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Abstract

We study the zero-sharing behavior among irreducible characters of a finite group. For symmetric groups
Sn, it is proved that, with one exception, any two irreducible characters have at least one common zero. To
further explore this phenomenon, we introduce the common-zero graph of a finite group G, with nonlinear
irreducible characters of G as vertices, and edges connecting characters that vanish on some common
group element. We show that for solvable and simple groups, the number of connected components of
this graph is bounded above by three. Lastly, the result for Sn is applied to prove the nonequivalence of
the metrics on permutations induced from faithful irreducible characters of the group.
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1. Introduction

Studying zeros of characters (and character values in general) is a fundamental
problem in the representation theory of finite groups. While values of linear characters
are never zero, it is a classical result of Burnside that every nonlinear irreducible
character always vanishes at some element. This was improved by Malle et al. [22]
who showed that the element can be chosen to be of prime-power order.

More recently, Miller [28] proved that almost all values of irreducible characters of
the symmetric group Sn are zero as n increases. Specifically, if Pn is the probability
that χ(σ) = 0 where χ is uniformly chosen at random from the set Irr(Sn) of irreducible
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characters of Sn and σ is chosen at random from Sn, then Pn → 1 as n→ ∞. This
remarkable observation has inspired several subsequent results on the abundance of
zeros of character values; see [7, 16, 27, 35].

Here we investigate the many-zero phenomenon from a different perspective: when
do two distinct irreducible characters of a finite group have a common zero? For
symmetric groups, our answer is complete.

THEOREM A. Let n ∈ Z≥8 and χ,ψ ∈ Irr(Sn) both have degree larger than 1. Then χ
and ψ have a common zero if and only if {χ(1),ψ(1)} � {n(n − 3)/2, (n − 1)(n − 2)/2}.

REMARK 1. It is well known that irreducible characters of Sn are parameterized by
partitions of n, and so we use χλ to denote the character corresponding to a partition λ.
The characters of degrees n(n − 3)/2 and (n − 1)(n − 2)/2 are corresponding to the par-
titions (n − 2, 2), (n − 2, 12), and their conjugates. Since χ(n−2,2) ≡ χ(n−2,12) + 1 (mod 2)
(see [15, page 93]), χ(n−2,2) and χ(n−2,12) indeed do not share common zeros.

In Section 6, we discuss an application of Theorem A to a problem concerning
the partition equivalence of character-induced metrics on permutations. A metric on
a finite group G is a binary function d : G × G→ R≥0 that assigns a nonnegative real
number to each pair of group elements, satisfying the properties of a metric, such as
positivity, symmetry, and the triangle inequality. If χ is a faithful character of G, then
the induced function dχ defined by dχ(a, b) := (χ(1) − Re(χ(ab−1)))1/2 is a G-invariant
metric on G (see [4, Section 6D]). (Here Re(z) is the real part of a complex number z.)
Let P(dχ) be the partition of G determined by the equivalence relation: a ∼ b if and
only if dχ(1, a) = dχ(1, b). Two metrics dχ and dψ are called partition equivalent (or
P-equivalent for short) if P(dχ) = P(dψ) (see [36]). Using Theorem A, we prove that
the metrics dχ on permutations induced from the faithful irreducible characters χ of
the group are pairwise non-P-equivalent.

Zero-sharing behavior for arbitrary groups is harder to understand. To explore it
further, we introduce the common-zero graph of G, denoted by Γv(G): the vertices are
the nonlinear irreducible characters of G and two characters are joined by an edge if
they vanish on some common element. Theorem A shows that Γv(Sn) with n ≥ 8 is
almost complete and, in particular, connected. This is not true in general. For solvable
groups, we prove the following theorem.

THEOREM B. Let G be a finite solvable group. Then the number of connected
components of Γv(G) is at most 2.

We have observed that two irreducible characters tend to have a common zero if
their degrees are not coprime. Although exceptions exist, they are rare and difficult to
find. This suggests that the well-studied common-divisor graph Γ(G), whose vertices
are the same nonlinear irreducible characters of G and two vertices are joined if their
degrees are not coprime, is somewhat close to a subgraph of Γv(G). Manz et al. [25]
proved that Γ(G) in fact has at most three connected components for all groups. This
observation together with Theorems A and B suggest the following conjecture.
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CONJECTURE C. The number of connected components in Γv(G) for any finite group
G is at most 3.

The next result provides further evidence for the conjecture.

THEOREM D. Let G be a finite simple group. Then the number of connected
components of Γv(G) is at most 3.

The bounds in both Theorems B and D are the best possible, as shown by S4, GL2(3)
and PSL2(q) for several choices of q.

The paper is organized as follows. In Section 2, we present some preliminary results
on the dual graph of Γv(G) for vanishing conjugacy classes. Section 3 contains the
proofs of Theorem A and the alternating-group case of Theorem D. Theorem B on
solvable groups is proved in Section 4. We then handle simple groups of Lie type and
complete the proof of Theorem D in Section 5. The topic of character-induced metrics
on permutations is presented in Section 6. In the final Section 7, we discuss some
relationships between common zeros and character degrees.

2. The dual graph for vanishing classes

For studying the common-zero graph Γv(G), it is sometimes convenient to consider
the dual one for vanishing conjugacy classes.

As usual, let Irr(G) denote the set of all (ordinary) irreducible characters of a
finite group G and cl(G) the set of all conjugacy classes. An element x ∈ G is called
vanishing if there exists χ ∈ Irr(G) such that χ(x) = 0. Accordingly, a conjugacy class
K ∈ cl(G) is called vanishing if it contains a vanishing element. These concepts were
introduced by Isaacs et al. in [13] and since then, they have been studied in great depth.
See the survey paper [6] of Dolfi, Pacifici, and Sanus for more information.

The dual graph we referred to, which we denote by Δv(G), has vertices being
the vanishing conjugacy classes of G and two classes are joined if there exists an
irreducible character in Irr(G) that vanishes simultaneously on both classes. The
common-zero graph Γv(G) and this Δv(G) have the same number of connected
components, among other things.

LEMMA 2.1. Let G be a finite group. Then:

(i) if C is the set of conjugacy classes in one connected component of Δv(G), then
{χ ∈ Irr(G) | χ vanishes at some class in C} is a connected component in Γv(G);

(ii) if A is the set of characters in a connected component in Γv(G), then the set
{K ∈ cl(G) | χ(K) = 0 for some χ ∈ D} is a connected component in Δv(G);

(iii) if f is the map from the set of connected components of Δv(G) to the set of
connected components of Γv(G) defined in item (i) and h is the map from the
set of connected components of Γv(G) to the set of connected components of
Δv(G) defined in item (ii), then f and h are bijections and one is the inverse of
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the other. In particular, Γv(G) and Δv(G) have the same number of connected
components;

(iv) the difference between the diameter of a connected component C of Δv(G) and
that of f (C) is at most one.

PROOF. Let A = {χ ∈ Irr(G) | χ vanishes at some class in C}. We want to see that if
α, β ∈ A, then there exists a path in Γv(G) joining α and β. Let C, D ∈ C such that
α(C) = β(D) = 0. Since C is a connected component in Δv(G), there exists a path

C = C0 ↔ C1 ↔ · · · ↔ Cd−1 ↔ Cd = D

joining C and D. By the definition of the graph Δv(G), this means that there exist
χi ∈ Irr(G) such that χi(Ci−1) = χi(Ci) = 0 for i = 1, . . . , d. Therefore,

α↔ χ1 ↔ · · · ↔ χd ↔ β

is a path in Γv(G) joining α and β. This proves that A is contained in a connected
component of Γv(G).

Similarly, we can prove that if A is the set of characters in a connected component
in Γv(G), thenD = {K ∈ cl(G) | χ(K) = 0 for some χ ∈ A} is contained in a connected
component in Δv(G).

Now, suppose that A � B, where B is a connected component of Γv(G). Let γ ∈
B −A. Therefore, γ(K) � 0 for every K ∈ C. Since α, γ ∈ A, there exists a path in
Γv(G) joining α and γ. This means that there exist η, μ in this path that are linked; one
of them belongs to A and the other does not. Suppose that η ∈ A and μ � A. Then,
there exists D � C such that η(D) = μ(D) = 0. Since η ∈ A, there exists C ∈ C such
that η(C) = 0. By the definition of Δv(G), C and D are linked by means of η. This is a
contradiction.

We omit the proofs of the remaining parts, which are similar. �

The next result is essential in studying the number of connected components of
our graphs. We write Van(χ) for the set of zeros (or roots) of a character χ. Clearly
two characters χ and ψ have common zeros if and only if Van(χ) ∩ Van(ψ) � ∅. This
explains the relevance of Van(χ) in the current context.

LEMMA 2.2. Let G be a group, N � G, and χ ∈ Irr(G). If Van(χ) ⊆ N, then
χN ∈ Irr(N).

PROOF. Let θ ∈ Irr(N) lie under χ and let T = IG(θ). By Clifford’s correspondence,
there exists ψ ∈ Irr(T) such that ψG = χ. By the formula for the induced character,
χ vanishes on G −⋃

g∈G Tg. Since a group is never the union of the conjugates of a
proper subgroup, this implies that θ is G-invariant. Thus, χN = eθ for some positive
integer e and we want to see that e = 1. Arguing by contradiction, assume that e > 1.

Let (G∗, N∗, θ∗) be a character triple isomorphic to (G, N, θ) with N∗ ≤ Z(G∗) and θ∗

linear and faithful. (We refer the reader to Section 5.4 and in particular Corollary 5.9 of
[33] for background on character triples.) Let χ∗ ∈ Irr(G∗ | θ∗) correspond to χ under
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the isomorphism. Note that χ∗ is not linear and χ∗N∗ = eθ∗. Since θ∗ is linear, Van(χ∗) ∩
N∗ = ∅. Therefore, there exists x∗ ∈ G∗ − N∗ such that χ∗(x∗) = 0. Let x ∈ G such that

(Nx)∗ = N∗x∗,

where ∗ : G/N −→ G∗/N∗ is the associated group isomorphism. Note that x � N. By
[33, Lemma 5.17(a)], there exists an algebraic integer α such that

χ(x) = αχ∗(x∗) = 0,

contradicting the hypothesis that Van(χ) ⊆ N. �

Let Van(G) denote the set of vanishing elements of G, so Van(G) =
⋃
χ∈Irr(G) Van(χ).

Although Van(G) has been extensively studied in the literature, it is not fully
understood yet. For instance, for solvable groups, it is an open conjecture [13] that
Van(G) always contains G − F(G). The case of nilpotent groups is known though.

LEMMA 2.3. Let G be a nilpotent group. Then Van(G) = G − Z(G).

PROOF. This is [13, Theorem B]. �

As we see throughout, and in particular in Section 7, there is a somewhat mysterious
relationship between the set of zeros of an irreducible character and its degree. There
are two graphs associated to character degrees that have been well studied in the
literature. The first is the already mentioned common-divisor graph Γ(G). (We note that
in the definition of Γ(G), one could take the character degrees of G instead to be the
vertices. The resulting graph and Γ(G) are fundamentally the same.) The second is
the prime graph Δ(G) with vertices being the primes that divide some character degree
of G and two vertices joined if the product of the primes divides the degree of some
irreducible character of G. The survey paper [18] of Lewis is a good place for an
overview of the known results on these and other character-degree related graphs, up
until 2008. Many more have been obtained since then.

We already mentioned that two irreducible characters tend to have a common zero
if their degrees are not coprime. Therefore, Γ(G) is often close to a subgraph of
Γv(G), but not always a subgraph. There are counterexamples among groups of Lie
type, like PSL2(11), and among sporadic groups, like M12. There are also solvable
counterexamples, the smallest one being SmallGroup(324, 160) in the notation of
GAP [8]. It would be interesting to understand when Γ(G) is a subgraph of Γv(G).
If Γ(G) is a subgraph of Γv(G), then the number of connected components of Γv(G) is
at most 3, by the main result of [25].

3. Alternating and symmetric groups

In this section, we prove Theorem A and the alternating group case of Theorem D.
We start by comparing zeros of irreducible characters of symmetric groups and
components of their restrictions to alternating groups.
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LEMMA 3.1. Let χ ∈ Irr(Sn) and ψ ∈ Irr(An) be such that ψ appears in χAn , and let
σ ∈ An. Then χ(σ) = 0 if and only if ψ(σ) = 0.

PROOF. If ψ(σ) � {χ(σ), χ(σ)/2}, χ is labeled by the partition λ, and μ is the cycle
partition of σ, then by [14, Theorems 2.5.7 and 2.5.13] λ is self-conjugated and μ
is the partition consisting of the diagonal hook-lengths of λ. However, in this case,
χ(σ) � 0 by [14, Corollary 2.4.8] and ψ(σ) � 0 by [14, Theorem 2.5.13]. �

In the next theorem, we show that irreducible characters of Sn almost always have
a common zero in An. It can be checked that the following result is false for small n.

THEOREM 3.2. Let n ≥ 8 and χ,ψ ∈ Irr(Sn) both have degree larger than 1. Then χ
and ψ have no common zero if and only if, up to multiplying χ or ψ with sgn, {χ,ψ} =
{χ(n−2,2), χ(n−2,12)}. If n ≥ 9, and χ and ψ have a common zero, then they also have a
common zero in An.

PROOF. If χ = χ(n−2,2) and ψ = χ(n−2,12) (up to exchange or multiplying with sgn), then
by [15, page 93], we have that ψ ≡ χ + 1 (mod 2) . So in this case, χ and ψ cannot have
common zeros. So we may now assume that this is not the case.

The cases n = 8 and 9 can be checked by looking at character tables. So assume
now that n ≥ 10.

Let λ and μ be the partitions labeling χ and ψ, respectively, so that χ = χλ and
ψ = χμ. Note that λ, μ � {(n), (1n)} since χ and ψ have degree larger than 1. Further, for
any partition γ 
 n, let τγ ∈ Sn have cycle partition γ.

Case 1: n is even. We have that τ(n−k,k) ∈ An for any 1 ≤ k ≤ n/2. For 1 ≤ k ≤ 4, let
Nn,k := {γ 
 n | χγ(τ(n−k,k)) = 0} be the set of partitions labeling characters that do not
vanish on τ(n−k,k). We then have that Nn,k = Bn,k ∪ Cn,k ∪ Dn,k with

Bn,1 = {(n), (1n)},
Cn,1 = ∅,
Dn,1 = {(n − h, 2, 1h−2) | 2 ≤ h ≤ n − 2},
Bn,2 = {(n), (n − 1, 1), (2, 1n−2), (1n)},
Cn,2 = {(n − 2, 2), (22, 1n−4)},
Dn,2 = {(n − h, 3, 1h−3) | 3 ≤ h ≤ n − 3} ∪ {(n − h, 22, 1h−4) | 4 ≤ h ≤ n − 2},
Bn,3 = {(n), (n − 1, 1), (n − 2, 12), (3, 1n−3), (2, 1n−2), (1n)},
Cn,3 = {(n − 3, 3), (n − 3, 2, 1), (n − 4, 22), (32, 1n−6), (3, 2, 1n−5), (23, 1n−6)},
Dn,3 = {(n − h, 4, 1h−4) | 4 ≤ h ≤ n − 4} ∪ {(n − h, 3, 2, 1h−5) | 5 ≤ h ≤ n − 3}

∪ {(n − h, 23, 1h−6) | 6 ≤ h ≤ n − 2},
Bn,4 = {(n), (n − 1, 1), (n − 2, 12), (n − 3, 13), (4, 1n−4), (3, 1n−3), (2, 1n−2), (1n)},
Cn,4 = {(n − 4, 4), (n − 4, 3, 1), (n − 4, 2, 12), (n − 5, 3, 2), (n − 5, 22, 1), (n − 6, 23),

(42, 1n−8), (4, 3, 1n−7), (4, 2, 1n−6), (32, 2, 1n−8), (3, 22, 1n−7), (24, 1n−8)},
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Dn,4 = {(n − h, 5, 1h−5) | 5 ≤ h ≤ n − 5} ∪ {(n − h, 4, 2, 1h−6) | 6 ≤ h ≤ n − 4}
∪ {(n − h, 3, 22, 1h−7) | 7 ≤ h ≤ n − 3} ∪ {(n − h, 24, 1h−8) | 8 ≤ h ≤ n − 2}.

To see this, note that in view of the Murnaghan–Nakayama formula (see [14, Section
2.4.7]), if γ ∈ Nn,k, then γ is obtained by adding a (n − k)-hook to a hook-partition of k
and that this condition is also sufficient for γ ∈ Nn,k since k ≤ 4 < n/2 (so that there is
at most one way in which hooks of the given length can be recursively removed from
any given partition of n).

So if χ and ψ have no common zero in An, then {λ, μ} ∩ Nn,k � ∅ for any 1 ≤ k ≤ 4.
Note that the sets Dn,k are pairwise disjoint. The same is true for the sets Cn,k since
n ≥ 10. Assume first that neither λ nor μ is in

∪Bn,k \ {(n), (1n)} = {(n − 1, 1), (n − 2, 12), (n − 3, 13), (4, 1n−4), (3, 1n−3), (2, 1n−2)}.

Then λ ∈ Cn,k1 ∩ Dn,k2 and μ ∈ Cn,k3 ∩ Dn,k4 for some pairwise different 1 ≤ ki ≤ 4. In
particular, λ, μ ∈ ⋃4

k=1 Cn,k. In each of these cases, it can be checked that χλ(τ(n−5,5)) =
χμ(τ(n−5,5)) = 0.

Next assume that λ ∈ {(n − 3, 13), (4, 1n−4)}. Then μ ∈ Nn,1 ∩Nn,2 ∩Nn,3 = {(n), (1n)},
leading to a contradiction.

If λ ∈ {(n − 2, 12), (3, 1n−3)}, then

μ ∈ Nn,1 ∩ Nn,2 = {(n), (n − 2, 2), (22, 1n−4), (1n)},

so that μ ∈ {(n − 2, 2), (22, 1n−4)}, which had been excluded at the beginning of the
proof.

If λ ∈ {(n − 1, 1), (2, 1n−2)}, then μ ∈ Nn,1 \ {(n), (1n)} and so μ = (n − h, 2, 1h−2)
for some 2 ≤ h ≤ n − 2. In this case, we have that χλ(τγ) = χμ(τγ) = 0 for some
γ ∈ {(n − 5, 22, 1), (n − 6, 3, 2, 1)}.

Case 2: n is odd. In this case, τ(n), τ(n−k,k−1,1) ∈ An for 2 ≤ k ≤ (n + 1)/2. Let Nn,0 :=
{γ 
 n | χγ(τ(n)) = 0} and for 2 ≤ k ≤ 4, let Nn,k := {γ 
 n | χγ(τ(n−k,k−1,1)) = 0}. We can
write Nn,k = Bn,k ∪ Cn,k ∪ Dn,k with

Bn,0 = ∅,
Cn,0 = ∅,
Dn,0 = {(n − h, 1h) | 0 ≤ h ≤ n − 1},
Bn,2 = {(n), (n − 2, 2), (22, 1n−4), (1n)},
Cn,2 = {(n − 1, 1), (2, 1n−2)},
Dn,2 = {(n − h, 3, 1h−3) | 3 ≤ h ≤ n − 3} ∪ {(n − h, 22, 1h−4) | 4 ≤ h ≤ n − 2},
Bn,3 = {(n), (n − 3, 2, 1), (3, 2, 1n−5), (1n)},
Cn,3 = {(n − 2, 12), (n − 4, 22), (32, 1n−6), (3, 1n−3)},
Dn,3 = {(n − h, 4, 1h−4) | 4 ≤ h ≤ n − 4} ∪ {(n − h, 23, 1h−6) | 6 ≤ h ≤ n − 2},
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Bn,4 = {(n), (n − 2, 2), (n − 3, 3), (23, 1n−6), (22, 1n−4), (1n)},
Cn,4 = {(n − 3, 13), (n − 4, 2, 12), (n − 5, 22, 1), (n − 6, 23), (42, 1n−8), (4, 3, 1n−7),

(4, 2, 1n−6), (4, 1n−4)},
Dn,4 = {(n − h, 5, 1h−5) | 5 ≤ h ≤ n − 5} ∪ {(n − h, 32, 1h−6) | 6 ≤ h ≤ n − 3}

∪ {(n − h, 24, 1h−8) | 8 ≤ h ≤ n − 2}.

This can be seen again by noting that if γ ∈ Nn,k, then γ can be obtained by adding
an (n − k)-hook to a partition γ 
 k. Further, if 2 ≤ k ≤ 4, then χγ(τ(k−1,1)) � 0. These
conditions are again sufficient for γ ∈ Nn,k since k < n/2.

Again the sets Dn,k are pairwise disjoint; the same holds for the sets Cn,k since
n ≥ 11 and we may assume that {λ, μ} ∩ Nn,k � ∅ for k ∈ {0, 2, 3, 4}. Assume first
that neither λ nor μ is contained in ∪Bn,k. Then, similarly to Case 1, λ, μ ∈ ∪Cn,k.
In particular, χ(τ(n−5,4,1)) = 0 and ψ(τ(n−5,4,1)) = 0. So we may now assume that
λ ∈ (∪Bn,k) \ {(n), (1n)}.

If λ ∈ {(n − 2, 2), (22, 1n−2)}, then μ ∈ Nn,0 ∩ Nn,3 and then μ ∈ {(n − 2, 12), (3, 1n−3)},
which had been excluded at the beginning of the proof.

If λ ∈ {(n − 3, 3), (23, 1n−6)}, then again μ ∈ Nn,0 ∩ Nn,3, so μ ∈ {(n − 2, 12), (3, 1n−3)}
and then χλ(τ(n−5,4,1)) = χμ(τ(n−5,4,1)) = 0.

If λ ∈ {(n − 3, 2, 1), (3, 2, 1n−5)}, then μ ∈ Nn,0 ∩ Nn,2 ∩ Nn,4 = {(n), (1n)}, leading to
a contradiction. �

We now prove Theorem A.

PROOF OF THEOREM A. We check that χ(1) = n(n − 3)/2 if and only if χ ∈
{χ(n−2,2), χ(22,1n−4)} and that χ(1) = (n − 1)(n − 2)/2 if and only if χ ∈ {χ(n−2,12), χ(3,1n−3)}.
The theorem then follows by Theorem 3.2.

The ‘if’ parts are easily checked using the hook formula. The ‘only if’ parts for
n = 8 are also easily checked. So assume now that n ≥ 9. Note that χ(n)(1), χ(1n)(1) = 1
and χ(n−1,1)(1), χ(2,1n)(1) = n − 1. We show that χλ(1) > (n − 1)(n − 2)/2 for any λ 
 n
with λ1, λ′1 ≤ n − 3 (with λ′ the partition that is conjugated to λ), which concludes the
proof of the ‘only if’ parts.

For n= 9 and 10, this can easily be checked by looking at character tables. So assume
that n ≥ 11 and that the claim holds for n − 1 and n − 2. Then by induction, χμ(1) ≥
(n − 1)(n − 4)/2 for any μ 
 n − 1 with μ1, μ′1 ≤ n − 3 and χν(1) > (n − 3)(n − 4)/2 for
any ν 
 n − 2 with ν1, ν′1 ≤ n − 5. If λ has at least two removable nodes A and B, then,
by the branching rule,

χλ(1) ≥ χλ\{A}(1) + χλ\{B}(1) ≥ (n − 1)(n − 4) > (n − 1)(n − 2)/2.

If λ has only one removable node, then λ = (ab) for some a, b with ab = n. Further,
2 ≤ a, b ≤ n/2 < n − 5. So

χλ(1) = χ(ab−2,(a−1)2)(1) + χ(ab−1,a−2)(1) > (n − 3)(n − 4) > (n − 1)(n − 2)/2,

which concludes the proof. �
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We next prove the following result, which implies Theorem D for alternating
groups (if n = 5 or 6, it can be checked that Γv(An) has 3, respectively 2, connected
components by looking at character tables).

THEOREM 3.3. Let n ≥ 7. Then each of Γv(Sn), Γv(An), Δv(Sn), and Δv(An) is
connected. Further, Γv(Sn) and Γv(An) have diameter 2, and Δv(Sn) and Δv(An)
diameter at most 2.

Note that by the above theorem (and checking small cases), we have that Γ(Sn) ⊆
Γv(Sn) and Γ(An) ⊆ Γv(An). To prove the theorem, we need the following lemma.

LEMMA 3.4. Let n ≥ 7 and σ ∈ Sn be a vanishing element. Then there exists
χ ∈ Irr(Sn) \ {χ(n−2,2), χ(22,1n−4)} with χ(σ) � 0.

PROOF. For n ≤ 9, the result can be proved looking at character tables. So assume
from now on that n ≥ 10.

Let τ be the cycle partition of σ. If τ1 ≥ 4, then there exists a τ1-core λ of n by [9,
Theorem 1]. In particular, χλ(σ) = 0 in view of the Murnaghan–Nakayama formula.
If τ1 ≤ n − 4, then neither (n − 2, 2) nor (22, 1n−4) is a τ1-core. If τ1 ≥ n − 3, then we
can take λ = (n − 5, 5) as a τ1-core.

So we may now assume that τ = (3a, 2b, 1c) for some a, b, c ≥ 0 with 3a + 2b +
c = n. Taking λ = (n − 4, 2, 12), (n − 1, 1), or (n − 3, 12) depending on whether n is
congruent to 0, 1, or 2 modulo 3, respectively, we may assume that n − 3a ≥ 4 (since
for this choice of λ, we have that |λ(3)| ≥ 4, so that χλ(σ) = 0 if n − 3a ≤ 3).

If b is odd, then χλ(τ) = 0 for any λ = λ′, in particular for λ = (n/2, 2, 1n/2−2) or
((n + 1)/2, 1(n−1)/2) depending on the parity of n, since then χλ = χλ · sgn. So we may
assume that b is even.

Using the determinantal formula, we have that

χ(n−2,2) = 1↑Sn
Sn−2,2
− 1↑Sn

Sn−1
,

where Sn−2,2 � Sn−2 × S2 is a maximal Young subgroup. We now show that
χ(n−2,2)(σ) � 0. Multiplying with sgn, this also gives χ(22,1n−4)(σ) � 0, so that the
lemma follows.

By the above formulas, we have that

χ(n−2,2)(σ) = b +
(
c
2

)
− c = b +

c(c − 3)
2

.

So χ(n−2,2)(σ) � 0 unless (b, c) ∈ {(0, 0), (0, 3), (1, 1), (1, 2)}. Each of these choices
contradicts 2b + c = n − 3a ≥ 4 or b even. �

PROOF OF THEOREM 3.3. For n = 7 or 8, the theorem can be easily checked. So
assume that n ≥ 9. By Theorem 3.2, we have that Γv(Sn) is connected with diameter 2.
Further if g, h ∈ Sn are vanishing elements, then by Lemma 3.4, there are χ,ψ ∈
Irr(Sn) \ {χ(n−2,2), χ(22,1n−4)} with χ(g) = 0 and ψ(h) = 0. Since χ and ψ have a common
zero, it follows that Δv(Sn) is connected and that it has diameter at most 2.
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Let now χ,ψ ∈ Irr(An) have degrees larger than 1. Then χ and ψ have a common zero
by Lemma 3.1 and Theorem 3.2 if and only if {χ,ψ} � {(χ(n−2,2))An , (χ(n−2,12))An} (note
that (χ(n−2,2))An and (χ(n−2,12))An are both irreducible by [14, Theorem 2.5.7]). Further,
any vanishing element g ∈ An is a zero of some irreducible character � (χ(n−2,2))An by
Lemmas 3.1 and 3.4. We can then conclude as in the Sn case. �

4. Solvable groups

Here we prove Theorem B. We begin with the easy case of nilpotent groups.

THEOREM 4.1. Let G be a nilpotent group. Then any two nonlinear irreducible
characters of G share a common zero. Equivalently, Γv(G) is complete.

PROOF. Let χ,ψ ∈ Irr(G) be nonlinear. Since nilpotent groups are monomial and
maximal subgroups of nilpotent groups are normal, we have that there exist normal
maximal subgroups M and N of G such that χ is induced from M and ψ is induced
from N. By the character-induction formula, both characters vanish outside M ∪ N.
Since G � M ∪ N by comparing orders, the result follows. �

Theorem 4.1 fails when the group is not nilpotent. The group SL2(3) is already a
counterexample. In fact, Γv(SL2(3)) is disconnected. We also note that the graph Δv(G)
(defined in Section 2) for G nilpotent does not need to be complete, as the dihedral
group D16 shows.

Next, we consider nilpotent-by-abelian groups. As usual, F(G) denotes the Fitting
subgroup of G.

LEMMA 4.2. Let G be a finite group such that G/F(G) is abelian. Then there exists
λ ∈ Irr(F(G)) such that χ = λG ∈ Irr(G). In particular, χ vanishes on G − F(G) and all
the G-classes in G − F(G) are linked in Δv(G).

PROOF. This follows from the proof of [26, Lemma 18.1]. �

With a slight abuse of language, sometimes we say that x, y ∈ G are linked in Δv(G)
to mean that the conjugacy classes of x and y are linked in Δv(G), or that x belongs to
a connected component of Δv(G) to mean that the class of x belongs to that connected
component.

LEMMA 4.3. Let G be a finite group such that G/F(G) is abelian. Then Δv(G) has at
most two connected components, one of which contains all the classes in G − F(G).
If there are two connected components, then the second one contains all the vanishing
classes in F(G) − Z(F(G)).

PROOF. By Lemma 4.2, all the classes in G − F(G) are linked. Let Δ1 be the
connected component containing these classes. Suppose first that F(G) is abelian. Then
Lemma 2.2 implies that for any χ ∈ Irr(G) nonlinear, Van(χ) � F(G). Therefore, all the
vanishing classes are linked to some class in G − F(G), which implies that Δv(G) is
connected.
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Suppose now that F(G) is not abelian and that Δv(G) is not connected. Let Δ1, . . . ,Δt

be the connected components of the graph, where Δ1 contains all classes in G − F(G).
So all the classes in Δ2, . . . ,Δt are contained in F(G). Let y be a representative of a class
in one of these components. Then, y is a vanishing element and for every χ ∈ Irr(G)
satisfying χ(y) = 0,

χF(G) ∈ Irr(F(G)),

by Lemma 2.2. In particular, y is a vanishing element of F(G), that is, all the classes in
Δ2, . . . ,Δt are contained in F(G) − Z(F(G)). Suppose that y1, y2 ∈ F(G) − Z(F(G)) lie
in vanishing classes. Let χi ∈ Irr(G) such that χi(yi) = 0. Then,

ϕi := (χi)F(G) ∈ Irr(F(G)).

By Theorem 4.1, there exists t ∈ F(G) such that ϕi(t) = 0 for i = 1, 2. However, then y1
and t are linked by means of χ1, and t and y2 are linked by means of χ2. Thus, y1 and
y2 belong to the same connected component. It follows that all the vanishing classes in
F(G) belong to the same connected component. The result follows. �

Recall that the Fitting series of a finite group G is the sequence of characteristic sub-
groups Fi(G) defined by F0(G) = 1, F1(G) = F(G), and Fi+1(G)/Fi(G) = F(G/Fi(G))
for i ≥ 1. If G is solvable, there exists an integer n such that Fn(G) = G. The smallest
such integer is called the Fitting height of G. As usual, given N � G and θ ∈ Irr(N), we
write Irr(G|θ) to denote the set of irreducible characters of G lying over θ.

LEMMA 4.4. Let G be a solvable group of Fitting height n. If G/Fn−1(G) is not abelian,
then Δv(G) has at most two connected components.

PROOF. We may assume that n > 1. Set F := Fn−1(G) and let Z/Fn−1(G) =
Z(G/Fn−1(G)). By Lemma 2.3 and Theorem 4.1, we know that all the classes in
G − Z belong to the same connected component Δ1. Since Z/F is abelian, Lemma 4.2
applied to Z/Fn−2(G) implies that there exists ϕ ∈ Irr(Z) that vanishes on all the
classes in Z − F. Therefore, the same holds for any χ ∈ Irr(G|ϕ). In particular, all the
classes in Z − F belong to the same connected component Δ2 (possibly Δ1 = Δ2). We
claim that any vanishing element x ∈ F belongs to either Δ1 or Δ2. Let χ ∈ Irr(G)
such that χ(x) = 0. We may assume that Van(χ) ⊆ F. By Lemma 2.2, χF ∈ Irr(F). Let
ψ ∈ Irr(G/F) be nonlinear. By Gallagher’s theorem [12, Corollary 6.17], χψ ∈ Irr(G)
vanishes at both x and some element in G − F. This proves the claim. Thus, Δ1 and Δ2
are all the connected components. �

We can now complete the proof of Theorem B.

THEOREM 4.5. Let G be a solvable group. Then Γv(G) has at most two connected
components.

PROOF. By Lemma 2.1, it suffices to show that Δv(G) has at most two connected
components. Let n be the Fitting height of G. By Theorem 4.1, we may assume that
n > 1. By Lemma 4.4, we may assume that G/Fn−1(G) is abelian. By Lemma 4.2,
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all the classes in G − Fn−1(G) belong to the same connected component, say Δ1. By
Lemma 4.3, we may assume that n ≥ 3.

Suppose first that Fn−1(G)/Fn−2(G) is abelian. Using Lemma 4.2 again, the classes
in Fn−1(G) − Fn−2(G) belong to the same connected component, say Δ2 (possibly
Δ2 = Δ1). Suppose that x ∈ Fn−2(G) is a vanishing element. We want to see that the
class of x belongs to Δ1 or Δ2. Suppose not. Then, if χ ∈ Irr(G) is such that χ(x) = 0,
we have that χ does not have any zeros in G − Fn−2(G). By Lemma 2.2, it follows
that χFn−2(G) ∈ Irr(Fn−2(G)). Using Gallagher’s theorem, we deduce that χψ ∈ Irr(G)
for every ψ ∈ Irr(G/Fn−2(G)). We can assume that ψ is nonlinear. Since this character
has zeros on G − Fn−2(G), we have a contradiction.

Finally, we may assume that Fn−1(G)/Fn−2(G) is not abelian. In this case, we prove
that Γv(G) has at most two connected components. Let Φ be the (normal) subgroup of
G such that

Φ/Fn−2(G) = Φ(G/Fn−2(G)).

By Lemma 4.2 applied to G/Φ, there exists λ ∈ Irr(Fn−1(G)/Φ) such that

ψ := λG ∈ Irr(G).

Clearly, by Lemma 2.2, all the irreducible characters of G whose restriction to Fn−1(G)
is not irreducible belong to the connected component of ψ. Now we claim that all the
characters in

A = {χ ∈ Irr(G) | χΦ ∈ Irr(Φ), χ(1) > 1}

belong to the connected component of ψ and that all the characters in

B = {χ ∈ Irr(G) | χFn−1 (G) ∈ Irr(Fn−1(G)), χΦ � Irr(Φ)}

belong to the same connected component. The result follows.
Let χ ∈ A. By the definition of A, χΦ ∈ Irr(Φ). By Gallagher again, χψ ∈ Irr(G),

which implies that χ and χψ are linked in Γv(G). Since χψ vanishes on G − Fn−1(G), we
deduce that χψ is linked to ψ. Therefore, there is a path of length 2 joining χ and ψ. We
have thus seen that the characters inA and ψ are in the same connected component.

It remains to prove that the characters in B belong to the same connected
component. First, we see that for any χ ∈ B, there exists Uχ � G such that Φ ≤ Uχ <
Fn−1(G) and χ vanishes on Fn−1(G) − Uχ. Let ϕ ∈ Irr(Φ) lie under χ. Suppose that ϕ
is Fn−1(G)-invariant, so that (Fn−1(G),Φ,ϕ) is a character triple with Fn−1(G)/Φ =
F(G/Φ) abelian by Gaschütz’s theorem [26, Theorem 1.12]. The existence of Uχ

follows from [37, Lemma 2.2]. Now, we assume that ϕ is not Fn−1(G)-invariant. Let
T := IG(ϕ) and note that G = TFn−1(G) (because χ restricts irreducibly to Fn−1(G)).
In particular, T ∩ Fn−1(G) � G (because T ∩ Fn−1(G) � T , Fn−1(G)/Φ is abelian and T
contains Φ, so T ∩ Fn−1(G) is also normal in Fn−1(G)). Set Uχ = T ∩ Fn−1(G) and note
that it satisfies the properties that we want.
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Therefore, if χ,ψ ∈ B, then both characters vanish on Fn−1(G) − (Uχ ∪ Uψ). Since

Uχ ∪ Uψ � Fn−1(G),

we conclude that all the characters in B are linked. This completes the proof. �

As mentioned at the end of Section 2, there are examples of solvable groups with
Δv(G) disconnected. The Fitting height of the group appears to be a relevant factor
to decide the connectedness of Δv(G). The solvable examples mentioned there have
Fitting height 3. There are also similar examples of Fitting height 3 among odd order
groups. Let H ≤ GL3(3) be a Frobenius group of order 39 and let G = HV be the
semidirect product of H acting on V, where V is the natural module for GL3(3). It is
easy to check that this group has Fitting height 3 and Δv(G) is disconnected. We
conclude this section with the following theorem.

THEOREM 4.6. Let G be a solvable group. Suppose that either the Fitting height of
G exceeds 9 or that G has odd order and Fitting height at least 5. Then Δv(G) is
connected and has diameter at most 2.

PROOF. By [38, Theorem 5.2], there exists μ ∈ Irr(F8(G)) such that χ = μG ∈ Irr(G).
In particular, χ vanishes on G − F8(G). Thus, all classes in G − F8(G) belong to
the same connected component Δ1. Furthermore, they are linked. Let x ∈ Van(G)
and assume that x is not linked to any class in G − F8(G). Let ψ ∈ Irr(G) such that
ψ(x) = 0. Therefore, Van(ψ) ⊆ F8(G). Lemma 2.2 implies that ψF8(G) ∈ Irr(F8(G)).
Thus, ψγ ∈ Irr(G) for every nonlinear γ ∈ Irr(G/F8(G)). This character vanishes both
at x and at some element in G − F8(G). This is a contradiction.

Suppose now that |G| is odd. By [30, Theorem D], there exists χ ∈ Irr(G) such that
χ vanishes on G − F3(G). The result follows by similar arguments as above. �

We conjecture that if G is solvable and Δv(G) is disconnected, then the Fitting height
of G is at most 3.

5. Groups of Lie type

In this section, we complete the proof of Theorem D.
In [22, Theorem 5.1], Malle et al. proved that, for every finite simple group G of

Lie type, there exist four conjugacy classes (of elements of prime order) in G such
that every nontrivial irreducible character of G vanishes on at least one of them. This
instantly shows that the common-zero graph Γv(G) of G has at most four connected
components. With some more work, this bound can be lowered to 3. Note that 3 is the
best possible bound, as shown by PSL2(q) for several choices of q.

In fact, it is known that, with the possible exception of G = PΩ+2n(q), every simple
group of Lie type has a pair of conjugacy classes, say (C, D), called a strongly
orthogonal pair, such that

χ(C)χ(D) = 0
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for every χ ∈ Irr(G) but only two characters. One of them, of course, is the trivial
character 1G and the other is usually the Steinberg one StG. This was done in the proofs
of [23, Theorems 2.1–2.6] for classical groups and in [20, Section 10] for groups of
exceptional types. In this case, Γv(G) clearly has at most three connected components.

We are left with only one family G = PΩ+2n(q). It is worth noting that the
common-zero graph of several simple groups of Lie type is indeed connected, although
we have not made an effort to make this precise in previous cases. We take the
opportunity of this remaining case to prove the connectedness of the graph.

Recall that, for p a prime, a p-defect zero character of G is a character with degree
divisible by |G|p. We use a well-known fact that p-defect zero irreducible characters
vanish on every p-singular element. It follows that if p divides |G|, then all the p-defect
zero characters of G share a common zero. To see that a character is of p-defect zero,
we frequently use a case of Zsigmondy’s theorem stating that, for every n ∈ Z≥2 and
q ∈ Z≥2 with (n, q) � (6, 2) and q + 1 not a 2-power when n = 2, there is a prime
(called a primitive prime divisor) that divides qn − 1 and does not divide qk − 1 for
any positive integer k < n. Following [22], we denote such a prime by �(n).

Orders and character degrees of G are conveniently expressed as products of a power
of q and cyclotomic polynomials Φi evaluated at q, up to a constant. Note that �(n) can
be defined as a prime dividing Φn but not Φk for any k < n.

THEOREM 5.1. Let G be a finite simple group of Lie type. Then Γv(G) has at most three
connected components.

PROOF. As mentioned above, we may assume that G = PΩ+2n(q) with n ≥ 4, and we
aim to prove that Γv(G) is connected. Let Gsc be the corresponding finite reductive
group of simply connected type, so that Gsc = Spin2n(q) is the full covering group of
G and G = Gsc/Z(Gsc).

Maximal tori and their orders of finite reductive groups are well known, see
for example [21, Section 3A]. Here a maximal torus of Gsc is defined to be the
F-fixed points of a maximal torus of the ambient algebraic group G under a suitable
Frobenius map F : G→ G such that Gsc = GF. Specifically, the Gsc-conjugacy classes
of F-stable maximal tori of G are parameterized by pairs of partitions (λ, μ) of n (that
is, λ = (λ1, λ2, . . .) and μ = (μ1, μ2, . . .) with

∑
i λi +

∑
j μj = n) such that the number of

parts of μ is even. The order of the corresponding (conjugate) maximal tori of Gsc is∏
λi

(qλi − 1)
∏
μj

(qμj + 1).

Consider three tori Ti (1 ≤ i ≤ 3) of Gsc of orders

|T1| = (qn−1 + 1)(q + 1), |T2| = (qn−2 + 1)(q2 + 1),

and

|T3| =
⎧⎪⎪⎨⎪⎪⎩

qn − 1 if n is odd,
(qn−1 − 1)(q − 1) if n is even.
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Assume for a moment that n ≥ 5 and (n, q) � (5, 2). In particular, primitive prime
divisors

�1 := �(2n − 2), �2 := �(2n − 4),

and

�3 :=

⎧⎪⎪⎨⎪⎪⎩
�(n) if n is odd,
�(n − 1) if n is even,

exist. Furthermore, �i divides |Ti| and the �i-Sylow subgroups of Gsc are cyclic (see
[24, Theorem 25.14]). Let gi ∈ Ti be of order �i. We use the same notation gi and Ti

for their images under the natural projection from Gsc to G.
We first argue that all the nonunipotent characters of G (as well as of Gsc) are

contained in one connected component. (Here, a character of G is called nonunipotent
if its lift to Gsc is nonunipotent. See [5, Definition 13.19] for the definition of unipotent
characters of finite reductive groups.) For this, it is sufficient to show that any such
character of Gsc vanishes on at least two gi. This can be argued similarly as in [21,
Section 3B]. Assume otherwise. Then there is χ belonging to the Lusztig series
E(Gsc, s) for some nontrivial semisimple element

s ∈ Gad := P(CO2n(q)0)

such that χ is nonzero on at least two gi.
Suppose that χ(g1) � 0. Then �1 does not divide χ(1) (otherwise, since every

character degree is a product of a power of q and someΦk up to a constant, we have that
Φ2n−2 appears in the product for χ(1); which would imply that χ is of �1-defect zero,
and hence vanishes at g1, which is a contradiction). It follows from the character-degree
formula in Lusztig’s parameterization [5, Remark 13.24] that |CGad (s)| is divisible by
�1 and moreover CGad (s) contains a conjugate of T ∗1 , where T ∗i is the torus of Gad dual
to Ti. What we have shown also applies to the cases χ(g2) � 0 and χ(g3) � 0. Since
χ is nonzero on at least two gi, we deduce that CGad (s) contains certain conjugates
of at least two T ∗i . Using the known structure of centralizers of semisimple elements
in finite reductive groups (see [34, Lemmas 2.3 and 2.5], for instance, for the case
of split orthogonal groups), we see that s must be trivial, violating the nonunipotent
assumption on χ.

Lusztig’s classification of ordinary irreducible characters of finite reductive groups,
together with the aforementioned character-degree formula and the known centralizers
of semisimple elements also show that, for each i, G possesses a nonunipotent
character of �i-defect 0, which thus vanishes on gi. For instance, for i = 1, we choose a
semisimple element s ∈ G = [Gad, Gad] so that Φ2n−2, a polynomial in q, is not a factor
of |CGad (s)|. Every character in the Lusztig series E(Gsc, s) then has degree divisible by
Φ2n−2 and �1-defect 0. Moreover, these characters (of Gsc) restrict trivially to Z(Gsc)
(see [11, Lemma 5.8], for instance), and therefore they are lifts of characters of G.

We now turn to (nontrivial) unipotent characters. First assume that n is odd. As
mentioned in [21, Section 3G], all these characters except the Steinberg one have
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degrees divisible by either �1 or �3, and therefore have either �1-defect or �3-defect zero,
and thus vanish on either g1 or g3. We now know that all members of Irr(G)\{1G, StG}
are contained in just one connected component of Γv(G). Thus, we would be done if
StG has a common zero with any other irreducible character of the group. This is not
difficult to see. Let r be the defining characteristic of the group. Consider g ∈ G that
is an r-singular element but not an r-element and p � r that is a prime divisor of |g|.
Then g is a vanishing element for both StG and any p-defect zero characters.

Now assume that n is even. According to [21, Section 3G], if a nontrivial unipotent
character of G has degree not divisible by either �1 or �3, it must be either the Steinberg
character or one of the two others labeled by the symbols(

n − 1
1

)
and

(
0 · · · n − 3 n − 1
1 · · · n − 2 n − 1

)
.

(We refer the reader to [2, Section 13.8] for the labeling and degree formulas of
unipotent characters of classical groups.) The degrees of these two characters, however,
are divisible by Φ2n−4. They are therefore of �2-defect zero, and thus vanish at g2,
proving that they are in the same connected component with nonunipotent characters.
As with the case of odd n, Γv(G) is therefore connected.

Consider G = PΩ+8 (q). As the case (n, q) = (4, 2) can be checked using [8], we
assume that q > 2, so that the primitive prime divisors �1, �2, �3 still exist. (Note that
|G| is now divisible by Φ2

4 and the condition χ(g2) � 0 does not imply that CGad (s)
contains a conjugate of T ∗2 , as we had earlier.) We still have that every nonunipotent
character of G vanishes at either g1 or g3. However, the (two) unipotent characters of G
labeled by the symbol

(
2
2

)
have degree q2Φ3Φ6, and hence are of both �1- and �3-defect

zero. They therefore vanish on both g1 and g3, and it follows that all the nonunipotent
characters of G are contained in one connected component of Γv(G). As mentioned
above, this connected component also contains all (nontrivial) unipotent characters
except possibly the Steinberg one or the two characters labeled by

(
3
1

)
and

(
0 1 3
1 2 3

)
,

which are of degrees qΦ2
4 and q7Φ2

4, respectively. These characters are of �2-defect
zero and vanish on every �2-singular element. However, G has another �2-defect zero
unipotent character, namely the one labeled by

(
1 2
0 3

)
, of degree q3Φ3Φ

2
4/2, and thus the

two exceptional characters are in the same connected component with the nonunipotent
characters. Finally, the Steinberg character is handled as above, and Γv(G) is connected.

When (n, q) = (5, 2), the above arguments still go through with T2 replaced by a
maximal torus of order (q3 − 1)(q2 − 1) and �2 being �(3) (and keep T1 and T3). This
concludes the proof. �

THEOREM 5.2. If G is a sporadic simple group, then Γv(G) is connected.

PROOF. This can be checked using GAP [8]. �

Theorem D readily follows from Theorems 3.3, 5.1, 5.2, and the classification of
finite simple groups (the cases A5 and A6 can be easily checked and the case of cyclic
groups of prime order is a triviality).
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6. Equivalence of character-induced metrics

In this section, we discuss an application of Theorem A to a problem on
character-induced metrics on permutations.

A metric d on a set X is a binary function d : X × X → R≥0 such that, for every
a, b, c ∈ X:

• d(a, b) = 0 if and only if a = b;
• d(a, b) = d(b, a); and
• d(a, b) ≤ d(a, c) + d(c, b).

When X = G is a finite group, a metric d is of particular interest when it is bi-invariant
(also called G-invariant); that is,

d(a, b) = d(ac, bc) = d(ca, cb)

for every a, b, c ∈ G. See [3, Ch. 10] for more background on the theory of metrics on
groups.

In his book [4, Section 6D], Diaconis introduces the matrix norm approach
as a method for constructing (bi-invariant) metrics on finite groups. Through this
construction, many well-known metrics on permutations, including the Hamming
distance, can be obtained. This approach relies on faithful unitary representations

ρ : G→ GL(V)

and the Frobenius norm on matrices

‖M‖ :=
(∑

i,j

MijMij

)1/2
= Tr(MM∗)1/2.

(Recall that M∗ is the conjugate transpose of a matrix M and z is the conjugate of a
complex number z. Also, ρ is unitary if ρ(g)ρ(g)∗ = ρ(g)∗ρ(g) = I for every g ∈ G.) If
ρ is such a representation, then

dρ(a, b) := ‖ρ(a) − ρ(b)‖

is a metric on G. Letting χ be the character afforded by ρ (and in fact, every character
can be afforded by a unitary representation),

dχ(a, b) := dρ(a, b) =
√

2(χ(1) − Re(χ(ab−1)))1/2,

where Re(z) denotes the real part of a complex number z.
Clearly the distances d(1, a) between the identity element and other elements of the

group completely determine a bi-invariant metric d. Let P(d) be the partition of G
determined by the equivalence relation:

a ∼ b if and only if d(1, a) = d(1, b).

Two metrics d1 and d2 are calledP-equivalent ifP(d1) = P(d2) (see for example [36]).
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It is well known that every character of the symmetric group Sn is rational-valued.
Therefore, if χ ∈ Irr(Sn), then P(dχ) is determined by the relation:

π ∼ σ if and only if χ(π) = χ(σ).

Here, using Theorem A, we prove the nonequivalence of the metrics on permuta-
tions induced from irreducible characters.
THEOREM 6.1. Let n ∈ Z≥3. The metrics dχ on the permutations in Sn induced from
the faithful irreducible characters χ of the group are pairwise non-P-equivalent.

Before proving the above theorem, we need a few preliminary lemmas. As it can be
proved that for n � 4, all irreducible nonlinear characters of Sn are faithful and there
are only two linear characters, so that the restriction to faithful irreducible characters
is not a big restriction.
LEMMA 6.2. Let {λ, μ} be one of the pairs {(n − 2, 2), (n − 2, 12)}, {(2, 2, 1n−4),
(n − 2, 12)}, {(n − 2, 2), (3, 1n−3)}, and {(2, 2, 1n−4), (3, 1n−3)}. Then χλ and χμ induce
non-P-equivalent metrics.

PROOF. We provide arguments only for λ = (n − 2, 2) and μ = (n − 2, 12) with n ≥ 4.
The other cases are similar. Let σ1 := (1 · · · n − 3) and σ2 := σ1(n − 2 n − 1). It is
easy to see that χλ vanishes on both σ1 and σ2, while χμ takes values 1 on σ1 and
−1 on σ2. This shows that the partitions determined by χλ and χμ are different, as
desired. �

LEMMA 6.3. Let χ ∈ Irr(Sn) such that χ � sgn · χ. There exist π,σ ∈ Sn of different
signature such that χ(π) = ±χ(σ) � 0.

PROOF. Suppose that λ is the partition of n corresponding to χ. The assumption on χ
implies that λ is not self-conjugate, or equivalently, the Young diagram [λ] of λ is not
symmetric. Following [14], we use Rij for the part of the rim of [λ] corresponding to
the hook at (i, j). The length of the hook at (i, j) is denoted by hij.

If λ ∈ {(n), (1n)}, then χ is the trivial or sign character, so the result is clear (n ≥ 2
as λ is not self-conjugate). So we may now assume that (1, 2) and (2, 1) are both nodes
of λ.

First we consider the case where [λ]\R11 is not symmetric (in particular, [λ]\R11
is nonempty). Let λ be the partition with Young diagram [λ]\R11. By induction, there
exist π and σ in Sn−h11 of different signature such that

χλ(π) = ±χλ(σ) � 0.

Let τ be a cycle of length n − h11 in Sn−h11 , and set

π := τπ and σ := τσ.

By the Murnaghan–Nakayama formula, we have

χλ(π) = ±χλ(π) and χλ(σ) = ±χλ(σ),

which implies what we wanted.
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It remains to consider the case where [λ]\R11 is symmetric. Since [λ] itself is not
symmetric but [λ]\R11 is, it follows that h12 � h21. Without loss of generality, assume
that h12 > h21, so that h12 is the second largest hook length in [λ] and it occurs with
multiplicity 1. Note that [λ]\R12 can be obtained from [λ]\R11 by adding some nodes
to the first column and that [λ]\R12 has at least two nodes in the first column. It follows
that [λ]\R12 is not symmetric. Repeating the above arguments, we arrive at the same
conclusion. �

LEMMA 6.4. Let χ,ψ ∈ Irr(Sn). If Van(χ) = Van(ψ), then χ = ψ up to multiplying with
sgn.

PROOF. Let λ, μ be the partitions of n with χ = χλ and ψ = χμ. We may assume that
μ � {λ, λ′} (with λ and λ′ being conjugated partitions).

Then by [31, Theorem 2], H(λ) � H(μ) or H([λ]\R11) � H([μ]\R11). The lemma
then follows by the proofs of [32, Propositions 3.3.8 and 3.3.9]. �

PROOF OF THEOREM 6.1. The result can be checked for n ≤ 7 from the known
character tables, so we suppose that n ≥ 8. Assume that χ,ψ ∈ Irr(Sn)\{1Sn , sgn} such
that P(dχ) = P(dψ), and let λ and μ be the partitions of n corresponding to χ and μ,
respectively.

We know that {λ, μ} is not one of the pairs considered in Lemma 6.2. It follows
that, by Theorem A, χ and ψ have a common zero. As P(dχ) = P(dψ), we deduce that
Van(χ) = Van(ψ), and thus, by Lemma 6.4,

ψ ∈ {χ, sgn · χ}.

We therefore would be done if χ and sgn · χ produce different partitions on Sn; that is,
P(χ) � P(sgn · χ). For this, it is sufficient to show that there exist permutations π and
σ of different signature such that

χ(π) = ±χ(σ) � 0.

This is done in Lemma 6.3, and the proof is complete. �

7. Relation with character degrees

The results we have observed suggest that the common-zero graph Γv(G) and
the common-divisor graph Γ(G) share many similar properties. However, studying
Γv(G) seems to be more challenging. Both solvable and nonsolvable groups with
disconnected Γ(G) have been classified [17, 19]. To achieve a similar classification
for Γv and, in particular, to show that Γv(G) has at most three connected components
for all G, we believe that the following question is crucial.

QUESTION 7.1. Let G be a finite group. Is it true that if Γ(G) is connected, then Γv(G)
is connected?

As presented in Section 2, there are examples of groups with irreducible characters
that are linked in Γ(G) but not in Γv(G). In other words, there exist irreducible
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characters that have noncoprime degrees and no common zeros. There are also
examples of irreducible characters that have common zeros and coprime degrees, for
instance, the irreducible characters of degree 3 and 8 in the semidirect product of
GL2(3) acting on its natural module. Following up Lemma 6.4, we wonder what would
happen if two irreducible characters have exactly the same vanishing set.

PROPOSITION 7.2. Let G be a finite group and let χ,ψ ∈ Irr(G) be such that
(χ(1),ψ(1)) = 1. Then Van(χ) � Van(ψ) and Van(ψ) � Van(χ). In particular, if
Van(χ) = Van(ψ), then (χ(1),ψ(1)) � 1.

PROOF. By symmetry, it suffices to prove that Van(χ) � Van(ψ). Let χ(1) be a
π-number for some set of primes π, so that ψ(1) is a π′-number. By way of
contradiction, suppose that Van(χ) ⊆ Van(ψ). By [22], there exists p ∈ π and x ∈ G
of p-power order such that χ(x) = 0. It follows that ψ(x) = 0. Note that ψ has degree
not divisible by p. Therefore, [33, Corollary 4.20] implies that ψ(x) � 0, which is a
contradiction. �

In symmetric groups, more is true: two irreducible characters must have the same
degree if they have the same vanishing set, by Lemma 6.4. However, this is not the
case in general, as shown by SL2(5) or PSL2(11). One can find more counterexamples
using [8], including solvable groups. Moreover, there exist irreducible characters
having the same vanishing set but where neither of the degrees divides the other.
Before showing one example, we need the following lemma.

LEMMA 7.3. Let q, s, and p be such that q and p are primes, and s is odd with
(q, s) = (q − 1, s) = 1 and p = (qs − 1)/(q − 1). Let Q := {(a1, . . . , as−1) | ai ∈ Fqs} with
the following operation:

(ai) · (bi) =
(
ai + bi +

i−1∑
j=1

aqj

i−jbj

)
.

Further, fix x ∈ F∗qs of order p and let C := 〈x〉 and G := Q � C through the action
(ai)xj

= (xj(qi−1)/(q−1)ai) of C on Q.
Then Q and G are groups. Further, if χ � 1 is any nontrivial irreducible character

of Q, then χG is an irreducible character of G with Van(χG) = G \ Q.

PROOF. This is stated in [1, Example 1, Section 5], but there is an error in the proof
appearing after [1, Proposition 5.1] of why χG does not vanish on Q, so we give a new
proof of this fact here. Further, it is not stated there that χG vanishes outside Q, but
this follows from Q being normal.

Let H = {(ai) ∈ Q | ai ∈ Fq} and Hk := {(ai) ∈ H | ai = 0 for i < k} for 1 ≤ k ≤ s.
Though it is not stated in [1, Proposition 5.1], the characters χc

α appearing there are
pairwise distinct, see the proof of [10, Theorem 4.8], so that indeed, for some α � 1,
χG = χG

α is irreducible. By [10, Theorem 4.1], any element in Q is G-conjugate to some
element in H. So it is enough to prove that χG

α does not vanish on H.
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Fix any 1 � α ∈ Irr(H) and any h ∈ H. We may assume that h � 1. Let 1 ≤ k, j < s
with α ∈ Irr(H/Hk+1) \ Irr(H/Hk) and h ∈ Hj \ Hj+1. For any g ∈ G, we have that if
hg = (ai), then ai = 0 for i < j and aj � 0. If further g ∈ Q and c ∈ C, then the j th
components of hc and (hc)g coincide.

If j > k, then hc ∈ Qk+1 for every c ∈ C, so in this case, the argument from [1,
Section 5] works.

Assume next that j < k. Since C = 〈x〉 with x ∈ F∗qs of order p = (qs − 1)/(q − 1),
then the j th component of hc is not in Fq and so by the above paragraph, it follows that
hc is not Q-conjugate to any element of HQk for 1 � c ∈ C. So in this case, χG

α (h) � 0
by the argument in [1, Section 5].

Consider now j = k. Then hc ∈ Qk ⊆ HQk for every c ∈ C. By [10, Lemma 3.3,
Proposition 4.7], we have that {(ai) ∈ Qk | Tr(ak) = 0} ⊆ Ker(χα) (apply [10, Lemma
3.3] with m = k to Q/Qk+1). In particular, if hc = (0k−1, Tr((hc)k), 0s−k−1), then hc = hck
for some k ∈ Ker(χα). In view of [10, Proposition 4.7], we then have that

χG
α (h) = q(s−1)(k−1)/2(α(h1) + · · · + α(hp))

with h1, . . . , hp ∈ Hk. Note that H is abelian (see [1, Example 1, Section 5]). As H is
a q-group with q a prime and α is a irreducible character of H, α(h1) + · · · + α(hp)
is a sum of p not necessarily primitive qa th roots of unity for some a ≥ 1. As p is
also prime and by definition, p � q, it follows that also in this case, χG

α (h) � 0 (this is
similar to the proof of [33, Lemma 4.19]). �

EXAMPLE 7.4. Let q1, s1, q2, s2, p with p and q1 � q2 primes, s1, s2 odd, (qi, si) =
(qi − 1, si) = 1, and p = (qsi

i − 1)/(qi − 1) for 1 ≤ i ≤ 2. These relations are satisfied by
q1 = 2, s1 = 5, q2 = 5, s2 = 3, and p = 31.

Let G := (Q1 × Q2) � C with subgroups Gi = Q1 � C as in Lemma 7.3. As Gi �
G/Q3−i, any irreducible representation of Gi can also be viewed as an irreducible
representation of G. Take any irreducible nonlinear characters χ and ψ of Q1 and Q2,
and let χ := χG1 and ψ := ψ

G2 . Then χ and ψ are irreducible and VanG1 (χ) = G1 \ Q1
and VanG2 (ψ) = G2 \ Q2 by Lemma 7.3. When viewing them as G characters as
above, it then follows that VanG(χ) = G \ (Q1 × Q2) = VanG(ψ). Further, since Qi are
qi-groups and |C| = p, by definition, χ(1) = qa

1 p and ψ(1) = qb
2 p for some a, b ≥ 1. In

particular, neither χ(1) nor ψ(1) divides the other.

Note that in this example, neither character is faithful or primitive. It is still open
whether more can be said if at least one of the two characters is of one of these types.

There is one important family of groups among which we have found no coun-
terexamples to irreducible characters having the same degree if they have the same
vanishing set.

QUESTION 7.5. Let G be a finite p-group. Suppose that χ,ψ ∈ Irr(G) and Van(χ) =
Van(ψ). Is it true that χ(1) = ψ(1)?
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This was communicated to one of us by J. Sangroniz years ago. We can now
show that Question 7.5 has an affirmative answer when one of the two characters has
degree p. We begin with a general lemma.

LEMMA 7.6. Let G be a finite group and let N � G. Suppose that |G : N | = p is prime.
Then χ(x) = 0 for every x ∈ G − N if and only if χ is induced from N.

PROOF. The result is clear if χ is induced from N. Now, assume that χ(x) = 0 for every
x ∈ G − N. We want to see that χ is induced from N. Assume not. Then χN ∈ Irr(N) by
[12, Corollary 6.19]. Hence,

1 = [χ, χ] =
1
|G|

∑
g∈G
|χ(g)|2 = 1

|G|
∑
g∈N
|χ(g)|2

= (1/p)
1
|N |

∑
g∈N
|χ(g)|2 = (1/p)[χN , χN] = 1/p,

which is a contradiction. �

As usual, if G is a group, Z2(G) is the subgroup of G such that Z(G/Z(G)) =
Z2(G)/Z(G).

LEMMA 7.7. Let G be a finite p-group and N be a proper normal subgroup of G.
Suppose that there exists δ ∈ Irr(N) such that χ = δG ∈ Irr(G). Then Van(χ) ∩ N � ∅.

PROOF. Without loss of generality, we may assume that χ is faithful. Note that
Z(G) < N. Therefore, N/Z(G) ∩ Z2(G)/Z(G) > 1. Thus, there exists a noncentral
element x ∈ N ∩ Z2(G). Now, a similar argument as at the end of the proof of [29,
Theorem C] shows that χ(x) = 0. �

Now we are ready to prove the promised result.

PROPOSITION 7.8. Let G be a finite p-group. Suppose that χ,ψ ∈ Irr(G) and Van(χ) =
Van(ψ). If χ(1) = p, then ψ(1) = p.

PROOF. We argue by induction on |G|. Suppose first that there exists M maximal in G
such that χM ,ψM ∈ Irr(M). Then the result follows from the inductive hypothesis.

Now let M be a maximal subgroup of G. The hypothesis Van(χ) = Van(ψ) and
Lemma 7.6 imply that one of the characters is induced from M if and only if the other
character is also induced from M. Therefore, we may assume that for any M maximal
in G, both χ and ψ are induced from M.

Let Z(G) ≤ N � G such that G/N is elementary abelian of order p2. Let ν ∈ Irr(N)
lie under χ. Let T := IG(ν). Since χ(1) = p, Clifford’s correspondence implies that
N < T . Therefore, if T < G, then T is a maximal subgroup of G. Write G/N = T/N ×
U/N for some U maximal in G. Since IU(ν) = N, ν induces irreducibly to μ ∈ Irr(U).
Note that ν lies under χ, so by comparing degrees, we have χU = μ, and this is a
contradiction. It follows that ν is G-invariant. The previous paragraph also implies that
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G − N ⊆ Van(χ) = Van(ψ). Now, by [12, Problem 6.3], χ is fully ramified with respect
to G/N. In particular, since ν is linear, we conclude that χ has no zeros in N, whence

G − N = Van(χ) = Van(ψ).

Now let δ ∈ Irr(N) lie under ψ. Suppose first that L := IG(δ) is maximal in G. It
follows from the Clifford theory that ψ(1)/δ(1) = p. Write G/N = L/N × V/N for
some V maximal in G, so that η = δV ∈ Irr(V) lies under ψ. We conclude that χV = η.
By Lemma 7.6, G − V � Van(ψ), which is a contradiction.

Now assume that L = G. Using [12, Problem 6.3] again, we see that ψ is fully
ramified with respect to G/N. Therefore, ψN = pδ. Since Van(ψ) ∩ N = ∅, it follows
that δ is linear, by Burnside’s theorem. The result follows in this case too.

Finally, assume that L = N, so that ψ = δG. By Lemma 7.7, ψ has some zero in N.
This is the final contradiction. �

As a concluding remark, we do not consider in this paper the number of conjugacy
classes on which two certain irreducible characters vanish simultaneously, or the
number of irreducible characters sharing a certain common zero. We do think that
this topic deserves further attention.
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