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The case of general  can be treated similarly; in
particular, when  the sequence ,

, increases/decreases monotonically.

x ∈ (−π / 2,  3π / 2)
x ∈ (−π / 2,  π / 2) / (π / 2,  3π / 2) Sn (x)

n ∈ �

As an alternative perspective of the above calculation, we mention that
the iterative procedure , , ,
is just the fixed-point iteration for the map . We conclude by
noting that, due to the above result, the finite sum  serves as a smooth
approximation of a staircase function. Consequently, the derivative of
can be viewed as a smooth approximation of a Dirac comb, i.e. of a periodic
pulse wave consisting of Dirac delta functions.

S1 (x) = x Sn + 1 (x) = Sn (x) + cos (Sn (x)) n ∈ �
x → x + cos x

Sn (·)
Sn (·)
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107.35 Two definite integrals that are (not surprisingly) equal

1.  Introduction
In their recent note Ekhad, Zeilberger and Zudilin [1] gave a clever

proof of the identity

∫
1

0

xn (1 − x)n

((x + a) (x + b))n + 1
dx = ∫

1

0

xn (1 − x)n

((a − b) x + (a + 1) b)n + 1
dx, (1)

for  and , using the Almkvist–Zeilberger
creative telescoping algorithm. If  and  denote the integrals on the
left and right sides, respectively, for fixed  and , then they show that
and  satisfy the same linear recursive formula of order two. Confirming
that  and , the identity follows by mathematical
induction. The authors mentioned that three other proofs of (1) exist.
Bostan, Chamizo and Sundqvist [2] recognized in identity (1) a particular
case of a known relation for Appell's bivariate hypergeometric function and
gave three different proofs of (1).

n = 0,  1,  2,  … a > b > 0
L (n) R (n)

a b L (n)
R (n)
L (0) = R (0) L (1) = R (1)

The authors of [1, Remark 3] mention that the right-hand side

covers a famous sequence of rational approximations to ,

and hence the left-hand side  does, too, and cite [3]. The estimate of the
irrationality measure is based on considering certain integrals involving the

th Legendre type polynomial .

R (n)
log(1 +

a − b
(a + 1)b)

L (n)

n Ln (x) = (n!)−1 (xn (1 − x)n)(n)

In the following we consider a more natural representation of (1). We
rewrite identity (1) by replacing  with their reciprocals, in the forma, b > 0

∫
1

0

xn (1 − x)n

((1 + ax) (1 + bx))n + 1
dx = ∫

1

0

xn (1 − x)n

(1 + a (1 − x) + bx)n + 1
 dx, (2)
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for  and . Obviously, the identities (2) and (1)
are equivalent.

n = 0,  1,  2,  … b > a > 0

The purpose of this Note is to generalise (2) in various directions. As
was done in [2, Corollary 2, (7)], we consider different exponents for the
terms  and  appearing in the numerator
and denominator, respectively, of the integral on the left-hand side.
Moreover, we extend the identity to arbitrarily many parameters. Instead of
the real unit interval of one variable of integration in (1) and (2) we will
work with  integration variables in a particular region of , the so-called
standard simplex . This multi-dimensional simplex, which is more
complicated than the unit cube, will be explained below. The outcome is an
integral over the  which is analogous to the right-hand side of (2). We start
with a short direct proof of the original identity in its equivalent form (2)
which can be extended to more general results. No deeper knowledge of
special functions or sophisticated tools are needed. We use only elementary
calculus. Throughout the paper we suppose that .

xp (1 − x)q (1 + ax)n + 1 (1 + bx)m + 1

r �r

Sr

Sr

n ∈ {0,  1,  2, … }

2.  The original identity
We present a direct proof of (1) in its equivalent form (2). Denote by
 and  the integrals on the left and right sides of (2), respectively,

for fixed  and . First, let  be reals such that . Observe
that , for all . Using power-series
expansion

� (n) � (n)
a b a, b 0 < a ≤ b < 1

a (1 − x) + bx ≤ b < 1 x ∈ [0,  1]

1
(1 + a (1 − x) + bx)n + 1

= ∑
∞

i, j = 0

(n + i + j)!
n! i! j!

(−a (1 − x))i (−bx)j

we obtain

� (n) = ∑
∞

i, j = 0

(n + i + j)!
n! i! j!

(−1)i + j aibj ∫
1

0
xn + j (1 − x)n + i dx,

where the integral is the Euler beta function . It is
easy to check that

B (n + j + 1, n + i + 1)

(n + i + j)!
n! i! j!

 B(n + j + 1, n + i + 1) = ( )( )B(n + i + j + 1, n + 1).n + i
i

n + j
j

Hence,

� (n) = ∫
1

0
∑
∞

i = 0
( ) (−ax)i ∑

∞

j = 0
( ) (−bx)j xn (1 − x)n dx = � (n) .n + i

i
n + j

j

Analytic continuation with respect to  and  implies that identity (2) is
valid for all complex constants  not belonging to the interval .
If  the identity (2) is true also for real values of .

a b
a, b (−∞, −1]

b ≥ a > 0 n ≥ 0
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Returning to the original identity, we see that (1) is valid for all complex
constants  not belonging to the interval . If  the
identity is true also for real values of .

a, b [−1, 0] a ≥ b > 0
n ≥ 0

3.  Generalisations
Now we are going to generalise the equivalent form (2) of identity (1) in

various directions. In particular, we prove, for  and reals
 satisfying , the equation

a, b > 0
p, q, n, m > −1 p + q = n + m > −1

∫
1

0

xp (1 − x)q

(1 + ax)n + 1 (1 + bx)m + 1
=

p! q!
n! m! ∫

1

0

xn (1 − x)m

(1 + ax + b (1 − x))p + 1dx.  (3)

Here the factorials are defined by the Euler gamma function, i.e.,
 for . Equation (2) is a direct consequence when

. Our main result is the following proposition. Its
formulation needs the -dimensional standard simplex . It is the polytope
whose vertices are the origin and the  standard unit vectors. In other words,

z! = Γ (z + 1) z > −1
p = q = n = m

r Sr
r

Sr = {(x1, … , xr) ∈ �r | x1 +  … +xr ≤ 1 andxi ≥ 0 for i = 1, … , r}
is the simplex, which is bounded by the coordinate hyperplanes

, and the hyperplane . In the simple case
, the standard simplex reduces to the unit interval . For
, we have a triangle, and for , we have a tetrahedron.

x1 = 0, … , xr = 0 x1 +  … +xr = 1
r = 1 S1 = [0,  1]
r = 2 r = 3

Proposition 1: Suppose that , , ,
, and . If ,

then

r ∈ � p, q > −1 a = (a1, … , ar) ∈ (0, ∞)r

ar + 1 > 0 (n1, … , nr + 1) ∈ (−1, ∞)r + 1 n1 +… +nr + 1 + r − 1 = p + q > −1

∫
1

0

xp(1 − x)q

∏
r +1

i =1
(1 + aix)1 + ni

dx =
p!q!

∏
r +1

i =1

n!
∫Sr

xn1
1 … xnr

r (1 − x1 −… −xr)nr + 1

(1 + a·x + ar +1 (1 − x1 −… −xr))p+1dx1… dxr,

where  and  denotes the standard simplex in .a·x = a1x1 +… +arxr Sr �r

Remark 2: Equation (3) is a special case of the proposition when  with
.

r = 1
(n1, n2) = (n, m) , (a1, a2) = (a, b)

Remark 3: We leave it as an exercise to confirm Proposition 1 in the special
case , ,  and  by direct computation
of both integrals

r = 2 p = 1 q = 0 n1 = n2 = n3 = 0

∫
1

0

x
(1 + a1x)(1 + a2x)(1 + a3x)

dx

= ∫
1

0 ∫
1 −x2

0

1
(1 + a1x1 + a2x2 + a3(1 − x1 − x2))2

dx1dx2.
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Remark 4: More generally, assuming that the positive numbers
 are pairwise different, partial fraction decompositionai (i = 1, … , r + 1)

xp

∏
r + 1

i = 1

(1 + aix)
= (−1)p ∑

r + 1

j = 1

ar − p
j

(1 + ajx) ∏
r + 1

i = 1
i ≠ j

(aj − ai)
 (p = 0,1, … , r)

leads to the formula

∫
1

0

xp

∏
r + 1

i = 1

(1 + aix)
= (−1)p ∑

r + 1

j = 1

ar − p − 1
j

∏
r + 1

i = 1
i ≠ j

(aj − ai)
log (1 + aj) .

By Proposition 1, the integral

∫Sr

p!
(1 + a·x + ar + 1 (1 − x1 −… −xr))p + 1dx1… dxr

has the same value. The special choice  yields the
evaluation

p = r − 1 ≥ 0

∫Sr

1
(1 + a·x + ar + 1 (1 − x1 −… −xr))r  dx1… dxr

=
−1

(r − 1)! ∑
r + 1

j = 1

log (1 + aj)

∏
r + 1

i = 1
i ≠ j

(ai − aj)
.

Remark 5: Partial differentiations with respect to  for any
 can lead to closed-form expressions of some of the other

integrals in the class appearing in Proposition 1.

a1
i ∈ {1, … , r + 1}

Proof of Proposition 1: We use the following multi-index notation: For
, where , we set

. For real , the multinomial coefficient is defined as
v = (v1, … , vr + 1) ∈ �r + 1

0 �0 = {0,  1,  2, … }
|v| = v1 +  … vr + 1 m

( ) =
Γ (m + 1)

v1! … vr + 1! Γ (m − |v| + 1),
m

v1, … , vr + 1

if , where  is defined for real numbers .m > |v| − 1 k! = Γ (k + 1) k > −1
By analytic continuation we can assume that

. Then, we have
0 ≤ ai ≤ ar + 1 < 1

(i = 1, … , r)

∫
1

0

xp(1 − x)q

∏
r +1

i =1

(1 + aix)1 +ni

dx = ∑
∞

v1,…,vr + 1 = 0
(∏r +1

i =1
( )(−ai)vi) ∫1

0
xp+ |v| (1 − x)qdx,

ni + vi

vi
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where the last integral is equal to

B (p + |v| + 1, q + 1) =
(p + |v|)! q!

(p + |v| + q + 1)! .

Noting that

(∏r +1

i =1
( )) (p + |v|)!q!

(p + |v| + q + 1)! =
q!

∏
r +1

i =1

ni!
 · 

(p + |v|)!

∏
r +1

i =1

vi!
 · 

∏
r +1

i =1
(ni + vi)!

(p + |v| + q + 1)!
ni + vi

vi

the assumption  implies thatp + q = |n| + r − 1

∏
r + 1

i = 1
(ni + vi)!

(p + |v| + q + 1)! =
∏
r + 1

i = 1
(ni + vi + 1)

Γ (|n| + |v| + r + 1)

= ∫Sr
(∏r

i = 1

xni + vi
i ) (1 − |x|)nr + 1 + vr + 1 dx1… dxr,

where . Therefore, we have|x| = x1 +  … + xr

∫
1

0

xp (1 − x)q

∏
r + 1

i = 1
(1 + aix)1 + ni

dx

=
p!q!

∏
r + 1

i = 1
ni!

∑
∞

v1,…,vr + 1 =0
( )(∏r + 1

i = 1
(−ai)vi) ∫Sr

(∏r

i = 1
xni + vi

i )(1 − |x|)nr + 1 + vr + 1 dx1… dxr
p + |v|

v1, … , vr + 1

=
p!q!

∏
r +1

i = 1
ni!

∫
Sr

∑
v1,…,vr + 1 =0

( )(∏r

i = 1
xni

i (−aixi)vi)(1 − |x|)nr + 1 +vr + 1 dx1… dxr·(−ar +1)vr + 1
p + |v|

v1, … , vr +1

=
p!q!

∏
r + 1

i =1
ni!

∫Sr

(∏r

i =1
xni

i )(1 − |x|)nr + 1

(1 + ∑
r

i =1

aixi + ar + 1(1 − |x|))p+1  dx1… dxr

which is the desired formula. Here we used that

0 ≤ ∑
r

i =1

aixi + ar +1 (1 − |x|) ≤ ∑
r

i =1

(ai − ar +1)xi + ar +1 ≤ ar +1 < 1.
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107.36 Similarities and circle-preserving bijections of the plane

1.  Introduction
A similarity of the complex plane  is a map of the form ,

or , where  and  are complex numbers with . Each
similarity is a bijection of  onto itself, and maps a line onto a line, and a
circle onto a circle. In addition, it is known that the converse is true: if  is a
bijection of  onto itself that maps each line onto a line, and each circle onto
a circle, then  is a similarity of . The sole purpose of this Note is to use
this converse to provide an opportunity for students to experience and, more
importantly, engage in, a substantial proof of a single result. So, instead of
providing the details, we break the proof into a number of simpler (and, we
hope, manageable) steps, and invite readers to formally justify these steps
for themselves.

� z → az + b
z → az¯ + b a b a ≠ 0

�
f

�
f �

The circle  is denoted by , and the (open) disc
 by , where (in each case)  and .

Although we are assuming that  maps each circle onto a circle, we are not
assuming that  maps each disc onto a disc; in fact, we shall prove that this
must be so. Note also that we are not assuming that  is continuous, and
again we shall prove that this is so.

{z : |z − a| = r} C (a, r)
{z : |z − a| < r} D (a, r) a ∈ � r > 0

f
f

f

2.  The converse result
We now give our sketch of the proof that if  is a bijection of  onto

itself that maps each line onto a line, and each circle onto a circle, then  is a
similarity of . It is important to recall that any three points in  are either
collinear (they lie on a line), or concyclic (they lie on a circle), but not both.
Also, as  is a bijection of  onto itself,  exists and is also a bijection of
onto itself.

f �
f

� �

f � f −1 �
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