Stacchetti, E. (2013). An experimental study of imperfect public monitoring:
Efficiency versus renegotiation-proofness. SSRN Working Paper , 2346751,https://doi.org/10.2139/
ssrn.2346751

Embrey, M., Frechette, G. R., & Yuksel, S. (2017). Cooperation in the finitely repeated prisoner’s dilemma.
The Quarterly Journal of Economics, 133(1), 509–551. https://doi.org/10.1093/qje/qjx033

Frechette, G. R., & Yuksel, S. (2017). Infinitely repeated games in the laboratory: four perspectives on
discounting and random termination. Experimental Economics, 20(2), 279–308. https://doi.org/10.
1007/s10683-016-9494-z

Fudenberg, D., Rand, D. G., & Dreber, A. (2012). Slow to Anger and Fast to Forgive: Cooperation in an
Uncertain World. American Economic Review, 102(2), 720–749. https://doi.org/10.1257/aer.102.2.
720

Iannone, R. (2016). Diagrammersvg: Export diagrammer graphviz graphs as svg [Computer software man-
ual]. Retrieved from https://CRAN.Rproject.org/package=DiagrammeRsvg (R package version 0.1).

Iannone, R. (2020). Diagrammer: Graph/network visualization [Computer software manual]. Retrieved
from https://CRAN.R-project.org/package=DiagrammeR (R package version 1.0.6.1).

Kartal, M., & Müller, W. (2022). A new approach to the analysis of cooperation under the shadow of the
future: Theory and experimental evidence. SSRN Working Paper, 3222964, https://doi.org/10.2139/
ssrn.3222964

Kasberger, B., Martin, S., Normann, H.-T., Werner, T. (2023). Algorithmic cooperation. SSRN Working
Paper, 4389647, https://doi.org/10.2139/ssrn.4389647

Kayaba, Y., Matsushima, H., Toyama, T. (2020). Accuracy and retaliation in repeated games with imperfect
private monitoring: Experiments. Games and Economic Behavior, 120, 193-208, https://doi.org/10.
1016/j.geb.2019.12.003

Kloosterman, A. (2020). Cooperation in stochastic games: a prisoner’s dilemma experiment. Experimental
Economics, 23(2), 447–467. https://doi.org/10.1007/s10683-019-09619-w

Leisch, F. (2002). Compstat. In R.B. Härdle W. (Ed.), (chap. Sweave: Dynamic Generation of Statistical
Reports Using Literate Data Analysis). Physica, Heidelberg.

Meilijson, I. (1989). A fast improvement to the em algorithm on its own terms. Journal of the Royal
Statistical Society B, 51(1), 127–138. https://doi.org/10.1111/j.2517-6161.1989.tb01754.x

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

https://doi.org/10.1257/mic.20160304
https://doi.org/10.1257/mic.20160304
https://doi.org/10.1016/j.geb.2017.06.013
https://doi.org/10.1007/s40881-020-00097-y
https://doi.org/10.1007/s40881-020-00097-y
https://doi.org/10.1257/aer.20130675
https://doi.org/10.1016/j.geb.2012.02.009
https://doi.org/10.1257/aer.101.1.411
https://doi.org/10.1257/aer.101.1.411
https://doi.org/10.2307/2984875
https://doi.org/10.2307/2984875
https://doi.org/10.2139/ssrn.3273737
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.2139/ssrn.2346751
https://doi.org/10.2139/ssrn.2346751
https://doi.org/10.1093/qje/qjx033
https://doi.org/10.1007/s10683-016-9494-z
https://doi.org/10.1007/s10683-016-9494-z
https://doi.org/10.1257/aer.102.2.720
https://doi.org/10.1257/aer.102.2.720
https://CRAN.Rproject.org/package=DiagrammeRsvg
https://CRAN.R-project.org/package=DiagrammeR
https://doi.org/10.2139/ssrn.3222964
https://doi.org/10.2139/ssrn.3222964
https://doi.org/10.2139/ssrn.4389647
https://doi.org/10.1016/j.geb.2019.12.003
https://doi.org/10.1016/j.geb.2019.12.003
https://doi.org/10.1007/s10683-019-09619-w
https://doi.org/10.1111/j.2517-6161.1989.tb01754.x
https://www.cambridge.org/core

stratEst: a software package for strategy... 349

R Development Core Team (2022). R: A language and environment for statistical computing (Tech. Rep.).
R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org

Rand, D.G., Fudenberg, D., Dreber, A. (2015). It’s the thought that counts: The role of intentions in noisy
repeated games. Journal of Economic Behavior & Organization, 116, 481-499, https://doi.org/10.
1016/j.jebo.2015.05.013

Romero, J., & Rosokha, Y. (2018). Constructing strategies in the indefinitely repeated prisoner’s dilemma
game. European Economic Review, 104, 185–219. https://doi.org/10.1016/j.euroecorev.2018.02.008

Romero, J., & Rosokha, Y. (2019). The evolution of cooperation: The role of costly strategy adjust-
ments. American Economic Journal: Microeconomics, 11(1), 299–328. https://doi.org/10.1257/mic.
20160220

Sanderson, C., & Curtin, R. (2016). Armadillo: A template-based c++ library for linear algebra. Journal of
Open Source Software, 1, 26, Retrieved from https://CRAN.R-project.org/package=RcppArmadillo.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6(2), 461–464. https://doi.org/10.
1214/aos/1176344136

Sherstyuk, K., Tarui, N., & Saijo, T. (2013). Payment schemes in infinite-horizon experimental games.
Experimental Economics, 16(1), 125–153. https://doi.org/10.1007/s10683-012-9323-y

Stahl, D. O., &Wilson, P. W. (1994). Experimental evidence on players’ models of other players. Journal of
Economic Behavior & Organization, 25(3), 309–327. https://doi.org/10.1016/0167-2681(94)90103-
1

Stahl,D.O.,&Wilson, P.W. (1995).Onplayers’models of other players: Theory and experimental evidence.
Games and Economic Behavior, 10(1), 218–254. https://doi.org/10.1006/game.1995.1031

Wickham, H. (2011). testthat: Get started with testing. The R Journal, 3(1), 5–10.
Wickham, H., Danenberg, P., Csardi, G., Eugster, M. (2020). roxygen2: In-line documentation for r [Com-

puter software manual]. Retrieved from https://CRAN.Rproject.org/package=roxygen2 (R package
version 7.1.0).

Wickham, H., Hester, J., Chang,W. (2020). devtools: Tools tomake developing r packages easier [Computer
software manual]. Retrieved from https://CRAN.Rproject.org/package=devtools (R package version
2.3.0).

123

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 16:17:51, subject to the Cambridge Core terms of use.

http://www.R-project.org
https://doi.org/10.1016/j.jebo.2015.05.013
https://doi.org/10.1016/j.jebo.2015.05.013
https://doi.org/10.1016/j.euroecorev.2018.02.008
https://doi.org/10.1257/mic.20160220
https://doi.org/10.1257/mic.20160220
https://CRAN.R-project.org/package=RcppArmadillo
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1007/s10683-012-9323-y
https://doi.org/10.1016/0167-2681(94)90103-1
https://doi.org/10.1016/0167-2681(94)90103-1
https://doi.org/10.1006/game.1995.1031
https://CRAN.Rproject.org/package=roxygen2
https://CRAN.Rproject.org/package=devtools
https://www.cambridge.org/core

